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Summary

Non-alcoholic fatty liver disease (NAFLD) is a disorder characterized by excessive

accumulation of fat in the liver that can progress to liver inflammation (non-alcoholic

steatohepatitis [NASH]), liver fibrosis, and cirrhosis. Although most efforts for drug

development are focusing on the treatment of the latest stages of NAFLD, where sig-

nificant fibrosis and NASH are present, findings from studies suggest that the amount

of liver fat may be an important independent risk factor and/or predictor of develop-

ment and progression of NAFLD and metabolic diseases. In this review, we first

describe the current tools available for quantification of liver fat in humans and then

present the clinical and pathophysiological evidence that link liver fat with NAFLD

progression as well as with cardiometabolic diseases. Finally, we discuss current phar-

macological and non-pharmacological approaches to reduce liver fat and present

open questions that have to be addressed in future studies.

K E YWORD S
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1 | INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is characterized by the

presence of liver fat accumulation (NAFL or steatosis) that can progress

to liver inflammation (non-alcoholic steatohepatitis [NASH]), liver

fibrosis, and cirrhosis.1 The prevalence of the disease is very high and is

continuously rising, affecting 32% of the general population world-

wide.2 Importantly, NAFLD prevalence is even higher (40–70%) among

patients with obesity and diabetes, or conversely, patients with NAFLD

suffer often by more than one metabolic diseases (obesity, diabetes,
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hyperlipidemia, and metabolic syndrome).3,4 NAFLD is also increasingly

recognized as an independent risk factor for cardiovascular diseases.5

The gold standard for the diagnosis and staging of NAFLD remains

liver biopsy, which is an invasive, time- and cost-consuming method,

that is operator dependent showing moderate reproducibility.6 These

important limitations make liver biopsy a suboptimal screening method

for NAFLD—or for monitoring disease progression and treatment

response.1,6–8 Furthermore, no approved treatment for NAFLD exists to

date, and several efforts for the development of drugs that can improve

liver fibrosis have failed.1,6–8 Thus, there is an urgent need for non-

invasive tools for diagnosing and staging NAFLD, for identifying patients

at high risk for disease progression, and for monitoring treatment

response.6,9–11 Additionally, therapeutic approaches targeting earlier

stages of the disease may prove to be more fruitful.

For the diagnosis of NAFLD, the presence of ≥5% of fat in the

liver is necessary. Accumulation of liver fat is thus the first and most

crucial event for NAFLD development. In this review, we will first

briefly present the current tools (non-invasive imaging modalities or

blood-based tests) that are available for the quantitative or semi-

quantitative assessment of fat amount in the liver. Second, we will dis-

cuss how increased liver fat accumulation may promote liver inflam-

mation and fibrosis, and we will summarize the evidence showing the

value of non-invasive liver fat quantification for predicting histologic

changes in NAFLD. Third, we will present the findings linking liver fat

with metabolic diseases and its value as independent predictor of

their development and progression. Finally, we will discuss the impact

of lifestyle interventions, bariatric operations, and medications on

reducing liver fat and improving NAFLD.

2 | METHODS OF DETECTION OF

LIVER FAT

Hepatic steatosis can be quantified histologically by classifying liver

fat into four grades, which represent the percentage of fatty hepato-

cytes: Steatosis (S) 0: 0–5%, S1: 5–33%, S2: 33–66%, S3: >66%.12

However, because of its invasiveness, liver biopsy is not an appropri-

ate tool for the diagnosis of liver steatosis. Non-invasive methods are

more suitable for this purpose and can be divided into imaging

methods and blood-based tests (see Table 1).

2.1 | Imaging methods

To assess hepatic steatosis, different imaging modalities are available,

including ultrasound-based techniques, such as abdominal ultrasonog-

raphy and controlled attenuation parameter (CAP), and magnetic

resonance-based techniques such as MRI-estimated proton density

fat fraction (MRI-PDFF).

2.1.1 | Ultrasonography

Transabdominal ultrasound is the most commonly used imaging

method for the diagnosis of hepatic steatosis, as it is widely available

and inexpensive. It is recommended as the first-line diagnosis and/or

screening tool for liver fat23,24; however, it can only detect steatosis

with >10–20% liver fat content.25 Taking liver biopsy as a reference,

abdominal ultrasound has shown pooled sensitivities and specificities

to distinguish moderate-to-severe steatosis from its absence of 85%

(80–89%) and 93% (87–97%), respectively.13 Limitations of the ultra-

sonography include that it is operator-dependent and that it cannot

provide an absolute quantification of liver fat. Apart from establishing

the diagnosis of steatosis, ultrasonography has been occasionally used

to assess the severity of steatosis.26 However, it demonstrates low

sensitivity especially at detecting mild steatosis, and its accuracy is

reduced in patients with obesity and renal disease.25–27 Thus, it is

considered a suboptimal method for monitoring disease progression

or treatment response.

2.1.2 | Controlled attenuation parameter (CAP)

CAP is a tool which is integrated into the vibration-controlled tran-

sient elastography (VCTE) device Fibroscan®. CAP reflects the atten-

uation of the ultrasound signal in steatotic liver tissue quantitatively

in dB/m and allows a non-invasive quantification of liver fat.28 A

recent study of 450 patients with NAFLD determined cut-off values

for S ≥ grade 1 of 302 dB/m (AUROC [area under receiver operating

characteristic curve] 87%), for S ≥ grade 2 of 331 dB/m (AUROC

77%), and for S ≥ grade 3 of 337 dB/m (AUROC 70%).14 However,

previous studies have described different cut-off values for grading

of steatosis. This may be because of heterogeneous study popula-

tions with different body mass index (BMI) of patients, small number

of cases, variable prevalence of type 2 diabetes mellitus, and differ-

ent stages of fibrosis. Factors such as male sex, age, BMI, presence

of metabolic syndrome and of alcohol abuse are positively associated

with CAP levels as well as with failures in CAP measurement, which

are estimated to be about 8%.29 Further studies are needed for pre-

cise differentiation of contiguous degrees of fatty liver. By comparing

CAP and liver ultrasound head-to-head, it could be shown that the

performance of CAP for detecting and grading liver steatosis was

higher than that of liver ultrasound; however, the rate of overestima-

tion was significantly higher for CAP than for ultrasonography

(30.5% vs 12.4%; p < 0.05).30 SmartExam is a recently developed

software that allows continuous measurements of CAP during

the entire examination and captures roughly 200 CAP values. Prelimi-

nary data suggest that continuous CAP has a lower measurement

variability than the original method with using the median of

10 measurements.31

2.1.3 | MRI-PDFF (proton density fat fraction)

MRI-PDFF is considered one of the most accurate methods to detect

and quantify liver steatosis. It has the advantage to assess steatosis

across the whole liver. In a head-to-head comparison with CAP, MRI-

PDFF could show a higher accuracy in identifying all grades of liver

steatosis (AUROC 0.99).15 Furthermore, it has been shown that a

reduction in MRI-PDFF values results in histologic improvement in
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NAFLD, including resolution of NASH, and fibrosis improvement.32,33

However, because of its high costs and limited availability, MRI-PDFF

is used almost exclusively in clinical trials but not in routine clinical

practice.

2.1.4 | CT and magnetic resonance spectroscopy

(MRS)

CT has been previously used for liver fat quantification by using the

Hounsfield scale (HU).34 Development of conversion equations based

on very high linear correlations allows the conversion of the HU

measurements to PDFF.34 However, because of the risk of ionized

radiation and the low accuracy of the method in mild steatosis, CT is

considered not appropriate for diagnosing and monitoring liver fat.

MRS was the first method developed for liver fat quantification based

on MRI. MRS has a sensitivity of 73–89% and specificity of 92–96%

for accurately detecting different cut-off percentages of liver fat.35

1H-MRS is considered as the most accurate method to detect and

quantify non-invasively liver steatosis.36 Main disadvantage of the

method is the limited reproducibility, because it demands focusing on

single voxels instead of volumetric assessments followed in MRI.

Additionally, it requires expertise for data acquisition and processing

and specific software systems, thus limiting its use.34

TABLE 1 Most important non-invasive tools for assessment of hepatic steatosis.

Test (reference) Features/compounds Application Performance Comments

Imaging modalities

Abdominal

ultrasound13
Increased liver echogenicity

compared with renal cortex

Recommended as first-line

tool for diagnosis of

steatosis

Moderate-to-severe

steatosis vs no steatosis:

Sn: 85% (80–89%); Sp:

93% (87–97%)

Detection of steatosis with

>10–20% liver fat content;

Limitations in obesity, fat

quantification not possible,

operator dependent

Controlled

attenuation

parameter

(CAP),14

Reflects attenuation of

ultrasound signal in

steatotic liver tissue in

dB/m

Measurement within

Fibroscan® examination

Cut-off values (AUROC):

S ≥ 1: 302 dB/m (87%);

S ≥ 2: 331 dB/m (77%),

S ≥ 3 of 337 dB/m (70%)

New software SmartExam:

continuous measurements

of CAP captures �200

CAP values - > lower

measurement variability

MRI-PDFF15 Non-invasive imaging

biomarker for

quantification of liver fat in

the entire liver

Most accurate method to

quantify liver steatosis

Detection of any grade

steatosis (AUROC 0.99;

Sn: 96%, Sp:100%)

high costs, limited availability

Blood-based tests

Fatty liver index

(FLI),16
BMI, WC, GGT, TG Most widely used non-

commercial test

Cut-offs: <30 (Sn: 87%, Sp:

64%, AUROC: 0.84); ≥60

(Sn: 61%, Sp: 86%)

Recommended as a NAFLD

screening tool in primary

care; Fat quantification not

possible; Gray zone where

result is inconclusive

SteatoTest™17,18 Haptoglobin, total bilirubin,

ALT, A2M, ApoA1, GGT,

total cholesterol, TG, age,

Glucose, gender, BMI

Commercial test Cut-offs: ≥0.3 (Sn: 90%, Sp:

54%, AUROC: 0.80), ≥0.7

(Sn: 46%, Sp: 88%)

Consists of non-routine

laboratory parameters;

high costs

Hepatic steatosis

index (HSI),19
BMI, diabetes, AST/ALT HSI < 30 rules out and >36

rules in fatty liver

Cut-offs: <30 (Sn: 93%, Sp:

40%, AUROC: 0.81), >36

(Sn: 46%, Sp: 92%)

Based on routinely available

parameters

Index of NASH

(ION),20
female: TG, HOMA and ALT;

male: waist-to-hip ratio,

ALT, TG, HOMA

ION <11 rules out and ≥22

rules in fatty liver

Cut-offs: <11 (Sn: 81%, Sp:

56%, AUROC: 0.77), ≥22

(Sn: 60%, Sp: 82%)

Moderate performance

NAFLD liver fat

score

(NAFLD-LFS),21

AST/ALT, diabetes, MetS,

insulin

cut-off of �0.640 predicts

increased liver fat

content

cut-off �0.640 (Sn: 86%, Sp:

71%, AUROC: 0.87)

Developed with MRS as

reference

Lipid accumulation

product22
WC, TG, gender cut-offs not provided for

ruling in or out steatosis

AUROC 0.79 for diagnosing

steatosis >30%

Moderate accuracy for

steatosis >5%

Abbreviations: Sn (sensitivity), Sp (specificity), S (steatosis), AUROC (area under receiver operating characteristic curve), MRI-PDFF (magnetic resonance

imaging – proton density fat fraction), BMI (body mass index), WC (waist circumference), GGT (gamma-glutamyl transferase), TG (triglycerides), ALT

(alanine aminotransferase), A2M (a2-macroglobulin), ApoA1 (apolipoprotein A1), AST (aspartate aminotransferase), HOMA (Homeostasis Model

Assessment), MetS (metabolic syndrome), MRS (magnetic resonance spectroscopy).
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2.2 | Blood-based tests

There are also various blood-based tests for the detection of liver fat,

including fatty liver index (FLI),16 SteatoTest™,17 hepatic steatosis

index (HSI),19 index of NASH (ION),20 NAFLD liver fat score

(NAFLD-LFS),21 and lipid accumulation product (LAP).22 The features

and performances of these tests are summarized in Table 1. As they

have been validated against different reference methods, they are not

easily comparable.

2.2.1 | Fatty liver index (FLI)

Among the blood-based tests, the FLI is the most widely used non-

commercial test consisting of the parameters BMI, waist circumfer-

ence, gamma-glutamyl transferase (GGT), and triglyceride levels. The

score was developed in 280 patients with NAFLD and showed a diag-

nostic accuracy of 84% for detecting liver steatosis on ultrasound. At

a score <30, fatty liver could be excluded with a negative likelihood

ratio (LR) of 0.2 and a sensitivity of 87%, and at a score >60, it could

be diagnosed with an LR of 4.3 and specificity of 86%.16 In a larger

study of 2652 patients with NAFLD, a similar diagnostic accuracy

could be confirmed for the presence of steatosis (AUROC 81%).37

When using MRS as reference, AUROC for the prediction of liver fat

>5.5% was 0.79 (IQR = 0.74, 0.84), without being able to quantify

liver fat content.38 When using liver biopsy as reference standard, FLI

could detect steatosis in a cohort of 324 patients with NAFLD with

an AUROC of 0.83, however, again without ability to quantify liver fat

content.39 Recently, the FLI has been recommended in the updated

German NAFLD guidelines as a screening tool in primary care for

patients with a high risk for NAFLD.40

2.2.2 | SteatoTest™

SteatoTestTM (Biopredictive, Paris, France) was the first non-

invasive blood-based score developed for the prediction of hepatic

steatosis. In a cohort of 844 subjects with various chronic liver

diseases, including chronic hepatitis B and C and alcohol-related

liver disease, the AUROC for the presence of steatosis >5% was

0.80 using liver biopsy as reference. At a cut-off of 0.3, sensitivity

was 90% and at a cut-off of 0.7 specificity was 88%.18 In a cohort

of 600 subjects with available liver biopsy, nonbinary ROC

(NonBinAUROC) for SteatoTest and steatosis grade according to

the histologic SAF (steatosis, activity, and fibrosis) score was 0.822

(0.804–0.840; p < 0.0001), indicating a good correlation with steato-

sis grade on liver biopsy.41 When using MR-spectroscopy as refer-

ence standard in a cohort of 220 patients with T2DM, the AUROC

for prediction of liver steatosis and the agreement with spectros-

copy were low (0.674 and 0.042, respectively).42 In a meta-analysis

of three studies with 494 patients with severe or morbid obesity

undergoing bariatric surgery, the AUROC for prediction of steatosis

>33% was 0.80.17

2.2.3 | Hepatic steatosis index (HSI)

HSI has been developed in 10,724 health check-up subjects (5362

cases with NAFLD versus age- and sex-matched controls) in Korea

and consists of three routinely available parameters (AST/ALT ratio,

BMI, and diabetes). Using ultrasound as reference, HSI had an AUROC

of 0.812 (95% CI, 0.801–0.824). At values of <30.0 or >36.0, HSI

ruled out NAFLD with a sensitivity of 93.1% or detected NAFLD with

a specificity of 92.4%, respectively. Of 2692 subjects with HSI < 30.0

or >36.0 in the derivation cohort, 2305 (85.6%) were correctly classi-

fied.19 In an external validation in 6927 Japanese health checkup sub-

jects using ultrasound as reference, AUROC for HIS was 0.874 with a

sensitivity of 88.8% at the low cut-off and a specificity of 98.5% at

the high cut-off.43 In another population based study with two

cohorts from Germany (SHIP; n = 4222 and EMIL, n = 2177) using

ultrasound as reference, HSI showed an AUROC of 0.782 in the SHIP

and of 0.841 in the EMIL cohort, respectively.44

2.2.4 | Index of NASH (ION)

ION has been developed in a cohort of 4458 NAFLD patients from the

National Health and Nutrition Examination Survey (NHANES III). Inde-

pendent validation has been performed in a cohort of 152 patients with

NAFLD on liver biopsy. The IONmodel is different for female and male:

TG, ALT, and HOMA in female and waist-to-hip ratio, TG, ALT, and

HOMA in male. The AUROC for ION was 0.77, specificity for ruling in

steatosis at a cut-off >22 was 82%, and sensitivity for ruling out steato-

sis at a cut-off <11 was 81%.20 External validations in independent

cohorts for detection of steatosis have not been performed widely. A

validation for the noninvasive diagnosis of NASH has been performed

in an Italian cohort with biopsy-proven NAFLD. However, diagnostic

accuracy was relatively poor (AUROC 0.687; 95% CI = 0.62–0.75).45

2.2.5 | NAFLD liver fat score (NAFLD-LFS)

The NAFLD-LFS consists of five variables (fasting AST level and the

AST/ALT ratio, fasting insulin level, metabolic syndrome, and type 2 dia-

betes) and has been developed with MRS as reference method. AUR-

OCs were 0.87 in the estimation group and 0.86 in the validation group.

At a cut-off point of �0.640, increased liver fat content could be pre-

dicted with a sensitivity of 86% and specificity of 71%.21 In an external

validation study with a total of 1301 community-based health checkup

subjects who underwent liver fat quantification with MRI, NAFLD-LFS

showed an AUROC of 0.72. The diagnostic agreement was 72.7%

between NAFLD-LFS and 70.9% between ultrasound and MRI, showing

that the diagnostic performance for detection of steatosis was compa-

rable to that of ultrasonography.46 In another external validation study

for the presence of steatosis with 324 subjects and liver biopsy as refer-

ence, the diagnostic accuracy was good with an AUROC of 0.80; how-

ever, the AUROC for predicting steatosis >33% and with that

distinguishing between moderate and severe steatosis was only 0.72.39
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2.2.6 | Lipid accumulation product (LAP)

The LAP score consists of the three variables waist circumference, gen-

der, and triglycerides and has been developed in a cohort of 588 patients

(305 with suspected liver disease and 283 age- and sex-matched con-

trols). For diagnosing steatosis >30%, the AUROC was 0.79.22 An exter-

nal validation study using MRS as reference showed an AUROC of 0.78

(IQR 0.72, 0.83) for the detection of >5.5% steatosis. At a cut-off ≥20,

steatosis could be ruled out with a sensitivity of 99% and at a cut-off

≥80, steatosis could be ruled in with a specificity of 94%. However, LAP

was not able to quantitatively predict liver fat content.38 Another valida-

tion study from Italy with a total of 40,459 subjects aged ≥18 years

using ultrasound as reference showed good diagnostic accuracies for

the detection of steatosis with 0.843 (95% CI 0.837, 0.849) in male and

0.887 (95% CI 0.882, 0.892) in female, respectively.47

2.2.7 | Comparisons between tests

In a head-to-head comparison among MRI-PDFF, CAP, FLI, HSI, and

SteatoTest in 152 bariatric surgery candidates undergoing liver biopsy,

MRI-PDFF demonstrated AUROCs >0.9 and sensitivities and specific-

ities >80% for detecting >5%, >33%, and >66% steatosis. CAP demon-

strated an AUROC of 0.83 for detecting >5% steatosis and below

<0.80 for detecting >33% and >66% steatosis. Blood-based tests dem-

onstrated in all steatosis grades AUROCs <0.80 with low specificities.

In a between-tests comparison, MRI-PDFF outperformed CAP and all

blood-based tests, whereas the performance of CAP was not signifi-

cantly superior to the blood based-tests.48 In another study, FLI score

≥60 demonstrated a sensitivity of 60% and specificity of 80% and

NAFLD FLS ≥ �0.640 a sensitivity of 68% and specificity of 78% to

detect steatosis diagnosed with MRI-PDFF, indicating that both tests

are suboptimal for diagnosing steatosis.49 The main limitation of the

available blood-based tests is that they cannot provide an accurate

assessment of liver fat % and consequently cannot be used for moni-

toring disease progression. Furthermore, they include gray zones,

where steatosis can neither be confirmed nor be excluded. Moreover,

they did not find their way into routine clinical practice as they do not

add more information to the existing clinical standard with clinical,

laboratory, and imaging examinations in suspected fatty liver.

3 | LIVER FAT AS RISK FACTOR FOR

NAFLD PROGRESSION

3.1 | Pathophysiological mechanisms linking the

amount of hepatic fat with NAFLD progression

(Figure 1)

Liver fat is stored in the form of triacylglycerols (TGs) in patients with

NAFLD. Around 60% of the hepatic TGs were derive from non-

esterified free fatty acids (NEFAs) from adipose tissue after lipolysis,

25% from de novo hepatic lipogenesis by using 2-carbon precursors

from glucose, fructose, and amino acids, and 15% from dietary fat that

escapes storage in adipose tissue by spill over to NEFA pool or chylo-

micron remnant formation and uptake in the liver.50 High caloric

intake increases both the dietary fat available for uptake by the liver

as well as the amount of carbohydrates that can be converted to fat

through de novo lipogenesis.1,7,8 Moreover, as body weight, body fat,

and intracellular fat in muscle and adipose tissue increases, hepatic

and peripheral insulin resistance develops.1,7,8 Specifically, insulin

resistance in skeletal muscle reduces glucose uptake in muscle result-

ing in higher concentrations of glucose arriving in the liver, thus fur-

ther stimulating hepatic de novo lipogenesis. The increased hepatic de

novo lipogenesis impairs insulin action (hepatic insulin resistance),

thus reducing hepatic glycogen synthesis and stimulating gluconeo-

genesis, consequently further aggravating hyperglycemia and hyperin-

sulinemia. Finally, insulin resistance in adipose tissue results in

impaired suppression of lipolysis, consequently leading to increased

fatty acid release from adipose tissue and high flux of NEFAs to the

liver.1,7,8 Additionally, insulin resistance reduces lipid uptake by adi-

pose tissue, thus redirecting chylomicron remnants to the liver.1,7,8

Accumulation of macrovesicular fat in hepatocytes acts probably

in the beginning protectively by delaying hepatocyte injury. As the

accumulation of fat though continues, lipid species (i.e., ceramides,

lysophospatidylcholines, and saturated fatty acids) act toxically by

promoting hepatocyte damage and cell death through multiple mecha-

nisms.1,7–9 Specifically, excess lipid accumulation induces endoplasmic

reticulum stress, oxidative stress, and increases β oxidation in the

mitochondria, which results in the formation of reactive oxygen spe-

cies by depleting antioxidant reserves as well as mitochondrial dys-

function by impairment of mitochondrial membrane potential and

electron transport.1,7–9 Hepatocellular stress might lead to cell death

and to the subsequent release of factors (cytokines, lipids, hormones,

extracellular vesicles, and damage-associated molecular patterns) that

promote inflammation by recruitment and activation of resident

(Kupffer cells) and peripheral macrophages and subsequently fibro-

genesis by activation of hepatic stellate cells.1,7–10

Hormones secreted by adipose tissue, that is, adipokines, may fur-

ther affect hepatic function and thus may contribute to NAFLD devel-

opment or progression. Specifically, adiponectin reduces fatty acid

synthesis by downregulating SREB1-C and increases fatty acid oxida-

tion by stimulating PPAR-α4,51–53 in the liver. Furthermore, it reduces

gluconeogenesis by decreasing PEPCK/G6Pase and acts anti-

inflammatory by inhibiting NF-kB. In obesity, adiponectin levels are

reduced, thus depriving liver of adiponectin's hepatoprotective

effects.4,51–53 Leptin is another adipokine and major regulator of

energy homeostasis.54,55 Leptin seems to exert dual effects on hepatic

function. It acts anti-steatotic by stimulating hepatic VLDL-triglyceride

export and free fatty acid oxidation and by inhibiting hepatic de novo

lipogenesis.51,52,56 On the other hand, leptin acts also pro-inflammatory

and pro-fibrogenic by sensitizing Kupffer cells and activating hepatic

stellate cells to express transforming growth factor β1.51,52,56 The ele-

vated leptin levels observed in obesity may thus initially prevent lipid

accumulation in non-adipose tissues but, as disease progresses, may

act detrimentally by promoting NASH and liver fibrosis.51

DEMIR ET AL. 5 of 20

 1
4
6
7
7
8
9
x
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/o

b
r.1

3
6
1
2
 b

y
 U

n
iv

ersitaet Z
u
erich

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

7
/0

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



F IGURE 1 Role of liver fat accumulation in the development and progression of NAFLD and metabolic diseases. FFA in the liver derive from

lipolysis of adipose tissue, dietary intake of lipids, and de novo lipogenesis (DNL) from carbohydrates. Increased caloric intake does not only

directly provide the liver with higher amounts of lipids and carbohydrates, but it results in the long-term in obesity and insulin resistance (IR). IR in

adipose tissue stimulates lipolysis and attenuates lipid uptake, whereas IR in muscle reduces glucose uptake, thus redirecting lipids and glucose to

the liver. Furthermore, hepatic insulin resistance reduces glycogen synthesis and increases gluconeogenesis thus promoting hyperglycemia. FFAs

in the liver either accumulate in the form of triglycerides or they return to circulation through VLDL. Increased secretion of VLDL and small-dense

LDL may contribute to atherosclerosis in NAFLD. When the capacity of the liver for formation of triglycerides or secretion of VLDL is exceeded,

toxic lipids accumulate in the hepatocytes promoting ER and oxidative stress as well as mitochondrial dysfunction. Apoptotic or necroptotic

mechanisms are subsequently activated that result not only in hepatocyte damage or death but also in the release of pro-inflammatory and pro-

fibrotic signals. These signals will recruit macrophages from the periphery or activate the resident macrophages (Kupffer cells) and the fibrogenic

hepatic stellate cells, thus leading to liver inflammation and fibrosis. Additionally, these signals (either damage associated molecular patterns,

DAMPs, or hepatokines) are capable of inducing tissue-specific (e.g., in adipose tissue, pancreas, cardiovascular system) changes or of promoting

chronic systemic inflammation that may aggravate insulin resistance, hyperglycemia, and hypertension. Gut dysbiosis as well as increased

vasoconstriction observed in NAFLD may further promote arterial hypertension. Importantly, NAFLD is not always associated with elevated

cardiovascular risk. Genetically driven NAFLD because of certain polymorphisms may even reduce cardiovascular risk by altering lipid metabolism

(created with BioRender.com).
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Important evidence supporting the causal relationship of liver fat

accumulation with NAFLD progression is provided by genetic studies.

Specifically, the presence of several variants in certain genes, such as

the rs738409 C > G single nucleotide polymorphism of PNPLA3, the

TM6SF2 E167K variant, and the GCKR rs780094, has been associated

with increased liver fat accumulation because of repression of lipase

activity,57 impairment of VLDL secretion,58 and increased glucose

uptake and de novo lipogenesis, respectively.59 All these variants are

associated at the same time with a profound increase of the risk for

development of NASH and liver fibrosis as well as with liver-related

events and all-cause mortality.60–63

3.2 | Liver fat amount as marker of NAFLD status

and progression in clinical studies

Because of accumulation of liver fat is the first step in a lengthy pro-

cess that may lead to liver inflammation and fibrosis, it is reasonable

to ask whether quantifying liver fat may serve as a prognostic marker

of risk for development of NASH or liver fibrosis as well as whether

treatments that aim to reduce liver fat can prevent disease progres-

sion. Specifically, identifying patients at high risk for NAFLD progres-

sion is extremely important because of the very high prevalence of

the disease that makes general screening of the population and plan-

ning of regular follow ups in all patients with NAFLD challenging.

Additionally, no approved treatment for NAFLD exists to date, and

most efforts that aimed to improve advanced liver fibrosis because of

NAFLD have failed so far. This indicates that probably interventions

at an earlier stage of NAFLD and especially in high-risk populations

for developing advanced liver fibrosis in the future may be needed.

Furthermore, in contrast to assessment of liver inflammation, the

accurate quantification of liver fat is possible with non-invasive imag-

ing modalities, which supports the use of fat amount as a marker of

disease state or treatment response; if indeed, it is strongly related to

disease progression.

3.2.1 | Liver fat amount as marker of biopsy-proven

steatosis, inflammation, and fibrosis

Several clinical studies have demonstrated so far that changes in liver

fat content assessed by MRI-PDFF correlate strongly with histologic

changes of NAFLD. Specifically, a decline or increase of liver fat in

MRI-PDFF of approximately 5–6% identified an improvement or

worsening in steatosis grade in liver histology with 90% specificity

and almost 60% sensitivity.64 In another study, the patients with

improvement in steatosis grade in liver histology had a mean reduc-

tion of liver fat in MRI-PDFF of approximately 20% compared to 0.8%

reduction in patients without improvement of steatosis grade.65 Simi-

lar findings have been reported also in children with NAFLD, where

improvement or worsening of steatosis grade was detected with 90%

specificity when fat percent in MRI PDFF was reduced by 11% or

increased by 5.5% from the baseline, respectively.66 Importantly, apart

from liver steatosis grade, changes in liver fat content correlate also

strongly with alterations in NAFLD activity score and fibrosis stage in

histology. Specifically, a meta-analysis including seven studies showed

that reduction of more than 30% in liver fat was associated with

7 times higher probability for histologic response, defined as a 2-point

improvement in NAFLD activity score with at least 1-point improve-

ment in lobular inflammation or ballooning and 5.45 times higher

probability for NASH resolution.32 In another study, more than 30%

decline in liver fat assessed by MRI-PDFF was associated in 40% of

the cases with fibrosis regression, 25% with no changes and 13% with

fibrosis progression. The adjusted OR for fibrosis regression by more

than 30% reduction in liver fat was 6.46.33 These findings are very

important, because they justify the use of liver fat amount assessed

by MRI-PDFF as a non-invasive marker of treatment response, espe-

cially in early-phase NASH clinical trials.32,67,68

3.2.2 | Liver fat amount as marker of liver cirrhosis,

failure, hepatocellular carcinoma, and liver-related

mortality

Because liver fat accumulation is a crucial step for development and

progression of liver fibrosis and reduction of liver fat correlates

strongly with histologic improvement of steatosis, inflammation, and

fibrosis, it would have been expected that liver fat amount will be also

positively associated with liver-related outcomes, such as liver cirrho-

sis, liver failure, hepatocellular carcinoma, and mortality. However,

studies have reported contradictory results. For example, in an impor-

tant study that followed 95 patients with NAFLD prospectively for

1.75 years with paired liver biopsies, patients in the higher liver fat

group (≥15.7% in MRI-PDFF) at the baseline had much more often

fibrosis progression compared to subjects in the lower liver fat group

(38.1% vs 11.8%). After adjusting for age, sex, ethnicity, and BMI, the

higher liver fat group had a 6.7 times higher risk of fibrosis progres-

sion, suggesting that indeed higher liver fat content can predict pro-

gression of liver fibrosis.69 Similarly, liver fat was positively associated

with overall mortality in another study including 129 patients with

biopsy-proven NAFLD that were followed prospectively for more

than 20 years.70 In contrast, several cross-sectional as well as longitu-

dinal studies that assessed liver fat either histologically or with CAP

reported that fat amount was either not associated with liver-related

events and mortality or was even lower in patients with HCC, decom-

pensated liver cirrhosis, or portal hypertension.71–75 This paradox is

explained by the fact that the importance of liver fat for NAFLD

progression may vary between the different stages of the disease.

Initially, liver fat is an important contributor for development of

hepatic inflammation and activation of fibrotic mechanisms. As dis-

ease progresses though to advanced fibrosis and cirrhosis, liver fat is

reduced. This phenomenon has been described as “burned-out”

NASH, and the mechanisms leading to it remain still unclear. It is

suspected that an increase in adiponectin, which downregulates fatty

acid synthesis and increases β-oxidation may lead to a reduction of

liver fat in later stages of NAFLD.76 However, robust evidence that
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can explain this phenomenon is currently lacking. Nevertheless, this

observation indicates that liver fat amount and its changes can be

used as marker of NAFLD status and treatment response in the early

or middle stages of the disease and not in advanced fibrosis or

cirrhosis.

4 | LIVER FAT AMOUNT AS RISK FACTOR

OF CARDIOMETABOLIC DISEASES

Several studies have suggested that not only the presence of liver fat

but also the amount of liver fat is associated with the development

and progression of metabolic diseases and their complications.

4.1 | Diabetes

Evidence from studies investigating NAFLD pathophysiology support

the presence of an association between liver fat and diabetes.

Specifically, increased liver fat accumulation through hepatic de novo

lipogenesis as well as because of high caloric intake and increased

lipolysis promotes hepatic resistance to insulin actions, thus leading to

higher production of glucose and VLDL. This leads subsequently

to mild hyperglycemia and compensatory hyperinsulinemia and

hypertriglyceridemia, thus further aggravating insulin resistance and

hyperglycemia.77,78 Additionally, liver fat has been linked with proin-

flammatory changes in adipose tissue. Specifically, liver fat amount is

positively associated with the percentage of macrophages and the

protein levels of the proinflammatory adipokine plasminogen activator

inhibitor-1 (PAI-1) in subcutaneous adipose tissue.79 The presence of

a proinflammatory status is considered a hallmark for the develop-

ment of insulin resistance that can progress to diabetes.

Hormones secreted predominantly or exclusively from the liver,

that is, hepatokines, may serve as important mediators of the effects

of fatty liver on insulin sensitivity, glucose, and lipid homeostasis

(reviewed in Stefan et al.80). Among the numerous different hepato-

kines that have been investigated in NAFLD-diabetes context, more

robust evidence exist for fetuins (fetuin-A and fetuin-B), angiopoietin-

like proteins (especially ANGPTL3), fibroblast growth factor 21 (FGF-

21), sex hormone-binding globulin (SHBG), and follistatin.80 These

hormones may regulate hepatic or adipose-tissue insulin sensitivity by

modulating inflammation (e.g., fetuin-A) and insulin signaling

(e.g., fetuin-B, FGF-21, and follistatin).81–84 Furthermore, they may

affect beta cell maturation or function (e.g., fetuin-A),82,85 and they

may regulate lipid metabolism by altering lipases activity

(e.g., ANGPTL3) and hepatic lipogenesis (e.g., SHBG).86,87 The levels

of these hormones correlate in humans significantly not only with

NAFLD stage but also with parameters of adiposity, insulin sensitivity,

glucose, and lipid metabolism.81,88–94

Multiple observational studies further reported an association not

only of NAFLD but specifically of liver fat amount with risk of incident

prediabetes or diabetes. Specifically, in a German cohort, the patients

with hepatic steatosis assessed by MRI had 1.6, 3.3, 2.5, and 4.8

relative risk ratio to be in the impaired fasting glucose (IFG) group, in

the impaired glucose tolerance group (IGT), in the combined IFG

+ IGT group, or to have undiagnosed T2DM, respectively.95 In a large

meta-analysis including 19 observational studies with almost 300,000

individuals, the presence of NAFLD was associated with 1.8-fold

higher risk of incident diabetes, which was further increased up to

2.6-fold in patients with more severe steatosis according to ultraso-

nography.96 Similarly, an FLI ≥ 60 was associated with twofold higher

risk of prediabetes and ninefold to tenfold higher risk for T2DM in a

population of individuals with overweight/obesity.97 Nasr et al.

showed that each steatosis grade increase in liver biopsy was associ-

ated with a HR of 1.6 for development of T2DM after adjusting for

age, BMI, and fibrosis stage.70 People with grade 3 steatosis demon-

strated additionally higher mortality risk. Importantly, the elevated risk

for development of diabetes was decreased in subjects in whom the

liver fat amount was reduced in subsequent biopsies.70 In another

recent study, liver fat amount assessed with MRI-PDFF (and not fibro-

sis markers) was associated with hepatic insulin sensitivity among

patients with T2DM and obesity.98 An important question though is

still whether the association between liver fat and development of

diabetes is a causal one or whether liver fat is simply reflecting the

overall metabolic health. In a recently published study that used over

30,000 MRI scans of UK Biobank participants and performed a men-

delian randomization, each standard deviation (SD) increase of liver

fat was associated with 27% higher risk of T2DM, thus supporting the

presence of a causal role of ectopic fat in the liver with development

of T2DM.99

4.2 | Hyperlipidemia/dyslipidemia

Liver fat accumulation enhances VLDL oversecretion in

NAFLD.100–102 Subsequently, VLDL oversecretion combined with

reduced lipoprotein clearance leads to elevated plasma

triglycerides.100–102 Extensive exchange between VLDL and LDL par-

ticles further supported by lipolysis of triglyceride-rich particles results

in the increased formation of dense small LDL particles.100–102 These

pathophysiological links between altered systemic lipid-lipoprotein

profile and liver fat content have been confirmed in clinical studies.

Specifically, the prevalence of hypertriglyceridemia or dyslipide-

mia (high LDL-C with low HDL-C) is estimated to be approximately

70% in patients with NAFLD.103 Lipoprotein subfraction analyses sug-

gested that NAFLD is characterized by high ratios of total cholesterol

and triglyceride to HDL-cholesterol, by high ratio of apolipoprotein B

to apolipoprotein A1, and by large VLDL particle size and decreased

LDL and HDL particle size.104–106 Importantly, these changes are

associated with increased risk of atherogenesis; they are observed

regardless of BMI and they are mainly driven by higher liver fat con-

tent and not by the presence of liver inflammation.105 Finally, the rela-

tion of liver fat with hyperlipidemia/dyslipidemia has been also

observed in children and adolescents.107 Specifically, higher liver fat,

even within the normal range and after adjusting for BMI, was associ-

ated with higher insulin resistance, total cholesterol, and

8 of 20 DEMIR ET AL.

 1
4
6
7
7
8
9
x
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/o

b
r.1

3
6
1
2
 b

y
 U

n
iv

ersitaet Z
u
erich

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

7
/0

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



triglycerides.107 Similarly, liver fat was independently associated with

triglycerides and insulin resistance in adolescents with obesity.108

4.3 | Arterial hypertension

Multiple mechanisms have been suggested to be involved in the pro-

motion of hypertension by NAFLD. These include the induction of

(a) systemic inflammation by NAFLD through the release of cytokines

and damage-associated molecular patterns (DAMPs) by injured hepa-

tocytes9,109; (b) insulin resistance by altered release profiles of glu-

cose, bile acids, VLDL, and hormones (e.g., fetuin A and RBP4) in

NAFLD; (c) gut dysbiosis in NAFLD which can regulate the differentia-

tion and maturation of immune cells and reduce the production of

short-chain fatty acids that have vasodilatory function110; and (d)

directly increased vasoconstriction and decreased vasodilatation by

increased ADMA release, as well as by the effects in the renin-

angiotensin system.109

Many longitudinal studies have shown that the presence of

NAFLD is associated prospectively with incident hypertension.111–113

Of note, most of the studies have used either surrogate markers (such

as FLI, GGT, or transaminases), liver ultrasound, or both for diagnosing

NAFLD. In a large prospective cohort including 1521 individuals that

were followed for 2.6 years and after adjusting for insulin resistance,

systemic inflammation, and adiponectin levels, FLI was associated in a

graded manner with increased incident hypertension (<30 vs 30–59

vs ≥ 60 = 1 vs 1.83 vs 2.09, respectively).111 In another study that

included 1051 subjects that were followed for 6.2 years, one SD

increase of liver fat assessed by liver computed tomography was asso-

ciated with 42% increased odds of incident hypertension.114 This

increased risk was maintained after adjusting for different factors

including visceral adipose tissue mass and BMI.114 Thus, not only the

presence of NAFLD but also the amount of liver fat is related to the

risk of arterial hypertension. Nevertheless, it is important here to

mention that studies that have evaluated prospectively and in large

cohorts the relationship between liver fat amount assessed by MRI-

PDFF or liver histology and incident arterial hypertension are cur-

rently lacking.

4.4 | Cardiovascular risk

Because there is a close pathophysiologic and epidemiologic link

between components of metabolic syndrome and NAFLD, multiple

studies have also assessed whether NAFLD increases cardiovascular

risk. A recent meta-analysis of 36 longitudinal studies that included

data on almost 6 million middle-aged individuals and almost 100 thou-

sand cases of fatal and non-fatal CVD with a median follow up of

6.5 years have shown that NAFLD was associated with a 45%

increased risk of CVD events after adjustment for multiple factors,

such as BMI, age, sex, adiposity measures, hypertension, dyslipidemia,

and pre-existing diabetes. This risk was especially high for patients

with higher fibrosis stage.115 Other studies have suggested that the

ratios of aspartate/alanine transaminase116 representing a marker of

liver inflammation or FLI score, representing liver fat content, are pre-

dictors of cardiovascular events.117,118 In this context, a large pro-

spective analysis based on UK Biobank has reported that FLI between

30 and 59 is associated with 16% higher risk and FLI ≥ 60 with 25%

increased risk for major cardiovascular events at a median follow-up

of 11.62 years after adjusting for multiple factors including transami-

nases and presence of diabetes, hypertension, and statin therapy.117

FLI seems also to have an independent prognostic value for cardiovas-

cular events in newly diagnosed, treatment-naïve hypertensive

patients.119 Furthermore, in an analysis including more than 5 million

young adults aged 20 to 39 years, FLI between 30 and 59 was associ-

ated with 28% increased risk of myocardial infarction and 18% of

stroke, whereas FLI above 60 was associated with 73% and 41%

increased risk, respectively.120

Apart from the association of liver fat content with components

of the metabolic syndrome, several studies have linked liver fat with

other surrogate markers of cardiovascular health. Specifically, liver fat

has been associated with the calcification in the thoracic aorta and

celiac trunk,121 with the descending and infrarenal aortic diameter,122

with plaque presence,122 as well as with the echogenicity and thick-

ness of carotid intima-media.122–124 Additionally, liver fat assessed by

FLI has been associated with 10-year Framingham risk score beyond

other cardiovascular risk factors.125,126 Moreover, larger amount of

liver fat is correlated with larger volumes of epicardial fat and coro-

nary artery calcification.127 Additionally, in another study, a decrease

in liver fat was associated with a reduction in carotid intima-media

progression.122

4.5 | Dissociation between fatty liver and

cardiometabolic diseases

Although the majority of epidemiologic and experimental evidence

supports the presence of a detrimental relationship between liver fat

and cardiometabolic diseases, there is a significant heterogeneity in

the findings as well as reports for inverse associations, most probably

reflecting the complex pathophysiology of NAFLD.80,128 There are

many reasons explaining the discrepancies between studies. First of

all, quantification of liver fat relies primarily on triglyceride concentra-

tions (in MRI and MRS) or percentage of cells containing intracellular

lipid droplets (histology).67,129 However, it is now accepted that tri-

glyceride accumulation in the liver acts most probably protectively

and not detrimentally.8,80,128,130 Specifically, it may protect the liver

from increased availability of fatty acyl-CoAs and formation of toxic

lipids (lipotoxicity) that will stimulate inflammatory processes both

locally (in the liver) and systemically.128 Furthermore, it seems that

not only the amount but also the type of accumulated lipid species

plays a role in liver inflammation, insulin resistance, and cardiometa-

bolic risk. For example mono- or poly-unsaturated fatty acids act ben-

eficially by reducing oxidative stress and inflammation, whereas

saturated fatty acids, lysophosphatidylcholines, and ceramides act

detrimentally by promoting cellular damage.131 Diacylglycerols (DAGs)
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and ceramides affect also insulin signaling leading to increased glucose

production. According to other studies, not the abundance but the

compartmentation especially of diacylglycerols in the membrane is an

important contributing factor to hepatic insulin resistance.117 Simi-

larly, not only the concentrations of lipid droplets but their protein

and lipid composition, their intracellular localization, and their

distribution–zonation in the liver affect their functional properties.132

Consequently, it may not be triglyceride accumulation per se, but

rather the exhaustion of “detoxification” and fat storage capacities in

the liver that contributes to inflammation, insulin resistance, and ele-

vated cardiovascular risk. In that case, liver fat assessment serves only

as a proxy marker of the on-going pathophysiologic processes. This

may explain why many but not all patients with NAFLD demonstrate

insulin resistance and increased cardiovascular risk.

The most representative examples of dissociation or inverse asso-

ciation between liver fat and cardiometabolic risk are the cases of

hepatic-genetically driven fatty liver.133–135 Patatin-like phospholi-

pase domain-containing 3 (PNPLA3) is a protein involved in triglycer-

ide hydrolysis. The rs738409 variant (I148M) of PNPLA3 is the

strongest genetic determinant of fatty liver disease. However, this

polymorphism is associated with insulin resistance and type 2 diabetes

only in obese and not in normal-weight populations.136 Moreover, the

polymorphism was not causally associated to ischemic heart disease

in a mendelian randomization study137 or it was even linked to lower

risk for coronary artery disease in another large genetic study.138

These heterogeneous findings have been attributed to different path-

ophysiologic mechanisms, such as to less de novo lipogenesis and cer-

amide accumulation and higher concentrations of polyunsaturated

triglycerides in people with this polymorphism.139,140 Similarly,

TM6SF2 protein is involved in triglyceride and lipoprotein secretion.

The rs58542926 TM6SF2 C > T variant is associated with fatty liver

because of increased intracellular lipid retention as well as with insulin

resistance and diabetes.136,138,141 However, the increased retention

of the lipids in the liver results in lower circulating total cholesterol

levels and reduced risk for cardiovascular complications.138,142 Finally,

the rs1260326 of glucokinase regulator (GCKR) leads to increased

glucose uptake in the liver and consequently to increased hepatic de

novo lipogenesis. However, this polymorphism is associated with

lower insulin resistance and reduced risk of type 2 diabetes, especially

in European and Asian populations.143

Another example showing the dissociation between liver fat and

cardiometabolic risk is the burned-out NASH. Specifically, as NAFLD

progresses to its late stages of advanced fibrosis or cirrhosis, liver fat

content decreases. However, these patients with advanced fibrosis or

cirrhosis seem to demonstrate the highest cardiovascular risk.76,115

This increased risk may though reflect the accumulated negative

impact of chronic long-term exposure of the cardiovascular system to

hepatic lipotoxicity and inflammation. Liver fat quantification in these

advanced stages of NAFLD will thus not capture disease temporal

dynamics and may not serve as a reliable proxy marker linking fatty

liver with cardiovascular risk.

Apart from genetically related NAFLD and cases of advanced liver

fibrosis/cirrhosis, significant variation in the association between

NAFLD and cardiometabolic state further exists. This has been attrib-

uted to different mechanisms involved in NAFLD development. Spe-

cifically, some recent approaches focus on dissecting fatty liver from

visceral obesity-associated insulin resistance.80 In a recent analysis,

fetuin-A and adiponectin levels have been suggested to serve as main

distinguishers between these two conditions.80 In other approaches,

anthropometric and routine biochemical parameters have been used

to identify clusters among patients with NAFLD that differ in cardio-

metabolic risk.144–146 Sex, age, obesity, dyslipidemia, and insulin resis-

tance seem to be the most important factors for clustering, but it still

remains unclear whether the parameters themselves and not liver

phenotype are the main drivers of altered cardiovascular risk in these

patients.

4.6 | Limitations of current studies

Several limitations should be recognized. First, clinical studies that

focus on hard outcomes (e.g., major cardiovascular events) and they

have assessed liver fat either with MRI-PDFF or with liver histology

are currently lacking. Second, it is difficult to conclude whether the

observed associations imply also causality, as well as to dissect the

contribution of liver fat in cardiometabolic derangement, because

patients with higher liver fat content often suffer simultaneously from

more than one cardiometabolic diseases. Furthermore, most studies

so far have not acknowledged the heterogeneity of NAFLD popula-

tion, which is particularly important given the robust differences of

genetically versus non-genetically driven NAFLD in their pathophysi-

ology, clinical course, and association with cardiometabolic risk fac-

tors. Here clustering approaches which aim to identify populations

with different cardiometabolic risk profiles based on both clinical/

anthropometric parameters as well as biochemical measurements

(e.g., hepatokines) are very useful, but more and larger studies are

needed. The same also applies for assessing whether insulin resistance

induced by fatty liver demonstrates different cardiometabolic disease

trajectories compared to insulin resistance deriving from visceral

obesity.

Independently of the findings from clinical studies, there is also

very limited information about the role of NAFLD in cardiovascular

function from experimental animal studies. This is probably related to

the lack of animal models in which NAFLD and severe atherosclerosis

or heart insufficiency coexist. Mice demonstrate important differ-

ences in lipid metabolism compared to humans, including the lack of

cholesteryl ester transfer protein (CETP) that transfers cholesteryl

esters from HDL to LDL and VLDL. Thus, lipid transport is predomi-

nantly performed by HDL and not LDL in mice. Diet-induced mouse

models of obesity and NAFLD do not develop severe atherosclerosis

or severe heart insufficiency, whereas genetic models of atherosclero-

sis do not necessarily develop NAFLD with inflammatory and fibrotic

components.

Altogether, numerous observational studies support the presence

of a strong association between liver fat presence and amount with

the development and progression of metabolic diseases. The
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strongest associations that imply also causality through mendelian

randomization studies are observed between liver fat amount and the

development of diabetes. Studies investigating the association of liver

fat with hard cardiovascular outcomes, such as major cardiovascular

events as well as prospective studies assessing how improvement of

liver fat content may affect cardiovascular risk, are currently lacking

and are thus needed.

5 | PHARMACOLOGIC AND NON-

PHARMACOLOGIC INTERVENTIONS FOR

REDUCING LIVER FAT

Non-pharmacologic interventions for the reduction of liver fat and/or

treatment of NAFLD include lifestyle modifications and bariatric

procedures.

5.1 | Lifestyle modification

The cornerstone of NAFLD therapy is lifestyle modification with

weight loss and enhanced physical activity. A biopsy-based random-

ized controlled clinical trial over 52 weeks has shown that calorie

reduction and physical activity improved steatosis in 65% of patients

after 1 year with a weight loss of 5% to 7%.147 A weight loss of 7% to

9%, resulted in NASH resolution in 64%, and a weight loss of ≥10%

led to a regression of fibrosis by at least one stage in 45% and stabili-

zation of fibrosis in the remaining 55%.147

Clinically significant weight loss usually requires a reduction of

500–1000 kcal/d from the baseline or a hypocaloric diet with a target

of 1200 kcal/d for women and 1400–1500 kcal/d for men. Several

hypocaloric diets may be appropriate for weight loss in subjects with

liver fat and/or NAFLD.148

The Mediterranean diet is the best studied diet in NAFLD. In con-

trast to the Western diet, which is rich in highly processed foods with

a high content of saturated fatty acids and carbohydrates, the Medi-

terranean diet is rich in dietary fibers, monounsaturated and omega-3

fatty acids, and phytosterols.149 It is thought to reduce the risk and

progression of NAFLD through an antioxidant and anti-inflammatory

effect. Even in the absence of weight loss, a Mediterranean diet

reduced hepatic steatosis compared with a low-fat, high-carbohydrate

diet.150 In contrast to the Mediterranean diet, other hypocaloric diets,

such as low-carbohydrate and high-protein diets, meal replacement

protocols, or intermittent fasting, are not specifically recommended in

NAFLD guidelines, as sufficient data on the effects on histologic

NAFLD/NASH endpoints are still lacking.40

The beneficial effect of a hypocaloric diet on liver steatosis and

NAFLD may be enhanced by physical activity. Furthermore, it may

improve NAFLD independently from achieving weight loss by reduc-

ing hepatic fat content and leading to a reduction of lipolysis in adipo-

cytes, free fatty acid delivery to the liver, hepatic de novo lipogenesis,

and an improvement in peripheral insulin sensitivity.151,152 A system-

atic review and meta-analysis demonstrated that predominantly

aerobic exercise resulted in a significant reduction in liver fat content

even in the absence of dietary interventions.153 This has been chal-

lenged in a recent study which aimed to assess whether alternate day

fasting and exercise alone or in combination are more efficient at

reducing intrahepatic triglyceride content. Exercise alone provided

rather modest reduction in liver fat (�1.3%), compared to alternate-

day fasting alone (�2.25%) or to their combination (�5.48%).154 Nev-

ertheless, it is recommended to perform 150–300 min of moderate-

intensity exercise or 75–150 min of high-intensity exercise per

week.152 However, lifestyle modifications aiming at weight loss

remain challenging in clinical practice. Data from the non-

interventional FLAG registry could show that less than 50% of

patients with a mean BMI of 30 kg/m2 who received lifestyle advice

achieved any weight loss after 12 months, and only 17.1% achieved

more than 5%.155

5.2 | Bariatric procedures

In patients with grade III obesity (BMI ≥ 40 kg/m2) or grade II obesity

(BMI ≥ 35 kg/m2) with metabolic comorbidities where lifestyle modifi-

cations fail, bariatric surgery should be considered.156 The most com-

monly performed procedures are laparoscopic Roux-Y gastric bypass

surgery and laparoscopic sleeve gastrectomy.156 A meta-analysis of

15 studies with 766 paired liver biopsies showed a pooled proportion

of patients with improvement or resolution of steatosis in 91.6% (95%

confidence interval [CI], 82.4–97.6%), in steatohepatitis in 81.3%

(95% CI, 61.9–94.9%), and in fibrosis in 65.5% (95% CI, 38.2–

88.1%).157 A recent meta-analysis of 37 studies with liver biopsy

before and after bariatric surgery confirmed these observations. Reso-

lution of steatosis was seen in 56% of patients with NAFLD, balloon-

ing degeneration in 49%, inflammation in 45%, and fibrosis in 25%.

Although the effects of bariatric surgery on histologic features of

NAFLD (e.g., steatosis) are very promising, not all patients seem to

benefit. Twelve percent of patients (95% CI, 5–20%) showed new or

worsening features of NAFLD, such as fibrosis.158

Because of the invasiveness of bariatric surgery, endoscopic bar-

iatric therapies in NAFLD have gained interest in the recent years. A

prospective study with 21 patients with NASH and early hepatic

fibrosis using endoscopically placed gastric balloons as part of an

intensive lifestyle program showed a weight loss of 11.7% and signifi-

cant improvements in histologic NASH activity after 6 months. At the

baseline, liver steatosis grades 0/1/2 were present in 5%/67%/28%,

respectively, and improved significantly after 6 months (grade 0: 55%

and grade 1: 45%). Fibrosis stage improved in 15%, remained stable in

60%, and worsened in 25%.159

A recent meta-analysis including 18 studies with 863 patients on

the effects of various endoscopic bariatric and metabolic therapies on

NAFLD observed an average weight loss of 14.5% after 6 month of

follow-up. Liver fat (measured non-invasively with different methods)

and fibrosis significantly reduced by standardized mean difference of

1.0 (CI, �1.2, �0.8, p < 0.0001) and 0.7 (95% CI, 0.1,1.3, p = 0.02),

respectively.160 To support weight reduction and improvement of
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steatosis in the short-term, endoscopic bariatric therapies seem

promising; however, studies on the long-term effect and safety are

currently lacking.

5.3 | Pharmacologic intervention

Currently, there are no approved pharmacologic interventions for the

reduction of liver fat and/or the treatment of NAFLD. However,

numerous drug therapy approaches are in advanced phases of clinical

trials.161 A selection of current phase III trials can be found in Table 2.

Regulatory endpoints for NAFLD/NASH clinical trials in advanced

stage development focus on the histological endpoints of NASH reso-

lution without worsening of fibrosis or fibrosis improvement of at

least one stage without worsening of NASH. Thus, the effects on

steatosis alone as a marker of early-stage disease are not the primary

goal. In the following, we will highlight the most promising classes of

medications for the treatment of NAFLD and of steatosis.

5.3.1 | GLP-1 receptor agonists (GLP-1RA)

GLP-1RA are routinely being used for the treatment of T2DM and

obesity162–165 Treatments with liraglutide, dulaglutide, or semaglutide

have shown beneficial hepatic effects in mouse models of NAFLD, in

which they have profoundly reduced hepatic fat and inflammation and

modestly liver fibrosis.166–168 GLP-1RA have been shown to facilitate

glycogen utilization turnover in the liver and affect inflammatory and

fibrogenic markers of Kupffer and hepatic stellate cell activa-

tion.167,168 The effects of GLP-1RA are most likely indirect, because

GLP-1 receptors have not been convincingly identified in the liver,

and are mediated by the profound weight loss and improvement of

insulin sensitivity observed with GLP-1RA treatment. In humans, GLP-

1RA (mostly liraglutide and semaglutide) improved steatosis, balloon-

ing, and lobular inflammation, and achieved resolution of NASH with-

out worsening of fibrosis.10,169 Specifically for semaglutide, in a NASH

phase II trial over 72 weeks, resolution of NASH with no worsening of

fibrosis was observed in 56% of patients on 0.4 mg/d compared with

20% on placebo. The mean percent weight loss was 13% in the

0.4 mg group and 1% in the placebo group. The odds ratio for having a

lower steatosis score in histological assessment after 72 weeks was

8.55 (4.49; 16.30) in the semaglutide 0.4 mg group compared to pla-

cebo, indicating significant effects of semaglutide on steatosis regres-

sion.170 Semaglutide is currently tested in a phase III NASH trial.

5.3.2 | Dual or triple agonists (GLP-1, GIP, and

glucagon agonists)

Dual or triple agonists of GLP-1, GIP, and/or glucagon receptor are

currently being developed for the treatment of obesity and diabetes.

Consequently, these medications are also tested regarding their

TABLE 2 Ongoing phase III clinical trials for the treatment of NAFLD/NASH.

Drug; study name;

(ClinicalTrials.gov identifier) Study population Mode of action; effects Primary endpoint

Obeticholic acid (OCA);

REGENERATE

[NCT02548351]

REVERSE [NCT03439254]

NASH, F1–3

Compensated cirrhosis

FXR agonist; Bile acid synthesis #,

Lipogenesis #, Fatty acid

oxidation ", Gluconeogenesis #

Resolution of NASH without

worsening of fibrosis or fibrosis

improvement without worsening

of NASH; all-cause mortality and

liver-related outcome (HCC, LTx).

Resmetirom;

MAESTRO-NASH

[NCT03900429]

MAESTRO-NAFLD

[NCT04197479]

NASH, F2/3

presumed NASH, F1–F4 (non-

invasively measured, recruitment

only USA)

β-selective thyroid hormone

receptor (THR) agonist;

Lipogenesis #, Fatty acid

oxidation "

Resolution of NASH without

worsening of fibrosis; all-cause

mortality and liver-related

outcome (HCC, LTx)

Semaglutide;

ESSENCE [NCT04822181]

NASH F2/3 GLP-1R agonist; Blood glucose

control, weight ##, cardiovascular

events #

Resolution of NASH and fibrosis

improvement ≥1 stage by week

72

Lanifibranor;

NATiV3 [NCT04849728]

NASH F2/3 Pan-PPAR (α/δ/γ) agonist; Steatosis

# (PPAR α), Inflammation # (PPAR

δ), Fibrosis # (PPAR γ)

Resolution of NASH and fibrosis

improvement ≥1 stage by week

72

Aramchol;

ARMOR [NCT04104321]

NASH F2/3 Fatty acid-bile acid conjugate;

Steatosis #, Collagen production

in hepatic stellate cells (HSC) #

Resolution of NASH without

worsening of fibrosis or fibrosis

improvement without worsening

of NASH; all-cause mortality and

liver-related outcome (HCC, LTx)

Belapectin;

NAVIGATE (IIb/III)

[NCT04365868]

Compensated cirrhosis without

esophageal varices

Galectin-3 inhibitor; Inflammation #

Fibrosis #

Emergence of varices, Safety

Abbreviations: NASH (non-alcoholic steatohepatitis), NAFLD (non-alcoholic fatty liver disease), FXR (farnesoid X receptor), HCC (hepatocellular

carcinoma), LTx (liver transplantation), PPAR (peroxisome proliferator-activated receptor).
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efficacy in NAFLD. GLP-1/GIP co-agonists are in more advanced

stages of clinical development, followed by GLP-1/Glucagon co-

agonists, whereas triple agonists are in earlier stages. Tirzepatide,

which is a GLP-1/GIP co-agonist, has been recently approved by the

Food and Drug Administration (FDA) for the treatment of T2DM. Tir-

zepatide has been reported to be superior to semaglutide in reducing

HbA1c and weight.171 In patients with T2DM, Tirzepatide reduces

significantly liver transaminases.172 Additionally, it reduces signifi-

cantly liver fat content (assessed with MRI) compared to insulin deglu-

dec.173 A current phase II trial is evaluating the effect of Tirzepatide

versus placebo in liver histology in patients with NASH. Hepatic gluca-

gon receptor signaling is important for fatty acid oxidation, triglyceride

synthesis, and secretion. Treatment with glucagon receptor agonists

reduces de novo lipogenesis, enhances mitochondrial biogenesis, and

restores basal respiratory rates in hepatocytes in mice with

NASH.174,175 Several medications are under development with cota-

dutide showing beneficial effects in reducing liver transaminases and

fibrosis markers in patients with overweight/obesity and T2DM.176

5.3.3 | SGLT2 inhibitors (SGLT2i)

SGLT2i are established treatments for T2DM as well as for cardiac

insufficiency.177 In mouse models of NASH, several SGLT2i have

shown beneficial effects on reducing liver steatosis and inflammation

by altering hepatic lipid composition (i.e., reducing the concentrations

of pro-inflammatory lactosylceramides and increasing the concentra-

tions of anti-inflammatory polyunsaturated triglycerides),178 by acti-

vating autophagy and reducing ER stress and apoptosis,179 by

reducing de novo lipogenesis, and by inhibiting inflammatory response

by blocking the NF-kB pathway.180 A meta-analysis of randomized

clinical trials has shown that SGLT2i reduce liver transaminases. Addi-

tionally, they reduce by 2.05% the absolute percent of liver fat con-

tent assessed with MRI.181 An ongoing phase III clinical trial is

evaluating the effect of dapagliflozin in patients with NASH and

T2DM. Similarly, another trial is assessing the effects of empagliflozin

alone or in combination with semaglutide versus placebo in patients

with T2DM, NASH, and liver fibrosis.

5.3.4 | PPAR agonists

PPARs are ligand-activated transcription factors of nuclear hormone

receptor superfamily with three subtypes: PPARα, PPARγ, and

PPARβ/δ. In a highly simplified description regarding the effects on

NASH in mouse models, activation of PPARα acts anti-steatotic, of

PPARγ anti-fibrotic, and of PPARβ/δ anti-inflammatory.182,183 PPARγ

agonists (e.g., Pioglitazone) were originally developed as treatments of

T2DM because of their insulin-sensitizing effects, but they were also

the first that were tested in humans with NAFLD. Pioglitazone in sev-

eral studies managed to improve steatosis grade, inflammation, and

ballooning, whereas it had mild effects on liver fibrosis.184 Because of

side effects, pioglitazone has though not been extensively used in the

daily clinical routine. Novel selective PPARγ agonists that are equally

potent but have less side effects are under development and have

shown beneficial hepatic effects in mouse models of NASH.183 On

the other hand, the PPARα/δ agonist elafibranor has failed to demon-

strate beneficial effects on NASH in a phase III clinical trial. Thus, cur-

rent treatments that target all the PPAR subtypes to maximize hepatic

benefit are currently under evaluation. The most promising one is lani-

fibranor, a pan-peroxisome proliferator-activated receptor (PPAR)

agonist. In a phase IIb trial over 24 weeks, (n = 247) lanifibranor met

its primary endpoint of a reduction of two points or more on the

steatosis-activity-fibrosis (SAF) score, with no increase in fibrosis, in

49% of patients on 1200 mg/d compared with 27% on placebo.185

Improvement of steatosis of at least ≥1 point decrease between base-

line and week 24 was seen in 55.4% (95% CI 44.1%; 66.3%) on

800 mg, in 65.1% (95% CI 53.8%; 75.2%) on 1200 mg, and in 25.9%

(95% CI 16.8%; 36.9%) on placebo, indicating promising effects on

steatosis with a short-term treatment.185 A phase III trial on NASH is

ongoing.

5.3.5 | Farnesoid X receptor agonists (Obeticholic

acid)

Obeticholic acid (OCA) is a selective farnesoid X receptor (FXR) ago-

nist. FXR is a ligand-activated transcription factor involved in the con-

trol of bile acid synthesis and is also central to a number of pathways

in the liver, affecting glucose and lipid metabolism as well as inflam-

mation and fibrosis.186 In an ongoing phase III trial in NASH, an

18-month interim analysis has shown that OCA met the endpoint of

improvement by at least one stage in fibrosis with no worsening of

NASH but did not meet the endpoint of NASH resolution. A ≥ 1-point

improvement in steatosis in liver biopsy was seen in placebo versus

OCA 25 mg in 38% and 41% (p = 0.40) in the ITT population

(n = 931) and in 43% versus 52% (p = 0�072) in the per-protocol pop-

ulation (n = 668), respectively.187 Although OCA seems to have

effects on steatosis regression, they appear to be relatively small and

not significant. Additionally, OCA increases total cholesterol and LDL

cholesterol and decreases HDL cholesterol by altering LDL and HDL

particles concentrations.188,189 The unfavorable increase in circulating

cholesterol results from the inhibition of conversion of cholesterol to

bile acids by OCA and consequently from cholesterols' increased

availability. The approval of OCA for the treatment of NASH is

awaited in the near future.

5.3.6 | Thyroid hormone receptor beta agonists

(Resmetirom)

Thyroid hormone receptor beta (THR-β) is crucial for liver homoeosta-

sis, through multiple metabolic actions and has been shown to

improve lipid metabolism. Resmetirom (MGL-3196) is a liver-directed,

orally active, selective THR-β agonist designed to improve NASH by

increasing hepatic fat metabolism and reducing lipotoxicity.190 In a
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phase II NASH trial over 36 weeks, resmetirom-treated patients

showed a significant reduction of hepatic fat in MRI-PDFF compared

with placebo at week 12 (�32�9% resmetirom vs – 10�4% placebo;

p < 0�0001) and week 36 (�37�3% resmetirom vs – 8�5 placebo;

p < 0�0001). Resmetirom has shown significant effects on steatosis

resolution and is currently tested in two phase III clinical trials

(MAESTRO-NASH and MAESTRO-NAFLD). An interim analysis from

the MAESTRO-NAFLD trial over 52 weeks in NASH with compen-

sated cirrhosis (n = 105), which recruited only in the United States,

has recently been presented at the International Liver Congress 2022.

At week 52, resmetirom lowered Fibroscan® CAP by �42 dB/m

(p < 0.0001), liver stiffness by �7.6 kPa (p = 0.02), MR elastography

by 0.68 kPa, baseline MRI-PDFF >5% by 37% (p < 0.0057), LDL-

cholesterol by �20%, and ApoB by �20%.191 Similarly, positive

results from an interim analysis of the MAESTRO-NASH study have

been recently announced in a press release by the pharmaceutical

company developing resmetirom.192 Resmetirom at 100 mg led to

NASH resolution without worsening of fibrosis in 30% of patients

(compared to 10% in placebo group) and to improvement of at least

one stage in fibrosis without worsening of NAS in 26% of patients

(compared to 14% in placebo group). The MAESTRO-NAFLD phase III

trial has two important features: it is the first NASH phase III trial with

data on compensated liver cirrhosis and primary as well as key sec-

ondary endpoints were measured non-invasively. If the latter will be

accepted by regulatory authorities for future phase III approval stud-

ies, performing of NASH clinical trials will be greatly simplified, as liver

biopsy will no longer be needed.

5.3.7 | Aramchol

Aramchol, a partial inhibitor of hepatic stearoyl-CoA desaturase

(SCD1), improved steatohepatitis and fibrosis in rodents and reduced

steatosis in an early clinical trial. It has been tested in a phase IIb trial

over 52 weeks including 247 patients with NASH. Aramchol

600 mg/d demonstrated a placebo-corrected decrease in liver triglyc-

erides measured by MR spectroscopy of �3.1 (95% CI �6.4 to 0.2,

p = 0.066); however, it did not meet the prespecified significance

level.193 Nevertheless, the observed safety and changes in liver histol-

ogy and enzymes provided a rationale for evaluating aramchol in an

ongoing phase 3 program.

6 | CONCLUSIONS – PERSPECTIVES

Multiple evidence support that the presence and amount of liver fat are

relevant factors for the development and progression of NAFLD and of

metabolic diseases. From pathophysiological point of view, liver fat

accumulation is the first step for the impairment of hepatic function

that can lead to liver inflammation and fibrosis. Changes in liver fat

amount correlate strongly with NASH progression or regression and

can thus be used for assessing drug efficacy in early-phase NASH clini-

cal trials. Moreover, liver fat amount is strongly and (based on

Mendelian randomization studies) causally related with the risk of dia-

betes. Liver fat amount is also associated with several cardiovascular

and cardiometabolic markers, albeit causality has to be further assessed

in future studies. Regarding the available diagnostic tools, blood-based

tests can be useful for excluding the presence of steatosis. Ultrasound

is sensitive at detecting moderate to severe steatosis, and MRI-PDFF is

very accurate at quantifying liver fat amount. Bariatric procedures are

highly effective at reducing liver fat as well as liver inflammation and

fibrosis. Lifestyle interventions and especially Mediterranean diet and

exercise are effective at reducing liver fat even at the absence of severe

weight loss. Finally, several medications currently under evaluation in

Phase III clinical trials have shown beneficial effects in reducing liver fat

amount, inflammation, and, in some cases, fibrosis.

Points that we consider as highly relevant for further investiga-

tion in future studies include: (a) the development of blood-based

tests that will be able to quantify accurately liver fat and thus being

used for rapid diagnosis and monitoring disease progression or treat-

ment response especially in primary care setting; (b) the investigation

of the association of liver fat and NAFLD status with hard cardiovas-

cular outcomes, such as major cardiovascular events as well as the

assessment of the effect of liver fat content decrease with reduction

of cardiovascular risk prospectively; (c) identification of possible inde-

pendent pathways linking liver fat accumulation with cardiovascular

and metabolic function through mechanistic studies. For this purpose,

development of animal models with combined presence of NAFLD,

atherosclerosis, and/or heart insufficiency are needed.
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