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A B S T R A C T

In today’s computing environment, where Artificial Intelligence (AI) and data processing are
moving toward the Internet of Things (IoT) and Edge computing paradigms, benchmarking
resource-constrained devices is a critical task to evaluate their suitability and performance.
Between the employed devices, Single-Board Computers arise as multi-purpose and afford-
able systems. The literature has explored Single-Board Computers performance when running
high-level benchmarks specialized in particular application scenarios, such as AI or medical
applications. However, lower-level benchmarking applications and datasets are needed to enable
new Edge-based AI solutions for network, system and service management based on device
and component performance, such as individual device identification. Thus, this paper presents
LwHBench, a low-level hardware benchmarking application for Single-Board Computers that
measures the performance of CPU, GPU, Memory and Storage taking into account the com-
ponent constraints in these types of devices. LwHBench has been implemented for Raspberry
Pi devices and run for 100 days on a set of 45 devices to generate an extensive dataset that
allows the usage of AI techniques in scenarios where performance data can help in the device
management process. Besides, to demonstrate the inter-scenario capability of the dataset, a
series of AI-enabled use cases about device identification and context impact on performance
are presented as exploration of the published data. Finally, the benchmark application has
been adapted and applied to an agriculture-focused scenario where three RockPro64 devices
are present.

1. Introduction

Performance benchmarking has been an issue explored since the early days of computer science [1]. Knowing the capabilities
of a device is critical to create applications optimized for it [2]. In this sense, benchmarking has become a priority due to the
magnification of the number of online devices provoked by new technologies such as 5G, IoT or cloud. In addition, the explosion
of techniques such as Machine Learning (ML) and Deep Learning (DL), which usually require high computational power, has been
another key factor increasing the need for processing measurement applications. In this context, device performance benchmarking
is a research avenue that acquired a large momentum in the last years [3], especially in IoT and Edge computing paradigms.

∗ Corresponding author.

E-mail address: pedromiguel.sanchez@um.es (P.M. Sánchez Sánchez).

https://doi.org/10.1016/j.iot.2023.100764
Received 29 September 2022; Received in revised form 20 February 2023; Accepted 20 March 2023

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:pedromiguel.sanchez@um.es
https://doi.org/10.1016/j.iot.2023.100764
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100764&domain=pdf
https://doi.org/10.1016/j.iot.2023.100764
http://creativecommons.org/licenses/by/4.0/


Internet of Things 22 (2023) 100764

2

P.M. Sánchez Sánchez et al.

Benchmarking can be defined as an intentional stress introduced in a system to measure how the device behaves regarding a
determined set of metrics [4]. The main purposes of benchmarking are to (i) verify that the performance of a device is the promised
one and suitable for a certain activity such as running AI tasks, and (ii) model the internal behavior of a certain device to identify it or
verify that it is running properly [5]. Therefore, device benchmarking can be seen from two perspectives. First, as a high-level system
benchmarking that seeks to measure how a certain application works on the device in terms of performance or Quality-of-Service
(QoS), for example, in execution time or energy consumption [6]. Second, as a low-level hardware benchmarking, which goal is
to characterize the device components in a more precise way [7], so it is possible to differentiate devices or detect imperfections
and errors in the chips, among other options. ‘‘Low-level’’ indicates that the focus of the measurements is close to the physical level
of the components, measuring values such as frequencies and cycles instead of QoS (time and energy). An example of this type of
benchmarking would be to measure how many cycles it takes a processor to execute a certain simple task, measuring whether it
meets its specification and the necessary stability requirements.

Moreover, due to the explosion undergone by AI, and more specifically ML and DL [8], these techniques have also landed
in the IoT field, being applied in areas such as industry, network and service management or cybersecurity. Thus, the field of IoT
benchmarking also has the task of evaluating the performance of training and deploying ML/DL in these devices hardware. Numerous
solutions have explored the capabilities of IoT devices, mainly Single-Board Computers (SBC) such as Raspberry Pi, when running
different ML/DL algorithms and libraries [9], so this is an area with enough pedigree and many recent works [10]. However, low-
level hardware benchmarking and the application of ML/DL in the data generated from these benchmarks remain mostly unexplored
in the IoT field. This is an important task as critical functionalities are moving to the IoT and having the components of these devices
properly analyzed is essential.

Then, although many benchmarks have been proposed for SBCs in recent years, as [3] shows, some challenges are present in
the area, such as (i) many benchmarks are proposed but no exhaustive execution datasets are provided; (ii) all recent benchmarks
focus on high-level applications and none of them measures the performance of the hardware from a low-level perspective; (iii)
there is no work measuring the components performance from a different component of the same device, which is important to
avoid inconsistent values coming from the measured component (e.g. measure an execution time using the CPU as its own source
of timestamps), as it cannot notice its own inaccuracy; (iv) only a few solutions consider storage and memory in the benchmark,
most of them are focused on CPU QoS (execution time, computation and communication latency); and (v) none of the previous SBC
benchmark solutions consider GPU low-level performance for non-graphics processing.

In order to improve the previous limitations and fill the literature gap, the main contributions of the present work are:

• A low-level hardware component benchmarking application, namely LwHBench, which measures CPU, GPU, memory and
storage device performance from the device reference point. The benchmark is implemented as a proof of concept for Raspberry
Pi devices [11], taking into account the particularities of their hardware components.
• A comprehensive dataset acquired as a result of running the previous benchmark on a set of 45 Raspberry Pi of various models
for 100 days [12]. For data collection, a series of measures regarding the stability of the device performance have been taken,
setting the frequency of the components to fixed values and trying to reduce as much as possible the possible noise introduced
in the measurements by other processes running on the devices. This dataset contains a total of 4 GB of data (2 386126
vectors), more than any other benchmark dataset in the literature, ready to be used in ML/DL-based applications by other
researchers in a wide variety of use cases.
• A set of potential use cases described as possible application scenarios for the benchmark and the published dataset. These use
cases are partially solved as a preliminary exploration of the dataset, so that other researchers know how to apply their ML/DL
algorithms. The code used in these use cases is also publicly available at [11]. Besides, these use cases are also demonstrated
in a real world IoT agriculture deployment using 3 RockPro64 devices, another SBC model.

The remainder of this article is structured as follows. Section 2 provides a review of the literature status regarding SBC
performance benchmarking. Section 3 describes the methodology and approach followed for the benchmark implementation and
generation of the dataset. Section 4 describes the functions executed in each one of the components considered, while Section 5
explores the collected data through a set of use cases. Section 6 depicts a real-world adaptation and deployment of the benchmark.
Section 7 draws the main strong points of the proposed method together with the drawbacks identified during the work development.
Finally, Section 8 draws the main conclusions of the present work and future research lines.

2. Related work

This section analyzes related work dealing with performance benchmarking, with a special focus on Edge computing and IoT,
and existing datasets regarding IoT device performance monitoring.

Regarding performance benchmarking, Varghese et al. [3] surveyed the evolution of this field from the early 90s to 2020,
with special consideration of Edge benchmarking since the 2010s. This survey shows that many performance benchmarking
applications have been published in recent years, most of them centered on SBCs, such as Raspberry Pi. The vast majority of
these applications focus on CPU and memory benchmarking [15], while only a few test additional resources [24], such as storage,
network or accelerators (GPU/TPU). Despite the usefulness to test devices from different brands and models, none of the existing
Edge performance benchmarks revised in [3] is focused on the extraction of low-level information capable of detecting hardware
imperfections or malfunctioning. In contrast, these existing benchmarks are based on the execution of complex or advanced
applications [17], such as AI libraries [9] or orchestrators, and not on fast execution code for low-level fingerprinting. Some
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Table 1
Comparison of IoT Benchmarking applications and datasets.

Solution Device type Monitored components Metrics Public data Open source

[13] SBC GPU Processing time, resource usage (%) ✗ ✗

[14] SBC CPU GFLOPS, energy ✗ ✗

[9] SBC/PC CPU, GPU, memory Processing time, mem speed, energy ✗ ✓

[15] Medical IoT CPU, memory Hardware Performance Counters ✗ ✓

[16] Cloud CPU, memory, network Processing time, network/mem speed ✗ ✗

[17] SBC CPU, memory, network Processing time, network/mem speed ✗ ✓

[18] Edge servers CPU N Instructions ✓(2.5 MB) ✓

[19] SBC CPU GFLOPS ✗ ✓

[20] IoT CPU Packet inter-arrival time ✓(1.5 GB) ✗

[21] IoT Radio transmitters Raw transmission data ✓(+50 GB) ✗

[22] SBC CPU GFLOPS, energy ✗ ✓

[23] Any SRAM and Flash memories Initial bit status ✓(To be published) ✓

This work SBC CPU, GPU, Memory, Storage Cycles counters and processing time ✓(4 GB) ✓

benchmarks [16] also measure the performance of cloud platforms oriented to the IoT, such as AWS Greengrass or Azure IoT Edge.

Regarding measurement metrics, most of the benchmarks use time-based metrics such as GFLOPS (Giga Floating Point Operations

per Second) for CPU or MB/s for memory and network, with only a few of them using more complex and low-level ones such

as Hardware Performance Counters [15]. Besides, although most benchmarking applications provide datasets with them (12 of

14 analyzed applications), only 5 out of 14 benchmarking applications use full open-source software, while 10 out of 15 use

commercial-grade software. Pincheira et al. [25] benchmarked six IoT hardware platforms in terms of support to blockchain-based

agriculture applications. Finally, [3] also shows that most high-level benchmarks use commercial or proprietary software in their

implementations.

In the area of low-level benchmarking, [13] evaluated the performance of the GPUs embedded in ARM SBCs, noticing

great improvements comparing the GPU performance to the CPU when doing mathematical operations, but with higher energy

consumption. Furthermore, [14] built a Raspberry Pi cluster and performed CPU and energy consumption testing to find the

best energy/price/performance model. Similarly, three clusters, each consisting of 16 different SBC models, were built in [22]

to benchmark the SBC performance in terms of computing and energy consumption. [19] followed a similar cluster-oriented

benchmarking but focusing on cryptography libraries. However, these benchmarks perform fairly simple metrics about performance

and do not publish their data, which do not enable the application of the generated data to new domains such as fingerprinting.

From a different domain, [26] explored recently the low-level benchmarking of quantum computers, an area gaining importance in

recent years that supports the need for lower-level hardware benchmarking.

Dealing with datasets about hardware performance, there are just a few examples available in the literature. Many benchmarking

applications include simple data samples [3]. One example is [18], which contains 2.5 MB of traces of different high-level

benchmarking applications executed in Edge servers. However, these are not exhaustive datasets collected during long execution

periods and are not suitable for ML/DL approaches due to their size constraints. Regarding datasets directly focused on low-

level performance fingerprinting, [23] contains fingerprints from different SRAM (Static RAM) chips, which were used in [27] to

perform individual identification. However, most SBC models do not include SRAM chips due to their higher cost. From a different

perspective, [21] contains radio spectrum measurements from different IoT devices, which can be employed to fingerprint their

transmission performance and properties. Similarly, [28] also contains raw IQ signals from 9 IoT devices that can be used for

fingerprinting tasks. Moreover, [20] presents inter-arrival time information from different wireless routers and IoT devices, and it

is aimed at individual and device type fingerprinting. In contrast, to the best of our knowledge, there is not any comprehensive

dataset regarding low-level performance fingerprinting or benchmarking of hardware components.

Table 1 shows a comparison between the different benchmarking applications and datasets found in the literature and the present

one. From the analysis made in this section, it is noticed that there is a gap regarding solutions focused on low-level benchmarking.

Most of the recent solutions focus on high-level application benchmarking, and the ones focusing on low-level performance only use

simple performance metrics and do not provide extensive datasets to enable ML/DL-based use cases or new applications. Moreover,

the datasets found in the literature are focused on other areas such as device identification, and not on hardware component

benchmarking.

3. Benchmark and dataset generation methodology

This section describes the methodology followed in order to implement the benchmark application and collect the samples

available in the dataset: providing the details of the scenario used for data collection; describing the components monitored and

how their performance is measured; detailing the libraries used to collect each metric; and finally, explaining the configuration

options and measures taken to ensure stability and avoid noise in the samples published.
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Table 2
Number, model and most relevant characteristics of the devices used for validation.

N RPi model Revision SoC CPU GPU Cache RAM SD

15 Raspberry Pi
4 Model B

1.1/1.4 BCM2711 1.5 GHz quad-core
64 bit ARM A72

500 MHz
Broadcom
VideoCore VI

2-way set associative 32 kB
and 48 kB level one
instruction and data caches,
respectively, and a 1 MB
unified level two cache

4 GB
LPDDR4

16 GB A1
Type 10
SandDisk
Ultra

10 Raspberry Pi
3 Model B+

1.3 BCM2837 1.4 GHz quad-core
64 bit ARM A53

400 MHz
Broadcom
VideoCore IV

2-way set associative 16 kB
level one instruction and data
caches, and 512 kB unified
level two cache

1 GB
LPDDR2

16 GB A1
Type 10
SandDisk
Ultra

10 Raspberry Pi
Model B+

1.2 BCM2835 700 MHz single-core
32 bit ARM
1176JZF-S

400 MHz
Broadcom
VideoCore IV

2-way set associative 16 kB
level one instruction and data
caches, and 128 kB unified
level two cache

500 MB
LPDDR2

16 GB A1
Type 10
SandDisk
Ultra

10 Raspberry Pi
Zero

1.3 BCM2835 1 GHz single-core
32 bit ARM
1176JZF-S

400 MHz
Broadcom
VideoCore IV

2-way set associative 16 kB
level one instruction and data
caches, and 128 kB unified
level two cache

500 MB
LPDDR2

16 GB A1
Type 10
SandDisk
Ultra

3.1. Deployment and configuration

For the LwHBench benchmark implementation and testing, a wide number of devices is required. In this sense, the benchmark
is executed, to collect the dataset, in a set of 45 physical devices composed of several models of Raspberry Pi (RPi) devices. Table 2
shows a summary of the devices employed for validation, their distribution and main characteristics.

All devices of the setup have identical software images, using Raspbian 10 (buster) 32 bits as OS and Linux kernel 5.4.83. The only
variation in the kernel version is related to the core architecture of each device model, ARMv6 for RPi1/Zero, ARMv7 for RPi3, and
ARMv8 for RPi4.

Besides, to reduce physical context as much as possible, all devices are located in the same lab room with identical cases and
aluminum heat sinks.

3.2. Monitored components

For reliable time/performance measurements of hardware components, the ideal setup is to use as reference a physical oscillator
independent of the component being measured (the frequency of the component is not dependent on the reference oscillator). RPi
devices include all the main processing components present in a normal computer, including oscillators. However, the number of
physical crystal oscillators is reduced to save costs. RPi4 only includes a SoC base oscillator running at 54 MHz and an oscillator
for the USB/Ethernet controllers running at 25 MHz. In contrast, RPi3/1/Zero only include one SoC base oscillator running at 19.2
MHz. Then, each component runs at a different frequency using Phase-Locked Loops (PLLs) for base frequency multiplication [29].

This condition implies that some auxiliary components which could be used as reference points, such as the Real-Time Clock
(RTC), are simulated. This fact makes it hard to accurately measure the performance and skew of the system from the device itself,
as a skew in the CPU timing will affect the time measurements that it is doing of itself.

However, each component can still show performance differences based on the multiplication factor applied to the base crystal
oscillator frequency in the associated PLLs. For this reason, each component used to measure the performance of the device is
monitored from another component of the device, measuring, in turn, the possible imperfections and deviations between the
components. More clearly, for example, the performance of code execution on the CPU is measured in terms of GPU cycles and
vice versa.

Following the previous approach, the components whose performance are monitored and stored in the dataset are:

• CPU. The execution time of code run in the CPU is measured by monitoring how many GPU cycles have elapsed during that
period of time. In this way, the skew between CPU and GPU can be accurately measured. Therefore, the formula to measure
CPU performance based on GPU cycle variation is:

𝐶𝑃𝑈𝑝𝑒𝑟𝑓 . = 𝛥𝐺𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑐𝑝𝑢_𝑐𝑜𝑑𝑒_𝑒𝑥𝑒𝑐 (1)

• GPU. In the GPU, the performance of code executed in this component is measured using CPU-based time, just the opposite
way to the previous case.

𝐺𝑃𝑈𝑝𝑒𝑟𝑓 . = 𝛥𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑔𝑝𝑢_𝑐𝑜𝑑𝑒_𝑒𝑥𝑒𝑐 (2)

• Memory. Here, memory read/write operations are also monitored in terms of CPU-based timing, as the RAM chip in RPi has
its own functioning frequency different to both the CPU and GPU.

𝑀𝑒𝑚𝑜𝑟𝑦𝑝𝑒𝑟𝑓 . = 𝛥𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑚𝑒𝑚_𝑜𝑝𝑠 (3)
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• Storage. Storage performance measurement is done by input/output operations in the SD card attached to the device with the
software image.

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑝𝑒𝑟𝑓 . = 𝛥𝐶𝑃𝑈𝑐𝑦𝑐𝑙𝑒_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⊢ 𝑡𝑖𝑜_𝑜𝑝𝑠 (4)

3.3. Benchmark implementation

The LwHBench benchmark code is available in [11]. The data collection program has been implemented using Python 3, so it can
be executed as a portable script on any device with the required libraries installed. Besides, this selection has also been influenced
by the set of libraries available for CPU and GPU low-level interaction, as it is explained below.

For the GPU low-level interaction and register monitoring, Idein py-videocore [30] and py-videocore6 [31] are employed for
VideoCore IV and VideoCore VI GPU-based devices, respectively. To measure GPU cycles, different registers should be considered
depending on the GPU version. In particular, the register monitored in VideoCore VI is CORE_PCTR_CYCLE_COUNT, while in
VideoCore IV the monitored registers are the performance counters 13-19 [32].

When accessing the CPU cycle counter, there are two different possibilities. The first is to generate a kernel module to enable
reading the cycle counter from userspace. The second consists of using the interfaces provided by performance monitoring tools such
as perf. In the code, both approaches are tested.

Regarding the kernel module, the CPU cycle counter is stored in ARMv7 and ARMv8 AArch32 processors using c15 Cycle Counter
Register (CCNT) and, by default, it can only be read in kernel space. Therefore, a custom kernel module is implemented to allow
access to this register (enable_ccr folder in [11]). Once compiled, the kernel module should be loaded using insmod command
with root privileges. Finally, the register can be read using the assembly operation MRC p15, 0, <Rd>, c15, c12, 1, where <Rd>
represents the variable where to store the register value. To access perf time counting, the easiest method is to use the time built-in
Python library, which includes perf_counter_ns() function to retrieve time in nanoseconds using the previous counter. After some
experimentation, it was decided to follow the perf -based approach due to its simplicity compared to using a kernel module and
assembly code, and its similar consistency in the performance measurements.

Moreover, to automatize the data collection process, a system service has been implemented (data_collection.service in the code
folder). This service is in charge of the automated data collection script launching and periodic system rebooting in order to reduce
the noise introduced by possible factors related to the system running time. Concretely, each device is rebooted after 800 samples
are collected.

3.4. Device setup for component stability and isolation

One of the most critical aspects of collecting reliable samples is to ensure that the conditions in the device are as constant as
possible, reducing potential sources of noise in the samples. To this end, a number of measures are taken to counteract the impact
of other processes running on the device. Specifically, the measures implemented to ensure stability are:

• Fixed CPU/GPU/RAM frequency. By default, the kernel dynamically manages the frequency of the device components to save
energy when no high task load is present. However, this dynamicity affects to the stability of the performance measurements.
Therefore, a fixed frequency is required in the components to measure. In RPi, the frequency of the components can be set to
be constant at the maximum using turbo_mode=1 boot option. Besides, if only a fixed CPU frequency is wanted, performance
can be used as scaling_governor option.
• Kernel level priority. Enabling a high priority for the data collection process minimizes the interruptions caused by other
programs, removing noise and inaccurate measurements. The best option here is to set the process with the highest scheduling
priority. If root privilege is available, using the command chrt -rr XX when launching the program enables the ‘‘real-time
scheduling’’ of the process, just like a kernel process. If it is not possible to use kernel priority, another option is to use nice
-n -20 to set the maximum user level priority.
• Disable Memory Address Space Layout Randomization (ASLR). Memory random address organization can affect the
stability of memory-related measurements; therefore, this characteristic was disabled during data collection. It can be done
using sysctl kernel.randomize_va_space=0 command, but note that this should be only enabled during memory-
related data acquisition, as having ASLR disabled increases the facility to perform memory-based attacks such as buffer
overflows.
• Profiled Guided Optimization (PGO). PGO is a compiler option intended to improve runtime performance based on static
program analysis of code. Python interpreter can be compiled to use PGO by using –enable-optimizations option. Furthermore,
Python garbage collector is also disabled to avoid unintended tasks during the execution.
• Fixed hash seed. As hash-based CPU performance measurements are generated, using a fixed seed improves the deterministic
characteristics of the function. This is set using PYTHONHASHSEED=0 (or any other number) as environment variable when
running the data collection script. This option should only be used for benchmark, as it can lead to an attacker causing a
Denial-of-Service (DoS) by using worst-case performance inputs to the function, which have 𝑂(𝑛2) complexity.
• Core isolation. For the multi-core CPU devices, e.g. RPi3 and RPi4, one core is isolated from the rest to execute the benchmark
on it using cpu affinity. This setup avoids the (kernel) interruptions caused by other processes running in the same CPU core
while the data is being generated. Concretely, the kernel options employed were: i) isolcpus, to avoid the kernel to schedule
any process in that core; ii) nohz_full, to tell the kernel to remove as much kernel noise as possible, such as tick interrupts; and
iii) rcu_nocbs, to offload Read-Copy-Update (RCU) threads and callbacks.
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Table 3
Features gathered during data collection.

Component Function Monitored feature

– Timestamp Unix timestamp
Temperature Device core temperature

CPU 1 s sleep GPU cycles elapsed during 1 s CPU sleep
2 s sleep GPU cycles elapsed during 2 s CPU sleep
5 s sleep GPU cycles elapsed during 5 s CPU sleep
10 s sleep GPU cycles elapsed during 10 s CPU sleep
120 s sleep GPU cycles elapsed during 120 s CPU sleep
String hash GPU cycles elapsed during a fixed string hash calculation
Pseudo random GPU cycles elapsed while generating a software pseudo-random number
Urandom GPU cycles elapsed while generating 100 MB using /dev/urandom interface
Fib GPU cycles elapsed while calculating Fibonacci number for 20 using the CPU

GPU Matrix mul CPU time taken to execute a GPU-based matrix multiplication
Matrix sum CPU time taken to execute a GPU-based matrix summation
Scopy CPU time taken to execute a GPU-based graph shadow processing

Memory List creation CPU time taken to generate a list with 1000 elements
mem reserve CPU time taken to fill 100 MB in memory
csv read CPU time taken to read a 500 kB csv file

Storage read ×100 100 CPU time measurements for 100 kB storage read operations
write ×100 100 CPU time measurements for 100 kB storage write operations

4. LwHBench benchmark and dataset

This section details the operations executed by the benchmark and the events collected as features for the generation of the dataset
associated with this paper. Note that this list can be updated by any other researcher just changing the code of the benchmarking
script [11].

As detailed in Section 3, the components leveraged for benchmarking are: CPU, GPU, Memory and Storage. They have been
selected because they are the most common hardware elements in any SBC (and generic computer). Table 3 shows the list of
features collected for each device component. As it can be appreciated, any of the operations measures typical processing power
metrics such as GFLOPS. This is because they are not well suited for low-level component characterization. Besides, they have already
been gathered in several previous studies, as shown in Section 2. Concretely, the operations implemented as proof of concept are:

• CPU. Different sleep times (from 1 to 120 s) are monitored, trying to measure the accuracy for time keeping in the component.
Additionally, some quick-execution functions are monitored: hash calculation of a string, pseudorandom number generation,
random number generation using /dev/urandom interface, and Fibonacci number calculation.
• GPU. Three simple operations are monitored in terms of CPU time: a matrix multiplication, a matrix summation and the
processing of a graphic shadow.
• Memory. The operations executed are the generation of a list object with 1000 integers, the reserve of 100 MB of data and
the time to read a 500 kB csv file. These operations are measured also in terms of CPU time and represent 3 features in the
generated data vector.
• Storage. 100 read and write operations of 100 kB of data are monitored in the device SD card, generating 200 features in total.

In the dataset [12], each value of Table 3 represents one feature in the vectors (each dataset entry). Besides, each vector ends
with the MAC address of the device, which can be used as the label in supervised ML/DL tasks. The data of each device is stored
in a csv file, whose name is the MAC address. Additionally, a text file named MAC-Model.txt contains the association between the
MAC and the model of each device in the testbed.

For data collection purposes, an additional Linux service has been developed (data_collection.service). It is in charge of launching
LwHBench when the device is booted and it takes care of rebooting the device once 800 samples have been collected. This reboot
is done to minimize the possible impact of running time in the collected data (e.g. memory usage of persistent processes). Fig. 1
shows the flow diagram of the data collection performed in each device.

A total of 2 386126 vectors are available in the dataset, making 4 GB of data. Fig. 2 shows the number of samples per hour from
each device model during the data collection period. It can also be seen how some devices went offline during the data collection,
corresponding to each of the downward jumps shown in the RPi4 and RPi3 graphs. The dataset contains per device model: 505 584
samples of RPi 1B+, 784 095 samples of RPi4, 547 800 samples of RPi3 and 548647 samples of RPiZero. With more than two million
vectors, the present dataset is the one with the highest number of samples among those found in the IoT benchmarking literature.
Besides, Fig. 3 shows the number of samples per device contained in the dataset. The number varies according to the device model,
as more powerful ones generate more data in the same time. Besides, some devices suffered power outages during data collection
or they were added lately to the set of available devices. Still, on average, more than 50000 vectors per device are present. It can
also be seen that 5 devices have less data due to interruptions during the data collection process.
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Fig. 1. LwHBench data collection flow diagram.

Fig. 2. Samples per hour generated from each device model.

5. Data exploration and use cases

This section explores the dataset described in the previous section. For that purpose, a set of ML/DL-based use cases for network
and device management are presented using the data available. Note that the purpose of this section is to show the usefulness of
the benchmarking application and the data collected with it, not to find the best solution to the problems proposed as illustrative
examples.

5.1. Model/individual identification

The first use case where the dataset (and LwHBench benchmark to generate new data) can be applied is in device identification
based on the performance of its device components. This can be a critical task in environments where the devices can be
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Fig. 3. Samples per device contained in the dataset.

impersonated by malicious ones with new hardware or software configurations [33]. In this sense, this use case can be seen from two
different perspectives: identification of the device model, a relatively straightforward task from the data measuring the performance of
each hardware component, as different hardware will have different performance values; and individual identification of each device, a
more complex task since to uniquely identify devices with identical software and hardware it is necessary to analyze the differences
and imperfections in the chips of each device [34].

5.1.1. SBC model identification
For this first perspective, a ML/DL-based dimensionality reduction and clustering approach [35] is followed to group together

the data from each device model. This approach is selected due to its proven efficacy for automated class inference and identification
in unlabeled data applied in many research areas, such as network-based IoT device type inference [36], intrusion detection [37]
or even biology [38].

As a proof of concept, it is decided to apply clustering to all CPU, GPU, memory and storage features, discarding timestamps
and temperature. As clustering algorithms, several options are tested, concretely PCA, t-SNE and umap, reducing the number of
dimensions to two. So, the resultant data can be easily plotted for result explainability. Regarding clustering, k-means and DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithms are applied over the data once the dimensions have been
reduced to two. As the number of device models is previously known, the number of clusters in the algorithm configuration is set
to four.

Fig. 4 shows the results when the combination of PCA with k-means clustering is applied as data processing approach. Different
configurations of dimensionality reduction and clustering algorithms gave similar results. It can be seen how four different groups
in the data emerge clearly separated, and how the clustering algorithm is able to associate the points successfully. To verify that
the clustering is correct, the number of instances assigned to each of them is compared with the number of samples in the dataset
belonging to each device model, as also portrayed in Fig. 2. Thus, the results are:

• Cluster 0: 784 095 samples, which coincides with the samples of RPi4.
• Cluster 1: 505 584 samples, which coincides with the samples of RPi1.
• Cluster 2: 547 800 samples, which coincides with the samples of RPi3.
• Cluster 3: 548 647 samples, which coincides with the samples of RPiZero.

From the above results, it can be concluded that LwHBench benchmark and dataset can be applied to solve the model
identification problem. This approach has performed perfectly, since the number of samples in each cluster matches one of the
RPi models deployed in the testbed. Moreover, it can be seen how Cluster 2 (green color) has its values much more concentrated
than Clusters 0 and 3 (blue and red), which indicates higher stability in the values of this type of device.

5.1.2. Individual identification
In this case, the objective is to uniquely identify each one of the 45 devices used for dataset generation. Here, an ML/DL-based

classification approach is followed due to its demonstrated performance in IoT device identification tasks [39,40].
For this task, all the features available in the dataset regarding components are used, and in this case, it is also included

the temperature as a feature, since the correlation between this and the performance of each component can be one of the
patterns that the ML/DL algorithm could detect when identifying each device individually. Besides, the storage-related features,
100 measurements for read time and 100 for write, are preprocessed, calculating the average, median, minimum and maximum
for each feature group. As the number of devices to be identified is fixed, the 45 devices used to generate the dataset, ML/DL
classification techniques [41] are used to identify each SBC. Therefore, the following techniques are compared: Decision Tree (DT),
Random Forest (RF), XGBoost, k-Nearest Neighbors (k-NN), Naive Bayes (NB), Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP). For k-NN, NB, SVM and MLP, normalization is applied using min–max : 𝑥 =

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
. The dataset is split into
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Fig. 4. PCA-based dimensionality reduction with k-means clustering.

Table 4
Device identification results.

Algorithm Hyperparameters Precision Recall F1-Score

DT 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 𝑁𝑜𝑛𝑒 0.88 0.88 0.88
RF 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100 0.93 0.93 0.93

XGBoost 𝑙𝑟 = 0.1, 𝑔𝑎𝑚𝑚𝑎 = 0.01

𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 20

0.97 0.97 0.97

k-NN 𝑘 = 7 0.32 0.32 0.31
NB – 0.20 0.17 0.12

SVM 𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑙𝑖𝑛𝑒𝑎𝑟,

𝑔𝑎𝑚𝑚𝑎 = 0.01

0.50 0.51 0.50

MLP 1 relu hidden layer,
50 neurons

0.58 0.57 0.56

80% of the data for training and cross-validation, and 20% for testing. Table 4 shows the Precision, Recall and F1-Score [42] per
algorithm. As it can be seen, XGBoost is the algorithm providing the best results, with a 0.97 in Precision, Recall and F1-Score.

Moreover, Fig. 5 shows the confusion matrix for the 45 devices involved in the identification use case. Note that the RPi model
has been added at the beginning of each label to have the devices ordered by model in the image. The results in this use case are
satisfactory, as the minimum accuracy in all devices is 0.88, having more than 0.93 in most of them. Therefore, it can be concluded
that the collected features are suitable for individual device identification.

Furthermore, more complex approaches could be applied to perform individual device identification depending on the scenario
requirements. For example, applying time series approaches or advanced DL models such as LSTM (Long Short-Term Memory) or
Transformer networks. One example of these solutions can be found in [43], where similar features to the ones collected about CPU
performance were employed to differentiate 25 Raspberry Pi devices. In this case, a sliding window approach is used for vector
preprocessing, incorporating new statistical information as features for the ML/DL classifier.

5.2. Performance analysis

The second use case where the benchmark and dataset can be applied is in the comparison of the performance of each
device hardware component. This comparison can be seen from two different areas: intra-device comparison, where contextual
circumstances such as temperature are analyzed to evaluate their impact on the device performance; and inter-device comparison,
where components from different devices, but from the same model and in similar context conditions, are compared to find
performance variations based on manufacturing variations.

5.2.1. Intra-device performance analysis
One intra-device use case where the collected dataset can be applied is in the analysis of the impact of temperature variations on

the performance of the different device models and their components. This is another research area with a large interest in recent
years [44] due to the deployment of SBC in a wide variety of critical scenarios.

For this use case, one of the devices available in the dataset is randomly selected and the impact of temperature on the other
hardware-related metrics is analyzed. As the impact of temperature may vary according to the device model, one device per model
is selected. Besides, only the first feature regarding storage read and write performance (storage_read_1 and storage_write_1) are
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Fig. 5. Individual device identification confusion matrix.

analyzed. In order to test the impact of temperature value on the other features, the correlation between the temperature feature
and the other features is studied. The correlation has values between 1 and −1 depending on whether the features increase their
value linearly and positively, or inversely and proportionally.

Fig. 6 shows the correlation values for four different devices, one per available model. It can be appreciated how the RPi3 shows
a high sensitivity to temperature in almost all features, only the ones based on sleep function execution seems to have a stable
performance. This analysis has been repeated with the rest of the RPi3 devices to ensure that it was not a failure in one of them,
with all the devices of this model showing very similar correlation graphs. In contrast, the rest of the models show much lower
sensitivity to temperature changes, with values close to zero that only vary around ±0.05 in certain cases and devices.

Thus, from this use case it can be concluded that the RPi3 devices used for the generation of the dataset are the model with
the highest sensitivity to temperature changes, as the correlation of this feature with the rest is high in some cases. This fact is
interesting for deployments where the physical environment conditions are changing, but the performance is expected to remain
stable over time.

Another interesting use case of intra-device analysis is the analysis of how the performance of a device can drop over time due
to component wear and tear. For this use case, data needs to be collected over a long period of time. In the case of the available
dataset, a total of 100 days (from 6th December 2021 to 17th March 2022) of data have been collected, so although it is not an
extensive period, it could give clues about component and device aging.

5.2.2. Inter-device performance analysis
The last use case to be explored is the analysis of the performance variations of different hardware components within devices of

the same model. This use case is closely related to individual identification, since it is the performance variations between devices
of the same model that can be used to characterize each device separately.

To analyze this use case, the distribution densities of different features for devices of the same model are plotted. As a proof of
concept, the selected model is the RPi4 and one feature from each component is shown: cpu_sleep_120s for the CPU, gpu_matrixmul
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Fig. 6. Temperature correlation plot.

for the GPU, storage_read_1 for the memory/storage, and storage_write_1 for the storage. Although identical experiments could be
performed for the other models, these are omitted for document space reasons.

Fig. 7 shows the density plots for each feature. Some interesting patterns can be appreciated in these plots. First, it can be seen
how for the features gpu_matrixmul (Fig. 7(b)) and storage_read_1 (Fig. 7(c)) the distributions are quite stable between the devices and
all of them show similar shapes. However, cpu_sleep_120s (Fig. 7(a)) exhibits how each device has a Gaussian distribution centered
in a different value, demonstrating that some performance variations are present within the device model. A similar situation is
found with storage_write_1 (Fig. 7(d)) feature, but in this case, the distribution plots tend to have two distinctive center values, and
each device sticks to one of them (except for the dark green one with MAC dc:a6:32:14:a8:d8 that has a higher value, although the
distribution shape is similar to the rest).

From this use case, it can be concluded that performance variations are present within each device model depending on the
exact device. So, it has been shown that although hardware specifications may be identical, chips contain variations that can be
leveraged to perform fingerprinting or identification tasks.

6. Real-world deployment in an agriculture scenario

This section shows the benchmark adaptation and deployment into a real-world IoT environment based on SBC devices. Here,
the aim is to show the use case applicability of the proposed solution as well as its adaptability process to other SBC models.

In this sense, an IoT sensor network for agriculture has been considered, being the sensors controlled by three PINE64 RockPro64
devices. As these devices have relatively powerful processing power, they perform the critical task of collecting the sensor data and
processing it to infer information about the environment status. Then, they can activate different controllers in order to perform
certain tasks, such as watering the plants or rise humidity/temperature, among others.

As the RockPro64 devices maintain control of the farming environment, they are a clear target for a potential attacker looking
to extract critical process information or interfere with industrial production. One possible attack could be to replace one of the
legitimate devices with an identical one but with modified software to interfere with the normal activity of the environment,
for example by rising the temperature and killing the production plants. Therefore, the administrator wants to keep control of
the environment, monitoring the performance of the devices during the run time while keeping them identified based on their
manufacturing variations. In this sense, this approach can be seen as a real-world application of the individual device identification
use case described in Section 5.1.

Each RockPro64 device includes a 6-core CPU: 4 × ARM Cortex A53 cores @ 1.4 GHz + 2 × ARM Cortex A72 cores @ 1.8 GHz;
as GPU it features ARM Mali T860; and 2 GB LPDDR4 RAM. As operating system, they use 64 bit armbian (Debian-based Linux for
ARM). As the GPU is different from the ones included in RPi devices, the code needed to be adapted to gather the counters from the
ARM Mali T860 GPU. Concretely, the GPU_ACTIVE counter was selected from the ones available [45]. For cycle counter collection,
ARM HWCPipe library [46] has been employed. For the CPU-based time gathering, perf time is gathered in the same way that for
RPi devices, using the perf_counter_ns() function. The functions executed are the same as the ones depicted in Table 3, adapted in
the case of the GPU to the new hardware using the ARM Compute Library [47]. The code is also available in [11].

For experimentation purposes, the code was deployed on the three identical devices for one week. ≈35.9 MB of data were
collected, with a total of ≈12800 vector samples (around 4000 per device). After the data were gathered, the approaches shown in
Section 5.1 were implemented to monitor the performance differences between devices and perform individual identification. Fig. 8
shows the distribution plot for the CPU_sleep_120s feature. As it can be seen, the three device distributions are clearly differentiated
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Fig. 7. Raspberry Pi 4 feature density plots.

Fig. 8. RockPro64 SBC CPU_sleep_120s density plot.

between each other. This performance variation allows the individual recognition of the devices, as their performance distribution

does not overlap. Therefore, the classification results, using the same ML classification algorithms as the ones depicted in Table 4,

are perfect, giving 100% F1-Score and accuracy.

With this configuration, the benchmarking application is capable of verifying that the devices deployed in the environment are

the legitimate ones. This real-world deployment demonstrates how the benchmarking application can be adapted and deployed in

new SBC models with a relatively low effort, enabling the performance analysis of the devices where the application is deployed.

This performance analysis enables different use cases, such as individual identification, to be applied in the scenario. However, some

challenges were noticed during this real-world deployment. One of the main ones is the necessity of drivers to be able to interact

with the CPU/GPU components in order to extract the cycle counters. This is a drawback due to the large amount of hardware
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component versions available and the lack of proper documentation in some cases. The positive and negative outcomes of the
complete benchmark implementation and data collection are described in the following section, Section 7.

7. Discussion

This section seeks to analyze the main advantages and weaknesses of the proposed benchmarking application and the associated
dataset, highlighting the main lessons learned during the work development. From the advantages point of view, it is worth noting
the next aspects:

• An important literature gap has been covered. As Section 2 shows, there is no low-level benchmarking application for
SBC devices, enabling precise hardware analysis, nor any dataset regarding low-level SBC performance. The present work has
partially covered these issues with the implementation of the benchmarking application and the release of a large dataset
collected for 100 days.
• Demonstrated utility for ML/DL-based use cases. The collected dataset has been validated in a set of realistic use cases
related to AI-based service management, mainly regarding device identification. Thus, it has been shown the utility of the
benchmark when it comes to maintain under control an IoT environment where device fingerprinting is critical.
• The benchmark is easy to deploy and extend in other RPi-based environments. The LwHBench benchmark code is
completely open-source [11], so other researchers and system administrators can execute it in their own scenarios just by
installing the required dependencies. This fact also allows for the extension of the benchmark with new metrics according to
the requirements of other scenarios or the available hardware.

Besides, from the drawback perspective, the next points have importance, mainly in future related research:

• Hardware-based implementation. LwHBench leverages CPU and GPU cycle counters, which accessed to monitor the
performance of other components. Therefore, the implementation for new SBC models may require deep hardware study
and understanding. For example, to access to the GPU cycle counter in a new GPU model, it would be needed to read the
documentation and try the specific hardware drivers. Besides, due to the large variety in the hardware component versions,
some specific components might not have open source drivers or libraries to interact with the performance counters.
• The collected metrics are not directly applicable for traditional benchmarking. CPU performance is measured in terms of
GPU cycles, an unusual metric that is not very representative of the actual hardware performance when executing high-level
tasks. Moreover, the differences between devices from the same model can come both from the measured or the measuring
device, so it is difficult to measure where the chip imperfections are actually located.
• Component isolation might reduce device performance. The dataset has been collected while executing LwHBench in an
isolated core, when possible (RPi3 and RPi4), and reducing the kernel interruptions from other processes to the maximum.
Although the other cores can be used without performance limitations, isolating one core can downgrade the performance of
critical tasks running in the SBC at the same time. Therefore, further experimentation with weaker isolation measurements
can be interesting to know the impact of other processes on the collected values.

This work proposes the only low-level benchmark available in recent literature, and its usefulness has been validated through
a series of ML/DL-enabled use cases, which are exciting topics for future IoT-based network and service management solutions.
However, as this section details, the proposed solution has room for improvement regarding adaptation to other SBC models.

8. Conclusions and future work

This work has presented a low-level hardware component benchmarking application for SBC, namely LwHBench. It measures the
performance of the CPU, GPU, Memory and Storage of the devices using other self-contained components. This approach ensures that
the metrics collected are reliable and non-dependent on the imperfections of the component being measured. The benchmark has
been implemented for Raspberry Pi devices, for all the models currently available in the market, from RPiZero to RPi4. In order to
ensure optimal measurement stability, every possible action that can help to reduce the noise introduced by other programs running
on the device has also been considered, such as isolating the core where the benchmark is running or blocking kernel interrupts.

In addition to the application implementation, an exhaustive dataset has been collected from running LwHBench benchmark
on a set of 45 devices over 100 days, which contains more than 2 million vectors and 4 GB of data. Subsequently, to explore the
available data and show possible areas of use, a series of use cases have been described and partially solved, reflecting the real needs
of an environment whose management integrates modern AI-based solutions. These use cases have been divided into two groups:
one on device identification, where it has been shown that using LwHBench it is possible to identify both the model and each device
individually; and another on performance analysis, where the possible impact of temperature on hardware performance as well as
the variations between devices of the same model have been studied.

As conclusions wrap up, the previous contributions intend to advance state of the art regarding system and device management,
as it enables new solutions that, based on low-level hardware benchmarking and ML/DL techniques, improve the control over the
devices deployed in modern networking environments, such as 5G-based industries.

As future work, it is planned to adapt the benchmarking application to other SBC models in order to collect data from them
and perform more in-depth experiments regarding single-device identification and performance impact of temperature and device
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aging. Moreover, the benchmarking application will continue being executed in the current devices, generating more data in order
to analyze new use cases such as device and component aging. Finally, as further research line, it is planned to integrate the
benchmarking application with federated learning techniques, so the data is processed directly in the device according to the use
case, without requiring to take the data outside the SBC device.
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