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A B S T R A C T

The connectivity and resource-constrained nature of single-board devices open the door to cybersecurity
concerns affecting Internet of Things (IoT) scenarios. One of the most important issues is the presence of
unauthorized IoT devices that want to impersonate legitimate ones by using identical hardware and software
specifications. This situation can provoke sensitive information leakages, data poisoning, or privilege escalation
in IoT scenarios. Combining behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques is a
promising approach to identify these malicious spoofing devices by detecting minor performance differences
generated by imperfections in manufacturing. However, existing solutions are not suitable for single-board
devices since they do not consider their hardware and software limitations, underestimate critical aspects such
as fingerprint stability or context changes, and do not explore the potential of ML/DL techniques. To improve
it, this work first identifies the essential properties for single-board device identification: uniqueness, stability,
diversity, scalability, efficiency, robustness, and security. Then, a novel methodology relies on behavioral
fingerprinting to identify identical single-board devices and meet the previous properties. The methodology
leverages the different built-in components of the system and ML/DL techniques, comparing the device internal
behavior with each other to detect variations that occurred in manufacturing processes. The methodology
validation has been performed in a real environment composed of 15 identical Raspberry Pi 4 Model B and
10 Raspberry Pi 3 Model B+ devices, obtaining a 91.9% average TPR with an XGBoost model and achieving
the identification for all devices by setting a 50% threshold in the evaluation process. Finally, a discussion
compares the proposed solution with related work, highlighting the fingerprint properties not met, and provides
important lessons learned and limitations.

1. Introduction

The diversity of IoT devices in modern scenarios is huge, but single-
board devices, such as Raspberry Pi, have gained enormous prominence
due to their flexibility, reduced price, broad support, and peripherals
availability (Fayos-Jordan et al., 2020). Unfortunately, the connectivity
and resource-constrained nature of single-board devices, and IoT in
general, open the door to numerous cybersecurity concerns affecting
heterogeneous platforms (Perales Gómez et al., 2019). One of the most
important cybersecurity concerns affecting IoT is the presence of unau-
thorized devices with the same hardware and software configuration
as authorized nodes. Some real attacks based on unauthorized devices
have caused big impacts in areas such as Industry 4.0 (Jagdale, 2022)
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or mobile phones (Montalbano, 2020). These malicious devices can
be articulated by several well-known cybersecurity threats (Liu et al.,
2020), such as device spoofing (Nosouhi et al., 2022), occurring when
an attacker replaces a legitimate sensor or actuator with a malicious
device using the same identity; unauthorized device deployment, related
to the installation of a new device in the platform which is using an
unregistered identity; and Sybil attack, referring to a malicious device
(or many) using numerous identities to simulate being several devices.
After that, other cybersecurity threats, such as sensitive information leak-
age, data poisoning, or privilege escalation and lateral movements, might
arise as a consequence of spoofed devices. Besides, modern attacks
exploit evasion techniques in order to be undetected by software-based
security methods.
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Traditional identification solutions rely on names, identifiers, cer-
tificates, or tags in order to perform the identification tasks. However,
these solutions can be cloned or modified if the software of the de-
vice is completely replicated (Yousefnezhad et al., 2020). Hardware
behavior fingerprinting is a potential solution for the identification of
single-board devices with identical hardware and software, but still
an emergent and open challenge. In such a context, there is no work
focused on identical single-board device identification (Sabhanayagam,
2022). However, for other devices without component and resource
limitations, the literature has proposed the usage of hardware behav-
ioral fingerprinting as a promising solution to detect minor performance
differences generated by imperfections occurred during the devices
manufacturing process (Al-Omary et al., 2018).

In particular, existing work focuses on crystal oscillator impuri-
ties and cut variations that generate imperfect frequency outputs in
components such as CPU or GPU to detect performance differences
in identical devices (Polcák and Franková, 2015). Current solutions
consider dimensions such as clock-skew analysis, intrinsic Physical
Unclonable Functions (PUFs), or execution time and performance anal-
ysis (Sanchez-Rola et al., 2018). However, despite their benefits, the
following challenges are still open: (i) many solutions require addi-
tional components or modifications in the devices, which is not possible
in some IoT scenarios (Babaei and Schiele, 2019); (ii) there is no
solution for identifying identical single-board devices based on their
hardware (Babun et al., 2021); (iii) existing solutions are designed
for traditional computers, being not suitable for IoT environments with
single-board devices with software and hardware restrictions (Sanchez-
Rola et al., 2018); (iv) most of the existing identification solutions have
been tested missing essential properties and requirements affecting the
identification performance (Rührmair et al., 2012); and (v) despite
Machine and Deep Learning (ML/DL) techniques have gained enormous
importance for the last years, they have not yet been widely applied in
the individual device identification field (Sánchez Sánchez et al., 2021).

In order to improve the previous challenges, the main contributions
of the present work are:

• The definition of a set of properties that should be fulfilled
by any fingerprinting solution in charge of identifying identical
single-board devices. These properties are uniqueness, stability,
diversity, scalability, efficiency, robustness, and security.
• A novel methodology that leverages hardware behavioral finger-
printing to identify identical single-board devices, solving the
problems and drawbacks of previous solutions. Some of these
problems are the need for additional hardware, chip modifica-
tions, or physical access to the device to perform the identifica-
tion. The proposed methodology creates unique device behavioral
fingerprints measuring the impact that insignificant hardware dif-
ferences, happened during the manufacturing process of identical
devices, have on the device performance when a given task is
executed.
• The validation of the proposed methodology, as a Proof-of-Concept
(PoC) available on Sánchez Sánchez (2021), in a scenario com-
posed of 25 identical Raspberry Pi 3 and 4 devices used in IoT
scenarios. After testing different ML/DL algorithms, 91.9% aver-
age TPR was achieved by XGBoost, and a perfect identification
was carried out by setting a 50% threshold in the assigned classes.
• A detailed analysis and comparative of existing device finger-
printing solutions for individual device identification, focusing
on their suitability for IoT environments with single-board de-
vices. It highlights which fingerprint properties are not met in
each solution, rising issues such as reproducibility and solution
stability.

The remainder of this paper is organized as follows. Section 2
reviews the main solutions for identical device identification and dis-
cusses why these approaches are not appropriate for IoT environments
based on single-board devices. Section 3 describes the problem to be

solved by the present methodology. It details a short threat model for
the single-board device identification scenario. Then, it details the set of
properties required in a fingerprinting solution to make it appropriate
for individual device identification, together with the limitations found
in the literature works. The design of the proposed device identification
methodology is explained in Section 4, verifying how each fingerprint
property is accomplished. Section 5 acts as validation of the present
methodology, implementing it as a PoC that verifies its applicability
in a realistic use case. Section 6 compares the literature works with
the proposed methodology and depicts several lessons learned and
limitations. Finally, Section 7 shows the conclusions extracted from the
present work and future steps in the research.

2. Related work

This section gives the main insights of the related work dealing
with unique device identification, paying special attention to device
identification without additional external hardware requirements.

As a main remark, it is worth mentioning that, to the best of our
knowledge, there is no methodology for individual fingerprinting of
IoT devices based on hardware performance behavior. In fact, the same
happens in the field of traditional devices such as personal computers.
In this regard, the closest work is the one proposed by Babun et al.
(2021), in which a fingerprinting framework for identifying classes of
Cyber-Physical Systems (CPSs) was presented. This solution employed
hardware and OS/kernel characteristics following a challenge/response
mechanism for performance and system calls fingerprinting. During
the validation, a set of single-board computers were employed. Nev-
ertheless, the objective of Babun et al. (2021) is device type (class)
fingerprinting and identification, not individual device fingerprinting
when hardware and software are identical. Therefore, following this ap-
proach, identical devices would generate the same fingerprints, as the
data sources leveraged are based on OS/kernel or component-related
data and do not seek to identify fabrication variations or imperfections.

Although not defined in the form of a methodology, it is essential
to analyze existing work focused on hardware-based individual device
fingerprinting and device type identification, discussing the limitations
of each work when applied to single-board devices. In this context,
traditionally, Physical Unclonable Functions (PUFs) have been one of
the main methods for unique device identification. PUFs are hard-
ware elements that generate a unique physically-defined fingerprint
for a given output based on the manufacturing characteristics of the
physical chips. PUFs have been employed in IoT from several per-
spectives (Babaei and Schiele, 2019), differentiating between strong
and weak PUFs depending on the number of Challenge-Response Pairs
(CRPs). Strong PUFs are the ones most used for authentication protocols
in IoT (Babaei and Schiele, 2019). However, the majority of strong
PUFs require additional dedicated hardware elements that have to be
attached to the device. This fact makes this solution not scalable in
large environments, as costs per device are increased and commercial-
off-the-shelf (COTS) devices have to be modified, or where direct access
to the device is not possible. In contrast, most intrinsic PUFs in the
literature require hardware modifications (Kong and Koushanfar, 2013)
or components such as SRAM not present in IoT devices due to cost
restrictions (Gao et al., 2019). Besides, some works using DRAM chips,
present in IoT devices, require power-up chip status analysis (Yue et al.,
2020; Tehranipoor et al., 2016), which is not straightforward to be
done from the device itself.

From crystal oscillator analysis, Salo (2007) exploited differences
in Real-Time Clocks (RTCs) and sound card Digital Signal Processors
(DSPs) based on the drift between these chips and the CPU cycle
counter (TSC in Intel processors). RTC-based and DSP-based differen-
tiation achieved 98.7% and 93.3% of uniqueness when 703 computer
pairs were evaluated. However, this method involves the use of com-
ponents that, although common in computers, are not often available
in single-board devices. Also leveraging oscillators, Sanchez-Rola et al.
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Table 1
Individual device identification solutions based on device behavior fingerprinting.

Work Year Device type Algorithms Behavior source Features Results

Salo (2007) 2007 General
computers

Statistical Processors and
oscillators

RTC and DSP drift
compared to the TSC

98.5% and 93.3% of
differentiation by RTC and DSP in
38 PCs, respectively.

Jana and
Kasera
(2009)

2009 Wireless access
points

Expectation
Maximization

Clock skew
Wi-Fi
beacons
timestamps

Clock skew is a robust method
and can detect different WLAN
APs.

Sharma et al.
(2012)

2012 General
computers

Statistical Clock skew
TCP and
ICMP
timestamp

Both identical and different
devices correctly identified.

Wang et al.
(2012)

2012 General
computers

Correlation
coefficient

Flash
memory

Bit partial
programming

Estimated false positive chance of
4.52 × 10−815, and a false negative
chance of 2.65 × 10−539.

Radhakrishnan
et al. (2014)

2014
Wireless
devices

ANN Clock skew +
Network

Communication skew and
patterns

From 99 to 95% accuracy and
74% recall on individual
classification.

Nakibly et al.
(2015)

2015 General
computers

Entropy GPU
Frames per
second

Graphic rendering show
differentiation capabilities on 9
identical PCs, but no advanced
tests were performed.

Sanchez-Rola
et al. (2018)

2018 General
computers

Statistical
(Mode)

System
processors

Matrix of code execution
times

100% host-based and +80%
web-based device identification in
two sets of 89 and 176 PCs.

Jafari et al.
(2018)

2018
Wireless
devices

MLP, CNN,
LSTM

Electromagnetic
signals

Radio frequency IQ
samples

96.3% accuracy for MLP, 94.7%
for CNN and 75% for LSTM when
identifying 6 identical ZigBee
devices.

Riyaz et al.
(2018)

2018
Wireless
devices

CNN Electromagnetic
signals

Raw
frequency IQ
samples

98% accuracy is achieved when
identifying 5 identical devices.

Dong et al.
(2019)

2019 General
computers

Dynamic Time
Warping

Resource
usage

CPU
usage-based
graph

93.43% of uniqueness in the
generated fingerprints of 10
identical devices.

Babun et al.
(2021)

2021 CPSs Correlation-based
(Own)

Hardware and
OS/kernel

Syscalls, Memory, CPU,
Time

Device type (model/OS version)
identification, not individual
identification.

This Work 2022 Single-board
devices

XGBoost Hardware cycle
counter skew

Window-based GPU/CPU
features

91.9% average TPR when
identifying 15 RPi4 and 10 RPi3
devices.

(2018) proposed a fingerprinting method based on execution time. The
authors cyclically executed a simple function to generate a time matrix,
and then they calculated the statistical mode of each matrix row to
generate the fingerprint. Then, matching values in the fingerprints were
compared according to a similarity threshold. The authors were able
to identify two computer sets of 176 and 89 devices, and achieved
85% on a web-based implementation. Compared to the work at hand,
single-board devices do not include an RTC with which to compare
CPU time (two different clocks are required to analyze their deviation)
and usually only contain one physical oscillator. Furthermore, after
practically experimenting with this approach on single-board devices
(see Section 6), it has been found that the resolution when measuring
time on single-board devices does not allow this solution to be applied.

Additionally, some works have addressed identical device identifi-
cation based on clock-skew calculated from network packets (Kohno
et al., 2005; Sharma et al., 2012; Radhakrishnan et al., 2014) or
wireless beacons (Jana and Kasera, 2009). However, they have shown
scalability issues when the number of devices increases and require a
common observer in the fingerprint and identification process; if the
observer changes, the identification is no longer possible (Radhakr-
ishnan et al., 2014; Lanze et al., 2012; Polcák and Franková, 2015).
Besides, raw radio frequency measurements (Jafari et al., 2018; Riyaz
et al., 2018) and Bluetooth transmissions (Huang et al., 2014) have
also been used to identify devices uniquely, but these methods, as
other wireless-based methods, require a near physical location to the
fingerprinted device.

Based on hardware performance behavior, Wang et al. (2012) an-
alyzed the differences that occur when writing a page in a Flash chip
based on manufacturing variations. To evaluate different fingerprints of
the same page, the authors used Pearson correlation coefficient. Based
on their experiments on 24 chips, the authors showed an estimated
false positive chance of 4.52 × 10−815, and a false negative chance
of 2.65 × 10−539. However, not every device includes a Flash chip to
apply the technique and its usage requires knowledge of low-level
hardware. Recently, Dong et al. (2019) developed a fingerprinting
method based on the CPU usage graph generated while the device
executes a cyclical task. The authors achieved a 93.43% uniqueness in
generated fingerprints when comparing them using the Dynamic Time
Warping algorithm. However, the authors did not take into consider-
ation critical aspects such as variable frequency or process scheduling
between device cores affecting the identification stability. Regarding
GPU, Nakibly et al. (2015) exploited GPU frequency and skew by using
CPU clock as reference. Statistical fingerprints generated while render-
ing complex graphics show differentiation capabilities on 9 identical
desktop computers, but no advanced tests were performed regarding
fingerprint reliability and stability. In fact, the authors conclude that
other factors to the GPU clock skew should be considered in a successful
fingerprinting method.

Table 1 compares the main characteristics of the previous works.
After reviewing these related works, the following points are extracted
as conclusions. It is critical to develop modern fingerprinting mecha-
nisms taking into account IoT device capabilities and constraints, as no
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previous work considered this application scenario. Besides, to ensure
that the fingerprinting mechanisms are fully operative, they should
be defined through a methodology able to verify that the solution is
reliable and applicable in real word scenarios.

3. Problem statement

This section presents the particularities of single-board devices to
later illustrate the threat model of single-board device identification.
After that, it describes the properties that identification solutions based
on behavioral fingerprinting should meet in the presented scenario.
Finally, it highlights the limitations of existing work and motivates the
necessity of novel solutions.

3.1. Single-board device description

Although single-board devices offer great flexibility in terms of
applications and operating systems, there are essential characteristics
to consider before dealing with their identification. The main one is
that all processing, memory, input/output, and other components are
integrated into a single circuit board. In contrast, standard computers
have several circuit boards for different components. This fact brings
the following special aspects to consider:

• Reduced number of crystal oscillators. Due to the objective
of reducing costs, single-board computers usually dispense with
components that are not critical. Thus, most devices eliminate
the RTC and other physical oscillators, simulating their presence
through software or using another oscillator as source frequency.
The most common is to have only one or two oscillators, one for
the base frequency of the processing components and another for
USB and network interfaces.
• Many processing components integrated into a System on a
Chip (SoC). SoCs integrate microcontrollers with more advanced
processing units such as CPUs, GPUs, or memory circuits in a sin-
gle chip. As each of these components uses a different frequency
to operate, it is common to use Phase-Locked Loops (PLLs) in
the SoC (Pawar and Mane, 2017), circuits that multiply a base
frequency depending on the voltage they receive as input.
• Constrained processing power. Although single-board comput-
ers offer increasingly higher computing capabilities, they also aim
to maintain low resource consumption and low price. For these
reasons, the performance of single-board computers is not com-
parable to that of today’s computers or servers. This is important
and should be taken into account when generating the fingerprint.

3.2. Threat model

The main threat against the single-board device identification sce-
nario is an adversarial actor trying to introduce a illegitimate device
in a critical environment, such as an industry, by impersonating or
spoofing a legitimate one. This attack could be tackled from several
perspectives:

• TH1. Device spoofing (Marabissi et al., 2022). The main security
threat to solve is an adversarial entity replacing a legitimate de-
vice with a software identical malicious device. Here, the adver-
sary uses the same legitimate software identifiers, but including
malicious processes and functionality.
• TH2. Sybil (Rajan et al., 2017). A single device (or many) may
try to generate multiple identities to send fake data from many
simulated devices. The threat of a system to Sybil attacks depends
on (i) how easy the generation of identities is; (ii) whether the
system treats all entities identically, and (iii) the degree to which
the system accepts entries from entities that do not have a trust
chain that links them to a trusted entity.

• TH3. Advanced persistent threat (Chen et al., 2022). This threat

arises as a consequence of the previous one. A malicious de-

vice deployed in the environment might be able to collect data

from the scenario itself and from other devices, or perform fur-

ther attacks such as vulnerability scan and or Denial of Service

(DoS) attacks. Besides, modern attacks usually include evasion

techniques that hide their activities to software-based behavior

monitoring security solutions (Li and Li, 2020).

In order to solve the threats identified in this work, it is assumed

that even if the device is malicious, the control over it is maintained

by its legitimate administrator and the identification tasks can be exe-

cuted. This condition guarantees that device management is maintained

during a possible attack. Therefore, if this control is lost, it would be

directly assumed that the device is infected or there is some error.

3.3. Device identification properties

In order to solve the previous threats, it is needed a proper iden-

tification mechanism able to meet properties that guarantee a con-

sistent and reliable verification process, without forgetting the threat

model depicted in Section 3.2. Similar properties have been defined

before (Rührmair et al., 2012), but some of them are not suitable for

IoT and single-board devices. These characteristics encompass from the

fingerprint generation method to the morphology of the data generated

and its manipulation. Thus, they are essential metrics to evaluate the

performance of a device fingerprinting solution. In case one of them

is no longer met, the solution will be severely affected in real-world

deployments, limiting its usability when it comes to uniquely identify

each device in the scenario.

Uniqueness (Sembiring et al., 2021). An efficient fingerprinting

method should be able to uniquely identify its associated device. In

other words, a fingerprint should not be generated by two different

devices.

Stability (Hamza et al., 2018). The fingerprint generated by a

device should be consistent in time. It means that a new fingerprint

of a given device should be similar enough to the previous ones of the

same device.

Diversity (Ahmed et al., 2022). The data sources and data format

used to generate the fingerprint should be varied enough, so different

devices generate different fingerprints. This characteristic is intrinsi-

cally related to stability, as increasing too much fingerprint diversity

can affect its stability, and vice versa.

Scalability (Arellanes and Lau, 2020). The fingerprint should con-

tinue being unique as the number of devices to be identified increases.

This can be achieved by adding additional features to the fingerprint or

by looking for features that ensure uniqueness. Thus, this characteristic

is very closely related to the uniqueness property discussed before.

Efficiency (Peng et al., 2018). To have a fingerprint useful for a

live identification process, the generation and evaluation should not

consume excessive resources, either in processing power or time.

Robustness (Zhou et al., 2019). The generation of the fingerprint

must be immune to changes in the context that may affect the data

used in the fingerprinting process. These changes in the context may in-

clude elements such as temperature, time synchronization, or resource

exhaustion, among others.

Security (Lu and Da Xu, 2018). The fingerprint should be secure to

tackle device unauthorized access or adversarial attacks. This property

implies a complete fingerprint life cycle, from its generation to storage

and comparison in future identification processes.
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Table 2
Limitations found in each literature work.

Work Type No hardware modification IoT suitable Tested stability Remote/ Self-contained

Salo (2007) Oscillator-based ✓ ✗ ✓ ✓

Jana and Kasera (2009) Clock skew ✓ ✓ ✗ ✗

Sharma et al. (2012) Clock skew ✓ ✓ ✗ ✗

Wang et al. (2012) Flash chip-based ✓ ✗ ✗ ✓

Radhakrishnan et al. (2014) Clock skew ✓ ✓ ✗ ✗

Nakibly et al. (2015) Oscillator-based ✓ ✓ ✗ ✓

Sanchez-Rola et al. (2018) Oscillator-based ✓ ✗ ✓ ✓

Jafari et al. (2018) Radio-based ✓ ✓ ✗ ✗

Riyaz et al. (2018) Radio-based ✓ ✓ ✗ ✗

Dong et al. (2019) CPU usage-based ✓ ✓ ✗ ✓

Babaei and Schiele (2019) PUF ✗ ✓ ✓ ✓

Kong and Koushanfar (2013) CPU PUF ✗ ✓ ✓ ✓

Gao et al. (2019) SRAM Intrinsic PUF ✓ ✗ ✓ ✓

Tehranipoor et al. (2016) DRAM Intrinsic PUF ✓ ✓ ✓ ✗

Yue et al. (2020) DRAM Intrinsic PUF ✓ ✓ ✓ ✗

This work Oscillator-based ✓ ✓ ✓ ✓

3.4. Limitations of existing work

Although a good number of solutions are present in the literature,
as reviewed in Section 2, they are not suitable for single-board devices
and the device identification task that this work pretends to fulfill.
The conditions identified, which have not been covered altogether in a
single work, can be summarized as:

• No additional hardware or device component modification is
required. In this sense, no previous solution intends to design a
solution for COTS IoT devices, where devices already available
in the market do not need any modification to be physically
fingerprinted.
• Suitable for IoT devices, specially single-board devices. Many so-
lutions for performance-based identification leverage components
such as RTCs, which are not usual in IoT devices due to their
reduced price. Besides, some authors proposed intrinsic PUFs that
do not require additional hardware components. However, most
IoT devices include DRAM chips due to their cheaper cost. There
is a reduced number of works dealing with these components,
and they require power-up chip analysis (Yue et al., 2020; Tehra-
nipoor et al., 2016) which is complicated to be done from the
device itself where the DRAM is deployed without affecting the
PUF results.
• Tested stability and robustness. Some solutions in the literature
show favorable identification results. However, they do not an-
alyze critical factors affecting performance-based identification,
such as the impact of device rebooting, temperature, etc.
• Remote and self-contained identification. The identifying entity
does not need to be physically close to the identified device or
in the same local network, as in the case of clock skew-based
identification. Besides, no external component analysis is needed,
so the device itself can execute the identification process.

Table 2 evaluates the conditions correctly accomplished in each one
of the works reviewed in the literature regarding individual device
identification (Section 2. As it can be seen, no work meets the three
characteristics wanted in the present work.

4. Methodology definition

This section presents a novel methodology to identify identical
single-board devices using behavioral fingerprints. It focuses on mea-
suring the impact that insignificant hardware differences, which hap-
pened during the device manufacturing process, have on the device
performance to create unique and stable behavior fingerprints. These
differences are recognized by analyzing the performance of several
heterogeneous components, according to parameters such as execution
time or number of cycles. Thus, it is worth noting that this methodology

could be applied to other types of devices containing at least two
components to compare their behavior. Besides, ML/DL techniques are
applied as processing tool following the best practices in the area of
ML application for cybersecurity (Arp et al., 2022), but other statistical
methods could also be suitable.

As shown in Fig. 1, the proposed methodology follows a client/server
model and is composed of two fundamental phases: a first one of
generation and a second of evaluation. During the fingerprint gener-
ation phase, the objective is the creation of a fingerprint per device
by training ML/DL models for later device identification. During the
fingerprint evaluation phase, new fingerprints per device are generated
to be evaluated with the ML/DL models trained in the previous phase,
giving a final identification output for the device. The methodology
consists of the next seven fundamental steps, which can be repeated in
both phases depending on the tasks to be carried out:

• (A) Hardware Component Selection. Select the device components
whose behavior is going to be analyzed.
• (B) Component Isolation and Stability Assurance. Establish stable
conditions for the components, reducing external inferences to a
minimum.
• (C) Data Gathering. Measure the behavior of device hardware
components.
• (D) Data Preprocessing and Feature Extraction. Remove erroneous
measurements, normalizes them, and extracts new significant
values.
• (E) Evaluation Approach Selection. Decide between classification or
anomaly detection depending on the environment properties.
• (F) Model Generation and Evaluation Design. Train ML/DL algo-
rithms, select performance metrics, and establish model thresh-
olds.
• (G) Device Evaluation and Identification Decision. Repeat steps B, C,
and D to perform device identification.

Fig. 2 shows the relationship between the different steps detailed
above and the properties desired in an individual device identification
solution, as introduced in Section 3.3.

4.1. Hardware component selection

The first step is to analyze the hardware of the device where the
fingerprint needs to be generated. The goal is to identify components
with potential manufacturing variations whose performance can be
accurately measured and compared.

In this sense, since the fingerprint will be based on device self-
contained hardware, it is necessary to identify at least two components
to be used, as their behavioral performance will be compared to each
other since one component cannot notice its own performance imper-
fections without a reference point, although to improve the scalability
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Fig. 1. Graphical representation of the proposed methodology for device fingerprinting and identification.

Fig. 2. Association between methodology steps and fingerprint properties.

and diversity of the fingerprint more could be added if available. The
preference here is to select components whose frequency is based
on different physical oscillators, as their differences will be larger,
although components with different frequencies sharing one oscillator
as the base frequency can also be compared. Examples of compo-
nents to consider in single-board devices: CPU, GPU, memory, network
controllers, USB controllers, or time control oscillators.

4.2. Component isolation and stability assurance

Once the hardware components to be monitored are chosen, the
next step is to establish a configuration that ensures the stability of
the behavioral measurements. This step seeks to ensure a stable and
identical condition in the device configuration during the generation
of the fingerprint, both for training and testing phases. At this point,
it is critical to guarantee that there are no external elements, such as
other processes, introducing noise or variability.

With that goal in mind, one of the key factors to take into account
is the frequency at which the component is operating, since in single-
board computers it is common for the operating system to establish
some adaptability according to the load on the system or the need to
save energy. Thus, it is necessary to ensure that the fingerprint will be
generated under identical frequency conditions. Otherwise, it would be
impossible to compare the variation in performance between various
components. In this sense, components such as the CPU or GPU are
the ones that can have more variability in their operating frequency,
ranging from some MHz when are in power-save mode to several GHz
when they are under high-performance requirements. Another aspect
to take into account is the isolation of the software that performs the
measurements with respect to other programs running on the system.
The measures to guarantee this isolation include the separation of
some of the CPU cores from the general process scheduler, the use of
transactional memory (Harris et al., 2010), the disabling of interrupts
by the kernel or isolating the GPU. Note that the exact actions may vary
according to the components chosen. Moreover, it is also important to
control external conditions such as temperature to the extent possible,
since it can influence the performance variation of some components.
In the case of using CPU timers, time synchronization made by services
such as NTP should be also considered. These considerations seek to
improve the robustness of the fingerprinting solution.

4.3. Data gathering

When the desired stability conditions have been achieved, it is
necessary to define the functions to be performed on the components
(selected in phase A) to measure their behavior in parallel and deter-
mine the possible skew between them. In this sense, the measurements
must allow the comparison of the performance of two different com-
ponents from the same device, avoiding executing the operations and
measuring the deviation using a unique component.

Choosing the functions to run on each component to compare their
behavior is a critical task during the fingerprinting solution design and
must be carefully studied to ensure the efficiency, diversity, and unique-
ness of the fingerprint. Due to the fact that functions taking longer
times to execute may better show the variance between components,
but may make the fingerprint generation process take too long. In
addition, the created approach should not consume too many resources
as it could slow down the normal operation of the system and affect
other tasks. For example, the authors of Sanchez-Rola et al. (2018)
decided to measure functions that take a short time to execute using the
RTC, comparing CPU, and RTC oscillators. Besides, the authors of Salo
(2007) measured the clock cycles in one second compared with the RTC
and when processing one second of audio using the DSP. Moreover,
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to fulfill the security property, the data collection process should be
executed using Trusted Execution Environments (TEEs) (Lee and Park,
2020), if available, to isolate the fingerprint generation task from the
rest of the device processes. This avoids possible data leaks caused by
attacks based on memory vulnerabilities. Finally, the generated behav-
ioral data is sent to a server, where it will be processed to generate the
fingerprint. This sending should be done over a secure communications
channel, such as SSH or TLS, avoiding possible interceptions of data
transmissions.

4.4. Data preprocessing and feature extraction

Once the server receives the behavioral data, the next step is to
preprocess the data to eliminate possible erroneous measurements and
extract new information. Here, note that the data gathering step could
be done several times before going to data preprocessing and feature
extraction. The final objective is the generation of a set of feature
vectors that will act as the generated fingerprint data, guaranteeing the
diversity in the values. These vectors are the ones that will later be used
to feed the ML/DL algorithms and generate the models.

To start the preprocessing part, it is necessary to remove outliers,
constant, corrupted, or missing values that may be in the dataset by
scanning over the dataset. For that, it is useful to plot each set of values
collected and remove values that are more than 3 standard deviations
away from the average. Afterwards, it is highly recommended to scale
the data and have it in the same data range. In this sense, the most
common scaling algorithms are min–max and standard normalization.

Once errors have been removed and the values scaled, the next step
is feature extraction. It is possible to extract different features from the
series of values by grouping them together and calculating different
characteristics of the resultant series. One of the most typical values
is the extraction of statistical values such as mean, median, deviation,
max, min, or mode. However, applying more advanced calculations
can provide even more relevant information about possible latent fea-
tures in the values. In this sense, Discrete Fourier Transform (DFT) or
Discrete Wavelet Transform (DWT) can be applied to extract features
related to the time and order of the values. In addition, it is also possible
to calculate features based on the correlation between the available
values using algorithms like the Pearson correlation. Associating this
step with works in the literature, the authors of Sanchez-Rola et al.
(2018) used the mode of a series of 1000 values, and the authors
of Babun et al. (2021) and Wang et al. (2012) employed the average of
the measurements taken and the correlation in the generated values.

4.5. Evaluation approach selection

Once the features that will generate the fingerprint have been
obtained, it is necessary to define the ML/DL approach to be fol-
lowed (Usuga Cadavid et al., 2020). There are two possibilities here: a
classification-based approach, in which each device in the environment
will be associated with a label and one classifier is trained to recognize
these labels; and an anomaly detection-based approach, where the
data from each device is labeled as ‘‘normal’’ and a separate model is
generated for each of them.

This decision must be made taking into account both the scenario
(number of devices, variety of devices, possibility of adding or re-
moving devices) and the features that have been collected (similarity
of values between devices, number of features, etc.). Thus, an en-
vironment with a low number of devices may benefit from the use
of classification algorithms, while more dynamic environments with
a large number of devices will need more varied features and will
benefit from anomaly detection algorithms. Here, the scalability and
efficiency of the approach are better if no retraining is needed each
time a device joins or leaves the scenario. In the literature, solutions
have been found with both approaches, applying classification perspec-
tives (Babun et al., 2021) or generating a statistical model per device
and confronting the new fingerprints to it when identification is to be
performed (Sanchez-Rola et al., 2018).

4.6. Model generation and evaluation design

Once the desired approach has been selected, either classification or
anomaly detection, it is necessary to train ML/DL algorithms and define
the metrics that will be used in the identification. This step should be
carried out considering the efficiency in the evaluation process and the
security against possible data-based attacks to the models.

There is a wide variety of algorithms that can be considered in this
step, differentiating between traditional ML algorithms and DL algo-
rithms based on neural networks (Usuga Cadavid et al., 2020). Starting
from classification, algorithms such as Random Forest, k-Nearest Neigh-
bors, eXtreme-Gradient Boosting (XGBoost), Support Vector Machines
(SVM), or Multi-Layer Perceptron (MLP) can be used. From the anomaly
detection prism, Isolation Forest, Local Outlier Factor (LOF), One Class-
SVM, or Autoencoders are good alternatives as well. At this stage, it is
also worth considering the application of algorithms focused on time
series (Usuga Cadavid et al., 2020), depending on whether there are
time-based dependencies between the values. Once the algorithms to
use have been selected, it will be necessary to train and fine-tune the
hyperparameters that give the best results in each of them. Note that
these hyperparameters will vary according to the selected algorithms.
In addition, the model predictions are usually one per vector, so they
cannot be used directly to give a decision during the evaluation and
identification of the device. In this sense, it is common to determine a
threshold based on the model performance from which the device under
evaluation will be accepted as the legitimate one. This threshold can
be defined using numerous equations or conditions, such as defining
the 50% of the values being recognized as legitimate, as done by the
authors in Sanchez-Rola et al. (2018). Common metrics to consider on
this step are accuracy, true positive rate (TPR), false positive rate (FPR),
or F1-Score, among others (Usuga Cadavid et al., 2020).

At this point, it is worth noting that although this methodology has
been designed primarily for ML/DL algorithms due to their current
prominence in many research fields, it could be possible to include
in this step other statistical algorithms, or even some self-developed
algorithms as in Babun et al. (2021).

4.7. Device evaluation and identification decision

This step is only carried out in the evaluation phase and involves
generating new behavioral data of the device following the same
methodology as during the training phase, repeating steps B, C, and
D.

Once the new dataset is generated, it is used to identify the device,
determining whether it is the same device used during training or not.
To this end, data will be evaluated using the ML/DL models previously
generated, so that one result per vector is obtained. Then, the rule
determined in the previous step will be applied, either based on a
threshold or another equation to give a final decision on the device
identification.

5. Methodology validation

This section validates the suitability of the proposed methodology
by implementing a Proof-of-Concept (PoC) on a realistic scenario com-
posed of 20 identical single-board devices. In particular, the devices are
15 Raspberry Pi 4 Model B 2 GB (RPi 4) and 10 Raspberry Pi 3 Model
B+ (RPi3) running identical software images, with Raspbian 10 (buster)
as OS and 5.4.83 as Linux kernel version. The operating systems ran
in head-less mode, i.e., without a graphical environment or output to
a display, a common configuration in SOC devices deployed in IoT.
Next, it is detailed how the methodology has been implemented in the
previous scenario, describing the decisions made in each of the defined
steps. The language used has been Python and the code is available
in Sánchez Sánchez (2021), for reproducibility sake.
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Fig. 3. Fingerprint evaluation TPR during validation per device and model.

A. Hardware Component Selection. As a starting point, the physical
oscillators available in the RPi4 and RPi3 were analyzed. The result
of this study concluded that one oscillator is shared between the SoC
components, running at 54 MHz in RPi4 and 19.2 MHz in RPi3, and
the USB controller running at 25 MHz in both models (Embedded Linux
Wiki, 2021). Since accessing the frequency of the USB oscillator from
the device is not simple, the selected components were the VideoCore
VI GPU and the ARM Quad-core Cortex-A72 CPU for RPi4 and Video-
CoreIV GPU and the ARM Quad-core Cortex-A53 for RPi3. Although
they share the base oscillator (GPU and CPU), their frequencies are
given by different PLLs.

B. Component Isolation and Stability Assurance. Both the CPU and
GPU work at varying frequencies depending on the load on the device.
So, to guarantee the stability of the signatures, it is needed to ensure
that frequency is fixed. For the validation, the RPi4 CPU frequency was
set to 1.5 GHz and the GPU one to 500 MHz, while the RPi3 CPU fre-
quency was set to 1.4 GHz and the GPU one to 400 MHz, the maximum
values of both by default (without overclock). To do this, the Turbo
Mode was enabled by adding force_turbo=1 in /boot/config.txt. After
that, one of the CPU cores was isolated to be used in the fingerprint
generation, using the options in /boot/cmdline.txt, preventing processes
from being assigned to it.

C. Data Gathering. To measure the variation of behavior between
components, it was compared how the cycle counters of each com-
ponent (CPU and GPU) vary with respect to the other. To do this,
sleep, random number generation, and hash functions were selected. As
the validation prototype was implemented in Python, time.sleep() was
used for sleep execution, os.urandom() was used for random number
generation, and hashlib.sha256() was used to hash a string. In particular,
these functions were sequentially executed in the CPU and the number
of GPU cycles that occurred during each function execution was mea-
sured. To interact with the GPU, Idein’s py-videocore6 library (Idein,
2021b) was used in RPi4. Concretely, the CORE_PCTR_CYCLE_COUNT
GPU counter was the register monitored. In the case of RPi3, Idein’s py-
videocore (Idein, 2021a) library was used to monitor the
QPU_Total_idle_clock counter (as the RPi3s were in headless mode).
The data gathering procedure is summarized in Algorithm 1. For the
data collection, the sleep function time t was set to 120 s, as the
variations between CPU and GPU are presumably low, a fixed string
was set for the hash function, and the number on measurements
(n_measurements) was set to 400. It is important mentioning that these
values were adjusted according to the results in later steps. Other
configuration parameters such as t=60 s were tested providing with
slightly worse results. Additionally, the use of TEE to run the algorithm

Algorithm 1: CPU/GPU data acquisition algorithm

Result: Set of GPU/CPU performance measurements.
result_set={};
for n in n_measurements do

#Sleep cycle counter
GPU_CYCLE_COUNT=0;
sleep(t);
sleep_gpu_cycles=GPU_CYCLE_COUNT;

#Random number generator cycle counter
GPU_CYCLE_COUNT=0;
random_number_gen();
random_gpu_cycles=GPU_CYCLE_COUNT;

#Hash cycle counter
GPU_CYCLE_COUNT=0;
hash("Test string");
hash_gpu_cycles=GPU_CYCLE_COUNT;

#Add measurements to result set
result_set.append("sleep_gpu_cycles,
random_gpu_cycles,hash_gpu_cycles");

end

was considered, however the ARM TrustZone instance available in RPi
is simulated only (TrustedFirmware.org, 2012).
D. Data Preprocessing and Feature Extraction. The data gathering pro-

cess was repeated a total of ten times per device, for testing purposes,
with different temperature conditions and performing several reboots
between the generation of each fingerprint (set of measurements).
Then, the 400 measurements of each fingerprint were grouped in
different sliding windows ranging from 10 to 100 values in jumps
of 10 values (10 different sliding windows in total). Afterwards, sev-
eral statistical features were calculated for each window-based group
and concatenated together. Concretely, the statistical values calculated
were: minimum, maximum, mean, median and sum. Following this ap-
proach, the resultant vectors for training and evaluation have a size
of 150 (3 data gathering functions * 10 different sliding windows * 5
statistical features). Table 3 depicts the final set of features extracted
from this step.
E. Evaluation Approach Selection. Due to the staticity of the test

environment, as the number of devices do not change in time, it was
decided to follow an approach based on classification ML algorithms
combined with a threshold on the True Positive Rate (TPR) that would
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Table 3
Feature set extracted for validation.

Operation
collected

Python code
function

Sliding
windows

Statistics
extracted

No.
features

Sleep 120 s time.sleep(120) 10 Sliding
windows.

Minimum,
maximum,

50

Random number gen. os.urandom() Group sizes:
10, 20, 30, 40,

mean,
median,

50

String hashing hashlib.sha256(str) 50, 60, 70, 80,
90, 100

sum 50

Total 150

Table 4
Classification algorithms and hyperparameters tested.

Model Hyperparameters tested Avg TPR

Naive Bayes No hyperparameter tuning required 87.29%

k-NN 𝑘 ∈ [3, 20] 71.40%

SVM 𝐶 ∈ [0.01, 100], 𝑔𝑎𝑚𝑚𝑎 ∈ [0.001, 10]
𝑘𝑒𝑟𝑛𝑒𝑙 ∈ {‘𝑟𝑏𝑓 ’, ‘𝑙𝑖𝑛𝑒𝑎𝑟’, ‘𝑠𝑖𝑔𝑚𝑜𝑖𝑑’, ‘𝑝𝑜𝑙𝑦’}

89.65%

XGBoost 𝑙𝑟 ∈ [0.01, 0.3], 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [3, 15]
𝑚𝑖𝑛_𝑐ℎ𝑖𝑙𝑑_𝑤𝑒𝑖𝑔ℎ𝑡 ∈ [1, 7], 𝑔𝑎𝑚𝑚𝑎 ∈ [0, 0.5],
𝑐𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒_𝑏𝑦𝑡𝑟𝑒𝑒 ∈ [0.3, 0.7]

91.92%

Decision Tree 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

86.47%

Random
Forest

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑡𝑟𝑒𝑒𝑠 ∈ [50, 1000]
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ [𝑁𝑜𝑛𝑒, 5, 10, 15, 20]
𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡 ∈ [2, 3, 4, 5]

91.64%

MLP 𝑙𝑎𝑦𝑒𝑟𝑠 ∈ [1, 3], 𝑛𝑒𝑢𝑟𝑜𝑛𝑠_𝑙𝑎𝑦𝑒𝑟 ∈ [10, 100],
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ∈ [32, 128, 256, 512]

85.32%

delimit the minimum number of successfully classified vectors. Besides,
F1-Score is also calculated to validate the classification performance of
the models. (TP: True Positive, FP: False Positive, TN: True Negative,
FN: False Negative).

𝑇𝑃𝑅∕𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 +
1

2
(𝐹𝑃 + 𝐹𝑁)

(2)

F. Model Generation and Evaluation Design. For the model generation,
six fingerprints of each device were used as separate training in order
to have cross-validation. The selected algorithms were Random Forest,
Decision Tree, k-NN, XGBoost, Naive Bayes, SVM and MLP. After
hyperparameter optimization (see Table 4), using cross-validation with
the fingerprints used for training, the best performing algorithm was
XGBoost (lr=0.1, max_depth=20, gamma=0.01, colsample_bytree =0.5),
giving an average TPR of 91.92%, ranging from 100% in the best case
to 55% in the worst (a random predictor would give 4% for each device,
as the model can be easily identified based on device frequency). Fig. 3
shows the results per algorithm and device. This value varies highly,
as some of them seem to be more similar between them. Based on
the previous results, a threshold of 50% in the assigned classes in
evaluation can be defined to give the identification decision, so that
if half of the vectors are correctly evaluated, the device is recognized
as legitimate.

As Fig. 3 depicts, the performance of the classifiers when identifying
the devices is not homogeneous and they are able to classify better
some devices than others. To explore more in detail this aspect, Fig. 4
shows the density plots for the CPU and GPU skew after the sleep
function execution. In the vertical dotted line, the median of the distri-
bution is shown. It can be appreciated how the skew of some devices
varies, being more similar between some of them. Concretely, for the
RPi4 number 10, the one with the worst classification performance in
Fig. 3, it can be seen in Fig. 4 how the median of its distribution is
almost identical to the RPi4 number 12. Although only one of the three
functions executed is plotted due to space constraints, this analysis
demonstrates how some devices are more similar to each other than
others, a factor that influences the scalability of the solution, so that
for larger deployments, a greater number of functions or data sources
would be necessary.

G. Device Evaluation and Identification Decision. In the present PoC,
this phase was performed with the four fingerprints of each device
not used for the previous phase. In this step, the normalization was
repeated with the same values used to generate the model, and the
vectors containing the same features were evaluated using the XGBoost
model trained previously. Using the 50% threshold as explained above,
all the devices were correctly identified without any device erroneously
identified as another one. Fig. 5 shows the average confusion matrix for
the four fingerprints used for testing, using XGBoost as classifier. The
labels are defined as the device model followed by its MAC address.
The evaluation is done by grouping together devices within the same
model, as RPi3 and RPi4 have different running frequencies in the
components leveraged and they can be easily differentiated. ≈93% and
≈92% average F1-score is achieved for RPi4 and RPi3, respectively.

As conclusion, it has been demonstrated the performance of the
proposed methodology in an environment with real devices. Still, this
is only a PoC and its performance could be substantially improved
by extracting other data from devices and generating more elaborate
features.

6. Discussion, lessons learned and limitations

This section compares the proposed methodology with the solutions
available in the literature. After that, it discusses the limitations of the
proposed solution and provides some lessons learned.

6.1. Literature comparison

Despite the solutions discussed in Section 2 do not follow a common
methodology, many of them implement certain steps proposed in this
work. Table 5 compares the proposed methodology and related work
using on-device components for identification. As can be seen, all works
performing identification utilize a threshold (Step F), defined based
on different statistical approaches. Besides, none of the approaches
employed ML/DL algorithms (Step F) and many of them did not con-
sider hardware isolation properly or the usage of fixed component
frequencies (Step B).

After the theoretical comparison, it is relevant to analyze the most
similar and comparable solutions from a common prism. Although most
of the solutions analyzed in Section 2 use components that are not avail-
able on the RPi4 or RPi3, three solutions, Dong et al. (2019), Nakibly
et al. (2015) and Sanchez-Rola et al. (2018), can be adapted to the
present scenario and methodology. Table 6 compares the methodology
approach and the results of its validation with four implementations
inspired by the works found in Section 2. Besides, it highlights which
fingerprint properties were not met, resulting in erroneous device
identification.

The first of these approaches was inspired by Dong et al. (2019),
only the CPU was selected as a component but making the fingerprint
of each of its cores separately by using thread affinity. The features to
be obtained were statistics based on the time taken to perform small
operations (string hash and random number generation) on each of the
cores. Using LOF as an anomaly detection algorithm and one model per
device, the identification was possible by setting a threshold of 50%.
However, the reboot of the devices caused the fingerprints to change
and it was not possible to perform the identification due to the new
kernel process scheduling, something that may also be affecting the
proposed solution in Dong et al. (2019). The same problem occurred
in a second tested approach inspired by Nakibly et al. (2015). In
particular, each CPU core was compared with the GPU separately in
a concurrent manner and executing short operations. Here, different
operations of variable complexity were performed in the GPU while
the execution time was measured using the CPU. In this case, the
evaluation also followed an anomaly detection-based approach, being
LOF the algorithm with the better results. Again, it was possible to
identify the devices consistently, now using a threshold around 60%,
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Fig. 4. Density plot for the GPU cycle counter in RPi4.

Table 5
Analogy between hardware-based fingerprinting solutions in the literature and the proposed methodology.

Work Step A Step B Step C Step D Step E Step F Step G

Salo (2007) RTC, DSP, CPU –
CPU cycles in one
second (measured
with DSP and RTC)

Raw values –
Statistical (t-test),
𝑝 <= 0.05 threshold

98.7%–93.3%
identification

Sanchez-Rola et al.
(2018)

RTC, CPU
Transactional
memory

Execution time
of short functions

Mode-based matrix –
Statistical comparison, 50%
similarity threshold

Correct
identification

Wang et al. (2012) Flash memory
Isolation of one
page in flash
memory

Bit programming
errors (flip from 1
to 0)

Error order per bit –
Pearson correlation,
0.5 threshold

Estimated
4.52 × 10−815

FPR and
2.65 × 10−539 FNR

Dong et al. (2019) CPU Thread affinity
CPU usage while executing
a cyclical tasks

Raw values –
Dynamic Time Warping
algorithm, 0.3244 threshold

93.43% uniqueness
(Shannon entropy)

Nakibly et al.
(2015)

CPU, GPU – Number of frames per 5 s
Entropy and
statistics

– Statistical

No evaluation,
partial
differentiation
capabilities

This work CPU and GPU
Core isolation,
Fixed frequency

Sleep for 120 secs,
Random num. gen., hash

Sliding
window-based
statistical features

Classification
XGBoost, 50%
threshold

Perfect
Identification
(91.92% avg. TPR)

Table 6
Comparison of the validation approaches implemented.

Approach Step A Step B Step C Step D Step E Step F Step G Properties not
met

Dong et al.
(2019)-inspired
approach

CPU Thread affinity Short functions Raw values
Anomaly
Detection

LOF, 50%
threshold

Identification until
device reboots (69.4%
avg. TPR)

Stability

Nakibly et al.
(2015)-inspired
approach

CPU and
GPU –

Different GPU
operations Raw values

Anomaly
Detection

LOF, 60%
threshold

Identification until
device reboots (89.6%
avg. TPR)

Stability

Sanchez-Rola
et al.
(2018)-inspired
approach A

CPU – Short functions
Window-based
statistical features Classification

XGBoost, 50%
threshold

No identification
(27.5% avg. TPR)

Uniqueness,
Diversity,
Stability

Sanchez-Rola
et al.
(2018)-inspired
approach B

CPU – Short functions
Window-based
statistical features

Anomaly
Detection

LOF, 50%
threshold

No identification
(19.8% avg. TPR)

Uniqueness,
Diversity,
Stability

This work
(Section 5)

CPU and
GPU

Core isolation,
Fixed frequency

GPU-measured CPU
operations

Window-based
statistical features Classification

XGBoost, 50%
threshold

Perfect Identification
(91.9% avg. TPR) –

until they are rebooted. Finally, two different approaches were tested
inspired by Sanchez-Rola et al. (2018). Both share the fact that the data
collected was based on short functions executed in the CPU without
considering stability measurements. They differ in the evaluation ap-
proach, one using anomaly detection and the other using classification.
These approaches achieved the worse performance, as the solutions
could not identify the devices even without rebooting them.

From these results, it can be concluded that the stability of these
approaches is not sufficient for dynamic IoT scenarios where the de-
vices operate in a typical way (i.e. devices are restarted from time to
time and power can go out). In contrast, they would be useful in IoT

environments where device reboots are not possible, such as in the
control of electrical or security systems.

6.2. Lessons learned and limitations

From the above comparison and the tests performed, valuable con-
clusions are drawn, both in the form of lessons learned and possible
limitations of the proposed methodology. Regarding lessons learned,
the main ones are:
Component isolation is critical. As Table 6 shows, it can be seen

that isolating the measurements from external processes is crucial to



Journal of Network and Computer Applications 212 (2023) 103579

11

P.M. Sánchez Sánchez et al.

Fig. 5. Test confusion matrix for device identification using XGBoost.

ensure the stability of the fingerprinting process. In this sense, in cases
where the conditions of the components were not stable, it was not
possible to reliably identify them after device rebooting.
Rebooting can have impact on the fingerprints. During the

testing of literature-based validation approaches (see Table 6), it was
observed that the restart of the devices has an impact when the fin-
gerprinting program is not isolated from other processes, probably due
to the effect of the process scheduler. In contrast, this issue was not
present in the approach of Section 5, as the data collection process
was properly isolated from the noise introduced by other processes in
the device. From this validation, it an be concluded that the robustness
property against the negative effects of other processes running in the
device is achieved.
Temperature does not seem to affect the components selected

for validation. The above tests have been performed at different
temperature conditions and this condition does not seem to affect the

results, possibly because by using integrated components on the same
chip, it affects the base frequency and overall performance equally.
Therefore, the robustness property is met based on the temperature
context. Actually, temperature was also measured during the data gath-
ering of Section 5. Using it as a feature, the average TPR for XGBoost is
increased from 91.92% to 93.46%. Therefore, this information can be
added as a correlation feature, incorporating supplementary informa-
tion to the identification process. For different devices, Fig. 6 shows the
density plot of the correlation in different devices of the temperatures
and the GPU counter value after a 120-second CPU sleep. It can be
seen that each device has a different plot shape and temperature is not
influencing that the devices generate a similar fingerprint.

In terms of limitations of the methodology, the following have been
identified after its design and validation:
The methodology implementation is highly dependent on the

hardware model. The implementation of the present methodology,
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Fig. 6. 3D density plot of temperature/GPU cycle counter value for different devices executing the 120 s-sleep function.

being based on the hardware components available in the devices,
is highly dependent on the libraries needed to interact with them.
Thus, implementations of the methodology may not be compatible
between different models of single-board devices if their components
are different, so it would be necessary to adapt the code.

Some steps might need an exploratory analysis. It is difficult to
determine which hardware behavior measurements to take or which
features to extract a priory. So, the implementation of the methodology
may require several exploratory iterations to find a combination that
meets all the properties needed in the generated fingerprint. This trial-
and-error analysis can be highly reduced by analyzing the leveraged
devices properties, different component and running frequencies. As
every chip has imperfections, the challenge is how to measure them
properly. In Section 5, a successful application of the methodology has
been provided, which serves as a guide and recommendation for future
applications.

Scalability in large deployments. Manufacturing errors and vari-
ations are within the accepted tolerance range accepted by the man-
ufacturers. Therefore, using these variations for identification in large

deployments makes a single source of data possibly not sufficient (Pol-
cák and Franková, 2015). Thus, depending on the number of devices to
be individually identified, a greater number of components and features
should be employed to generate unique device fingerprints. Therefore,
scalability property arises as one of the most difficult properties to be
met.

6.3. Insights for real-world implementations

Based on the previous set of lessons learned and limitations, this
section gives some implementation ideas for future researchers that
may deploy the proposed methodology in real-world IoT scenarios
based on SBCs. Examples of these scenarios can be spectrum crowd-
sensing, with projects such as ElectroSense (Rajendran et al., 2017) or
agriculture environments where SBCs are employed to control sensors
and actuators. The main guidelines for these scenarios are:

1. Investigate how to get the hardware counters. After checking the
available hardware components that might be used for finger-
printing, a critical step is to check the firmware managing them
and how their performance counters can be gathered.
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2. Use heterogeneous functions for data collection. As selecting the
executed functions to perform the fingerprint can be seen as an
exploratory step, selecting both long and short time execution
functions is a good decision as the collected data can be later
processed and compare the results from both approaches.

3. Expend time in feature extraction analysis. As the tolerance
errors in the hardware components are between constrained lim-
its, the collected performance values will be similar. Therefore,
extracting useful metrics (such as the median in the validation
of Section 5) is a critical step to separate the distributions of the
collected data and perform the device identification.

4. Use tree-based ML algorithms as the initial evaluation approach.
In the validation section, these methods provided good per-
formance with relatively low complexity in the hyperparame-
ter tuning. Therefore, before exploring more complex DL solu-
tions, tree-based ML methods can give the desired performance
keeping a lower complexity in the fingerprinting solution.

7. Conclusions and future work

This paper proposes a methodology composed of seven steps that
allow identifying identical single-board devices (same hardware and
software configuration) used in heterogeneous IoT scenarios. These
seven steps are grouped into two main phases, one to generate a be-
havioral fingerprint and another to evaluate it and identify the device.
This work also presents the threat model affecting single-board device
identification and seven properties that solutions dealing with identical
device identification based on behavioral fingerprint must consider:
uniqueness, stability, diversity, scalability, efficiency, robustness and
security. The proposed methodology has been successfully validated in
a real environment composed of 25 identical Raspberry Pi 4 Model B
and Raspberry Pi 3 Model B+ using ML techniques for data processing.
These devices were perfectly identified using a XGBoost model trained
using features derived from the variation in performance between
their CPU and GPU by setting a 50% TPR threshold. Besides, this
work compared the methodology identification performance with other
implementations inspired in the literature works and provided some
lessons learned and limitations.

As future work, it is planned to validate the methodology in larger
scenarios with more devices and types, defining new features to be
obtained and other ML/DL algorithms to evaluate the scalability of the
solution in larger and real-world environments. The performance of the
solution in a dynamic scenario is another key aspect to be researched.
Furthermore, it is desired to explore the usage of TEEs when gener-
ating the fingerprint, guaranteeing the security of the measurements
by isolating the fingerprinting program from the rest of the system
processes. Besides, we also plan to perform adversarial attacks against
the proposed validation PoC, improving its resilience and performance.
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