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A B S T R A C T

In the realm of industrial anomaly detection, machine and deep learning models face a critical vulnerability to
adversarial attacks. In this context, existing attack methodologies primarily target continuous features, often in
the context of images, making them unsuitable for the categorical or discrete features prevalent in industrial
systems. To fortify the cybersecurity of industrial environments, this paper introduces a groundbreaking
adversarial attack approach tailored to the unique demands of these settings. Our novel technique enables the
creation of targeted adversarial samples that are valid within the framework of supervised cyberattack detection
models in industrial scenarios, preserving the consistency of discrete values and correcting cases where an
adversarial sample transitions into a normal one. Our approach leverages the SHAP interpretability method
to identify the most salient features for each sample. Subsequently, the Projected Gradient Descent technique
is employed to perturb continuous features, ensuring adversarial sample generation. To handle categorical
features for a specific adversarial sample, our method scrutinizes the closest sample within the normal training
dataset and replicates its categorical feature values. Additionally, Decision Trees trained within a Random
Forest are utilized to ensure that the resulting adversarial samples maintain the essential abnormal behavior
required for detection. The validation of our proposal was conducted using the WADI dataset obtained from
a water distribution plant, providing a realistic industrial context. During validation, we assessed the mean
error and the total number of adversarial samples generated by our approach, comparing it with the original
Projected Gradient Descent method and the Carlini & Wagner attack across various parameter configurations.
Remarkably, our proposal consistently achieved the best trade-off between mean error and the number of
generated adversarial samples, showcasing its superiority in safeguarding industrial systems.

1. Introduction

Currently, industrial activities account for a large percentage of
the economy of countries. In order to increase productivity and, thus,
gain a competitive advantage, many industries have engaged in a race
to automate their production processes. This race brought with it the
Industry 4.0 paradigm [1], which advocated the introduction of devices
with processing capacity together with advanced techniques such as Big
Data, the Internet of Things (IoT), or Artificial Intelligence (AI) [2].
Most of the new devices introduced are categorized as Cyber-Physical
Systems (CPS) since they can process information in the cyber layer
and exert an impact on the physical world. However, in the Industry
4.0 paradigm, the human activities carried out by workers were not
considered and, therefore, we are currently witnessing a new paradigm
shift where workers are placed at the center of production processes,
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and all techniques and devices have to take this into account. This new
paradigm is known as Industry 5.0 [3].

In this new paradigm, not only do we have to verify that industrial
systems work correctly to satisfy the production processes, but we also
have to ensure that these systems pose no risk to the physical safety
of workers in any scenario. In this context, Anomaly Detection (AD)
systems based on Machine Learning (ML) and Deep Learning (DL)
have gained importance. These systems are capable of learning the
boundaries of an industrial system’s typical behavior, flagging anything
outside of this norm as a potential security threat [4].

Although AD systems based on ML/DL have shown adequate per-
formance to detect cyberattacks in industrial scenarios [5,6], it is
necessary to remember that all systems supported by ML and DL
techniques are vulnerable to evasion attacks [7]. These attacks are a
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subtype of adversarial attack that consists in crafting specially modified
samples, called adversarial samples, that are misclassified by the AD
system. In particular, those evasion attacks that convert an abnormal
sample to a sample considered as normal by the AD system are of
special interest since they can craft adversarial samples that reach the
target device and cause an impact on the physical world.

However, adversarial attacks lack the ideal characteristics to be
deployed in industrial environments. The main challenge is that these
attacks are mainly designed for ML/DL models focused on computer vi-
sion and, therefore, they only work with continuous data. In particular,
most adversarial attacks rely on the gradient of ML/DL models; there-
fore, when applied to discrete data, the resulting adversarial samples
contain inconsistent values, i.e., continuous value in a feature that only
accepts discrete values. This makes it impossible to extrapolate these
attacks to other scenarios, such as industry, where tabular data is used,
including continuous and categorical data. The second challenge is that
the techniques used to craft adversarial samples modify all the features
of these samples. On the one hand, this causes the error between
the original and adversarial samples to be larger. On the other hand,
features not necessary to craft adversarial samples are also modified.
Together, this makes these attacks more easily detectable by an expert.

Considering the aforementioned limitations, it becomes imperative
to devise a method capable of conducting adversarial attacks using
established gradient-based techniques while handling discrete features
with the necessary care. Discrete features often come with value restric-
tions to maintain internal coherence. Moreover, our aim is to establish
a mechanism for detecting instances where our adversarial attack may
have been excessive, inadvertently transforming an anomalous sample
back into a clearly normal one. Therefore, to overcome the previous
challenges, this work presents the following contributions:

• A new targeted adversarial attack called Valid and Abnormal
Adversarial Samples for Industrial Scenarios (VAASIS) specially
designed to attack industrial systems. This attack generates ad-
versarial samples for supervised models and it is based on the
most efficient and powerful attack, i.e., the Projected Gradient
Descent (PGD) method [8]. The proposal relies on interpretability
techniques to determine the most important features of each
sample and launch PGD to modify only those features. In addition,
the proposed attack identifies categorical features and modifies
them so that the final result is consistent. Finally, the attack also
recognizes those samples that lost their abnormal behavior after
applying PGD and recovers it.
• Validation of the proposed attack in a realistic industrial envi-
ronment based on a water distribution plant. In particular, the
WADI [9] dataset containing both continuous and categorical
data is used. Compared to PGD and Carlini & Wagner (CW),
our attack achieved the best balance between the number of
generated adversarial samples and the error caused to craft them,
resulting in samples difficult to detect by experts.

The remainder of this paper is structured as follows. Section 2
discusses the different works focused on adversarial attacks and their
application in industrial scenarios. Section 3 illustrates the conditions
that need to be met by the generated adversarial samples together with
the requisites and information needed by an attacker to deploy the
attack. In Section 4 the adversarial attack proposed to generate con-
sistent and valid adversarial samples in industrial scenarios is detailed.
Section 5 details the experiments carried out. Finally, Section 6 presents
the conclusions and the future work.

2. Related work

This section reviews the different solutions in the literature to exe-
cute adversarial attacks, especially the evasion one. On the one hand,
we review techniques to launch adversarial attacks, mainly focused on

Computer Vision problems. On the other hand, we review proposals
that rely on such techniques to deploy adversarial attacks in industrial
scenarios.

To put it in context, an evasion attack involves crafting samples
misclassified by the AD system. Those are called adversarial samples,
and several techniques exist to craft them. Depending on the adversarial
sample generated, the adversarial attacks can be classified as targeted
or untargeted. If the attack is intended to generate an adversarial
sample of a specific class, we consider it as targeted. Otherwise, it is
an untargeted adversarial attack.

The most powerful techniques to craft adversarial samples are those
based on the gradient of the model. The first well-known technique
proposed was the Fast Gradient Sign Method (FGSM) [10]. This method
computes a noise vector that is added or subtracted to original samples,
depending on whether the attack is configured as targeted or untar-
geted. The noise vector is determined using the sign of the gradient
of the cost function with respect to the target label and modulated
by a perturbation parameter. There are several modifications to the
original FGSM algorithm. For example, if 𝑙1 or 𝑙2 norm is used instead
of the sign of the gradient, the attack is commonly known as the
Fast Gradient Method (FGM). In general, all techniques based on the
gradient will consider the original sample as the center of a 𝑙𝑝 sphere,
where 𝑙𝑝 indicates the distance metric and the radius of the sphere will
be the maximum allowed disturbance. The resulting adversarial sample
will be another sample inside the sphere. From FGSM and FGM, more
elaborated adversarial attacks were proposed. The natural evolution of
the aforementioned adversarial attacks calculates adversarial samples
iteratively. This attack is called Basic Iterative Method (BIM) [11], and,
like FGSM, it can be targeted and untargeted. Another attack derived
from the original FGSM is the PGD [8], which is similar to BIM with two
exceptions. The first is that the PGD initializes the example to a random
point inside the 𝑙𝑝 sphere, while BIM initializes to the original sample.
The second difference is that the result obtained by PGD is projected
to the 𝑙𝑝 sphere. Another popular adversarial attack is Deepfool [12],
which finds the minimal perturbation needed to change the sample
class. In contrast to other reviewed methods, Deepfool can only be
configured as untargeted. In particular, the algorithm computes the
orthogonal projection of the sample onto the separation affine hyper-
plane, which corresponds to the minimal perturbation. Jacobian-based
Salience Map Attack (JSMA) [13] is another adversarial attack based
on computing the forward derivatives to craft the adversarial samples.
In particular, this attack allows an attacker with knowledge about the
network architecture to construct saliency maps that identify features of
the input that most significantly impact output classification. Finally,
one of the most powerful adversarial attacks is CW [14]. This attack
can generate high-quality adversarial samples, but the cost to generate
them is also high. Although the authors suggested a series of relaxation,
the procedure is still costly.

The previous techniques were developed with a special focus on
Computer Vision problems; therefore, they deal with continuous data.
However, without any modification, those techniques fail when applied
to environments that produce discrete data, such as industrial settings.
Besides, those techniques modify all the features, and therefore, the
adversarial sample is more easily detectable by an expert.

To solve those problems, several authors proposed different solu-
tions. For example, the authors of [15] proposed a new adversarial
attack based on BIM that can determine, through a mask, the specific
features that can be modified. The attack was designed with industrial
environments in mind, and it also dealt with categorical data. However,
the approach employed was limited and consisted in selecting features
to modify, launching an adversarial attack, and approximating the mod-
ified categorical features to the nearest integer. Besides, the authors
did not ensure that the samples generated are abnormal; therefore,
many adversarial samples generated can lose their abnormal behavior.
The authors validated their solution using the Electra dataset, which
was collected from an Electric Traction Substation. Furthermore, the
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authors demonstrated the importance of crafting valid adversarial sam-
ples in data networks, especially in the industrial setting. In particular,
the authors stated that if an adversarial attack modifies a categorical
field crucial to routing the packet, the attack could not be successfully
accomplished since it would not reach its destination.

The authors of [16] presented another solution focused on IoT sce-
narios where they proposed a rule-based mechanism to craft adversarial
samples whose features contained valid values. However, the solution
was not focused on time-series data, and the adversarial attack did not
ensure that the samples generated were abnormal. Besides, the valid
values are selected without considering the distribution of the normal
samples. Another solution focusing on IoT is presented in [17]. The au-
thors conducted tests involving various adversarial attacks (FGSM, BIM,
and PGD) and their impact on several DL models. However, similar to
the original FGSM, BIM, and PGD attacks, the methods introduced in
this study struggled with handling discrete features or time-series data.
Furthermore, these attacks failed to guarantee the generation of valid
samples. A more sophisticated approach is presented in [18], where the
authors developed a white-box adversarial attack within the context of
a smart home. Specifically, the authors generated adversarial samples
for smart meters installed in residential homes. The solution proposed
by the authors is based on the backpropagation algorithm. For each
iteration, the method involved extracting the gradient, normalizing
it, and adding it to the adversarial sample that was being generated.
The authors concluded that their approach yielded statistically indistin-
guishable adversarial samples from the original ones. Nonetheless, this
technique also lacks support for time series data, and was unable to gen-
erate valid samples when dealing with categorical features, potentially
causing the generated samples to lose their anomalous behavior.

The authors of [19] studied how adversarial samples generated
by JSMA impact supervised models in industrial settings. The authors
proposed a gray-box approach where the attacker has no knowledge
of the model but has access to the full dataset and knowledge about
the features. Due to the transferability property [20] of adversarial
samples, the authors trained two substitute models and crafted adver-
sarial samples using such models. In particular, the authors trained
Random Forest (RF) and J48 models. Using the JSMA attack, the
attacker modified only specific features instead of introducing per-
turbation to all the features. However, the approach adopted by the
authors did not consider crafting valid categorical features and did
not ensure that adversarial samples retained their abnormal behavior.
The authors validated their proposal in an authentic power system and
concluded that the performance of RF and J48 decreased by 6 and 11
percentage points, respectively, when adversarial samples were present.
Another example of an adversarial attack in industrial scenarios is
presented in [21], where the authors proposed a novel attack focused
on autoregressive models. In particular, the attack is based on two
steps. The first one is called 𝐿0 Prediction Attack and is in charge of
predicting the next values for discrete values using the model under
attack. The second one, called the 𝐿0 Optimization Attack, is in charge
of modifying continuous features using an optimization algorithm to
craft samples that the autoregressive model will misclassify. Finally, the
adversarial sample is formed by joining the discrete features predicted
before and the continuous features crafted previously. Although this
attack considers the problem when crafting categorical features, it does
not assure that generated adversarial samples retained their abnormal
behavior. Another example of an adversarial attack applied to industrial
scenarios is presented in [22]. In this solution, the authors presented
a Universal Adversarial Attack, which they defined as a procedure
to find a special imperceptible noise to fool regression models. The
authors tested their approach using the NASA turbofan engine dataset,
demonstrating that adding universal adversarial perturbation to any
input data instance increased the error in the output predicted by the
model. However, although this approach can be applied to time-series
data, it cannot be used when the dataset contains categorical data.
Furthermore, the author’s approach did not consistently generate valid

samples in industrial scenarios. In [23] another solution suitable for
industrial scenarios is presented. Specifically, the authors proposed two
strategies for generating adversarial time-series samples that degrade
the detection performance of AD models. The first method is itera-
tive and relies on the sign of the gradient of the model. The second
method is similar but involves determining which features to modify
based on their importance. However, this importance is determined
in a straightforward manner, i.e., by slightly altering each feature to
determine which one induces the greater perturbation in the model’s
output. Furthermore, akin to most of the solutions reviewed in this
section, the method did not account for the presence of categorical
features, and the generation process could potentially result in samples
losing their abnormal behavior.

Table 1 summarizes the solutions reviewed in this section. To
the best of our knowledge, our solution is the only one that crafts
valid samples in industrial scenarios, and, in addition, it is capable of
evaluating whether the sample remains abnormal. Furthermore, if a
sample loses its abnormal behavior, our proposal can recover it. Other
solutions mentioned above also deal with discrete data but adopt a
naive approach or do not consider that a sample can lose its abnormal
behavior after applying an adversarial attack.

3. Problem statement

In this section, we detail the required conditions to generate valid
adversarial samples in the industrial environment, together with the
information and requisites needed by an attacker.

3.1. Conditions to generate useful adversarial samples

Unlike other fields, such as computer vision, adversarial samples
generated in industrial environments must not only be misclassified
by the AD system but also be valid samples. Furthermore, the adver-
sarial samples generated in these scenarios must also preserve their
abnormal behavior. However, adversarial attacks in the literature were
originally intended for computer vision; therefore, they cannot generate
adversarial samples that meet the two conditions mentioned above.

First, and before the AD system comes into play, the goal is to
generate valid samples in an industrial environment. If these samples
are not generated correctly, there is a risk that the sample will not reach
its target industrial device and, therefore, will not end up impacting
the physical world. For example, imagine an industrial water treatment
plant with sensors and actuators. Among them, we can find pumps and
valves that control the entry and outlet of water to and from storage
tanks. These devices can only be in two states: open and closed for
valves, and on and off for pumps. Any other value is invalid and can
be easily detected by a rule system prior to the anomaly detector.

Second, after applying an adversarial attack, some of the generated
samples had actually become normal samples, being now harmless
to the industrial system. Fig. 1 illustrates a simplified example in an
industrial setting where an adversarial attack is applied on a binary
classification model. In particular, Fig. 1 shows two probability density
functions (p.d.f), the boundary of the AD model, and three samples
where an adversarial attack was applied. In this example, we assume
that samples represented by a circle shape belong to the abnormal class
and can cause an impact on the physical world. In contrast, samples
represented by an x belong to the normal class and are harmless for
the industrial system. After applying the adversarial attack and the
AD system has detected them as normal, three cases may happen.
The first case is illustrated by sample a, which retains its abnormal
behavior because it belongs to the abnormal distribution. The second
case is illustrated by sample b, which does not belong to the normal
or abnormal distribution. Finally, the last case is shown by sample c,
which belongs to the normal distribution and, therefore, it is an actual
normal sample. Taking this into account, the only valid adversarial
sample that impacts the physical world is sample a because it retains its
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Table 1
Comparison of related work focused on adversarial attacks.

Solution Focused on Target model Deals with
discrete values?

Preserve
abnormal behavior?

Validated with
time-series data?

[10] Computer Vision models based
on gradient

✕ ✕ ✕

[11] Computer Vision models based
on gradient

✕ ✕ ✕

[8] Computer Vision models based
on gradient

✕ ✕ ✕

[12] Computer Vision models based
on gradient

✕ ✕ ✕

[13] Computer Vision models based
on gradient

✕ ✕ ✕

[14] Computer Vision models based
on gradient

✕ ✕ ✕

[15] Industrial Scenarios Classification
models

✓ ✕ ✕

[16] IoT Scenarios Classification
models

✓ ✕ ✕

[17] IoT Scenarios Classification
models

✕ ✕ ✕

[18] IoT Scenarios Classification
models

✕ ✕ ✕

[19] Industrial Scenarios models based
on gradient

✕ ✕ ✕

[21] Industrial Scenarios Autoregressive
models

✓ ✕ ✓

[22] Industrial Scenarios models based
on gradient

✕ ✕ ✓

[23] Industrial Scenarios models based
on gradient

✕ ✕ ✓

Ours Industrial Scenarios Classification
models

✓ ✓ ✓

abnormal behavior, while samples b and c do not belong to abnormal
samples distribution and, therefore, they lose their abnormal behavior.

Without considering the previous conditions, the adversarial sam-
ples generated by an attack will not impact the industrial scenarios. For
example, if the sample contains invalid categorical features, it will not
reach its target industrial device. Conversely, if the sample is converted
into a normal one after applying the adversarial attack, it will not cause
an impact on the physical world.

3.2. Requisites needed by an attacker

Before carrying out the attack, the attacker must access certain
information. First of all, the attacker needs to have access to the
supervised AD model. In particular, since the attack we propose is
based on the PGD method, which uses the gradient of the models, the
attacker needs access to an AD gradient-based model. The required AD
model needs to have a proper performance on evaluation. Otherwise,
the generated adversarial samples will be meaningless and not valid.
To measure the AD model performance, it is common to use metrics
such as precision, recall, and F1-score, which are defined based on True
Positive, True Negative, False Positive, and False Negative:

• True Positive (TP): Shows the number of anomalies properly
detected by the model.
• True Negative (TN): Shows the number of non-anomalies properly
classified.
• False Positive (FP): Shows the number of non-anomalies wrongly
classified as anomalies.
• False Negative (FN): Shows the number of anomalies wrongly
classified as non-anomalies.

Then, precision, recall, and F1-score are defined as follows:

• Precision: Indicates what portion of the detected anomalies is real
anomalies.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Recall: Indicates what portion of the real anomalies is detected.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• F1-score: Is the harmonic mean between recall and precision and
is a trade-off between precision and recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

In addition, since the attacker will modify specific features during
the attack, he or she also needs access to the features evaluated by the
supervised model. In the worst case, the attacker can access datasets
used to train and test the supervised model. The dataset partitioning
process is the responsibility of the administrators, and it must be
carried out in such a way that the temporal coherence of the data
generated in industrial environments is preserved, as recommended
by [24]. The training dataset must be used to train the AD system,
while the test dataset must be used to test the AD model performance
and generate adversarial samples. In the best case, the attacker must
gather the samples by himself or herself, i.e., sniffing network traffic
and extracting the features evaluated by the supervised model.

4. Implementation of VAASIS attack

This section introduces the steps needed to perform the proposed ad-
versarial attack. The first step is identifying the most important features
to classify the sample as the desired class. In this step, we also need to
determine if those features are categorical or continuous because they
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Fig. 1. An example of a binary classification problem where three different cases can
happen in industrial scenarios after applying an adversarial attack. A given sample from
class 1 can go to different zones when altered adversarially, sometimes even falling into
the actual p.d.f. of class 2 if the modification is excessive.

must be treated differently. In the second step, a specific adversarial
attack based on the model gradient is selected and deployed to craft the
continuous features. The third step is in charge of modifying categorical
features based on the similarity with respect to samples belonging to
the target class. The fourth step is responsible for evaluating individual
adversarial samples to ensure they remain abnormal. Otherwise, the
attack tries to recover the abnormal behavior of the samples. The whole
process can be observed in Algorithm 1, which will be explained in
detail in the following sections. Besides, Fig. 2 shows the steps of
VAASIS, including an additional validation step that determines the
success of the attack.

4.1. Selection of features to modify

Most adversarial attacks in the literature modify the values of
all the features without any control. Fundamentally, this is because
these attacks are focused on the field of computer vision, where the
input features are pixel values, and a slight modification of them is
almost imperceptible to the human eye. However, modifying all the
features is not an option in data network environments, particularly
in industrial networks. On the one hand, some of the features may
be essential for the correct functioning of the system and, therefore,
cannot be modified. For example, the IP of a network packet is crucial
for the packet to be routed and reach its destination. On the other
hand, modifying all the features without following a clear criterion
can generate adversarial samples that are noticeably different from the
original samples and, therefore, easily detectable by an expert.

We propose to modify specific features to introduce the minimal
required error and, therefore, to generate adversarial samples as similar
as possible to the original ones from which they were created. To select
the proper features to modify, we estimate the importance of each
feature in classifying a sample as a particular class. Furthermore, we
consider that the importance of the features may vary from sample to
sample, not being constant throughout the dataset.

When evaluating the importance of the features, a common ap-
proach is to use an ML model that includes some basic interpretability
mechanisms, such as the importances returned by a Random Forest (RF)
or the weights of a linear regression model. In fact, these models can
be used successfully in time-series scenarios [25], such as industrial
ones, by adapting the shape of the dataset from 3-dimension to 2-
dimension. In particular, a dataset in an industrial environment usually
has the shape of (𝑛, 𝑡𝑠, 𝑚), where 𝑛 is the number of samples in the
dataset, 𝑡𝑠 is the number of timesteps considered, and 𝑚 is the number
of features in the dataset. However, those techniques only return global
importances computed over the entire dataset. This prevents us from
selecting specific features for individual samples.

To solve this problem, we propose using SHapley Additive exPlana-
tions (SHAP) [26], a unified framework for interpreting predictions that
can be used to measure feature importance. In SHAP, these importances
are known as SHAP Values (SV), and they come from the Shapley values
of a conditional expectation function of the original model. These SHAP
Values are computed using Eq. (1); however, we use an existing library
that hides the implementation details. The aim of using SHAP is to
determine the importance the model gives to each feature in each
sample. This information allows us to select those features that are most
likely to cause the sample to change class upon receiving a minimal
perturbation. Regarding the Algorithm 1, the function in charge of
computing SHAP values is 𝑔𝑒𝑡_𝑠ℎ𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑠().

𝑆𝑉 (𝑓, 𝑥) =
∑

𝑧′𝑖⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!

𝑀!
[𝑓𝑥(𝑧

′) − 𝑓𝑥(𝑧
′ ⧵ 𝑖)] (1)

Where 𝑓 is the original prediction model, 𝑥′ is the simplified inputs that
map to the original inputs, 𝑥, through a mapping function 𝑥 = ℎ𝑥(𝑥

′),
𝑧′ ∈ {0, 1}𝑀 , 𝑀 is the number of simplified input features, |𝑧′| is the
number of non-zero entries in 𝑧′ and 𝑧′ ⊆ 𝑥′ represents all 𝑧′ vectors
where the non-zero entries are a subset of the non-zero entries in 𝑥′,
and 𝑧′ ⧵ 𝑖 denote setting 𝑧′

𝑖
= 0.

Typically, to apply SHAP, a so-called background dataset is needed
for integrating features. To determine the impact of a feature, that
feature is set to missing and the change in the model output is observed.
This dataset serves as a kind of training dataset for SHAP technique and
it is used to simulate missing values by replacing the feature with the
values it takes in this dataset. The SHAP documentation recommends
selecting between 100 and 1000 random background samples.

Once the SV for each feature are obtained, they are ordered de-
scendingly. In this way, we can select the highest values based on the
percentile statistic that will be established experimentally. Finally, due
to the limitations that adversarial attacks have dealing with categorical
features, continuous and categorical features will be modified sepa-
rately to generate valid adversarial samples in industrial environments.
The pseudocode of this process is showed in lines 1 to 3 of Algorithm
1.

4.2. Generation of continuous features

In this step, we select the adversarial attack that modifies the
previously selected continuous features. In this case, we opted for a
targeted adversarial attack that is powerful and not excessively costly
in computing time. In particular, we use PGD to generate continuous
features. This attack calculates in each iteration the gradient of the loss
function with respect to the input and modulates the gradient sign by a
perturbation parameter to finally subtract it from the original sample.
The formal definition of this attack is shown in Eq. (2).

𝑋′
0
= 𝑋;𝑋′

𝑛+1
= 𝐶𝑙𝑖𝑝𝑋,𝜀(𝑋

′
𝑛
− 𝜀𝑠𝑡𝑒𝑝 ⋅ 𝑠𝑖𝑔𝑛(∇𝑥𝐽 (𝑋

′
𝑛
, 𝑦𝑡𝑟𝑢𝑒))) (2)

In this case, 𝑋 is the original sample, and 𝑋′
0
is the first iteration

where the original samples are considered. Similarly, 𝑋′
𝑛+1

are the
successive iterations where the same gradient step as in FGSM is
applied. Furthermore, 𝑦𝑡𝑟𝑢𝑒 represents the target class of the adversarial
attack, 𝐽 (𝑋′

𝑛
, 𝑦𝑡𝑟𝑢𝑒)) is the loss function with respect to the input, and ∇𝑥
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Fig. 2. The five main steps of VAASIS attack.

Algorithm 1: Algorithm to generate valid and consistent adversarial samples in industrial scenarios without losing their abnormal behavior

Input: 𝑋𝑡𝑟𝑎𝑖𝑛 training dataset, 𝑋𝑡𝑒𝑠𝑡 testing dataset, 𝑀 model, 𝜀𝑠𝑡𝑒𝑝 maximum disturbance per step, 𝜀 global maximum disturbance, 𝑖𝑡𝑒𝑟
number of iterations

Output: X’ adversarial dataset
1 𝑋𝐵 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑋𝑡𝑟𝑎𝑖𝑛) /* create background dataset,𝑋𝐵, from 𝑋𝑡𝑟𝑎𝑖𝑛 */

2 𝑆𝑉 ← 𝑔𝑒𝑡_𝑠ℎ𝑎𝑝_𝑣𝑎𝑙𝑢𝑒𝑠(𝑋𝑡𝑒𝑠𝑡, 𝑋𝐵) /* get SHAP values, 𝑆𝑉 , from 𝑋𝑡𝑒𝑠𝑡 using 𝑋𝐵 */

3 𝐹𝐷, 𝐹𝐶 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑚𝑜𝑠𝑡_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠_𝑓𝑜𝑟_𝑐𝑙𝑎𝑠𝑠(𝑆𝑉 ,𝐴𝐵𝑁𝑂𝑅𝑀𝐴𝐿_𝐶𝐿𝐴𝑆𝑆)/* Select the continuous, 𝐹𝐶, and discrete, 𝐹𝐷,

features to be modified for abnormal class */

/* Execute the projected gradient descent over the continuous features, 𝐹𝐶, with 𝜀𝑠𝑡𝑒𝑝 as the maximum disturbance per

iteration, 𝜀 as the maximum global disturbance allowed and 𝑖𝑡𝑒𝑟 as the number of iterations */

4 𝑋′
← 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑑𝑒𝑠𝑐𝑒𝑛𝑡(𝑋𝑡𝑒𝑠𝑡[𝐹𝐶 ],𝑀, 𝜀𝑠𝑡𝑒𝑝, 𝜀, 𝑖𝑡𝑒𝑟)

/* Create the discretized dataset, 𝑋𝐷, from the normal samples of 𝑋𝑡𝑟𝑎𝑖𝑛 */

5 𝑋𝐷[𝐹𝐶 ] ← 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝑋𝑡𝑟𝑎𝑖𝑛[𝑁𝑜𝑟𝑚𝑎𝑙][𝐹𝐶 ])

6 𝑋′
𝐷
[𝐹𝐶 ] ← 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒(𝑋′[𝐹𝐶 ])/* Create the discretized adversarial dataset, 𝑋′

𝐷
, from the 𝑋′ */

7 for 𝑖 = 1..𝑙𝑒𝑛𝑔𝑡ℎ(𝑋′) do
8 𝑐 ← 𝑔𝑒𝑡_𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑋′

𝐷
[𝑖], 𝑋𝐷) /* get the similar sample 𝑐 for sample 𝑖 − 𝑡ℎ in 𝑋𝐷 */

9 𝑋′[𝑖][𝐹𝐷] ← 𝑐[𝐹𝐷] /* Copy the 𝐹𝐷 from 𝑐 */

10 𝑟𝑓 ← 𝑡𝑟𝑎𝑖𝑛_𝑟𝑓 (𝑋𝑡𝑟𝑎𝑖𝑛) /* Train a Random Forest, 𝑟𝑓, using the 𝑋𝑡𝑟𝑎𝑖𝑛 */

11 for 𝑠 𝑖𝑛 𝑋′/* For each sample, 𝑠, in X’ */

12 do
13 if 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑟𝑓 , 𝑠) ∶= 𝑁𝑂𝑅𝑀𝐴𝐿_𝐶𝐿𝐴𝑆𝑆 /* If 𝑠 is predicted as normal by the 𝑟𝑓 */

14 then
15 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑝𝑎𝑡ℎ𝑠 ← []

16 for 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑖𝑛 𝑟𝑓 .𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 do
17 𝑝𝑎𝑡ℎ𝑠 ← 𝑔𝑒𝑡_𝑟𝑢𝑙𝑒𝑠(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟, 𝐴𝐵𝑁𝑂𝑅𝑀𝐴𝐿_𝐶𝐿𝐴𝑆𝑆) /* Get the rules to check the abnormal class */

18 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ ← 𝑔𝑒𝑡_𝑝𝑎𝑡ℎ_𝑤𝑖𝑡ℎ_𝑙𝑒𝑎𝑠𝑡_𝑒𝑟𝑟𝑜𝑟(𝑠𝑎𝑚𝑝𝑙𝑒, 𝑝𝑎𝑡ℎ𝑠)
19 𝑎𝑝𝑝𝑒𝑛𝑑(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑝𝑎𝑡ℎ𝑠, 𝑏𝑒𝑠𝑡_𝑝𝑎𝑡ℎ)

20 𝑛_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑐ℎ𝑜𝑜𝑠𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑓 .𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠)∕2 + 1, 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑓 .𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠))

21 for 𝑖 = 1..𝑛_𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠 do
22 𝑝𝑎𝑡ℎ ← 𝑔𝑒𝑡_𝑝𝑎𝑡ℎ_𝑤𝑖𝑡ℎ_𝑙𝑒𝑎𝑠𝑡_𝑒𝑟𝑟𝑜𝑟(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑝𝑎𝑡ℎ𝑠)
23 𝑠 ← 𝑚𝑜𝑑𝑖𝑓𝑦_𝑠𝑎𝑚𝑝𝑙𝑒(𝑠, 𝑝𝑎𝑡ℎ)
24 𝑟𝑒𝑚𝑜𝑣𝑒(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑝𝑎𝑡ℎ𝑠, 𝑝𝑎𝑡ℎ)

is the gradient. Unlike FGSM, this iterative version requires an operator
𝐶𝑙𝑖𝑝𝑋,𝜀 to limit the final result between [𝑋−𝜀,𝑋+𝜀], and 𝜀𝑠𝑡𝑒𝑝 is a scalar
that indicates the maximum allowed perturbance in each iteration.

For the correct operation of the attack, we must select the proper
values for the parameters. In particular, we can configure three param-
eters that will determine the performance of the attack. The first one
is 𝜀𝑠𝑡𝑒𝑝. The smaller this value, the smaller the modification introduced
in each iteration. Similarly, 𝜀 indicates how much the sample can be
modified globally. Finally, the number of iterations is also a critical
parameter since it indicates how many modifications will be carried out
on the sample. In general, when an adversarial attack targeted at AD
systems is applied to a set of samples, not all the samples are converted

to the normal class, but some of them may still be classified as abnormal
by the AD and, therefore, they are not considered adversarial samples.
In particular, the higher the values of these parameters are, the greater
the number of adversarial samples. However, this also causes the error,
i.e., the difference between the original and adversarial samples, to be
greater and, therefore, easier to identify by an expert. To solve this, a
trade-off must be reached between the value of these parameters, the
error between the original and the adversarial sample, and the number
of adversarial samples generated.

Finally, once the parameters of the PGD attack are chosen, it must
be launched using the dataset samples as reflected in line 4 of Algo-
rithm 1. In particular, we recommend using the test dataset since it
has not been previously seen during the training of the AD system.
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4.3. Generation of categorical features

In this work, we propose a novel method to generate categorical fea-
tures. In particular, after altering the selected set of continuous features
of a given sample by applying the adversarial attack, we will replace
the value of its selected categorical features with the corresponding
values in the same categorical features of the most similar sample in
the training dataset. To do so, we will apply the nearest neighbor
algorithm on the training dataset using only the modified continuous
features of the adversarial sample. The categorical features selected
by the highest SHAP values of the adversarial sample will be filled
with the corresponding values of its nearest neighbor. These categorical
features will vary from sample to sample due to how SHAP values
are calculated. However, finding the nearest neighbor in a continuous
space can be slow. Therefore, we propose discretizing both the original
dataset and the generated set of adversarial samples. This approach
has two benefits. Firstly, it is faster than working with continuous
data. Secondly, it allows similar samples to be grouped, removing
the potential noise in industrial measurements. Once the datasets are
discretized, we search for samples whose originally continuous features
(now discretized) match those of the generated adversarial sample.
If no sample is found where all the discretized selected continuous
features coincide with the generated adversarial sample, we select the
one with the highest number of coincidences. Otherwise, if multiple
similar samples are available, one is chosen randomly. This process is
reflected in lines 5 through 9 of Algorithm 1.

4.4. Ensuring the adversarial validity of the samples

Once the previous step is complete, a series of valid adversarial
samples for use in industrial environments are generated. However,
there is no guarantee that during the PGD attack, the generated samples
have not actually become real normal samples and, therefore, no longer
have any impact on the physical world. In general, applying excessive
perturbation during the attack will cause an adversarial sample to
become a true normal sample, as shown in Section 3.

In this work, we propose a novel approach to validate that the
generated samples misclassified as normal by the AD system still retain
their anomalous behavior. Moreover, in case they have been converted
into true normal samples, we propose a mechanism to recover their
anomalous behavior.

For this purpose, our proposal includes the use of a Random Forest
(RF) classifier, which trains multiple Decision Trees (DT) and allows us
to determine the decision rules applied during the classification of a
sample. Therefore, the first step is to use the training dataset to train
an RF that achieves acceptable performance in discriminating labeled
normal and anomalous samples.

Once the RF has been trained, the rules of all its DTs are available.
Fig. 3 displays the rules for a particular DT. Note, however, that the
features employed are not the genuine ones; instead they are a simpli-
fied analogous set used for illustrative purposes. In this tree, we can see
different elements. On the one hand, we identify three types of nodes:
root, intermediate, and leaf. For each non-leaf node, the feature to be
evaluated and a threshold is shown. This is known as the condition, and
a certain path will be taken depending on whether it is true or false.
For example, on the root node, feature Water_Level_1 is compared to the
threshold −0.101. If this condition is true for the particular sample being
evaluated, the left path will be taken; otherwise, the right path will be
taken. Furthermore, each node has an additional set of attributes: gini
indicates the Gini index which is a measure of the quality of the data
partition; samples indicates the number of samples evaluated in that
node (3190 in the root node); value is an array of two values containing
the number of samples that meet and do not meet the condition (for the
root node 1 468 samples meet the condition and 1722 samples do not
meet the condition); finally, the class attribute only makes sense in the
leaf nodes, where it tells us whether samples ending in that node are

normal or abnormal. Node color indicates the class to which most of
the samples at each node belong, namely, orange for the normal class
and blue for the abnormal class. Color intensity represents the degree
of confidence in the prediction.

In a normal prediction flow, a specific sample begins to be evaluated
at the root node. It goes down through the intermediate nodes depend-
ing on the conditions until it reaches a leaf node. However, we propose
traversing the tree bottom-up to extract the rules for a specific class.
Looking at Fig. 3, we can see three paths for the anomalous class, one
for each leaf labeled as abnormal. These paths are detailed in Table 2.

When we validate individual adversarial samples to check if they
retain their abnormal behavior, the first phase is to evaluate the sample
using the RF. If the RF classifies the sample as abnormal, it is presumed
that the sample retains its abnormal behavior even though the AD
system classifies it as normal. On the contrary, if the RF classifies
the sample as normal, we consider that the adversarial sample was
converted into a true normal sample during the adversarial attack.
Therefore, we proceed to extract all the paths starting from an abnor-
mal leaf node of all the DTs, and some of them will be used to modify
the sample to recover its anomalous behavior.

To modify each sample that the RF predicts as normal, we calculate
the correction required so that the conditions for each path leading to
an anomalous leaf node of each of the DTs are met. This correction
can be considered as an error and is computed as shown in Eq. (3),
where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑓 is the threshold used by the DT in a given node for
the feature 𝑓 , and 𝑠𝑓 is the value of the feature 𝑓 in the sample 𝑠. The
path used to modify the sample and recover its anomalous behavior is
obtained using the following criteria. First, the path must not modify
features previously updated. Second, the path with the least error that
meets the first criterion will be selected. In particular, the modification
is made following the rules extracted from the DT and modifying, in
the way specified in the rules, those features that make the DT classify
the sample as normal.

𝑒𝑟𝑟𝑜𝑟 = (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑓 − 𝑠𝑓 )
2 (3)

However, since RF is an ensemble and its result is based on a voting
process based on all DTs, it is necessary to repeat this process for, at
least, half of the DTs trained. Furthermore, we must remember not to
choose paths that modify features that have already been previously
modified since this makes previous rules not be fulfilled, and the
anomalous behavior can be lost.

This process is illustrated in the lines 10–24 of the Algorithm 1.

4.5. Validation

This step allows the attacker to validate the adversarial samples
generated following our proposal. This step is important since it will
permit us to evaluate how effective the proposed attack is with respect
to other attacks present in the literature.

Mainly, the validation focuses on two key aspects of adversarial at-
tacks. On the one hand, it quantifies the number of adversarial samples
that the attack has managed to generate, which helps us understand
how easily adversarial samples are generated. On the other hand, it
evaluates the mean error of these samples in relation to the original
samples from which they were generated. This error determines which
adversarial attacks generate samples that closely resemble the originals,
making them more challenging for experts to identify.

5. Experiments

This section details the steps to deploy our attack in a real industrial
scenario of water distribution. First, we present the scenario and the
dataset used. Then, we describe the requirements an attacker needs to
successfully perform the attack. Finally, we show how we applied the
steps explained in Section 4. This process with a specific real portion
of a sample from the WADI dataset is shown in Fig. 4, and it will
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Fig. 3. Illustration of a particular DT in an RF (the features shown are not the actual ones, but a simpler version of them). The tree has three types of nodes: root, intermediate,
and leaf. Each non-leaf node compares whether a given feature is less than or equal to a threshold. Depending on whether the condition is true or false, the left or right path
is taken. In addition, each node has the Gini index of the partition, the number of samples evaluated in the node, and the number of samples in each class. Finally, node color
indicates the class to which the majority of the samples at each node belong. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Paths from the abnormal leaf nodes to the root node in the simplified DT depicted in Fig. 3.

Path 1 Path 2 Path 3

Feature Condition Feature Condition Feature Condition

Water_Flow_1 1.08 Water_Level_2 0.18 HCl_Sensor −0.99
NaOCl_Sensor 0.6 NaCl_Sensor −0.32 NaCl_Sensor −0.32
Water_Level_1 −1.01 Water_Level_1 −1.01 Water_Level_1 −1.01

be referenced in the following sections. For the reader’s convenience,
this section is divided into the same subsections as Section 4 plus
two additional subsections: the dataset and requisites subsections. The
former subsection describes the dataset used during the experiments,
whereas the latter subsection establishes the set of elements needed by
a potential attacker. They are supposed to be already present in the
industrial scenario and have to be configured by the administrators.

5.1. Dataset

The Water Distribution (WADI) testbed was launched in 2016, com-
prising two elevated reservoir tanks, six consumer tanks, two raw water
tanks, and a returned tank. Besides, the WADI testbed also incorporated
chemical dosing systems, booster pumps, and valves, instrumentation,
and analyzers. WADI was designed to account for the likelihood of low
demand happening during the weekends and allow users to modify the
input flow to simulate the water consumption of a realistic scenario.
In addition, WADI is split into three processes, as shown in Fig. 5. The
first process (P1), called Primary Grid, contains two raw water tanks
and a level sensor (1-LIT-001) that monitors the water level in the
tanks. The water intake in this process can come from three different
sources: a water treatment plant, a public utility board inlet, and the
return water grid in WADI. This process also assures the quality of
the water by employing a chemical dosing system. Finally, P1 is also
equipped with sensors to monitor the water quality entering and exiting
the process. The second process (P2) is called the Secondary Grid, and
it is split into two sub-processes: P2 A (Elevated Reservoir) and P2B
(Consumer tanks). The P2 A comprises two elevated reservoir tanks,
while the P2B consists of six consumer tanks. The water tanks from the
Primary Grid supply water to the reservoir tanks, delivering the water
to the consumer tanks. When the consumer tanks meet their demands,
the water is drained to the Return Water process (P3).

To obtain the data from each process, WADI uses Programmable
Logic Controllers (PLC) that control and monitor local sensors and
actuators such as pumps and valves. The communication network
consists of three layers. Layer 0 (L0) communicates the physical sensors
and actuators with their respective PLCs. The communication is carried
out by means of the RS485 Modbus protocol. Layer 1 (L1) constitutes
the control plant network and serves to communicate all PLCs with a
central node. The communication at this level is performed by Ethernet
switches using NIP/SIP based on TCP and High-Speed Packet Access
(HSPA) cellular gateways using General Packet Radio Service (GPRS)
modems. Finally, layer 2 (L2) communicates the touch panel Human
Machine Interface (HMI) and the plant control network. The list of
sensors and actuators in the WADI testbed, along with the type of data
(continuous or discrete) they generate are summarized in the Table 3.

In this industrial setting, 15 different attacks were deployed and
executed over the course of 2 days. As a result, the WADI dataset
used in this study consists of two files. The first file contains sensor
and actuator values during 14 days of normal operation, whereas the
second file contains the system’s behavior during the various attacks
deployed over 2 days. The attacks launched against the testbed are
detailed in Table 4. These are genuine attacks feasible within an actual
industrial context, thus serving as a means to validate our proposal
in a real-world scenario. The dataset features were collected from the
sensors and actuators, and, in most cases, they share the name with the
sensor/actuator from where they were gathered. The total number of
features in the dataset is 123.

5.2. Requisites

This step is carried out by the administrator of the AD system and
is intended for configuring required elements before the attack can be
deployed. In particular, a slight preprocessing of the WADI dataset was
carried out, as well as the training of the supervised model that offers
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Fig. 4. Example of generation of a specific adversarial timestep. In the first phase, SHAP is employed to determine the most representative features among the 96 features of the
timestep. In this particular case, six features are selected. In the next step, PGD is applied to modify the five continuous features. Subsequently, the most similar sample from the
normal behavior of WADI is chosen to modify the only categorical feature (2-MCV-007-CO). Finally, the rules extracted from the RF trees are used to verify that the sample is
considered normal and that the feature 2-PIC-003-PV should be modified to restore its anomalous behavior. For the sake of clarity in this example, we have avoided displaying the
process of modifying an entire sample and have only illustrated the modification of a portion of it (timestep). However, generating a complete adversarial sample would involve
simply extending this process to the remaining timesteps that comprise the sample. The orange color in the image is used to highlight those values that have been modified in
each step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

sufficiently high performance to be deployed in real environments.
Note that we are not interested in obtaining the best AD performance;
therefore, a grid-search strategy was not performed to find the optimal
values for the hyper-parameters. We only need the AD model as a
prerequisite to perform the next steps of the proposed attack.

First, a series of actions were taken to make it easier to work with
the dataset. For example, the last two rows of the dataset were removed
since they contained null values. Additionally, the columns 2-LS-001-
AL, 2-LS-002-AL, 2-P-001-STATUS, and 2-P-002-STATUS were removed
since all its values were Not A Number (NAN). In addition, columns
Row, Date, and Time and all the columns whose values were constant
throughout the entire dataset ( Table 5) were removed, resulting in
samples with 96 features.

Next, the dataset was partitioned into training and test, and the
continuous features were normalized using standard normalization. To
perform the partition, we first created a sliding window of size 5. This
converted the shape of the original dataset from (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) into
a shape of (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 5, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). The next step was to create a balanced
dataset. In particular, we took the total number of attack samples in the
dataset, 9 977, and selected the same amount of normal samples using
random sampling throughout the entire dataset. Finally, and with the
goal of capturing the different patterns of the normal behavior in the
whole dataset, a procedure based on folds was established to create the
training and test dataset. In particular, the normal and attack sample

sets were divided into 20 folds, and in each of these folds, the first 80%
of the samples were chosen for the training dataset and the remaining
20% of the samples for the test dataset.

Finally, we used Tensorflow [27] and Keras [28] libraries to train
a recurrent neural network with 2 LSTM layers and 3 dense layers
by means of the Adam optimizer. ReLU activation function was used
in each hidden dense layer together with dropout regularization. The
activation function of the output layer was softmax. The full network
architecture is detailed in Table 6, and the performance achieved by
the AD system is shown in Table 7.

5.3. Selection of features to modify

In this step, we used the SHAP library [26] to extract the importance
of each feature in samples. First, we created a background dataset
by selecting 100 normal and 100 abnormal samples from the training
dataset. Second, we extracted the importance of each feature in test
samples. This results in an array of shape (2, 2 000, 5, 96) being 2 the
different classes in the WADI dataset (normal and abnormal), 2 000

the total number of attack samples in the test dataset, 5 the timesteps
used to create the time-series sequence, and 96 the number of features.
Finally, from the test dataset, we selected the features whose SHAP
values were highest for the abnormal class. This told us the most
important features of each sample that contribute to being abnormal.
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Fig. 5. The stages of WADI[9]. The solid arrows illustrate the flow of the water. S and A stand for Sensor and Actuator, respectively. 1-MV-001 represents the motorized valve
1 for stage 1, while 2-MV-001 represents the motorized valve 1 for stage 2. MV: Motorized Valve, LT: Level sensor of a tank, P: pump, FS: Flow meter, and MCV: Motorized
Consumer Valve.

Table 3
Sensors and actuators from WADI testbed.

Type of device Feature name Datatype

Pressure Meter 2-PIT-001-PV, 2-PIT-002-PV, 2-PIT-003-PV Continuous

Modulating Consumer Valve 2-MCV-101-CO, 2-MCV-201-CO, 2-MCV-301-CO,
2-MCV-401-CO, 2-MCV-501-CO, 2-MCV-601-CO,
2-MCV-007-CO

Continuous

Flow Totalizer 2-FQ-101-PV, 2-FQ-201-PV, 2-FQ-301-PV, 2-FQ-401-PV,
2-FQ-501-PV, 2-FQ-601-PV

Continuous

Level Transmitter 1-LT-001-PV, 2-LT-001-PV, 2-LT-002-PV, 3-LT-001-PV Continuous

Analyzer Indicator Transmitter 1-AIT-001-PV, 1-AIT-002-PV, 1-AIT-003-PV, 1-AIT-004-PV,
1-AIT-005-PV, 2A-AIT-001-PV, 2A-AIT-002-PV,
2A-AIT-003-PV, 2A-AIT-004-PV, 2B-AIT-001-PV,
2B-AIT-002-PV, 2B-AIT-003-PV, 2B-AIT-004-PV,
3-AIT-001-PV, 3-AIT-002-PV, 3-AIT-003-PV, 3-AIT-004-PV,
3-AIT-005-PV

Continuous

Flow Indicator Transmitter 1-FIT-001-PV, 2-FIT-001-PV, 2-FIT-002-PV, 2-FIT-003-PV,
3-FIT-001-PV

Continuous

Differential Pressure Transmitter 2-DPIT-001-PV Continuous

Flow Indicator Controller 2-FIC-101-CO, 2-FIC-101-PV, 2-FIC-101-SP, 2-FIC-201-CO,
2-FIC-201-PV, 2-FIC-201-SP, 2-FIC-301-CO, 2-FIC-301-PV,
2-FIC-301-SP, 2-FIC-401-CO, 2-FIC-401-PV, 2-FIC-401-SP,
2-FIC-501-CO, 2-FIC-501-PV, 2-FIC-501-SP, 2-FIC-601-CO,
2-FIC-601-PV, 2-FIC-601-SP

Continuous

Pressure Indicator Controller 2-PIC-003-CO, 2-PIC-003-PV, 2-PIC-003-SP Continuous

Pump Speed 2-P-003-SPEED, 2-P-004-SPEED Continuous

Pump 1-P-001-STATUS, 1-P-002-STATUS, 1-P-003-STATUS,
1-P-004-STATUS, 1-P-005-STATUS, 1-P-006-STATUS,
2-P-001-STATUS, 2-P-002-STATUS, 2-P-003-STATUS,
2-P-004-STATUS, 3-P-001-STATUS, 3-P-002-STATUS,
3-P-003-STATUS, 3-P-004-STATUS

Discrete

Motorized Valve 1-MV-001-STATUS, 1-MV-002-STATUS, 1-MV-003-STATUS,
1-MV-004-STATUS, 2-MV-001-STATUS, 2-MV-002-STATUS,
2-MV-003-STATUS, 2-MV-004-STATUS, 2-MV-005-STATUS,
2-MV-006-STATUS, 2-MV-009-STATUS, 2-MV-101-STATUS,
2-MV-201-STATUS, 2-MV-301-STATUS, 2-MV-401-STATUS,
2-MV-501-STATUS, 2-MV-601-STATUS, 3-MV-001-STATUS,
3-MV-002-STATUS, 3-MV-003-STATUS

Discrete

Selenoid Valve 2-SV-101-STATUS, 2-SV-201-STATUS, 2-SV-301-STATUS,
2-SV-401-STATUS, 2-SV-501-STATUS, 2-SV-601-STATUS

Discrete
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Table 4
Attacks deployed in the testbed.

Attack Duration (min) Description

1 25.16 Motorized valve 1-MV-001 is
maliciously turned on

2 9.50 Flow Indicator Transmitter
1-FIT-001 is turned off

3-4 29.00 Drain the elevated reservoir tank
2 (2-T-002)

5 14.10 Turned off valves to consumers
(2-MCV-101, 2-MCV-201,
2-MCV-301, 2-MCV-401,
2-MCV-501, 2-MCV-601)

6 11.10 Turn on maliciously 2-MCV-101,
2-MCV-201

7 11.38 Supply contaminated water to the
elevated reservoir tank

8 9.40 Maliciously open 2-MCV-007

9 1.27 Maliciously open 1-P-006

10 14.26 Damage 1-MV-001

11 11.29 Maliciously open 2-MCV-007

12 6.00 Maliciously open 2-MCV-007

13 3.22 Reducing booster set point
pressure

14 9.36 Stop chemical dosing to the raw
water

15 11.30 Flood the elevated reservoir tank
2 (2-T-002)

Table 5
Features whose values remained constants in the whole dataset.

1-LS-001-AL 2-P-004-STATUS 3-LS-001-AL
1-LS-002-AL 2-SV-101-STATUS 3-MV-001-STATUS
1-P-002-STATUS 2-SV-201-STATUS 3-MV-002-STATUS
1-P-004-STATUS 2-SV-301-STATUS 3-MV-003-STATUS
2-MV-001-STATUS 2-SV-401-STATUS 3-P-001-STATUS
2-MV-002-STATUS 2-SV-501-STATUS 3-P-002-STATUS
2-MV-004-STATUS 2-SV-601-STATUS 3-P-003-STATUS
2-MV-005-STATUS 3-AIT-001-PV 3-P-004-STATUS
2-MV-009-STATUS 3-AIT-002-PV PLANT-START-STOP-LOG

Table 6
Architecture of LSTM model used to detect AD.

Layers Hyper-parameters

LSTM Layer Nodes: 16
LSTM Layer Nodes: 8
Dense Layer Nodes: 16
Activation ReLU
Dropout Rate: 0.7
Dense Layer Nodes: 8
Activation ReLU
Dropout Rate: 0.7
Dense Layer Nodes: 2
Activation Softmax
Loss Categorical crossentropy
Epochs 100
Batch size 1000
Optimizer Adam

Table 7
AD system performance.

Precision Recall F1-score

0.974 0.972 0.973

Finally, we selected a particular number of features to be modified in
the PGD attack. In this case, we selected all features whose SHAP values
were above the 90th percentile. This value can be a hyper-parameter

and can be tuned for better performance. However, in this study, we
have verified that the selected value offers good performance. At this
point, we discriminated which of these features were continuous and
would be modified by PGD and which were discrete and would be
modified by copying the categorical value of the most similar sample
in the normal training dataset. In the specific sample depicted in Fig. 4,
we show which of the 96 original features of the fifth timestep obtained
the highest SHAP values: 1-FIT-001-PV, 1-LT-001-PV, 2-FIC-501-SP,
2-MCV-007-CO, 2-PIC-003-CO, and 2-PIC-003-PV.

5.4. Generation of continuous features

In this step, the PGD attack provided by the Adversarial Robustness
Toolbox (ART) [29] was launched. First, we selected all attack samples
in the test dataset. Then, we selected the attack parameters. In partic-
ular, we established the maximum perturbation allowed, 𝜀, to 4, while
the maximum perturbation per iteration allowed, 𝜀𝑠𝑡𝑒𝑝, was set to 0.05.
Finally, the number of iterations was fixed to 50. As can be observed in
Section 4, these are hyper-parameters that can be tuned to get better
adversarial samples. However, we have verified that the selected values
achieved a good trade-off between the number of adversarial samples
generated and the error produced. The goal is to convert all the attack
samples in the test dataset into normal samples. This causes samples
to be misclassified by the AD system and reach the industrial devices,
impacting the physical world.

After launching the attack, we converted the original anomalous
samples of the test dataset into adversarial samples. The majority of
them (83.62%) were classified as normal by the AD system, and the
remaining samples (16.38%) were still classified as anomalous by the
AD.

Fig. 4 illustrates how PGD was applied to modify five of the con-
tinuous features present in the fifth timestep of a sample. In particular,
the modified features were: 1-FIT-001-PV, 1-LT-001-PV, 2-FIC-501-SP,
2-PIC-003-CO, and 2-PIC-003-PV.

5.5. Generation of categorical features

In this step, we modified the categorical features of the generated
adversarial samples to convert them into valid features in an industrial
environment, where the presence of continuous values in these features
would make the sample invalid. To facilitate the nearest-neighbor
search restricted to continuous features, the samples of the training
dataset and the previously generated adversarial samples were dis-
cretized. This discretization was performed using the KBinsDiscretizer
class of the scikit-learn [30] library, configured with 10 bins and a
uniform discretization strategy. The number of bins must be adapted
to the particularities of the dataset.

Next, for each discretized adversarial sample, and using only the
continuous modified features, the sample with the highest number of
matches was located in the discretized normal training dataset. A match
was considered to occur when the value of a continuous feature that
was discretized from the set of adversarial samples matches the value
of a discretized feature from the normal training dataset. Finally, the
values of the categorical features from the matched sample are copied
into the corresponding features of the adversarial sample.

Fig. 4 shows that the categorical feature (2-MCV-007-CO) was not
modified in the initial steps. Therefore, in this step, VAASIS compared
this specific timestep with the timesteps in the normal behavior and
selected the most similar sample. Then, the value of 2-MCV-007-CO
was taken from the most similar sample, 0, in this example.



Journal of Information Security and Applications 79 (2023) 103647

12

A.L. Perales Gómez et al.

Table 8
RF performance.

Precision Recall F1-score

0.971 0.968 0.969

5.6. Ensurance the validity of the samples

In this step, an RF was used to validate the previously generated
adversarial samples and, thus, ensure that they retain their anomalous
behavior. To do this, we trained an RF using the training dataset created
in Section 5.2. The RF was trained using the scikit-learn library, the
number of estimators was set to 10, and the maximum depth of the
trees to 10. The RF performance is shown in Table 8.

Next, we checked whether the RF predicted each previously gener-
ated adversarial sample as normal. If so, it means that the sample lost its
anomalous behavior, and it actually became a true normal sample. On
the contrary, if the RF predicts the sample as anomalous, it means that
the sample maintained its anomalous behavior. Once we knew which
samples were converted to true normal ones, we employed the paths of
the DTs trained in the RF to determine the necessary changes in each
sample to return them to their anomalous behavior.

In the example shown in Fig. 4, the resulting sample was classified
as normal, thus losing its effectiveness. Therefore, VAASIS employed
the rules extracted from the trees of the RF to recover the abnormal
behavior of the sample. In this specific example, it was necessary to
modify the value of the 2-PIC-003-PV feature, resulting in a change
from 4.1482 to 2.6521. With this change, the sample was deemed
abnormal according to the RF model. Consequently, we consider that
VAASIS generated a valid abnormal adversarial sample.

5.7. Validation

Finally, in this step, we validate the results and compare them with
those obtained using raw PGD and CW methods, which are the state of
the art in adversarial attacks. To carry out this validation, we consider
the number of adversarial samples generated and the average error
of these samples. To perform the comparison, we executed our attack
as explained previously and, in addition, executed PGD with different
configurations of the maximum permissible disturbance, 𝜀. In particu-
lar, we tested with 0.1, 0.3, 0.5, 0.7, and 1.0. In all the simulations,
the number of iterations was set at 50, and the maximum disturbance
allowed in each iteration, 𝜀𝑠𝑡𝑒𝑝, was set at 0.05. Furthermore, we
considered the CW attack, as it is the most powerful adversarial attack.
However, due to the high computational cost of this attack, we limited
the number of iterations to 10. A critical parameter of this attack is the
confidence level. Higher confidence produces samples that are farther
away from the original sample but are classified with more confidence
as the target class. For this parameter, we tested values of 0 0.1, 0.2, and
0.3, but the results were almost similar. Therefore, in this section, we
only consider the execution of CW using a confidence level of 0. Finally,
we tested our proposal and the methods mentioned above using several
𝑙𝑝 norms, specifically the 𝑙1, 𝑙2, and 𝑙∞ norms. Table 9 shows the results
for all the methods configured as described above.

As evident from the results, our proposal achieved the best trade-off
between the number of adversarial samples generated and the resulting
error. These adversarial samples are particularly challenging for expert
detection. In particular, for the 𝑙1 norm, our proposal attained an error
of 0.006, slightly surpassing PGD(0.1), which achieved an error 0.005.
However, the latter configuration only generated half the number of
the adversarial samples (2.8%) compared to our proposal (5.4%).

On the other hand, PGD(1.0) managed to generate 3.1% of adversar-
ial samples with an error of 0.054. However, our proposal significantly
outperformed it, which achieved an error nearly ten times lower.
Shifting to the 𝑙2 configuration, our proposal demonstrated the lowest

error at 0.028, which was nearly four times less than the second-best
error achieved by PGD(0.1).

In terms of the number of adversarial samples generated, our pro-
posal excelled by producing 62.25% more than PGD. The CW method,
while generating 86.25% of adversarial samples, incurred a signifi-
cantly higher error, 30 times that of our proposal.

Lastly, in the 𝑙∞ configuration, our proposal reached the second-
best error at 0.205, with the lowest error belonging to CW at 0.027.
Notwithstanding this, our proposal surpassed CW in terms of the quan-
tity of generated adversarial samples, producing 85.50% compared to
CW’s 23.34%.

In summary, our proposal achieved the best balance between gener-
ating adversarial samples and the resulting error, rendering the samples
challenging for expert identification. Specifically, our proposal can gen-
erate a substantial number of adversarial samples with minimal error.
Finally, in industrial environments, our proposal can generate valid and
consistent samples as it addresses the creation of categorical features
and guarantees the anomalous behavior of the generated samples,
advantages that are absent in the original PGD and CW methods.

6. Conclusion and future work

The AD paradigm, along with ML and DL techniques, has achieved
significant performance in industrial scenarios. However, these tech-
niques are vulnerable to adversarial attacks capable of modifying sam-
ples in a way that causes the AD systems to misclassify them. These
attacks mainly focus on computer vision and present important limita-
tions when applied in industrial environments. In this work, we propose
a novel targeted adversarial attack called VAASI, capable of generating
valid adversarial samples in industrial settings.

First, we propose selecting the most important features for each
sample through SHAP. The selected features are the ones that will
be modified in further steps. Then, the PGD method generates trivial
adversarial samples by modifying the continuous features. Afterward,
the categorical features are modified using the samples from the normal
dataset that have the highest match with the particular adversarial
sample. Finally, a novel approach based on the DTs trained by an RF
is used to ensure the abnormal behavior of the samples. If adversarial
samples are considered normal, the DT rules are used to modify the
sample and recover its abnormal behavior.

This novel attack was validated using a WADI dataset gathered from
a water distribution industrial plant. We compared our proposal with
PGD and CW methods with different configurations for the maximal
allowed disturbance and confidence parameters, respectively. The se-
lection of these methods is based on the fact that they are the most
powerful methods available in the literature. We concluded that our
proposal achieved the best balance between the number of adversarial
samples generated and the error produced to generate them. To be
specific, under a 𝑙1 norm, our proposal had an error only 0.001 higher
than the methods with the least error. However, our proposal generated
more adversarial samples than any of the tested methods. Under a
𝑙2 norm, we obtained the least error (0.028) while the percentage of
adversarial samples produced (62.25%) was higher than any of the
PGD configurations tested. Finally, under a 𝑙∞, our proposal generated
85.80% of samples with an error of 0.205. In the case of CW, it
generated 23.34% of adversarial samples with an error of 0.027, while
PGD produced 92% of adversarial samples with an error of 17.574.

As future work, we plan to study defense mechanisms against the
adversarial attacks developed in this work. In particular, we intend
to test the effectiveness of the adversarial training to enhance the
robustness of the model against VAASIS. Another line to explore in the
future is to migrate VAASIS to a black-box scenario where the attacker
has no knowledge about the model and its features.
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Table 9
Performance comparison between state-of-the-art adversarial attacks (PGD and CW with different parameters) and our proposal.

PGD(0.1) PGD(0.3) PGD(0.5) PGD(0.7) PGD(1.0) CW Ours

𝐿1

Samples generated 2.8% 2.8% 2.8% 2.9% 3.1% – 5.4%
Average error 0.005 0.016 0.027 0.038 0.054 – 0.006

𝐿2

Samples generated 3.35% 9.25% 22% 33.4% 49.5% 86.25% 62.25%
Average error 0.087 0.248 0.389 0.519 0.721 0.823 0.028

𝐿∞

Samples generated 66.80% 86.10% 87.30% 89.75% 92% 23.34% 85.80%
Average error 1.844 5.435 9.016 12.540 17.574 0.027 0.205
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