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A B S T R A C T   

Primary aldosteronism (PA) causes 5–10% of hypertension cases, but only a minority of patients are currently 
diagnosed and treated because of a complex, stepwise, and partly invasive workup. We tested the performance of 
urine steroid metabolomics, the computational analysis of 24-hour urine steroid metabolome data by machine 
learning, for the identification and subtyping of PA. Mass spectrometry-based multi-steroid profiling was used to 
quantify the excretion of 34 steroid metabolites in 24-hour urine samples from 158 adults with PA (88 with 
unilateral PA [UPA] due to aldosterone-producing adenomas [APAs]; 70 with bilateral PA [BPA]) and 65 sex- 
and age-matched healthy controls. All APAs were resected and underwent targeted gene sequencing to detect 
somatic mutations associated with UPA. Patients with PA had increased urinary metabolite excretion of min-
eralocorticoids, glucocorticoids, and glucocorticoid precursors. Urine steroid metabolomics identified patients 
with PA with high accuracy, both when applied to all 34 or only the three most discriminative steroid metab-
olites (average areas under the receiver-operating characteristics curve [AUCs-ROC] 0.95–0.97). Whilst machine 
learning was suboptimal in differentiating UPA from BPA (average AUCs-ROC 0.65–0.73), it readily identified 
APA cases harbouring somatic KCNJ5 mutations (average AUCs-ROC 0.79–85). These patients showed a 
distinctly increased urine excretion of the hybrid steroid 18-hydroxycortisol and its metabolite 18-oxo-tetrahy-
drocortisol, the latter identified by machine learning as by far the most discriminative steroid. In conclusion, 
urine steroid metabolomics is a non-invasive candidate test for the accurate identification of PA cases and 
KCNJ5-mutated APAs.  

Abbreviations: THAldo, 3α,5β-tetrahydroaldosterone; 18-OH-F, 18-hydroxycortisol; 18-OH-THA, 18-hydroxy-tetrahydro-11-dehydrocorticosterone; 18-oxo-THF, 
18-oxo-tetrahydrocortisol; APA, aldosterone-producing adenoma; AUC-ROC, area under the receiver-operating characteristics curve; BPA, bilateral primary aldo-
steronism; ENSAT, European Network for the Study of Adrenal Tumours; GC-MS, gas chromatography-mass spectrometry; GMLVQ, generalised matrix relevance 
learning vector quantization; PA, primary aldosteronism; THF, tetrahydrocortisol; THS, tetrahydro-11-deoxycortisol; UPA, unilateral primary aldosteronism. 
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1. Introduction 

Primary aldosteronism (PA) is the most common form of secondary 
hypertension and is found in 5–10% of patients with hypertension and 
up to 20% of those with resistant hypertension [1–4]. The main subtypes 
of PA are unilateral primary aldosteronism (UPA) and bilateral primary 
aldosteronism (BPA) [1]. In the majority of UPA caused by 
aldosterone-producing adenoma (APA), somatic driver mutations have 
been identified in the tumour, mostly affecting ion channels or pumps 
and eventually resulting in the overproduction of aldosterone [5–9]. 
Differentiating UPA from BPA as the cause of PA provides the basis for 
therapeutic stratification: surgery is the preferred treatment option for 
UPA, whilst patients with BPA typically receive long-term treatment 
with mineralocorticoid receptor antagonists [1,10]. PA is associated 

with an increased risk for cardio- and cerebrovascular complications, 
which exceeds the risk associated with essential hypertension [11–13]. 
Furthermore, the prevalence of metabolic comorbidities such as insulin 
resistance, type 2 diabetes and osteoporosis is higher in patients with PA 
compared to the general and hypertensive population [14–16], which 
has been linked to glucocorticoid co-secretion detectable in a large 
proportion of patients [17]. The current diagnostic workup for PA is 
complex, expensive and requires repeated visits before the final diag-
nosis is safely established. Therefore, screening is currently limited to 
patients with a high degree of suspicion of underlying primary aldo-
steronism, resulting in many cases remaining undiagnosed [1,18]. 

Serum multi-steroid profiling has been identified as a promising tool 
in the diagnostic workup of PA, particularly after the discovery that a 
subgroup of patients with UPA due to APA secrete high amounts of 

Fig. 1. Study design (A), distribution of the somatic mutations of APAs (B), and schematic overview of urine steroid metabolites analysed in the study participants 
(C). Steroid metabolites are schematically mapped onto the steroidogenic pathways leading to mineralocorticoid, glucocorticoid, hybrid steroid, and androgen 
biosynthesis. Arrows do not imply interconversion between metabolites; they represent a simplistic derivation from the synthetic sequential pathway involving 
hormonal steroid precursors and active hormones. Steroid nomenclature is reported in Appendix Table 2. Abbreviations: APA: aldosterone-producing adenoma; BPA: 
bilateral primary aldosteronism, UPA: unilateral primary aldosteronism. 
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“hybrid steroids” (18-oxocortisol and 18-hydroxycortisol), which 
require enzymatic steps typically restricted to the adrenal zona glo-
merulosa and the zona fasciculata for their synthesis [19–24]. Here, we 
explored the performance of 24-hour urine steroid metabolome analysis 
coupled with machine learning (= urine steroid metabolomics) for 
diagnosis, subtype differentiation, and identification of APAs harbour-
ing somatic mutations in a large cohort of patients with PA compared to 
healthy controls. 

2. Materials and methods 

2.1. Study population 

Adult patients (>18 years) with PA were consecutively recruited at 
four centres participating in the European Network for the Study of 
Adrenal Tumours, ENSAT (Munich, Würzburg, Nijmegen, Berlin) 
(Fig. 1A). The diagnosis and subtype differentiation of PA was confirmed 
according to local protocols in accordance with Endocrine Society 
guidelines [1]. Patients were studied without antihypertensives during 
diagnostic procedures whenever possible; interfering medications were 
paused for at least 1 week before testing (4 weeks or more in the case of 
mineralocorticoid receptor antagonists). UPA was diagnosed by unsti-
mulated or adrenocorticotropic hormone 1–24 stimulated adrenal vein 
sampling, according to local protocols. The study population is a subset 
of a previously published study assessing the 24-hour urine steroid 
metabolome in a large cohort of patients with newly diagnosed UPA and 
BPA [17]. In this study, we included only those UPA cases who also 
underwent unilateral adrenalectomy and investigation of somatic mu-
tations in the tumour tissue. A group of 65 healthy normotensive con-
trols matched for sex and age to the patients with PA was recruited and 
provided a 24-hour urine collection. All participants provided written 
informed consent, and the study was approved by the ethics committee 
at each participating institution. 

2.2. Targeted gene sequencing 

DNA was extracted from tumour tissue of patients with UPA after 
adrenalectomy and subjected to targeted sequencing of genes known to 
harbour somatic mutations in APAs (KCNJ5, ATP1A1, ATP2B3, CAC-
NA1D, CTNNB1, and PRKACA), as previously described (Fig. 1B) [25]. 

2.3. Urine steroid metabolome profiling 

All patients with PA collected a 24-h urine sample at the time of 
diagnosis of PA or at the initial visit for analysis by gas chromatography- 
mass spectrometry (GC-MS) in selected-ion-monitoring analysis mode, 
as previously described [26,27]. This included the identification and 
quantification of 34 different steroid metabolites comprehensively 
covering net steroid production, including mineralocorticoids, gluco-
corticoids, hybrid steroids, androgens, and their precursors (Fig. 1C). 

2.4. Statistical analysis 

Summary statistics were used to describe demographics and steroid 
metabolome of the study participants. Linear regression models were 
used to compare the urine steroid profiling data between groups 
adjusting for age and sex (healthy controls vs. PA, UPA vs. BPA, and 
KCNJ5-mutated APAs vs. non-KCNJ5-mutated APAs), and using log- 
transformed outcome data to reduce the impact of outliers. Separate 
multiple linear regression models were used for each comparison, using 
the concentration of each steroid as the dependent variable and age, sex, 
and the binary comparison of interest (e.g., healthy controls vs. PA) as 
the independent variables. Associations between the log-transformed 
outcome data were reported as sympercents (mean percentage change, 
95% confidence interval) [28]. The software packages R, Stata® version 
16, MATLAB®, and GraphPad Prism 9 (San Diego, CA: GraphPad 

Software Inc.) were used for analysis. 

2.5. Machine learning analysis of the urine steroid profiling data 

We applied two distinct machine learning approaches, generalised 
matrix relevance learning vector quantization (GMLVQ) [29–31], a 
variant of LVQ [32], and random forest [33] for the computational 
analysis of the urine multi-steroid profiling. 

The mathematical details of GMLV, a prototype-based classification 
method, have been previously described [30,31,34] and it has been 
applied to multi-steroid urine metabolome data in previous studies [26, 
35]. In brief, 24-hour excretion values of the 34 steroid metabolites were 
log-transformed. The resulting set of 34-dimensional vectors x = (x1,x2, 
…,x34), together with the class membership (healthy controls, PA, UPA, 
BPA, KCNJ5-mutated APA, and non-KCNJ5-mutated PA) served as input 
for the machine learning analysis. The dataset was randomly split into a 
training and a validation set (90% and 10% of cases, respectively), 
which were used to evaluate the performance of GMLVQ of each clas-
sification experiment. Based on the mean log-transformed excretions in 
the actual training set and the associated standard deviation, the 
training and validation sets were subjected to a z-score transformation in 
each random split. Each experiment was repeated 50 times and the 
performance was measured as the average area under the 
receiver-operating characteristics curve (AUC-ROC ± standard devia-
tion). The three most relevant steroid metabolites were determined as 
the indices of the highest values of the relevance matrix diagonal on 
average over the 50 training processes. 

To further increase the validity of the computational analysis, we 
also applied a second machine learning method to the urine multi- 
steroid data, random forest, as previously described [33]. In order to 
facilitate the comparison between GMLVQ and random forest the eval-
uation procedures of the two methods were the same, with the exception 
of the random forest’s hyperparameters. The number of trees in the 
forest was set to 50 [33]. 

The evaluation of the performance of the two distinct machine 
learning approaches was performed in an identical fashion to allow for a 
fair comparison of GMLVQ and random forest. The training with each of 
the methods was repeated for 50 randomised runs with 90% of the data 
used for training and 10% for validation. After each run, the most 
important features were determined by using the machine learning in-
ternal evaluation mechanism. 

3. Results 

3.1. Clinical, biochemical, and genetic characteristics of the study cohort 

We included 158 patients with PA (Fig. 1A and Appendix Table 1). 
Eighty-eight patients (55.7%) were diagnosed with UPA and underwent 
adrenalectomy, whilst 70 patients (44.3%) were classified as BPA. So-
matic mutations were identified in 54 APAs (61.4%); KCNJ5 mutations 
were the overall most common finding (35.2% of APAs) (Fig. 1B). The 
distribution of age and sex was similar between patients with UPA and 
BPA, although patients harbouring a KCNJ5 mutation were younger and 
predominantly women (Appendix Table 1). 

3.2. Urine steroid metabolome of primary aldosteronism 

Linear regression models adjusted for age and sex showed signifi-
cantly higher urinary excretion of the major aldosterone metabolite 
3α,5β-tetrahydroaldosterone (THAldo) and other mineralocorticoid 
metabolites in patients with PA compared to healthy controls (Fig. 2A 
and Appendix Table 2). PA cases also showed a significantly higher 
excretion of most glucocorticoid and glucocorticoid precursor metabo-
lites, the hybrid steroid 18-hydroxycortisol (18-OH-F) and its metabolite 
18-oxo-tetrahydrocortisol (18-oxo-THF), and core steroid precursor 
metabolites (Fig. 2A and Appendix Table 2). A heatmap visualization 
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ordered by increasing excretion of THAldo demonstrated, as expected, a 
clustering of the PA cases to the right, consistent with increased aldo-
sterone secretion (Fig. 3A). A similar gradient could be observed for 
other mineralocorticoid metabolites, the hybrid steroids, and the 
glucocorticoid precursor metabolite tetrahydro-11-deoxycortisol (THS), 
indicating gradually increased excretion in patients with PA. 

Patients with UPA had higher urinary excretion of mineralocorticoid 
metabolites, hybrid steroids, and glucocorticoid precursor metabolites 
than those with BPA (Fig. 2B and Appendix Table 2). The differences 
observed in the hybrid steroids were driven by patients with APAs 
harbouring KCNJ5 mutations, who had more than twofold higher 
excretion levels than those without mutations (Fig. 2C-D and Appendix 
Table 2). Accordingly, a heatmap visualization ordered by increasing 
excretion of 18-oxo-THF showed a clustering of the KCNJ5-mutated 

cases to the right, consistent with increased hybrid steroid secretion 
(Fig. 3B). 

3.3. Urine steroid metabolomics for the diagnosis of primary 
aldosteronism 

GMLVQ revealed an excellent performance when using all 34 steroid 
metabolites for the identification of the PA cases vs. healthy normo-
tensive controls (AUC-ROC 0.97 ± 0.03) (Fig. 4A-B). The analysis of the 
corresponding relevance matrix identified THAldo, THS, and 18-hy-
droxy-tetrahydro-11-dehydrocorticosterone (18-OH-THA) as the three 
most discriminative steroid metabolites (Fig. 4C and Table 1); their 24- 
hour urinary excretion interquartile ranges did not overlap between 
patients with PA and healthy controls (Fig. 4D-F). Applying GMLVQ 

Fig. 2. Urinary steroid excretion of patients with primary aldosteronism by subtype. Multi-steroid profiling of 24-hour urine samples was carried out by gas 
chromatography-mass spectrometry with quantification of 34 distinct steroid metabolites, representative of the production of androgens, glucocorticoids, hybrid 
steroids, and their precursors. The urinary excretion of each steroid metabolite was compared to the reference group using a linear regression model with the log- 
transformed steroid metabolite as the outcome (adjusted for age and sex). Associations between the log-transformed outcome and the variable of interest are reported 
as sympercents (mean percentage change, 95% confidence interval). Panel A: Comparison of the steroid excretion in patients with primary aldosteronism (PA, 
n = 158) to that observed in 65 healthy normotensive subjects. Panel B: Comparison of the steroid excretion in unilateral primary aldosteronism (UPA, n = 88) to 
that of bilateral primary aldosteronism (BPA, n = 70). Panel C: Comparison of the steroid excretion of KCNJ5-mutated aldosterone-producing adenomas (APAs, 
n = 31) to non-KCNJ5-mutated APAs (n = 57). Panel D: Comparison of the steroid excretion of KCNJ5-mutated primary aldosteronism cases (n = 31) to non-KCNJ5- 
mutated cases, including both UPA and BPA (n = 127). The quantitative excretion of each metabolite is reported in Appendix Table 2. 

Fig. 3. Heatmap visualization of selected urine steroid metabolites. Panel A: Heatmap depicting log-transformed steroid metabolite excretion values of patients with 
primary aldosteronism (PA, n = 158, black) compared to healthy normotensive controls (n = 65, white). Mineralocorticoid metabolites (18-hydroxy-tetrahydro-11- 
dehydrocorticosterone, 18-OH-THA; THA; 5α-THA; tetrahydrocorticosterone, THB; 5α-THB; tetrahydro-11-deoxycorticosterone, THDOC), the hybrid steroid 18- 
hydroxycortisol (18-OH-F) and its metabolite 18-oxo-tetrahydrocortisol (18-oxo-THF), and the glucocorticoid precursor metabolite tetrahydro-11-deoxycortisol 
(THS) are ordered according to increasing excretion of 3α, 5β-tetrahydroaldosterone (THAldo), the main metabolite of aldosterone. Panel B: Heatmap depicting 
log-transformed steroid metabolite excretion values of patients with PA harbouring KCNJ5 mutations (n = 31, black) compared to non-KCNJ5-mutated cases, 
including both unilateral PA (UPA) and bilateral PA (BPA) (n = 127, white). The hybrid steroid 18-OH-F, mineralocorticoid metabolites, and THS are ordered 
according to increasing excretion of 18-oxo-THF. 
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when using only the three most relevant steroid metabolites for the 
classification rather than all 34 or even only the most discriminative 
steroid THAldo, yielded similarly remarkable results for the identifica-
tion of patients with PA (AUC-ROC 0.96 ± 0.03 and 0.95 ± 0.03, 
respectively) (Fig. 4B). Random forest results were comparable to 
GMLVQ (Table 1). THAldo was also the top marker selected by random 
forest for the classification of PA cases whilst, contrary to GMLVQ, 18- 
OH-THA was more relevant than THS (Table 1). 

3.4. Urine steroid metabolomics for discrimination of primary 
aldosteronism subgroups 

First, we tested whether machine learning analysis applied to the 
urine steroid metabolome would also be informative for the differenti-
ation of UPA from BPA; however, we found a suboptimal performance 
with an average AUC-ROC of 0.65 for both GMLVQ and random forest 
(Table 1 and Appendix Fig. 1). 

Assuming that this result may be due to the large heterogeneity 
within the UPA and BPA populations, we undertook an analysis aiming 
to differentiate patients with APAs and confirmed somatic KCNJ5 mu-
tations from other PA patients. For this purpose, we used GLMVQ to 
compare the urine steroid metabolome of APA cases with somatic mu-
tations in KCNJ5 vs. a combined group of all remaining UPA and BPA 
cases. The ROC curve for all 34 steroid markers demonstrated good 

performance (AUC-ROC 0.83 ± 0.16) (Fig. 5A-B). The corresponding 
relevance matrix identified 18-oxo-THF, 18-OHF, and tetrahydrocortisol 
(THF) as the top 3 markers, with 18-oxo-THF having by far the highest 
discriminatory power (Fig. 5C). The 24-hour urine excretion of these 
steroids is shown in Fig. 5D-F; in line with the GMLVQ findings, the 
interquartile ranges of 18-oxo-THF 24-hour urinary excretion did not 
overlap between PA cases with and without somatic KCNJ5 mutations. 
Linear regression confirmed that patients with somatic KCNJ5 muta-
tions had significantly higher urinary excretion of 18-oxo-THF and 18- 
OH-F than healthy controls and patients with non-KCNJ5-mutated PA 
(Fig. 3C and Appendix Table 2); the observed changes in THF, on the 
other hand, were not significant after adjustment for age and sex. Whilst 
the excretion of the main aldosterone metabolite THAldo was signifi-
cantly increased in patients with PA, it did not prove useful to identify 
KCNJ5 mutations (Fig. 5G and Appendix Table 2). The performance of 
GMLVQ improved even further when only looking at the top three ste-
roid markers (AUC-ROC 0.85 ± 0.16) to identify KCNJ5-mutated cases 
(Table 1). The performance was slightly reduced when only relying on 
the top marker, 18-oxo-THF (AUC-ROC 0.81 ± 0.18) (Fig. 5B). 

We observed similar results when applying random forest to the 
steroid metabolome data, and this method selected the same three ste-
roid metabolites as GMLVQ as the most discriminative to identify APAs 
harbouring somatic KCNJ5 mutations (Table 1). 

Fig. 4. Discrimination of patients with primary aldosteronism from healthy controls by GMLVQ analysis of the urine steroid metabolome. Panel A: 2D-plot 
demonstrating the separation of patients with primary aldosteronism (PA, blue) from healthy controls (orange) based on the urine steroid metabolome. Panel B: 
AUC-ROC curve for all 34 steroid metabolites (blue), the 3 most important markers (red) and the top marker (green) for discriminating PA cases. Panel C: Diagonal of 
the relevance matrix showing the relevance of each single steroid marker; the 3 most relevant markers to separate PA cases from healthy controls are 3α,5β-tet-
rahydroaldosterone (THAldo), tetrahydro-11-deoxycortisol (THS), and 18-hydroxy-tetrahydro-11-dehydrocorticosterone (18-OH-THA). Panels D-F: 24-hour urinary 
excretion of the 3 top markers identified by GMLVQ; boxes represent the median and interquartile range, whiskers 5th and 95th centiles. 
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4. Discussion 

In this study, we showed that urine steroid metabolomics, the com-
bination of mass spectrometry-based steroid profiling and data analysis 
by machine learning, is highly accurate for the detection of PA and 
identification of APAs harbouring somatic KCNJ5 mutations. 

The diagnosis and subtyping of PA currently rely on a burdensome 
multi-step process that typically requires several screening blood sam-
ples to measure the aldosterone-to-renin ratio, a confirmatory test such 
as the saline infusion test or oral salt-loading test, cross-sectional im-
aging of the adrenal glands, and adrenal vein sampling to differentiate 
UPA from BPA [1,4]. There are several caveats and confounding factors 
that affect the interpretation of these tests, and adrenal vein sampling is 
an invasive procedure that is not standardised and with limited avail-
ability [1,36]. Not surprisingly, PA is considerably undiagnosed despite 
being the most common cause of secondary hypertension [37], leaving 
many patients without appropriate targeted management and at 
increased risk of adverse cardiometabolic outcomes [11–13,17]. Novel 
tools are urgently needed to streamline the detection of patients with PA 
and improve their clinical outcomes. 

Our data show that the computational analysis of the urine steroid 
metabolome achieved an excellent separation of PA cases from healthy 
normotensive controls with high accuracy. Patients with PA had 
increased urinary excretion of mineralocorticoid, glucocorticoid, and 
glucocorticoid precursor metabolites indicating that glucocorticoid co- 
secretion is common [17]. The main aldosterone metabolite THAldo 
had the highest discriminatory power, providing substantive evidence 
for the previous proposal of urinary THAldo as a reliable screening 
marker for the detection of PA [38]. 

Patients with UPA had significantly higher urinary excretion of 
mineralocorticoid metabolites than those with BPA, which is consistent 
with the fact that they often present with a more severe phenotype [23, 
39]. However, there was considerable overlap between the steroid 
excretion of the two cohorts and urine steroid metabolomics could not 
reliably differentiate between the two; based on our findings, urine 
steroid metabolomics cannot currently obviate the need for 
cross-sectional imaging and adrenal vein sampling. A study investi-
gating the diagnostic performance of machine learning, applying 
random forest and support vector machines to multi-steroid serum 
profiling of patients with PA, showed similar results to our approach 
using random forest and GMLVQ, with suboptimal sensitivity and 
average AUC-ROCs ranging between 0.66 and 0.70 [22]. 

Patients with UPA had higher urinary levels of the hybrid steroid 18- 
OH-F and its metabolite 18-oxo-THF. We found that the increased 
excretion of these hybrid steroids was positively and strongly associated 
with somatic KCNJ5 mutations in the resected tumour tissue. In line 

with this, machine learning identified 18-oxo-THF as the top steroid 
metabolite discriminating KCNJ5-mutated APAs and yielded consis-
tently good discriminative results. Our data are in agreement with other 
studies showing higher serum levels of hybrid steroids in patients har-
bouring somatic KCNJ5 mutations, which have been linked to the co- 
expression of aldosterone synthase and 17α-hydroxylase/17,20-lyase 
in APAs [20–22,40]. Furthermore, a recent prospective study on 143 
patients with PA found that higher ratios of urinary 18-OH-F/F could 
reliably identify KCNJ5-mutated cases [41]. Our results are highly 
relevant for the subtype differentiation of PA: somatic KCNJ5 mutations 
are the most common genetic abnormality in UPA (up to 80% of cases) 
[42] and are associated with better clinical outcomes than wild-type 
KCNJ5 cases after adrenalectomy [22,41,43]. Hence, the non-invasive 
detection of mutant KCNJ5 by urine steroid metabolomics can poten-
tially prove unilateral adrenal mineralocorticoid excess and facilitate 
swift surgical treatment. 

Strengths of our study include the large number of consecutively 
recruited patients with PA and healthy controls, the possibility to 
correlate the somatic tissue genotype of APAs with the urine steroid 
metabolome, and the use of two distinct machine learning approaches 
which gave comparable and consistent results. To our knowledge, this is 
the first study to combine urine steroid metabolome analysis and ma-
chine learning to investigate the potential of urinary multi-steroid 
profiling for the diagnosis and subtype differentiation of PA. Previous 
studies have investigated the use of serum multi-steroid profiling with a 
similar aim [19–23]; however, the analysis of 24-hour urine samples is 
more attractive because it is a non-invasive test that provides a 
comprehensive overview of the adrenal steroid output throughout the 
day and is not affected by differences in seated vs. supine blood sam-
pling, which impact on the serum metabolome [22]. 

A weakness of our study is the selective recruitment of patients with 
PA and the absence of a comparator cohort of patients with essential 
hypertension and ruled-out PA. The workup of PA and subtype differ-
entiation of UPA and BPA relied on local protocols in the four recruiting 
centres; this could have introduced bias in patient classification. A po-
tential further source of patient inclusion bias is linked to the recruit-
ment by highly specialised centres, and our results need to be validated 
in a larger population of unselected hypertensive subjects with varying 
degrees of PA. The performance of urine steroid metabolomics would 
also need to be compared with the current reference standard tests for 
PA diagnosis (renin, aldosterone, and confirmatory tests), which was not 
possible in the present study. We could not assess the discriminating 
power of urine steroid metabolomics on somatic mutations other than 
KCNJ5 because of the low prevalence of other somatic mutations. The 
targeted sequencing for somatic mutations in our study was not 
CYP11B2 immunohistochemistry-guided and did not include GNAS, 

Table 1 
Machine learning analysis of the 24-hour urine steroid metabolome by generalised matrix relevance learning vector quantization (GMLVQ) and random forest for 
diagnosis and subtype differentiation of primary aldosteronism. The experiments represent the comparisons between patients with primary aldosteronism (PA) and 
healthy controls, and between different subgroups of PA: unilateral PA (UPA), bilateral PA (BPA), and aldosterone-producing adenomas harbouring somatic KCNJ5 
mutations. Each experiment was repeated 50 times and the performance was measured as the average area under the receiver-operating characteristics curve 
± standard deviation (AUC-ROC ± SD). Results are reported for the entire urine steroid metabolome and the top 3 steroid metabolites (ordered by relevance).  

Experiment GMLVQ Random Forest 
AUC-ROC  
± SD 

Top 3 steroid metabolites (ordered by relevance) AUC-ROC  
± SD 

Top 3 steroid metabolites (ordered by relevance) 

PA vs. healthy controls     
- All 34 steroid metabolites 0.97 ± 0.03  0.96 ± 0.04  
- Top 3 steroid metabolites 0.96 ± 0.03 THAldo, THS, 18-OH-THA 0.95 ± 0.05 THAldo, 18-OH-THA, THS 
UPA vs. BPA     
- All 34 steroid metabolites 0.65 ± 0.15  0.65 ± 0.13  
- Top 3 steroid metabolites 0.73 ± 0.11 PTONE; THDOC;18-oxo-THF 0.72 ± 0.13 PTONE; THDOC;18-oxo-THF 
KCNJ5 vs. non-KCNJ5 PAa     

- All 34 steroid metabolites 0.83 ± 0.16  0.82 ± 0.17  
- Top 3 steroid metabolites 0.85 ± 0.16 18-oxo-THF, THF, 18-OH-F 0.79 ± 0.22 18-oxo-THF, THF, 18-OH-F  
a Combination of aldosterone-producing adenomas without KCNJ5 mutation and BPA. 
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CACNA1H, or CLCN2 mutations, and this yielded lower coverage 
compared to recently published series [44]; this could have affected the 
subtyping of UPA cases. 

5. Conclusions 

Our study demonstrates that patients with PA have increased urinary 
excretion of mineralocorticoid metabolites and glucocorticoid precursor 

metabolites that can accurately differentiate them from healthy con-
trols. In addition, urinary hybrid steroid excretion can be employed to 
reliably identify KCNJ5-mutated APAs, which may obviate the need for 
adrenal vein sampling in a subset of patients with unilateral adenomas. 
By applying machine learning to the urine steroid metabolome profiling 
data, we were able to identify the top three steroids for patient classi-
fication. Using this much smaller subset of steroid biomarkers for ma-
chine learning analysis had equal performance in the identification of 

Fig. 5. Discrimination of aldosterone-producing adenomas harbouring KCNJ5 mutations by GMLVQ analysis of the urine steroid metabolome. Panel A: 2D-plot 
demonstrating the separation of patients with KCNJ5 mutations (turquoise) from the rest of patients with primary aldosteronism (purple) based on the urine ste-
roid metabolome. Panel B: AUC-ROC curve for all 34 steroid metabolites (blue), the 3 most important markers (red) and the top marker (green) for discriminating 
KCNJ5-mutated cases. Panel C: Diagonal of the relevance matrix showing the relevance of each single steroid marker; the 3 most relevant markers are 18-oxo-tetra-
hydrocortisol (18-oxo-THF), 18-hydroxycortisol (18-OH-F), and tetrahydrocortisol (THF). Panels D-G: 24-hour urinary excretion of the 3 top markers identified by 
GMLVQ and 3α,5β-tetrahydroaldosterone (THAldo), the main metabolite of aldosterone; boxes represent median and interquartile range, whiskers 5th and 
95th centiles. 
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PA cases and KCNJ5 mutations. This readily facilitates the transfer of 
this approach to high-throughput liquid chromatography-tandem mass 
spectrometry, which is increasingly available in clinical practice. Urine 
steroid metabolomics, therefore, holds the promise of becoming an ac-
curate and non-invasive test that can be used in the clinic for the iden-
tification and subtype differentiation of PA. Future prospective studies 
are needed to validate its use as a diagnostic test, including comparator 
groups of subjects with low-renin hypertension and excluded PA. 
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