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The mechanisms triggering metastasis in pheochromocytoma/paraganglioma

are unknown, hindering therapeutic options for patients with metastatic

tumors (mPPGL). Herein we show by genomic profiling of a large cohort of

mPPGLs that highmutational load, microsatellite instability and somatic copy-

number alteration burden are associated with ATRX/TERT alterations and are

suitable prognostic markers. Transcriptomic analysis defines the signaling

networks involved in the acquisitionofmetastatic competence and establishes

a gene signature related tomPPGLs, highlighting CDK1 as an additionalmPPGL

marker. Immunogenomics accompanied by immunohistochemistry identifies

a heterogeneous ecosystem at the tumor microenvironment level, linked to

the genomic subtype and tumor behavior. Specifically, we define a general

immunosuppressivemicroenvironment inmPPGLs, the exception being PD-L1

expressing MAML3-related tumors. Our study reveals canonical markers for

risk of metastasis, and suggests the usefulness of including immune para-

meters in clinical management for PPGL prognostication and identification of

patients who might benefit from immunotherapy.

Pheochromocytomas and paragangliomas (PPGLs) are rare and highly

heterogeneous neuroendocrine tumors, associated with mutations in

one of the at least 20 driver genes related to the disease1. Up to 20% of

PPGLs are metastatic (mPPGLs), with a heterogeneous 5-year overall

survival rate that ranges from 40 to 77%2. Although some genotype-

phenotype correlations have been defined for patients with PPGLs,

disease management remains challenging due to a variable clinical

behavior, lack of accurate markers of metastasis risk and inefficient

therapeutic standards for metastatic stage3,4. Moreover, a poor

understanding of the underlying mechanisms driving metastasis hin-

ders the development of an efficient therapeutic strategy for mPPGLs.

The genomic landscape of PPGLs has been poorly described and

little is known about the role that secondary events play in the pro-

gression of the disease. So far, only two large-scale multi-omic studies

reporting the genomic characteristics of PPGLs have been published5,6.

These studies established themolecular classificationof PPGLs in three

genomic subtypes: pseudohypoxic, kinase signaling, and Wnt-altered.

However, these previous studies included few metastatic cases.

Moreover, the tumormicroenvironment (TME) hasbeen shown to play

a major role in the prognosis and therapeutic stratification of other

tumor types7. However, the TME remains largely unexplored in PPGLs

and may be pivotal for therapy success.

In this large-scale study, we performed a comprehensive char-

acterization of the genomic landscape ofmPPGLs and interrogated the

immune compartment of these tumors.We compared the results from

our series, enriched in metastatic cases, with the TCGA PPGL cohort5,

which is mainly composed of non-metastatic tumors. Using this

strategy, we defined the mutational architecture of mPPGL, identified

transcriptional alterations linked to metastasis-related processes,

proposed prognostic markers, and outlined the immune infiltration

profile in PPGL.

Results
We performed genomic profiling of 156 PPGLs from 128 unrelated

patients: whole-exome sequencing (WES) in 87 paired germline–tumor

samples and RNA sequencing (RNA-Seq) in 114 tumor samples
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(hereinafter, CNIOcohort; Fig. 1a; Supplementary Table 1). Seventy-five

of thesepatients hadmetastatic disease, detected at initial diagnosis or

during follow-up, and accounted for 99metastatic samples included in

the study (either primary tumors, relapses or metastases). We also

included in the study data of 175 PPGLs from 174 unrelated patients

from the PPGL TCGA project: WES data from 174 paired

germline–tumor samples and RNA-Seq data from 150 tumors (from

now on, TCGA cohort). By a comprehensive analysis of these data, we

deciphered the mutational, copy number alteration (CNA),

transcriptomic and immune landscapes of mPPGLs (Fig. 1b). Tumors

were classified according to their genotype/ transcriptional profile into

the previously defined PPGL genomic subtypes5.

Mutational landscape of metastatic pheochromocytoma and
paraganglioma
We identified somatic single-nucleotide variations (SNVs) and small

insertions/deletions (INDELs) in 87 paired germline-tumor samples

with available WES data (mean depth of 105×; 12 tumors from 11
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Fig. 1 | Series description and study workflow. a Characteristics of the CNIO

cohort used for WES and RNA-Seq analysis. Characteristics shown are: platform

available (WES and RNA-Seq), preservation ofmaterial (FFPE or frozen), tumor type

(non-metastatic, aggressive, metastatic, relapse ormetastases), primary tumor and

metastasis location, sex, age at diagnosis, genomic subtype and genotype. NA:

information not available. bGeneral overview of the study. See also Supplementary

Table 1 and Supplementary Fig. 1.
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patients were discarded due to poor quality; see methods section).

Data from 169 TCGA patients (174 samples) were added for the ana-

lyses (Supplementary Fig. 1). To note, for 20 patients (16 from CNIO

cohort and 4 from TCGA cohort), we had available more than one

tumor sequenced by WES (range, 2–7).

WES data analysis revealed 5618 somatic variants across 261 sam-

ples. From those, 3641 had a variant allele frequency (VAF) > 10% and

2227 weremissense, 140 truncating, 127 affected start/stop codons, 52

in-frame deletions or insertions, 66 altered canonical splice sites, and

1029were classified as ‘other’ (including synonymous variants); 3.2%of

the variants were classified as high impact consequence variants and

affected cancer genes (fromCOSMICCancerGeneCensus orOncoKB).

WES data was used to calculate the tumor mutational burden

(TMB) and microsatellite instability (MSI) scores of each tumor

(Fig. 2a). The TMB (based on true-somatic coding events with VAF >

0.1; category 5 in Supplementary Fig. 2) varied between cases, with a

median of 11 (range, 0–142), in agreement with previous PPGL

studies5,6,8,9, and much lower than in other cancer types10. Two of the

PPGL studies suggested an association between higher TMB and

metastatic behavior5,9. In this study, we confirmed this observation and

also detected thatTMB increased fromnon-metastatic primary tumors

(median number of variants: 8; range 2–25) to primaries of mPPGLs

(17.5; 1–54) to metastases (24; 0–142) (Fig. 2b). We also observed a

significantly different TMB among genomic subtypes, with the Wnt-

altered subtype having the highest values, regardless of tumor beha-

vior (Supplementary Fig. 3a, b). Although there is scarce information

about MSI in PPGLs11–13, it is known that MSI contributes to the

tumorigenic hypermutated phenotype in other cancer types14. In our

study, we observed differences in the MSI score according to the

clinical behavior (non-metastatic tumors median: 0.13, range

0.11–0.18; primary metastatic tumors: 0.16, range 0.10–0.22; and

metastases median: 0.18, range 0.11–0.25) (Fig. 2c). Moreover, the MSI

score and the TMB exhibited a moderately significant correlation

(Fig. 2d), indicating that the higher TMBobserved inmetastatic tumors

could be linked to a higher MSI status. Both features were associated

with risk of metastasis development in univariate and multivariate

analyses (including as covariates sex, mutations in Krebs cycle sus-

ceptibility genes15 and ATRX/TERT alterations), suggesting they are

independent predictors of metastatic risk (Table 1).

To note, both higher TMBandMSI scorewere also associatedwith

a shorter time to progression (TTP) (Table 1; Fig. 2e, f; Supplementary

Fig. 3c). In agreement, we observed a significantly higher TMB in larger

tumors, and in those with >5% Ki67 positive cells and high MKI67

expression levels (Fig. 2g–i); no association was detected between the

MSI score and the tumor volume or the % of Ki67 positive cells (Sup-

plementary Fig. 3d, e), probably due to the low number of tumors

included in this analysis, but a significant association between the MSI

score and the MKI67 expression levels was identified (Supplemen-

tary Fig. 3f).

TMB in PPGLs also correlated with the age of the patients at sur-

gery (Fig. 2j), feature that has already been shown for many cancers16.

In fact, it has been described that the age-dependent increase in

somatic variants that occurs naturally in tissues, increases the prob-

ability of mutating driver genes, making cancer a disease of ageing17.

Without considering the 10 main somatic PPGL gene drivers

represented in our cohort (HRAS, FGFR1, CSDE1, MAML3, IDH1, RET,

VHL, NF1,MAX, and EPAS1), ATRX was found mutated in the tumors of

3.4% patients (Supplementary Table 2) and was established as the only

gene significantly mutated in metastatic tumors (Fisher’s test,

P = 2.9 × 10−4), as previously reported8. Since TERT has been linked to

mPPGL18, we also explored TERT alterations (overexpression, amplifi-

cation, promoter mutations and hypermethylation; see methods sec-

tion) in a subset of cases, and confirmed that TERT alterations are

events associated with mPPGLs (Supplementary Fig. 3g; Fisher’s test,

P = 8.4 × 10−7).We validated thatATRX andTERT alterations accumulate

mainly in SDHB/FH pseudohypoxic tumors19, but also found a high

frequency of these events in Wnt-altered tumors (Fig. 2k). Moreover,

ATRX/TERT-altered samples presented higher TMB andMSI score than

non-altered ones (Fig. 2l, m), a significantly higher MIK67 expression

(Supplementary Fig. 3h) and a tendency to higher Ki67 positive cells

and bigger tumors (Supplementary Fig. 3i, j).

Somatic copy-number alteration profile in metastatic pheo-
chromocytoma and paraganglioma
We analyzed the somatic CNA (SCNA) profiles of the CNIO and TCGA

cohorts applying FACETS to the germline-tumor matched WES data

(Fig. 3a). Higher SCNA burden, measured by the number of SCNA

events, was observed in more aggressive tumors (Fig. 3b), with meta-

static samples (primaries and metastases from metastatic patients)

exhibiting the highest number of SCNA events (median: 15, range: 1–48

and median: 29, range: 5–65, respectively) in comparison to non-

metastatic tumors (median: 8, range: 0–41). In addition, a tendency

towards shorter time to progression was observed in patients with

tumors with high SCNA burden (Supplementary Fig. 4a). Similarly to

the TMB, SCNA burden was also higher in ATRX/TERT-altered tumors

(Fig. 3c). However, in the case of SCNA burden, no major differences

were observed between tumors of different genomic subtypes (Sup-

plementary Fig. 4b).

Genome doubling was observed in 14.5% of primary metastatic

tumorswhereas only 5% of the non-metastatic tumors duplicated their

whole genome (P =0.023, two-tailed Fisher test). Contrary to that

reportedby Fishbein et al.5, this tendencywas not linked to its genomic

subtype (P = 0.38, two-tailed Freeman–Halton test).

The most frequent (>25% of all tumors) arm-level deletions

affected 1p, 3p, 3q, 11p, 11q, 17p, 22p, and 22q chromosome arms. Arm-

level chromosome gains were less common, mostly involving 1q and

7p, as previously reported for PPGLs6. Specifically, we observed 1p loss

and 1q gain in SDHB tumors; 3p, 4q and the whole chromosome 11 loss

in VHL-; 6q loss in HRAS-; chromosome 17 loss in NF1-related tumors.

Whole chromosome gains were also detected, chromosome 4 in

MAML3- and chromosome 10 in RET-cases. Although 11p deletion is a

common event in PPGLs, this SCNA was not observed in tumors har-

boring oncogenic HRAS mutations (FDR <0.05). As already shown5,6,

SDHB-, VHL- and NF1-related tumors deleted genomic regions where

their specific locus is placed (1p, 3p, and 17q, respectively).MAML3- and

RET-related tumors also exhibited gains in chromosomes 4 and 10,

comprising MAML3 and RET, respectively.

We identified four altered arm-level SCNA differing between

metastatic and non-metastatic primary tumors (Fig. 3a). These inclu-

ded gains in 1q, 5p, and 5q, and deletion of 3q. Whole chromosome 5

gain was also associated with shorter TTP (Fig. 3d), finding which is in

line with the fact that TERT is located at 5p15.33. This association

remained statistically significant after multivariate Cox hazard

regression analysis using sex, mutations in Krebs cycle susceptibility

genes, TMB and MSI score as covariates (HR = 2.56, 95% CI = 1.15–5.70,

P =0.021), indicating its independent prognostic value.

Transcriptomic landscape of metastatic pheochromocytoma
and paraganglioma
We selected a signature of 26 genes differentially expressed between

primary tumors of patients with and without metastatic disease

(n = 54 and n = 176, respectively) and independent of genomic sub-

types (Fig. 4a). After expression dichotomization and multivariate

analysis using genomic subtype as a covariate, 25 out of the 26 genes

were also associated with risk of metastasis (P < 0.005; Fig. 4b) and

time toprogression (P <0.05; Fig. 4c). To validate thesefindings,we re-

analyzed an independent cohort of PPGLs20 and confirmed a sig-

nificant differential expression between the two groups for 17 of the

25 selected genes (Supplementary Fig. 5a), including 14 that demon-

strated a value for stratifying patients according to metastatic risk
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(C5orf49, DNASE1L3, HMGB3, RRM2, CDT1, TTC9, CCNB2, IQGAP3,

FAM83H, CDK1, PBK, NETO2, CSMD2 and PMAIP1) (Supplementary

Fig. 5b). Functional enrichment analysis of this gene signature using

STRING v1121 indicated a significant overrepresentation (PPI enrich-

ment P = 3.08 × 10−7) of genes related tomitotic cell cycle, G1/S-specific

transcription, p53 signaling and DNA damage response (Supplemen-

tary Fig. 5c). CDK1, the only gene included in the 4 enriched gene sets,

displayed the most significant association with metastatic risk in a

combined analysis that included both cohorts (OR = 9.01, 95%

CI = 5.17–15.71, P = 8.5 × 10−15; Supplementary Fig. 5d; Fig. 4d); further-

more, high expression of CDK1 showed a strong association with

shorter TTP, regardless of the tumor genomic subtype (HR = 4.15, 95%

CI = 2.32–7.24, P = 1.1 × 10−6; Fig. 4e). A multivariate Cox hazard

regression analysis including the proposed prognostic molecular

markers (chromosome 5 gain, higher TMB and MSI score) as covari-

ates, pinpointed CDK1 high expression as an additional and
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independent indicator of prognosis (HR = 2.21, 95% CI = 1.11–4.79,

P =0.045). We also validated by immunohistochemistry (IHC) higher

CDK1 protein levels in the nucleus of primary metastatic tumors

(Fig. 4f), which were correlated with CDK1 gene expression (Supple-

mentary Fig. 5e).

In order to identify altered processes in metastatic tumors, and

not only specific genes, we performed a GSEA analysis comparing

metastatic vs non-metastatic primary tumors (Fig. 4g; Supplementary

Fig. 6). This analysis revealed a positive normalized enrichment score

(NES > 1.85; FDR <0.05) not only in gene sets involved in cell cycle,

DNA repair and p53 pathway, but also in those related to extracellular

matrix (ECM) organization, translation/ ribosomes, ubiquitin/ protea-

somes, and motility; this indicates that genes belonging to these

categories are mainly upregulated in metastatic primary tumors. In

contrast, gene networks associated with cilium formation, ion trans-

port, Rho-GTPases, adhesion, nervous system (NS) development/

neuron projection and immune response displayed negative NES

(NES < −1.85; FDR <0.05), illustrating a downregulation of genes in

these categories in metastatic primary tumors. Cilia loss and Rho

pathway deregulation have already been reported in PPGLs9,22,23, rein-

forcing the importance of these signaling networks in PPGLmalignant

transformation. Signaling cascades related to the immune system and

deregulated in metastatic vs non-metastatic primary tumors (Fig. 4h;

Supplementary Fig. 6o) included multiple sets involved in innate and

adaptive immunity, cytokine secretion and inflammation that had not

previously been associated with mPPGLs.

Metastasis risk classifier for pheochromocytoma and
paraganglioma
We evaluated the classification power of the potential markers of

mPPGL described in this study: highMSI score, high TMB, gain of chr 5

and high CDK1 expression. We also aimed to assess their power in

combination with the already described markers of mPPGL (germline

mutation in Krebs cycle genes, MAML3-fusion, TERT-alt, ATRX-muta-

tion and high MKI67 expression5,8,15,19,24). The area under the receiver

operating characteristic curves (AUC under ROC) of each event indi-

vidually and all combinations possible (n = 511) were computed. The

AUC, 95% confidence interval (CI) and sensitivity/specificity per each

classifier are in Supplementary Data 1. The best classifier is the one that

takes into account ATRX-mutations, high MSI score, high CDK1

expression and MAML3-fusions, showing a 100% sensitivity with the

highest ability to predict mPPGL (AUC=0.902, 95%CI = 0.855–0.948)

(Supplementary Fig. 7).

Functional enrichment analysis of mutated and CN-altered
genes in metastatic pheochromocytoma and paraganglioma
Panther tool25 was applied to detect significantly enriched gene sets

among the list of genes with high impact consequence mutations in

primary tumors from metastatic patients, and significantly differing

focal SCNA between non-metastatic and metastatic primary tumors.

The list of high impact mutated genes comprised 323 genes that

grouped into 52 significantly enriched processes (fold-enrichment>1.8

and FDR <0.05) classified into five different functional annotations:

circulatory system development/morphogenesis, ECM organization, cell

adhesion and motility, actin cytoskeleton, and NS development and

neuron projection (Supplementary Fig. 8a). Focal SCNA significantly

differing between non-metastatic and metastatic primary tumors and

resulting in altered gene expression was present in 911 genes (see

methods section). After applying a functional enrichment analy-

sis using the 911 gene list, we recognized 120 significantly enriched

gene sets (fold-enrichment>1.8 and FDR <0.05) (Supplemen-

tary Fig. 9a).

Fig. 2 | Tumor mutational burden (TMB), microsatellite instability (MSI) and

ATRX/TERT alterations in mPPGLs. The data included correspond to 261 tumor-

normal pairs from the CNIO and TCGA cohorts. a Overview of the number of

variants, MSI score, and other clinical and genomic features of the whole series.

Tumors have been rankedbyTMB (calculatedwith category 5 variants). The legend

in the bottom indicates the color code for each item. The filtering strategy for WES

events is shown in Supplementary Fig. 2. b TMB and c MSI score (extracted with

MANTIS) across PPGL tumors (n = 256). P-values were calculated with a two-sided

Mann–Whitney–Wilcoxon (MWW) test and significant ones are shown in the fig-

ures. d Correlation between TMB and MSI score. Two-sided Pearson’s correlation

coefficient is shown. e, f Progression-free survival analysis of patients according to

primary tumors’ TMB and MSI score, respectively. Only primary tumors from non-

metastatic and metastatic patients were analyzed. Higher TMB indicates tumors

with values > than the third quartile (n = 37); lower TMB for the remainder cases

(n = 175). Higher MSI score indicates cases with MSI score >0.15 (n = 40); lower MSI

for the remainder cases (n = 172). Kaplan–Meier plots of time to progression (time

between the first PPGL diagnosis and the first documented metastasis) are shown

together with P-values calculated using a log-rank test. Median progression time (±

standard error) of each group is depicted in the corresponding color. Patients

without evidence of metastases were censored at the date of the last follow-up.

g–i TMB variation according to tumor volume (cm3) (n = 28), % Ki67 positive cells

(n = 16) andMKI67mRNA expression (n = 191). Volumes and % Ki67 cells data, when

available,were extracted fromthepathological anatomy reports receivedwith each

specimen. High MKI67 mRNA expression indicates expression levels above the 3rd

quartile value of thewholecohort and lowMKI67mRNA expressionwhen levelswere

beneath the 3rdquartile value. jTMBvariation according to the ageof thepatient at

surgery (n = 225). For (h)–(k) a two-sidedMWWwas applied to test for differences,

and, except for (j), only primary tumors (non-metastatic, aggressive and meta-

static) were considered. k Frequency of ATRX/TERT-alterations within genomic

subtypes. Two-sided Freeman–Halton test was used to test for differences between

genomic subtypes. Metastatic tumors include primary tumors and metastases; if

paired primary-metastasis is available, only one tumor per patient is represented.

l TMB and m MSI score in ATRX/TERT-wild-type (WT) and in ATRX/TERT-altered

tumors (n = 256). Two-sidedMWWwas used to test for differences. For all box-plots

in this figure: themedian value is marked, and Tukey whiskers are represented. See

also Supplementary Fig. 3 and Supplementary Table 2. Source data are provided as

a Source Data file.

Table 1 | Univariate and multivariate logistic and Cox regression analysis of metastasis risk and TTP

Risk of metastasis development Time to progression

Characteristics Univariate OR (95% CI), P Multivariate OR (95% CI), P Univariate HR (95% CI), P Multivariate HR (95% CI), P

Female 0.58 (0.30–1.08), 0.089 0.49 (0.15–1.54), 0.229 0.55 (0.31–0.97), 0.040 0.69 (0.36–1.34), 0.271

Krebs cycle gene mutation 8.24 (3.55–20.13), 1.5e−6 14.05 (3.42–64.82), 3.6e−4 2.19 (1.14–4.20), 0.018 1.54 (0.76–3.14), 0.232

ATRX /TERT-alt 9.10 (4.44–19.23), 3.1e−9 3.40 (0.78–15.41), 0.104 5.21 (2.90–9.36), 3.3e−8 1.83 (0.89–3.75), 0.102

High MSI score 68.25 (25.36–222.21), 9.7e−15 88.35 (23.29–448.89), 1.7e−9 11.44 (6.06–21.58), 5.5e−14 6.05 (2.89–12.65), 1.7e−6

Mutational burden 1.16 (1.11–1.23), 1.1e–9 1.14 (1.06–1.25), 0.001 1.08 (1.06–1.10), 1.5e−12 1.03 (1.00–1.05), 0.059

Multivariateanalysis includes: sex,mutations inC1Acluster, alterations inATRX and TERT,MSI score (as dichotomous variable establishedbyMSImedian value: 0 –MSI score <0.15 and 1 –MSI score >

0.15) andTMBas covariates.Onlydata fromprimary tumors fromnon-metastatic andmetastatic patientswas included.To assess thedegreeof collinearity betweenour chosenexplanatory variables,

we ensured that the variance inflation factor (VIF) of each of them for the logistic regression was <2 (sex: 1.02; C1A cluster: 1.15; ATRX/TERT alterations: 1.5; MSI (>0.15): 1.14; TMB: 1.55).
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Given the availability of RNA-Seq data, we executed GSEAwith the

52 and 120 sets that resulted from the previous analysis in order to

elucidate which categories were affected at the mRNA expression

level. The analysis performed with themutated gene sets (52) revealed

differential expression (comparing metastatic vs non-metastatic pri-

mary tumors) of genes involved in five described functional annota-

tions (Supplementary Fig. 8b), three of which were more relevant at

the transcriptional level (>30% of sets of particular annotation with

FDR <0.05 in the GSEA analysis): ECM organization, cell adhesion and

motility, and NS development and neuron projection (Fig. 5a). Notably,

ECM and adhesion (Supplementary Fig. 6l, m) are terms classically

linked to tumor progression and metastasis26,27. The weaker relative

activity towards neuron differentiation (Supplementary Fig. 6k) may

indicate a dedifferentiated neuronal-like phenotype in mPPGLs. This
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the whole series. Tumors have been ranked by SCNA burden (number of SCNA
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Significant (Fisher test; FDR <0.1) regions between both groups are annotated.
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differences. d Progression-free survival analysis of patients according to the pre-
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static patients included. Kaplan-Meier plot of time to progression (time between

the first PPGL diagnosis and the first documented metastasis) and the P-value cal-
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mentary Fig. 4. Source data are provided as a Source Data file.
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feature could be related to a neuroendocrine-to-mesenchymal transi-

tion associated with aggressive traits28–30.

SCNA analysis identified gene sets enriched in mPPGLs, 98 exhi-

biting statistically significant differences between non-metastatic and

metastatic primary tumors (Supplementary Fig. 9b; Fig. 5b). These

could be classified into 5 different functional annotations: translation

and ribosomes, DNA repair and TP53 pathway, splicing, cell cycle and

chromatin regulation and ubiquitin and proteasome. Ribosome bio-

genesis has been reported to be essential for tumorigenesis and suf-

ficient to drive malignant transformation31. Ribosome biogenesis, by

preventing p53 ubiquitination and degradation32,33, is also linked to the

cell cycle34. Moreover, hyperactive rDNA transcription leads to DNA

damage and genome instability, activating DNA damage responses31,

that could also explain the higher TMB, MSI score and SCNA burden

observed in mPPGLs (Figs. 2, 3).

Therefore, integration of transcriptomic and genomic data

(mutations and SCNA), suggests causal mechanisms underlying 7 out

of the 15 functional annotations deregulated at the transcriptional

level (Fig. 4g).

Immune landscape of metastatic pheochromocytoma and
paraganglioma
Using a combination of gene expression analyses and IHC scoring

with a set of immune markers, we characterized the immune
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infiltration profile of each tumor. First, we used the data generated

by Thorsson et al.35 for the TCGA cohort and applied the CRI-iAtlas/

ImmuneSubtypeClassifier R package to classify the tumors from the

CNIO series according to the available RNA-Seq data; from this, we

established the distribution of the six immune subtypes described

by Thorsson et al. (C1–C6) across our collection (with 0.38% tumors

in C1, 48.66% in C3, 45.21% in C4, and 5.75% in C5). C3 (inflammatory)

and C4 (lymphocyte depleted) were the predominant immune

subtypes in PPGLs, but interestingly they were represented

differently according to tumor type; C3 was more abundant in non-

metastatic tumors (52.3%), whereas C4 showed more prevalence

among primary metastatic tumors and metastases (50.9 and 71.4%,

respectively) (Fig. 6a). In addition, different proportions were also

observed among genomic subtypes: C3 was more abundant in the

pseudohypoxic subtype (72.2%), while C4 was more frequent in the

kinase signaling subtype (67.6%). Of note, regardless of genomic

subtype, more metastatic primary tumors and metastases were

classified as C4 (P < 1 × 10−4), and those patients with tumors

Fig. 4 | mPPGL transcriptomic profile. a Gene signature associated with mPPGL.

mRNA expression levels of the 26 differential expressed selected genes, tumor

behavior, genomic subtype and genotype are depicted in rows; primary tumors

appear in columns (n = 230). Univariate (black) and multivariate (blue) logistic and

Cox regression analysis of metastasis risk (b) and TTP (c), respectively. Gene

expression was dichotomized as follows: for downregulated genes in mPPGLs,

median expression was used as threshold (0 – below themedian expression level; 1

– above the median expression level); for up-regulated genes in mPPGLs, high

expression levels > than the 3rd quartile (0–below the 3rd quartile threshold value;

1 – above the 3rd quartile threshold value). Multivariate analysis included as cov-

ariate genomic subtype. Only data from primary tumors from non-metastatic and

metastatic patients were included. d Box plot of CDK1 expression of primary

tumors included in this study united to those from an independent cohort20

(n = 417). Expression from both cohorts was z-score transformed (centered at the

mean of non-metastatic group for each cohort). The P-value corresponds to a two-

sidedMWW test. e Progression-free survival analysis of patients according to CDK1

expression. Kaplan–Meier plot of time to progression (time between the first PPGL

diagnosis and the first documented metastasis) is shown together with the P-value

calculated using a log-rank test. High levels (above the 3rd quartile value of the

whole cohort) are represented in red (n = 71) and low expression (below the 3rd

quartile) inblue (n = 172). Patientswithout evidenceofmetastaseswere censored at

the date of the last follow-up. f Representative images (right) and quantification

(left) of CDK1 IHC staining in a subset of n = 41 PPGLs. Three PPGLs classified as

aggressive were not included in this analysis. Scale bar in images = 100 μm.

Unpaired two-sided t test was used to test differences between groups. g Signaling

networks underlying mPPGLs. Plots show normalized enrichment score (NES) of

significantly enriched gene sets (FDR <0.05, GSEA) from MSigDB, grouped

according to relevant biological processes. Each dot represents a gene set and is

highlighted in the specific color for each process. h Close-up of gene sets gathered

in immune response annotation and differentiation between interferon signaling,

T cells/activationdifferentiation andanti-tumor related cytokines. For all box-plots in

this figure: the median value is marked, and Tukey whiskers are represented. See

also Supplementary Figs. 5, 6. Source data are provided as a Source Data file.
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Fig. 6 | Immune landscape in PPGLs. a Classification of immune subtypes within

tumor tissue types and genomic subtype. The proportion (%) of samples of each

immune subtypeper tumor typeandgenomic subtype is shown.Aggressive tumors

were excluded from pie charts due to the low number of samples available. b Plot

showing the −log10(P) resulting from a two-sided MWW analysis to define differ-

ences between metastatic primary versus non-metastatic tumors in the different

immune cell classes estimated with CIBERSORTx. The ‘sign(effect)’ indicates the

direction of the fold-change between the proportions in both groups. Cell types

with >85% of the samples with ‘0 s’ were excluded from the analysis. Columns that

surpass the red dashed line have P <0.05. The top row summarizes univariate

logistic regression analysis comparing immune cell proportions and metastatic

risk. The color of the cell is relative to the −log10(OR), and * indicates P <0.05.

c Percentage of CD8+ T cells infiltrated among tumor cells detected by immuno-

histochemistry (left) in a subset of n = 39 PPGLs with different clinical behavior.

Three PPGLs classified as aggressive were not included in this analysis, and for two

cases IHC were not assessable. Median ± IQR is shown. Two-sided MWW was

applied to test for differences. Representative images (right) of CD8 IHC. Scale bar

in images = 200μm. d Top panel: median enrichment score of the different Fges in

metastatic and non-metastatic primary tumors. Two-sided MWW was applied to

test for differences between metastatic (n = 55) and non-metastatic (n = 176) pri-

mary tumors; significant P values are shown. Univariate (black) and multivariate

(blue) logistic andCox regression analysis ofmetastasis risk (middle panel) andTTP

(bottom panel), respectively. Enrichment scores were used as a continuous vari-

able. Multivariate analysis included genomic subtype as covariate. Only data from

primary tumors from non-metastatic and metastatic patients were included. Sig-

nificant associations in Fges scores after multivariate analysis are shaded in blue.

e Kaplan–Meier plots of time to progression in patients according to different

immune cell type levels found in primary tumors. Only primary tumors from non-

metastatic andmetastatic patients included. High levels (above themedian level of

thewhole group) are represented in red (n = 92,n = 113, andn = 107, respectively for

NK resting, NK activated and T regulatory) and low expression (below the median

level) in blue (n = 130, n = 109 and n = 115, respectively for NK resting, NK activated

and T regulatory). P-values shown inside the plots were calculated using a log-rank

test. Patients without evidence of metastases were censored at the date of the last

follow-up. See Supplementary Fig. 10 for the extended version. Source data are

provided as a Source Data file.
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categorized as C4 seemed to have a shorter TTP than those classi-

fied as C3 (Supplementary Fig. 10a).

Next, we used the immune score, extracted by ESTIMATE36, to

evaluate the presence of immune cells in the tumors using RNA-Seq

data. Although we did not observe different infiltration levels between

the different tumor types (Supplementary Fig. 10b), we discovered

substantial variations in the proportion of immune cells extracted by

deconvolution of the RNA-Seq data using CIBERSORTx37 (Fig. 6b). We

observed a significantly higher number of resting and lower number of

activated CD4+ T cells, lower proportion of CD8+ T cells, and a higher

number of resting and lower quantity of activated NK cells in meta-

static primaries compared to non-metastatic tumors. The lower levels

of CD8+T cells inmetastatic tumorswas validated by IHC (Fig. 6c). The

suppression of activated T cells is supported by the GSEA analysis with

24 terms related to activation/differentiation/proliferation identified

among the negative NES (Fig. 4h; Supplementary Fig. 6o, blue arrows).

This notion was reinforced by the differences between non-metastatic

and metastatic primary tumors found in the functional gene expres-

sion signatures (Fges) enrichment scores, calculated by GSVA as in

Bagaev et al.38, related to effector cell traffic and NK cells (Fig. 6d, top

panel).We also noted a higher representation ofmacrophagesM2-like,

known by their anti-inflammatory and pro-tumoral role39, inmetastatic

primary tumors. This is in agreementwith theobservation that a higher

proportion of metastatic tumors were classified into C4 subtype,

characterized by high M2-like macrophage response35.

Several gene sets (n = 9) related to interferon signaling also had

negative NES in the GSEA analysis (Fig. 4h; Supplementary Fig. 6o,

green arrows), and a significantly lower Th1 signature- and anti-tumor

cytokines-, and higher pro-tumor cytokines-Fges scores were found in

metastatic primary tumors (Fig. 6d, top panel), both supporting the

immunosuppressivemicroenvironment encountered in themetastatic

primary tumors. These differences increased when metastases were

incorporated into the analysis (Supplementary Fig. 10c). Other cyto-

kines with anti-tumor immunity properties, such as TNF, IL6, IL2, and

IL140, were also identified by the GSEA analysis (Fig. 4h; Supplementary

Fig. 6o, purple arrows).

Interestingly, lower NK cells-, effector cell traffic-, Th1 signature-

and antitumor cytokines-Fges scores were associated with risk of

metastasis development (multivariate analysis adjusting for genomic

subtype; Fig. 6d,middle panel), suggesting that TME is independent of

genotype.

The latter Fges scores were also associated with TTP (Fig. 6d,

bottom panel). We also found that some infiltrating immune cell types

estimated with CIBERSORTx were significantly associated with TTP;

high levels of resting and low levels of activated NK cells were asso-

ciated with shorter TTP (Fig. 6e; Supplementary Fig. 10d). Similarly,

high levels of regulatory T cells (Tregs) were also associated with

shorter TTP.

Immunogenomics as a theranostic tool in the immunotherapy
contexture of metastatic pheochromocytoma and
paraganglioma
Bagaev et al. recently proposed four Fges-based pan-cancer micro-

environment subtypes that correlate with patient response to immu-

notherapy in multiple cancers38. To classify our tumors according to

their TME, we applied k-means clustering using the 29 Fges scores. We

defined four TME subtypes in our cohort (Fig. 7a); among these, the

immune-enriched non-fibrotic was the least represented (14.3% of the

cases), and the subtype with fewer metastatic tumors (Supplementary

Fig. 11a) and with better prognosis (Fig. 7b). TME subtypes were

strongly correlated with the ImmuneScore and StromalScore,

obtained fromESTIMATE36, and predicted levels of infiltrating immune

and stromal cells, respectively (P = 4 × 10−38 and 5.4 × 10−44,

Krustal–Wallis test) (Fig. 7a). We also observed a trend towards TME

subtypes being associated to neoantigen load and TMB

(Supplementary Fig. 11b, c). TME subtype proportions also differed

between immune subtypes (Supplementary Fig. 11d) and PPGL geno-

mic subtypes (Supplementary Fig. 11e). The pseudohypoxic clusterwas

mainly enriched in the fibrotic subtype, characterized by high vascu-

larity and an immunosuppressive phenotype38 as recently reported by

Celada et al.41; in contrast, the kinase signaling cluster was highly

represented in the immune-enriched non-fibrotic subtype, reflecting

the influence of the genomic subtypes onTME. These differences were

also evident when comparing Fges scores between genomic subtypes

(Supplementary Fig. 11f). We observed higher representation of a

Th1 signature and checkpoint molecules in the kinase signaling

tumors, and the pseudohypoxic tumors were characterized by higher

signature Fges scores related to angiogenesis and fibrosis (cancer-

associated fibroblasts, matrix remodeling, endothelium), as already

reported42,43.

In order to further explore the immunophenotyping of patients

with mPPGL, we examined the expression of key immunomodulators

(IMs) targeted in clinical oncology by several IM agonists and

antagonists44. Gene expression of IMs (Fig. 7c; Supplementary Fig. 12a)

varied between metastatic and non-metastatic tumors and across

genomic subtypes, possibly suggestive of their role in delineating the

immune infiltration of the tumors. Genes with the greatest differences

(P < 0.01) between metastatic and non-metastatic tumors were CD274,

CD276, TGFB1, VEGFA, CD40 and TLR4. CD274, which encodes for

programmed death-ligand 1 (PD-L1), showed the lowest levels in

pseudohypoxic tumors and the highest in Wnt-altered subtype,

including several metastatic MAML3-tumors. PD-L1 IHC in an inde-

pendent series of n = 44 PPGLs (Supplementary Table 3) confirmed

that 34% (15/44) of PPGLs, 7 harboring a MAML3-fusion, exhibit PD-L1

staining in tumor cellmembranes. These represented 100% ofMAML3-

tumors included in the series and, with the exception of one SDHB

tumor, were the only tumors exhibiting highly positive PD-L1 staining

(Fig. 7d); no association was observed according to clinical behavior

(Supplementary Fig. 12b). A higher neoantigen load was also observed

in MAML3-tumors compared to all other tumors (MWW test:

P =0.0067; Fig. 7e).

Given the differences observed in the aforementioned key

immune players, further investigation is needed in order to elucidate

the differences in terms of immune infiltrates between the tumors

classified in the different genomic subtypes. We observed differences

betweenmolecular clusters according to Fge scores, immune and TME

classifications (Supplementary Fig. 10c, d; Fig. 6a), and, as anticipated,

we also noticed differences according to relative levels of some

immune cell types among genomic subtypes (Supplementary Fig. 13,

top). One difference was the greater infiltration of CD8+ T cells in

MAML3-tumors (Fig. 7f). On the other hand, we show that metastatic

tumors present a similar pattern in the proportion of major classes of

immune cells across the different genomic subtypes (Supplementary

Fig. 13, bottom), reinforcing the notion that some immune cell popu-

lations may be partially linked to the molecular genomic subtype, but

others to the tumor behavior.

Discussion
The comprehensive genomic analysis of mPPGL described here high-

lights not only the heterogeneous landscape of secondary genomic

alterations, but also the presence of shared TME features within

genomic subtypes and/or according to tumor behavior.

In this study, we reveal that TMB, MSI status and SCNA burden of

PPGLs increase with disease progression, suggesting their use as

markers ofmetastatic risk at diagnosis of a primary tumor.We confirm

differential TMB in PPGLs as previously reported5,9, and report the

association between changes in MSI status and clinical behavior of

PPGLs. Although we did not identify any PPGL tumor surpassing the

cutoff value used for MSI-high classification in tumors with high

TMB10,13, we propose that MSI thresholds may not be applied similarly
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to tumors with lower TMB, such as for PPGL or acute myeloid

leukemia45,46. Frequent gain of chromosomal material had previously

been observed inmPPGL47, but here we have linked an increased SCNA

burden to mPPGL, mimicking observations in other tumors48. Impor-

tantly, TMB, MSI status and SCNA burden were associated with

ATRX/TERT alterations, reinforcing the notion that alterations in

immortalization-related genes contribute to genomic instability49. In

fact, different copy number signatures could underlie this hetero-

geneous genomic instability, as reported for ovarian cancer50.

ATRX/TERT alterations are validated as the only recurrent sec-

ondary prognostic-associated events identified in PPGLs, accumulat-

ing not only in pseudohypoxic tumors8,19,51,52, but also in Wnt-altered

tumors. These findings bolster the concept that alterations con-

tributing to immortalization mechanisms are those that confer a poor
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prognosis for patients with PPGL. Except for ATRX mutations, TERT

alterations and chromosome 5 gains, no other genetic alterations

could be identified as metastasis priming events. Therefore, and even

though PPGL tumor formation is clearly driven by germline or somatic

mutations, our data suggest that the molecular switches involved in

metastatic progression are likely variable andmay involve non-genetic

events. However, of course, future efforts should also be directed

towards performing WGS to capture potential alterations in non-

coding regions or large rearrangements53.

At the transcriptional level, we identified elevated CDK1 as a

prognostic factor that, independently of genomic subtype, adds to the

higher TMB, higher MSI score and chromosome 5 gains just described

herein. Moreover, given that CDK1 is indispensable for driving the cell

cycle54, and because the cell cycle is one of the major deregulated

signaling networks in mPPGLs (described herein and recently by

Zethoven et al.55), there may be potential for developing CDK1-specific

inhibitors for treatment56.

Given what has been reported to date57, it will be difficult to

identify a singlemolecularmarker capable of accurately predicting the

metastatic behavior of these tumors. Therefore, it is of particular

interest that our study describes a classifier that takes into account

only 4 events (ATRX-mutations, high MSI score, high CDK1 expression

and MAML3-fusions) and achieves a sensitivity of 100%. Although fur-

ther validationwill be necessary, we have defined a classifier that could

identify all patients at risk of metastasis at the time of diagnosis of the

primary tumor.

The immune contexture is being evaluated as a prognostic tool in

many tumor types58, but little has been reported in PPGLs41,55,59,60. Here,

we identified a high number of downregulated gene sets related to the

immune response. By interrogating the immune content, we also

showed a complex and heterogeneous ecosystem at the TME level,

characterized by the presence of CD8+ T cells, NK cells and a Th1

profile; this was associated with a good clinical outcome, as expected,

due to their anti-tumor immune characteristics61. Additionally, we

identified an association between high levels of macrophages M2 and

Tregs, both cell types known by their anti-inflammatory and pro-

tumoral role39,62, and metastatic behavior and poorer prognosis. The

excessive catecholamine levels present in metastatic tumors could

contribute to the establishment of the immunosuppressive TME63, by

diminishing T andNK cell activation64 and by driving theM1- toM2-like

macrophage polarization65. Our data demonstrate the potential use-

fulness of including immune parameters as prognostic classification

tools for PPGL.

Cancer immunotherapy is in the spotlight for the treatment of

numerous cancers and the TME is known to be important for tumor

progression and anti-cancer therapeutic responses66. Therefore, it is

possible that classification of PPGLs according to their TME subtype38

could help identify patients who might benefit from

immunotherapeutic agents. We established that tumors with immune-

enriched non-fibrotic subtype, showing an immune-active TME,

exhibited the best prognosis and included mainly non-mPPGLs. In

melanoma, bladder and gastric cancer, responders to immune

checkpoint inhibitor have the highest proportion of immune-enriched

non-fibrotic subtype38. However, what we observe in mPPGL is dis-

couraging. Specifically, the fibrotic subtype, which in our cohort was

enriched in mPPGLs, seems to be the least responsive to the afore-

mentioned therapies38.

Strategies to individualize immunotherapy based on patient- and

tumor-specific characteristics are a current focus of the scientific

community67. With this in mind, we identified PD-L1 positivity, higher

TMB and neoantigen load, and CD8+ T cell infiltration in MAML3-

tumors compared to other PPGLs. This is noteworthy because all these

traits are associated with improved responses to PD1 axis blockade in

diverse tumors68,69; this suggests that PD-1/PD-L1 inhibitorsmay offer a

potential treatment for patients withMAML3-tumors. Pembrolizumab,

a PD-1 inhibitor displayedmodest therapeutic efficacy in a clinical trial

of mPPGLs70; although no association with genotype was observed,

MAML3 status was not considered, so it remains possible that this

could be used to stratify patients. This concept is supported by find-

ings that gene fusions are a source of immunogenic neo-antigens that

can mediate responses to immunotherapy, even with a low TMB and

minimal immune infiltration71. Of relevance, it is known that WNT/β-

catenin signaling, upregulated in MAML3-tumors5, correlates with

immune exclusion72. The latter is caused by an increased PD-L1 tran-

scription afterMYCorβ-cateninbinding to its promoter73,74. Therefore,

these observations suggest that WNT inhibitors may synergize with

PD1 axis blockade in MAML3-tumors.

We could speculate thatCD40 and TLR4 low expression identified

inmPPGLs could pave theway to propose other approaches to expand

the range of targetable immune checkpoints, as in situ vaccination

with double CD40-TLR4 stimulation75 to turn “cold tumors” into “hot

tumors” and restore PD-1 sensitivity. Notably, CD40 and/or various

TLR agonists, currently in clinical trials, have recently been tested in a

PPGL mouse model with promising results76.

The notion that the tumor immune portrait is orchestrated by the

genomic subtype and that is modulated by the tumor behavior is

supported by reported examples that show (i) a link between tumor

genotype and immunological architecture, and (ii) the dynamic state

of TME during tumor progression77.

In summary, this study serves as a valuable resource for future

investigations in the field of PPGL genomics due to the large series of

tumors with WES and RNA-Seq data associated with pathological, IHC

and curated clinical information. Moreover, the present report con-

tributes with significant data to advance the genomic and immune

understanding of mPPGLs, and thereby potentially increase the ther-

apeutic strategies needed for a bench-to-bedside clinical success.

Fig. 7 | Immunogenomics as a theranostic tool in the immunotherapy con-

texture. aHeatmapof the 267 PPGL tumors profiled by RNA-Seq and classified into

the four distinct TME subtypes described Bagaev et al. based on unsupervised

k-means clustering of the 29 Fge enrichment scores. Genomic and clinical features

are exhibited as depicted in the legend. bKaplan–Meier plot of time to progression

in patients according to the primary tumor TME subtype (n = 33 for IE, n = 55 for F,

n = 74 for IE/F and n = 62 for D). Only primary tumors from non-metastatic and

metastatic patients included. P-value was calculated using a log-rank test. Patients

without evidence of metastases were censored at the date of the last follow-up.

c Expression (median normalized z-score expression) of main immunoregulators

(IMs) according to theclinical behavior andgenomic subtype. Two-sidedMWWand

two-sided Krustal-Wallis tests were applied to test for differences between meta-

static (n = 55) and non-metastatic (n = 176) primary tumors and between the dif-

ferent genomic subtypes (pseudohypoxic, n = 33; kinase signaling, n = 16; Wnt-

altered, n = 6) within metastatic primary tumors, respectively; both tests were

applied on the normalized data. Significant P-values are shown. d Representative

images (top) and quantification (bottom) of PD-L1 IHC staining in a subset of n = 44

PPGLs. Quantification is represented for each genomic subtype. Two-sided

Freeman–Halton test was used to test for differences between groups. OnlyMAML3

class exhibited statistically significant differences compared to the other groups.

Scale bar in images = 150 μm. e Neoantigen load across genomic subtypes in pri-

mary tumors (n = 170). Only tumors with WES and RNA-Seq data available were

included in the analysis; WT Wwnt-altered tumors have not been represented. The

median value ismarked and Tukey whiskers are represented. P-values shown in the

figure correspond to two-sidedMWW test. OnlyMAML3 class exhibited statistically

significant differences compared to the other groups. f Percentages of CD8+T cells

infiltrated among the tumor cells detectedby immunohistochemistry in a subset of

n = 42 PPGLs with different genomic subtypes. For two cases, IHC was not asses-

sable. Median ± IQR is shown. MWW was applied to test for differences between

groups. See also Supplementary Figs. 11–13. Source data are provided as a Source

Data file.
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Methods
Sample cohort and clinical data
All PPGL tumor tissues and patient’s germline samples were obtained

from patients with informed written consent for this purpose, in

accordance with institutional ethical-approved protocols. The study

was conducted in accordancewith the Declaration of Helsinki, and the

protocol was approved by the following Ethics Committees: Hospital

Universitario 12 deOctubre (15/024),Madrid, Spain; Universitäts Spital

Zurich (2017-00771), Zurich, Switzerland; Klinikum der Universität

(379-10),Munich, Germany; University ofWürzburg (88/11),Würzburg,

Germany; Azienda Ospedaliera Universitaria Careggi (Prot. N. 2011/

0020149), Florence, Italy; Berlin Chamber of Physicians (Eth-S-R/14),

Berlin, Germany; Radboud University Medical Center (9803-0060),

Nijmegen, The Netherlands; TU Dresden (EK210052017 and

EK189062010), Dresden, Germany. Clinical characteristics are pro-

vided in Supplementary Tables 1 and 3. Demographic and clinical data

included sex, age at initial pathologic diagnosis, age at tumor surgery,

tumor type (PGL, PCC, multiple), number of follow-up days for non-

metastatic patients/ event free days until metastasis for patients with

metastases, and location of metastasis. Histological annotated data,

when available, included tumor volume, presence of capsular/ adipose

tissue/ vascular invasion, and Ki67 index. Metastatic disease was

defined as the occurrence of distant metastases in anatomical loca-

tions where chromaffin tissue is normally absent, as per WHO

definition78. Aggressive disease was established when there was cap-

sular or adipose tissue invasion, and vascular infiltration or evidences

of multiple recurrences, without certainty of metastatic disease.

Tumors that appear at the same place as the original primary after a

period of time were tagged as “relapses”.

Tumor tissues and germline samples were collected from 73

patients forWES analysis. After discarding samples that failed different

quality control steps, a final cohort of 87 tumors from 61 patients,

sequenced using ‘SureSelect All Exon + COSMIC v6’ exome probes

from Agilent, were available for analysis (Supplementary Fig. 1a). From

165 patients initially available for the RNA-Seq study, a final series of

114 samples from 105 patients profiled either using Illumina TruSeq or

QuantSeq 3’mRNA-Seq (Lexogen) and that passed our pre-analysis

criteria, were included in the study (Supplementary Fig. 1b). To note,

we profiled 45 tumor samples with both WES and RNA-Seq. Moreover,

we included 20 patients withmore than one tumor sequenced byWES

(range, 2–7), and9patientswithmore thanone tumorprofiled byRNA-

Seq (range 2–3). To increase the power of our analyses and overcome

the lack of non-metastatic patients included in our WES series, we

joined ourWES and RNA-Seq data with those from the TCGA. After our

in-house quality control of the latter series, we gathered a total of 261

paired germline-tumor analyzed by WES and 264 tumors profiled by

RNA-Seq (SupplementaryFig. 1). Clinical data frompatients included in

the TCGA series was extracted from ref. 5.

The WES series was composed of 62 primary tumors and 5

relapses from metastatic patients, 25 metastases, 8 primary tumors

from patients with aggressive disease and 158 primary tumors from

non-metastatic patients (Supplementary Fig. 1a). The RNA-Seq series

was composed of 55 primary tumors and 4 relapses from metastatic

patients, 16 metastases, 15 tumors from patients with aggressive dis-

ease and 176 tumors from non-metastatic patients (Supplemen-

tary Fig. 1b).

The resulting series is representative of the main PPGL genotypes

and equitable in number of samples from non-metastatic and meta-

static patients. In the CNIO cohort, germline and somatic mutations in

driver genes had previously been characterized using a NGS AmpliSeq

Custom DNA Panel (Illumina, San Diego, CA, USA) as specified in79.

MAML3 fusion positive tumors were detected either (1) on cDNA of

suspected candidates using the following primers for the upstream

UBTF portion of the fusion transcript: 5′-GGAGCAGCAAAAGCAG-

TACA-3′ and 5′-CCCAAACCCCAAATCCAG-3′; and 5′ TCTCCATTAAGT

GGTGATCGAG 3′ for the downstream MAML3 portion, or (2) by

fluorescence in situ hybridization (FISH) for MALM3 gene rearrange-

ment analysis.

Nucleic acid extraction and quality control
Tumor specimens were collected either in formalin-fixed paraffin-

embedded (FFPE) or fresh-frozen (FF), and tumor selection (>60%

cancer cells) was performed by a pathologist (E. Caleiras) on hema-

toxylin and eosin-stained slides. DNA and RNA were isolated using

commercially available kits according tomanufacturer’s specifications.

DNA from FFPE tissues was obtained with truXTRAC FFPE DNA (Cov-

aris, 520136) and from FF tumors from DNeasy Blood and Tissue Kit

(Qiagen, 69506). RNA from FFPE was extracted using Maxwell RSC

RNA FFPE Kit (Promega, AS1440) and from FF with TRIzol Reagent

(Invitrogen, 15596026). Germline DNA was extracted either from per-

ipheral bloodmononuclear cells usingMaxwell RSCWhole Blood DNA

Kit (Promega, AS1520) or from adjacent normal tissue using truXTRAC

FFPE DNA (Covaris, 520136). DNA and RNA was quantified using

Quantus Fluorometer (Promega) and integrity examined using a High

Sensitivity DNA Kit (Agilent, 5067-4626) or a RNA 6000 Nano Kit

(Agilent, 5067-1511) in a 2100 Bioanalyzer Instrument (Agilent). Sam-

ples with low quality DNA were dismissed.

WES
Library preparation and sequencing. Whole exome sequencing

(WES) libraries were prepared with the SureSelectXT Human All

Exon V6+ COSMIC target enrichment system (Agilent, 5190–9307)

following the manufacturer’s instructions. 200 ng of genomic DNA

from FFPE tumoral samples and 1 µg from FF or germline samples

were used as starting material. SureSelectXT HS (Agilent, G9704A)

and SureSelectXT2 (Agilent, G9621A) reagent kits were used for

FFPE derived and good quality samples, respectively. DNAs were

fragmented on a Covaris S2 sharing instrument based on initial DNA

sample’s integrity. Fragmented DNA samples were processed

through subsequent enzymatic treatments of end-repair, dA-tailing,

and ligation to Illumina’s adapters. Adapter-ligated libraries were

PCR amplified with Illumina PE primers and subsequently hybri-

dized to SureSelect Oligo Capture Library Mix. Biotinylated hybrids

were captured and the enriched fraction eluted. Libraries were

completed by limited-cycle PCR with Illumina TruSeq primers and

KAPA HiFi HotStart DNA pol (Roche KK2501). Sample-specific

libraries were combined into equimolarly balanced pools and

applied to Illumina flow cells for cluster generation. Sequencing was

performed on either the Illumina HiSeq2500 or NovaSeq6000 in a

paired-end 100 bp reads mode to a median target coverage of

~200× and ~100× for tumors and germline, respectively.

WES analysis
Exome sequencing data was processed and aligned to the human

reference genome GRCh37 using Burrows-Wheeler Aligner (BWA)80.

For single-nucleotide variant (SNV) and insertions/deletions (INDELs)

identification, theGenomeAnalysis Toolkit GATK81wasused. Germline

and somatic variants with higher allele frequency were detected with

Haplotype Caller82 and additional somatic variants were detected with

MuTect83 thatwas also incorporated to the pipeline to identify somatic

variants with low allele fraction values. Variants were annotated using

Ensembl Variant Effect Predictor tool (VEP)84 v90. For the analysis

employing TCGA DNA sequencing data, whole exome mapped files

(BAM files), aligned against GRCh38 version of human reference gen-

ome were downloaded from GDC Data Portal, NIH (https://portal.gdc.

cancer.gov/).

Tumor purity was estimated using FACETS algorithm85, particu-

larly the R package cnv-facets that allows the execution of all the

necessary steps in a single command line call. GRCh37 and GRCh38

versions of human reference genome were used for our series and
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TCGA series, respectively. Only samples with tumor cellularity >12%

(median, 70.5%; range 13–92.3%) were included for analysis.

Microsatellite instability (MSI) was calculated using the MANTIS

algorithm86. Normal-tumor paired, aligned and processed BAM files,

were used to calculate the differences ofmicrosatellite distributions at

somatic level.

SNVs and indels were manually curated following the workflow

shown in Supplementary Fig 2a. Briefly, events that fell into any of

these categories were removed:
• Events annotated as: “intron_variant”, “downstream_gene_variant”,

“3_prime_UTR_variant”, “upstream_gene_variant”, “NMD_tran-

script_variant”, “non_coding_transcript_variant”, “5_prime_UTR_

variant”, “mature_miRNA_variant”.
• Variants with minor allele frequency > 0.1 in gnomAD or/and

1000genomes (‘germline-like’).
• Events visualized using IGV87 in other patient’s tumor WES and

not appearing in their callings, or which appear in germlines of

other patients were considered ‘artefacts’.
• Events with variant allele fraction <0.1.

Variant impact consequence classification of the remaining events

was applied as indicated in Supplementary Table 4.

For TCGA,WES data were extracted from8 independent pipelines

and the annotated files were obtained from UCSC Xena (accessed on

Dec 3rd 2019). Data sets included SNPs and small INDELs detected

after performing variant calling with MuSE, MuTect2, SomaticSniper

andVarScan2VariantAggregationandMaskingpipelines, aswell as the

calling generated by BCGSC (British Columbia Genome Sciences

Centre, BCGSC pipeline), BCM (Baylor College of Medicine Human

Genome Sequencing Center, Baylor pipeline), Broad (Broad Institute

Genome Sequencing Center, MuTect pipeline) and UCSC (University

of California Santa Cruz, RADIA pipeline). We generated a ‘consensus’

variant set including all those events called by at least two of the eight

pipeline lists. The original TCGA coordinates in GRCh38 were con-

verted to GRCh37 using the online tool LiftOver from UCSC (https://

genome.ucsc.edu/cgi-bin/hgLiftOver). VEP84 v94 was used to predict

the functional effects of the variants. SNVs and INDELs were manually

curated following the same workflow used for CNIO WES data, shown

in Supplementary Fig. 2b, except for the artefact filtering step.

Somatic copy number (CN) detection was performed with

FACETS algorithm85, following the sameanalysis previouslymentioned

for purity estimation. Good fit of CN detection was evaluated with the

diagnostic plot generated by the pipeline, and samples with poor fit

were discarded from the analysis. For specific samples, regions with

total CN value higher than 8, and regions with log-ratio values between

−0.1 and 0.1 were discarded, except for regions annotated as neutral

LOH. Total number of CN segments (defined as SCNA events) was

calculated for each sample, and genes in each region were annotated

using an in house R script based on biomaRt package88.

Identification of TERT alterations
TERT overexpression, TERT amplification, TERT promoter (TERTp)

mutation and hypermethylation were taken into account in our ana-

lysis. When RNA-Seq data was not available, TERT overexpression was

detected by four TERT gene expression probes included in a TruSeq

Targeted custom panel (Illumina) that contained other 227 probes for

187 genes; only samples with an average value ≥4 counts were con-

sidered as positive for TERT expression. TERTp recurrent mutations

(chr5:1295228C >T and chr5:1295250C >T) were studied using the 16S

Metagenomic Sequencing Library Preparation (Illumina) protocol;

only the C228T mutation was detected in our series. Amplicons of

151 bp for NGS were obtained from 50ng of DNA tumor samples after

two PCRs; Multiplex QIAGEN 2× Master Mix was used for the first PCR

and EasyTaq DNA polymerase for the second. Mutations detected by

NGS were validated using Sanger sequencing using forward and

Reverse primers (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

CAGCGCTGCCTGAAACTCG-3′ and 5´- GTCTCGTGGGCTCGGAGAT

GTGTATAAGAGACAGGTCCTGCCCCTTCACCTTC-3′).

TERTp hypermethylation was studied using 100 ng of bisulfite

modified DNA (EZ-96 DNA methylation kit, Zymo research). Primers

were chosen according to Castelo-Branco et al.89, obtaining four

amplicons covering the TERTp region CpG islands, as known as TERT

hypermethylated oncological region (THOR). A total number of 39

probes from theTHOR regionwere studied, sharing 29probeswith the

ones included by Castelo-Branco et al. Methylation status was deter-

mined by focusing mainly in the UTSS region (CpG probes:

chr5_1295586_C; chr5_1295590_C; chr5_1295593_C; chr5_1295605_C;

chr5_1295618_C). Only samples with a mean UTSS value ≥14.1 were

considered as hypermethylated.

High-level amplifications of TERT, identified by using GISTIC 2.0

tool90 with a score = 2, were considered after data processing as

described in Monteagudo, et al.79.

TERT overexpression and TERTp hypermethylation in TCGA

samples were established as described by Barthel et al.91.

Impact of sequencing depth coverage—downsampling
To evaluate the impact of the sequencing depth on variant calling

sensitivity between CNIO (median, 91.9×) and TCGA (median, 53.5x)

WES series, we selected 10 random samples from the CNIO series, and

BAM files were downsampled ≈50× average coverage (similar to the

mean depth of the TCGA cohort). We then reran the same somatic

variant calling pipeline to compare it to the variant calling performed

with the original depth (Supplementary Fig. 14a). Decreasing coverage

resulted in a median diminution in sensitivity of only 11.8% in the

number of variants detected (Supplementary Fig. 14b), and a good

agreement in tumor purity estimation (Supplementary Fig. 14c).

RNA-Seq
RNA-Seq Library preparation and sequencing. RNA library prepara-

tion of samples with RNA Integrity Number (RIN) > 5.5 (median 7.1;

range 5.6–8.9) was performed as described in the TruSeq Stranded

mRNA Library Prep Kit (Illumina, RS-122-2101). Briefly, 0.7–1 µg total

RNA PolyA+ fraction was purified and randomly fragmented, con-

verted to double stranded cDNA and processed through subsequent

enzymatic treatments of end-repair, dA-tailing, and ligation to adap-

ters. Adapter-ligated library was completed by PCR with Illumina PE

primers. The resulting purified cDNA librarywas applied to an Illumina

flow cell for cluster generation and sequenced on an Illumina

HiSeq2500 on a 51 bp single-read format following manufacturer’s

protocols.

cDNA libraries from FFPE tumors and low integrity RNA’s (RIN <

5.5) fromFF tumors (median 2.4; range 1–5.5) but%of fragments > 200

nucleotides higher than 20% (median 57.5; range 20–96) were pre-

pared using QuantSeq 3’mRNA-Seq Library Prep Kit FWD for Illumina

(Lexogen, 015) with a UMI Second Strand Synthesis Module for

QuantSeq FWD (Lexogen, 081), following the vendor’s protocol for low

input/ low quality/ FFPE RNA. 200–500 ng of total RNA, according to

availability, were used as startingmaterial. PCR Add-on Kit for Illumina

(Lexogen, 020) was used to adjust the library amplification number of

cycles. Libraries were applied to an Illumina flow cell for cluster gen-

eration and sequenced on NovaSeq6000.

Image analysis, per-cycle basecalling andquality score assignment

was performed with Illumina Real Time Analysis software. Demulti-

plexing of BCL files to FASTQ formatwas performedwith the bcl2fastq

Software (Illumina).

RNA-Seq analyses
HTSeq-Counts from CNIO series were generated with Nextpresso92

and BlueBee® Genomics Platform (Lexogen, 090-094), from

FASTQ files obtained from TruSeq and QuantSeq platforms,
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respectively. QuantSeq FWD-UMI Data Analysis Pipeline was used

specifically for libraries constructed using UMIs. TopHat v2.1.193

and STAR v2.5.2a94 algorithms were used to map the reads

respectively to the reference genome GRCh37. RNA-Seq HTSeq-

Counts for TCGA cohort were downloaded from UCSC Xena

Browser (https://xenabrowser.net/).

HTSeq-counts from different platforms were integrated by com-

mon gene symbol collapsing by maximum expression value per gene

within each platform. Normalized counts were used to infer tumor

purity for each sample using the estimate scoreprovided by ESTIMATE

algorithm v1.0.1336. Samples failing quality control (e.g., lownumber of

reads) or with ESTIMATE score greater than 5900 were excluded.

Batch effects due to the type of analysis (UMI and no UMI), platform

(QuantSeq and TruSeq), and cohorts (CNIO and TCGA)were corrected

using ComBat95 from R/Bioconductor package sva96 v3.26.0 on log-

transformed values. Samples considered outliers according to PCA,

and from the consensus and hierarchical clustering were removed

from further analysis.

Genomic subtype classifier
The list of subtype-specific differentially expressed genes established

by Burnichon et al.20 was used to perform an unsupervised analysis of

CNIO samples, and classify wild-type (WT) tumors into one of 3

genomic subtypes (pseudohypoxic, kinase signaling or Wnt-altered).

Samples with known genotype were classified in one of 3 genomic

subtypes as already defined5.

mPPGL signature discovery and validation
Differential expression analysis was executed between non-metastatic

and primary metastatic tumors within each genomic subtype with

DESeq297 v1.18.1 using ESTIMATE score as a covariate. Best candidates

were ranked, and only those with |log2 fold-change| > 0.75 in all ana-

lyses and FDR <0.01 in differential expression analysis including all

cases were selected. A cohort of previously published PPGLs20 was

used for validation; only those cases with clinical behavior status

available (extracted from6) were included, and updated genotype and

genomic subtype classification were obtained from98. Data was ana-

lyzed as detailed elsewhere29. String v11 (https://string-db.org/) was

used to perform a functional enrichment analysis of this gene

signature.

Gene set enrichment analysis
GSEA pre-ranked analysis was executed with GSEA software99 v2.2.2

(RRID:SCR_003199), using either the selected gene sets obtained from

the mutational/ SCNA functional enrichment analysis or the ‘H: hall-

mark gene sets’, ‘C2: curated gene sets’ and ‘C5: ontology gene sets’

collections from the Molecular Signature Database (MSigDB; https://

www.gsea-msigdb.org/gsea/msigdb/). Default settings were used

except for collapse set to false, scoring_scheme set to classic, plot_-

top_x set to 100, set_max set to 1000, and set_min set to 10. Input files

were obtained from the differential expression analysis (non-meta-

static vs primary metastatic tumors) and ranked according to the

log2FoldChange.

Classifier of metastasis prediction
The individual variables to be evaluated were dichotomized as done

for the previous analyses anddescribed in eachfigure legend. The total

number of possible classifiers was dichotomized by computing all

possible combinations with the 9 events to be evaluated (n = 511). We

set as 1 - when any of the evaluated events included in the classifier was

present; 0 - when none of the events was present. This analysis was

executed using the dichotomized matrix with the samples for which

we had all the data available (n = 156).We calculated the area under the

receiver operating characteristic curves (AUC under ROC) of each

event individually and all combinations possible (n = 511).

Integrated analysis of focal SCNA and gene expression
A Fisher exact test was applied to establish differing focal SCNA, either

gains or deletions, between non-metastatic and metastatic primary

tumors at the gene level. Gains were based on DUP and DUP-LOH

FACETS annotations, and deletions on HEMYZIG and DEL ones. 2619

genes appeared with a P < 0.05. Correlation between CN at gene level

and expression data per gene was assessed using an anova test,

selecting those with FDR <0.05. After recoding FACETS output into

four different values to facilitate analysis (DUP and DUP-LOH coded as

1, no event as 0, HEMYZIG as −1 and DEL as −2), Pearson’s correlation

coefficient between the CN scores and the expression levels was cal-

culated. We identified significant genes by an Anova test and selected

only those that exhibited a positive correlation (6785 genes). Only

genes overlapping between both lists (911 genes) were considered

further, assuming that these were genes with differing focal SCNA

between studied groups and with a functional consequence at the

mRNA level. Analyses were carried out in R (v.4.0.3).

Mutational and SCNA functional enrichment analyses
Panther tool25 was used to detect the significantly enriched gene sets

among the consensus list of genes altered with SNV/INDELs or SCNAs.

The SNV/INDEL gene list included all those genes with high impact

variants (category 7: truncating, splice site, affecting start/stop codon

variants, andmissense variants classified as deleterious in three in silico

predictors or in COSMIC, https://cancer.sanger.ac.uk/cosmic) in meta-

static primary tumors. The SCNA gene list included those obtained

through the integrated analysis of focal SCNA and gene expression.

Enriched annotations were retrieved from ‘GObiological process’,

‘GO molecular function’, ‘GO cellular component’ and ‘Reactome

pathways’ using the Fisher’s Exact test executed by Panther. For the

consensus gene set enrichment analysis, a fold-enrichment (FC)

(FDR <0.05) threshold at 1.8 was established.

Estimation of immune cell types
DESeq2 normalized expression matrix was used to calculate the

abundance of 22 types of immune cell subsets in each sample of the

CNIO cohort using CIBERSORTx37, and the gene signature matrix

LM22, 1000 permutations, B-mode batch correction, and disabled

quantile normalization. Cell abundances from TCGA cohort were

retrieved from Thorsson et al.35. Both matrices were transformed to

z-scores (centered at the relative abundance mean of the primary

metastatic samples of each cohort) and merged in a single matrix for

further analysis.

Immune subtype identification
Weutilized the sample assignments established by Thorsson et al.35 for

the TCGA cohort. For CNIO cohort, we used the ImmuneSubtype-

Classifier of the Cri-iAtlas100 through the R package available in v0.1.0.

Single-sample gene set enrichment analysis for TME subtype
identification
Gene set variation analysis (GSVA) enrichment scores for the 29

curated gene signatures (Fges) from Bagaev et al.38 were calculated

using the GSVA R package101 on the RNA-Seq expression matrix nor-

malized with the VST function of DESeq2. Thereafter, we classified all

tumors with RNA-Seq available into the 4 separate TME subtypes

described by Bagaev et al. (Immune-enriched fibrotic, immune-

enriched non-fibrotic, fibrotic, depleted) applying unsupervised

k-means clustering (Eucledian distance, 1000 iterations) based on the

29 calculated Fges enrichment scores using Morpheus (https://

software.broadinstitute.org/morpheus).

Identification of neoantigens
Manually curated somatic SNVs and indels from the CNIO and TCGA

cohort were annotated with VEP v106 using the required and useful
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VEP options specified in the pVACtools102 documentation. Coverage

information for variant siteswas retrieved from tumor andnormalbam

files using bam-readcount (Larson. genome/bam-readcount. GitHub

https://github.com/genome/bam-readcount). For this purpose, the

Docker 1.1.1 image of mgibio/bam_readcount_helper-cwl was used and

the collected data were added to the annotated VFC files with the vcf-

readcount-annotator from the VAtools package (http://vatools.org).

HLA class I typing was performed on each sample with

POLYSOLVER103v4. pVACseq from the pVACtools package version

3.0.2 was then used for epitope prediction. The epitope length was set

to 8–11 and the prediction algorithmswere all those available for MHC

Class I (NetMHCpan, NetMHC, NetMHCcons, PickPocket, SMM,

SMMPMBEC,MHCflurry andMHCnuggetsI). The epitopes provided by

pVACseq in the filtered files, which are those passing binding affinity

and sequence-based thresholds were the ones used to establish the

neoantigen load per sample.

Immunohistochemistry
Antigen retrieval was first performed on 3μm FFPE sections with the

appropriate pH buffer and endogenous peroxidase was blocked

(peroxide hydrogen at 3%). Slides were incubatedwith the appropriate

primary antibody as detailed: mouse anti-CDK1 Ab (dil 1:250; BD

Biosciences Cat# 610038, RRID:AB_397454), rabbit anti-PDL1 [E1L3N]

XP mAb (dil 1:150 20’ER2; Cell Signaling Technology Cat# 13684, RRI-

D:AB_2687655) and rat anti-CD8A [NOR132H] (dil 1:20; CNIO in-house

Ab validated by EuroMAbNet; https://www.euromabnet.com/

monoclonal-antibodies/cd8a/38.html). Afterwards, the correspond-

ing visualization systemswas usedwhen needed (Bond Polymer Refine

Detection, Bond, Leica; EnVision FLEX+, Dako) conjugated with

horseradish peroxidase. Immunohistochemical reaction was devel-

oped using 3,30-diaminobenzidine tetrahydrochloride (DAB) (Dako).

Nuclei were counterstained with Harrys’s hematoxylin. Finally, the

slides were dehydrated, cleared and mounted with a permanent

mounting medium for microscopic evaluation. Whole slides images

were scanned with AxioScan Z1 (Zeiss), and captured either with a Zen

Blue software (ZEN Digital Imaging for Light Microscopy, Zeiss,

RRID:SCR_013672) orAxioVision software (AxioVision Imaging System,

RRID:SCR_002677).

For CDK1 staining quantification, a script was created using Zen

Blue software (additional module for analysis, Zeiss); positivity was

stablished as stained area in tumor area after manual tumor selection

on hematoxylin and eosin-stained slides. After training and script

optimization, the quantification programwas run and results exported

as excel files with scoring data for each image file.

PD-L1 staining was assessed by two independent observers

(G. Roncador and B. Calsina) on complete sections. Each case was

scored semi-quantitatively depending on the tumor proportion score

(TPS), as tier 1 (0–15% positive tumor cells), tier 2 (15–30%), and tier

3 (30–100%).

For CD8+ T cells quantification, a digital image analysis workflow

was developed in QuPath104. Briefly, batch analysis was applied across all

whole slides to automatically perform cell detection and count the

number of positive cells. The cell detection parameters were optimized

by applying the following parameters: optical density sum detection

image,pixel size:0.5μm,background radius: 18μm,median radius: 2μm,

minimum/maximum area: 12–1000μm, intensity threshold: 0.07, sigma:

1.3μm, threshold compartment: Cell:DAB OD mean 0.26. A random tree

(RTees) classifier was trained for each tumor slide in order to distinguish

between tumor cells and normal adrenal, sustentacular and endothelial

cells, and erythrocytes. Manual pathologist (E. Caleiras) assessment was

used to validate the classifier in a subset of cases.

Quantification and statistical analysis
Statistical analyses were performed either using R version 3.2.2

(RRID:SCR_000432) or IBM SPSS Statistics v19 (RRID:SCR_019096). The

statistical details of experiments including the exact value of n in terms

of number of samples for a given cohort, the experimental method,

controlling/covariates used and specific statistical tests employed are

reported in the relevant section (Results, Figures and Figure Legends,

Supplementary Tables). For a given test, significance was defined,

unless expressly indicated, if a p value was less than 0.05. Disease-

specific progression-free was established as the time interval from the

PPGL primary diagnosis to the first appearance of a metastatic lesion

(time to progression, TTP), as a reliable prognostic measure.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
TheWES andRNA-Seq fastq files generated during this study, aswell as

level 3 files (expression countmatrix, and the VCF files with the variant

calling results for both SNV/INDELs and CN) have been deposited in

the European Genome-Phenome Archive (EGA) under the accession

EGAS00001006043 and EGAS00001006044. The data are available

under restricted access due to the possibility of revealing patient-

sensitive information. Request for data access will be referred directly

to theDataAccessCommittee (DAC) of theCNIO (mrobledo@cnio.es).

The access will be granted for health/medical/biomedical purposes

and according to good practice recommendations. The DAC will

attempt to provide a response to all applications within two weeks of

submissionand render afinal decisionwithin nomore than fourweeks.

Once access has been granted, data will be available for one month.

The remaining data are available within the article and supplementary

information. The publicly available microarray dataset used in this

study is available from ArrayExpress (E-MTAB-733)20 and the TCGA

WES and RNA-Seq data from GDC Data Portal, NIH (https://portal.gdc.

cancer.gov/), TCGA-PCPG5. Source data are provided with this paper.
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