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Oikos

The Landsat satellites provide decades of near-global surface reflectance measurements 
that are increasingly used to assess interannual changes in terrestrial ecosystem func-
tion. These assessments often rely on spectral indices related to vegetation greenness 
and productivity (e.g. Normalized Difference Vegetation Index, NDVI). Nevertheless, 
multiple factors impede multi-decadal assessments of spectral indices using Landsat 
satellite data, including ease of data access and cleaning, as well as lingering issues with 
cross-sensor calibration and challenges with irregular timing of cloud-free acquisitions. 
To help address these problems, we developed the ‘LandsatTS’ package for R. This 
software package facilitates sample-based time series analysis of surface reflectance and 
spectral indices derived from Landsat sensors. The package includes functions that 
enable the extraction of the full Landsat 5, 7, and 8 records from Collection 2 for point 
sample locations or small study regions using Google Earth Engine accessed directly 
from R. Moreover, the package includes functions for 1) rigorous data cleaning, 2) 
cross-sensor calibration, 3) phenological modeling, and 4) time series analysis. For 
an example application, we show how ‘LandsatTS’ can be used to assess changes in 
annual maximum vegetation greenness from 2000 to 2022 across the Noatak National 
Preserve in northern Alaska, USA. Overall, this software provides a suite of functions 
to enable broader use of Landsat satellite data for assessing and monitoring terrestrial 
ecosystem function during recent decades across local to global geographic extents.

Keywords: cross-sensor calibration, Google Earth Engine, greening and browning, 
Landsat, NDVI, spectral index

Background

Satellite remote sensing is crucial for assessing and monitoring how Earth’s terres-
trial ecosystems have changed during recent decades (National Academies of Sciences 
2018). The Landsat satellites are particularly valuable in this regard because they are 

‘LandsatTS’: an R package to facilitate retrieval, cleaning, 
cross-calibration, and phenological modeling of Landsat time 
series data

Logan T. Berner ✉1, Jakob J. Assmann2,3, Signe Normand2 and Scott J. Goetz1

1School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, USA
2Department of Biology, Ecoinformatics and Biodiversity, Aarhus University, Aarhus, Denmark
3Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland

Correspondence: Logan T. Berner (logan.berner@nau.edu)

Software note



Page 2 of 15

the longest continuously running satellite program and were 
designed for terrestrial ecosystem monitoring at moderate spa-
tial resolution (Wulder et al. 2019). The first Landsat satellite 
(Landsat 1) was launched in 1972 as a partnership between 
NASA and the US Geological Survey (USGS) and since that 
time a series of additional satellites have been launched, with 
the most recent being Landsat 9 in 2021. The Landsat satel-
lites carry multispectral sensors that provide surface reflec-
tance measurements used for a wide range scientific and 
land management applications (Wulder et al. 2019). These 
include global monitoring of changes in forest canopy cover 
(Hansen et al. 2013, Sexton et al. 2013), land cover and use 
(Potapov et al. 2022), and surface water extent (Pekel et al. 
2016), as well as regional- to biome-scale assessments of how 
disturbance, land-use, and climate change are impacting ter-
restrial ecosystems (Wulder et al. 2004, Powell et al. 2010, 
Ju and Masek 2016, Wang and Friedl 2019). Hence, the 
Landsat program has become a cornerstone of Earth surface 
monitoring. Yet there are challenges that hinder use of these 
data by ecologists, land managers, and other non-remote 
sensing specialists.

Here we present the ‘LandsatTS’ (i.e. Landsat Time Series) 
software package for R (www.r-project.org) that enables 
users to extract, process, and analyze time series of Landsat 
surface reflectance measurements for sample locations any-
where on Earth. ‘LandsatTS’ enables extraction of Landsat 
5, 7, and 8 surface reflectance measurements from the full 
Landsat Collection 2 dataset on Google Earth Engine (GEE; 
Gorelick et al. 2017). Furthermore, ‘LandsatTS’ includes 
functions that facilitate 1) data cleaning, 2) cross-sensor cali-
bration, 3) phenological modeling, and 4) time series anal-
ysis of vegetation greenness (Fig. 1, Table 1). This software 
grew out of research projects focused on vegetation dynamics 
across northern high-latitude ecosystems (Berner et al. 2020, 
Berner and Goetz 2022) and is implemented within the free, 
open-source, and widely used R statistical computing envi-
ronment (R Core Team 2021).

It has become easier to access and process Landsat data 
since the archive was made publicly available in 2008 
(Wulder et al. 2012) and a copy of the archive subsequently 
hosted on GEE (Gorelick et al. 2017). The GEE cloud-
computing platform enables users to access and process 
Landsat data using JavaScript and Python application pro-
gram interfaces (APIs), as well as with R through the ‘rgee’ 
package (www.r-project.org, Aybar et al. 2020). R is very 
popular among ecologists (Lai et al. 2019), yet other exist-
ing R packages (www.r-project.org) only provide tools for 
processing individual Landsat scenes. For instance, ‘landsat’ 
includes functions for radiometric and topographic cor-
rection of Landsat scenes (Goslee 2011), while ‘landsat8’ 
includes functions for computing top of atmosphere reflec-
tance, radiance, and/or brightness temperature on Landsat 
scenes (dos Santos 2017). Thus, the ‘rgee’ package makes it 
easier for ecologists to use the GEE platform and work with 
Landsat data. Nevertheless, it remains non-trivial to not 
only extract Landsat time series data using ‘rgee’, but also 
to thoroughly clean the extracted data to ensure that only 

high-quality measurements are used in analyses. ‘LandsatTS’ 
therefore provides new tools for sample-based extraction 
of full Landsat data records using ‘rgee’ to access the GEE. 
Furthermore, ‘LandsatTS’ includes tools to rigorously clean 
Landsat data using both pixel-level CFmask flags (e.g. cloud, 
water; Zhu et al. 2015) and scene-level criteria (e.g. cloud 
cover, solar zenith angle). Consequently, ‘LandsatTS’ helps 
further broaden the community of researchers who can uti-
lize Landsat data for robust spatiotemporal analyses of ter-
restrial ecosystem dynamics.

Landsat time series analyses that use measurements from 
multiple sensors are hindered by systematic biases in spectral 
bands and indices among the Landsat 5 Thematic Mapper 
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), 
and Landsat 8 Operational Land Imager (OLI) sensors (Ju 
and Masek 2016, Roy et al. 2016, Berner et al. 2020, Berner 
and Goetz 2022). If unaccounted for, these biases can intro-
duce pronounced artificial trends into combined time series, 
such as spurious increases over time in spectral indices of 
vegetation greenness including the widely used Normalized 
Difference Vegetation Index (NDVI) (Sulla-Menashe et al. 
2017). Prior approaches for cross-sensor calibration focused 
on linear corrections for individual spectral bands and select 
spectral indices (e.g. NDVI) using regional data (e.g. conti-
nental USA) from Landsat Collection 1 (Ju and Masek 2016, 
Roy et al. 2016). While valuable, these published cross-sensor 
calibration models do not account for potential non-linear-
ities, may not be suitable for other regions, and may not 
be appropriate for the newer Landsat Collection 2 dataset. 
Therefore, ‘LandsatTS’ includes functions to cross-calibrate 
spectral bands and indices among Landsat 5, 7, and 8 using 
either random forest machine learning or polynomial regres-
sion models. These models can be fit using the user’s dataset. 
However, if the user’s dataset is too small to fit these models, 
then, if appropriate, the user can choose to fit models using 
pre-processed and staged Landsat data that were sampled 
from across the Arctic tundra and boreal forest biomes. See 
Supporting information for polynomial regression model 
coefficients and evaluation metrics for this domain for each 
spectral band and select indices (e.g. NDVI, EVI2, NBR). 
Flexible implementation of cross-sensor calibration in the 
‘LandsatTS’ workflow enables the user to generate high-qual-
ity time series that are free from sensor-specific biases that can 
otherwise induce spurious trends.

Vegetation phenology controls ecosystem processes (e.g. 
photosynthesis) and is often assessed using spectral indices 
(e.g. NDVI) derived from satellite measurements (Helman 
2018, Zeng et al. 2020). Nevertheless, efforts to assess vegeta-
tion phenology using the Landsat satellites are complicated 
by multiple factors that include 1) irregular timing of clear-
sky acquisitions within a growing season and 2) changes in 
the annual number of clear-sky acquisitions across years as 
new satellites were launched. These challenges are especially 
acute in regions with short, cloudy growing seasons such as 
the Arctic, where the median number of clear-sky growing 
season measurements increased from 2 per year in 1995 to 
7 per year in 2015 (Berner et al. 2020). Annual maximum 
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vegetation greenness is an important metric of vegeta-
tion phenology related to productivity (Berner et al. 2020, 
Zeng et al. 2020, Boyd et al. 2021), yet this metric is sensitive 
to the timing and number of measurements made in a grow-
ing season. Consequently, simple calculations of this metric 
tend to be artificially low early in the Landsat record but less 
so during later years when more measurements are available, 

which can introduce a spurious positive trend into a time 
series (Berner et al. 2020). To address this issue, ‘LandsatTS’ 
includes tools to estimate annual maximum vegetation green-
ness based on site-specific phenological modeling that itera-
tively fits cubic splines to vegetation greenness time series. 
Users interested in other aspects of vegetation phenology (e.g. 
timing of spring onset or fall senescence) could extract and 

Figure 1. Schematic illustrating functions and typical workflow of the ‘LandsatTS’ package. Each function is briefly described in Table 1, 
with further details provided in the Supporting information and package documentation. ‘LandsatTS’ has primary been used for assess-
ments of interannual variability and trends in vegetation greenness. However, ‘LandsatTS’ facilitates other Landsat time series analyses by 
providing tools for general data extraction and processing. GEE, Google Earth Engine.
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process Landsat data using ‘LandsatTS’, but then capital-
ize on tools provided by other R packages (www.r-project.
org), such as the new ‘phenofit’ package that provides state-
of-the-art tools for fitting phenological models (Kong et al. 
2022). Alternatively, users who are interested in phenological 
modeling with other data sources (e.g. phenocams, MODIS) 
could utilize functions from ‘LandsatTS’. More broadly, 
while ‘LandsatTS’ provides tools focused on generating high-
quality vegetation greenness times series, it also enables users 
to undertake other analyses that rely on cleaned and cross-
calibrated Landsat data.

‘LandsatTS’ includes an integrated suite of tools that 
were originally developed to assess long-term changes in 
vegetation greenness within the rapidly warming Arctic 
tundra and boreal forest biomes (Berner et al. 2020, Berner 
and Goetz 2022). This software implements a sample-
based approach that we found is well suited for assessing 
vegetation dynamics and evaluating ecological hypoth-
eses in these cold northern biomes, while substantially 
reducing computational burden compared with wall-
to-wall analyses. The sample-based approach is condu-
cive to rigorous propagation of uncertainty using Monte 
Carlo simulations (Berner et al. 2020, Berner and Goetz 
2022), which is important for improving confidence in 
remote sensing analyses but seldom carried out because 
of computational constraints (Myers-Smith et al. 2020). 
Furthermore, the sample-based approach has helped vali-
date and interpret vegetation dynamics inferred from 
spectral indices by enabling comparisons between satellite 

and field measurements across widely distributed site net-
works (Boyd et al. 2019, Berner et al. 2020, Boyd et al. 
2021, Walker et al. 2021). These tools have also been 
used to assess high-latitude vegetation responses to insect 
outbreaks (Boyd et al. 2019, Boyd et al. 2021), wild-
fires (Gaglioti et al. 2021), and permafrost degradation 
(Verdonen et al. 2020), as well as for syntheses focused on 
high-latitude disturbance regimes (Foster et al. 2022) and 
Arctic shrubification (Mekonnen et al. 2021). Among other 
applications, these tools could further be used to comple-
ment field-based ecosystems monitoring in protected areas, 
evaluate ecosystem impacts of extreme weather events (e.g. 
droughts), and improve local to global mapping efforts by 
enabling users to develop regression models for cross-sen-
sor calibration. In summary, ‘LandsatTS’ enables ecologists 
and other researchers to extract and process Landsat time 
series that can then be used to analyze vegetation phenol-
ogy or for other user-defined applications.

Here, we illustrate a typical workflow (Fig. 1) and briefly 
describe each function (Table 1), as well as provide an exam-
ple application focused on vegetation dynamics across the 
Noatak National Preserve, USA, and instructions for pack-
age installation. Detailed descriptions of each function are 
included in the Supporting information and package user 
manual. Additional examples and information are provided 
in a vignette that is included as Supporting information 
and accessible from within R, as well as on the ‘LandsatTS’ 
GitHub repository (https://github.com/logan-berner/
LandsatTS).

Table 1. Function names and descriptions. These are listed in the order typically used. A more detailed description of each function is pro-
vided in the Supporting information and package documentation. GEE, Google Earth Engine.

Step Function Brief Description

Data extraction lsat_get_pixel_centers (Optional) Retrieve point coordinates of all Landsat 8 pixel centers that fall within a 
polygon.

lsat_export_ts Export full Landsat surface reflectance time series for a set of point coordinates 
using GEE accessed from R.

Data processing lsat_format_data Prepare data exported from GEE, including parsing satellite names and renaming 
and scaling bands.

lsat_clean_data Filter out measurements based on presence of clouds, water, shadows, oblique 
view angles, and other criteria.

lsat_summarize_data (Optional) Summarize data availability at each site, such as total number and years 
of observations.

lsat_neighborhood_mean (Optional) For buffered sites, compute band-wise mean surface reflectance across 
grid cells within the buffer.

lsat_calc_spectral_index Calculate a variety of widely used spectral indices, such as the Normalized 
Difference Vegetation Index (NDVI).

lsat_calibrate_rf Cross-calibrate bands or spectral indices from Landsat 5/8 to match Landsat 7 using 
Random Forest models.

lsat_calibrate_poly Cross-calibrate bands or spectral indices from Landsat 5/8 to match Landsat 7 using 
polynomial regression.

lsat_fit_phenological_curves Characterize seasonal land surface phenology at each site by iteratively fitting 
flexible cubic splines.

lsat_summarize_growing_seasons Estimate various phenological metrics from fitted cubic splines, such as annual 
maximum vegetation greenness.

lsat_evaluate_phenological_max (Optional) Evaluate estimates of annual maximum vegetation greenness with 
measurement availability.

Data analysis lsat_calc_trend Calculate temporal trends using non-parametric Mann–Kendall trend tests and 
Theil–Sen slope indicators.

lsat_plot_trend_hist Plots a histogram of trends across sample sites.
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Example application: vegetation greenness 
trends in the Noatak National Preserve, USA

Here we provide an example analysis of interannual changes 
in vegetation greenness from 2000 to 2022 within the 
Noatak National Preserve in northern Alaska, USA (Fig. 2). 
The Noatak National Preserve is a vast wilderness of moun-
tainous Arctic and alpine tundra that encompasses the larg-
est undisturbed watershed in North America. The preserve is 
about 2.6 million hectares of roadless lands that were desig-
nated in 1980 to maintain ecological integrity, protect habi-
tat and archeological resources, and provide opportunities for 
scientific research (US National Park Service 2023). Recent 
ecological research found climate warming substantially 
increased growth rates of white spruce Picea glauca and led to 
rapid expansion of trees and tall shrubs into tundra over the 
past half century in parts of the preserve (Suarez et al. 1999, 
Terskaia et al. 2020, Dial et al. 2022). The impacts of cli-
mate change are increasingly evident in the Noatak National 
Preserve and underscore the importance of sustained and 
cost-effective ecological monitoring and assessment.

Annual maximum vegetation greenness is related to tun-
dra aboveground biomass and productivity, making it an 
important ecological metric that can be monitored using 

satellite remote sensing (Jia et al. 2003, Raynolds et al. 2012, 
Berner et al. 2018, Bhatt et al. 2021). We therefore demon-
strate how multidecadal changes in annual maximum veg-
etation greenness can be readily assessed across the preserve 
using Landsat satellite data. In this section, we guide the 
reader through the analysis code with example output fig-
ures and tables that are generated by the ‘LandsatTS’ func-
tions. Please note that Code Box 1 requires access to GEE 
for exporting Landsat data; however, Code Boxes 2–4 can 
be run without access to GEE because they rely on a dataset 
provided with the package.

Part 1: Export Landsat time series from Google Earth 
Engine

To start, we create a random sample of points within the 
Noatak National Preserve and then export Landsat time 
series for each sample point using GEE (Code Box 1). To 
facilitate our example, we include the preserve boundary as 
a simple feature polygon dataset (‘noatak.sf ’) in ‘LandsatTS’. 
Users could alternatively read in their own shapefile using 
sf::st_read() or create a collection of spatial points (e.g. field 
sites) using sf::st_sf() (Pebesma 2018). We load the preserve 
boundary dataset, create a simple random sample of n points 

Figure 2. Screenshot of a leaflet interactive map showing the Noatak National Preserve boundary in northern Alaska, USA, and 100 random 
sample points within the preserve. Landsat time series data were extracted for each of these sample points. Base map from ESRI World 
Imagery (ESRI 2022).
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within the boundary using the sf::st_sample function, give 
each sample a unique identifier, and then create an interac-
tive map showing preserve and sample point locations using 
‘leaflet’ (Fig. 2) (Cheng et al. 2022). We then initialize GEE 
and submit a task to GEE that for each sample point exports 
all Landsat 5, 7, and 8 measurements made between day of 
year 152 (beginning of June) and 273 (end of September) 
from 1985 to 2022. For expediency, this example exports 
data for three random sample points, which took ~ 11 min 
and yielded ~ 800 B of data written to a folder called ‘earth_
engine’ on the user’s Google Drive. Exporting four decades 

of summer Landsat data for 100 sample points took ~ 6 h 
and yielded ~ 28 MB of data, while exporting data for 1000 
sample points took ~ 15 h with four tasks running in paral-
lel and yielded ~ 280 MB of data. To facilitate subsequent 
parts of this example, we include Landsat data for 100 sample 
points as a dataset (‘noatak.dt’) in ‘LandsatTS’. Data export 
progress can be monitored using the GEE task manager in 
the web browser (https://code.earthengine.google.com/tasks) 
or with the R console using the ee_monitoring() function pro-
vided by ‘rgee’. The CSV file(s) containing the raw exports 
need to be copied from the user’s Google Drive to the local 

Code Box 1. Export Landsat time series from Google Earth Engine

# Load required R packages
require(LandsatTS)
require(sf)
require(rgee)
require(tidyverse)
require(leaflet)
# Load the Noatak National Preserve simple feature polygon
data(noatak.sf)

# Create n random sample points within the Noatak National Preserve
n.pts <- 3
noatak.pts.sf <- st_sample(x = noatak.sf, size = n.pts) %>% st_sf()

# Add unique identifier to each point
noatak.pts.sf$sample_id <- paste0('S_', 1:n.pts)

# Make interactive map showing Noatak National Preserve and sample points 
(Fig. 2)
leaflet() %>%
  addProviderTiles('Esri.WorldImagery') %>%
  addCircleMarkers(data = noatak.pts.sf,
                   color = 'white',
                   opacity = 0.9,
                   fillColor = 'fuchsia',
                   fillOpacity = 0.75,
                   weight = 1,
                   radius = 5) %>%
  addPolygons(data = noatak.sf,
              color = 'white',
              weight = 3) %>%
  addScaleBar(options = scaleBarOptions(imperial = F))
# Initialize Earth Engine
ee_Initialize()

# Extract a time series of surface reflectance measurements for each Landsat 
pixel
task_list <- lsat_export_ts(pixel_coords_sf = noatak.pts.sf,
                            start_date = "1985-06-01",
                            end_date = "2022-09-30",
                            start_doy = 152,
                            end_doy = 273,
                            file_prefix = 'noatak',
                            drive_export_dir = 'earth_engine')
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machine that will carry out the subsequent processing using 
‘LandsatTS’. The files can be copied manually or using the 
rgee::ee_drive_to_local() function. Once the records are avail-
able locally, they need to be cleaned and processed into veg-
etation index time series as detailed in the next section.

Part 2: Format, clean, and summarize Landsat data 
in preparation for analysis

We load the Landsat data into R, format and clean the data, 
and then examine data availability. Here, we provide Landsat 
data for the 100 sample points as a dataset in ‘LandsatTS’; 
however, the dataset alternatively could be read into R as a 
data.table using the fread() function from the ‘data.table’ 
package (Dowle and Srinivasan 2021). Once loaded into R, 
we format the dataset for analysis using lsat_format_data(), 
which formats column names and scales the band values, 
among other necessary formatting. We then clean the dataset 
using lsat_clean_data() to filter out clouds, snow, and water, 
as well as radiometric and geometric errors. For these field 
sites, lsat_clean_data() removed 78 625 of 99 600 observations 
(78.94%), including one sample point located in water. We 
then check the availability of clear-sky Landsat observations for 
the remaining 99 sample points using lsat_summarize_data(). 
On average (± 1 SD), each sample point had 212 ± 48 clear-
sky observations made between 1985 and 2022. The annual 
number of observations is typically small before the year 2000, 
as highlighted by the figure generated by the function (Fig. 3).

Part 3: Generate cross-calibrated time series of 
annual maximum vegetation greenness

To generate time series of annual maximum vegetation 
greenness for each sample point, we 1) compute NDVI, 2) 

cross-calibrate NDVI among Landsat sensors, and then 3) 
estimate annual maximum NDVI (NDVImax) using phe-
nological modeling. First, we calculate NDVI using lsat_
calc_spectral_index(), which supports calculating a variety of 
commonly used spectral indices. There are systematic differ-
ences in NDVI among Landsat sensors, so next we calibrate 
NDVI from Landsat 5 TM and Landsat 8 OLI to match 
Landsat 7 ETM+, which has measurements that temporally 
overlap with the other two sensors. We cross-calibrate NDVI 
among sensors using lsat_calibrate_poly() to fit and apply 
polynomial regression models. As the number of field sites 

Figure 3. Annual availability of quality screened summer Landsat 
observations summarized across sample points in the Noatak 
National Preserve as returned by the function lsat_summarize_
data(). Summaries are based on observations acquired between day 
of year 152 (beginning of June) and 273 (end of September). Note 
the limited availability of observations before the year 2000. Lines 
with points denote median counts while shaded bands encompass 
the 2.5th to 97.5th percentiles of counts among sample points.

Code Box 2. Format, clean, and summarize Landsat data in preparation for analysis

# Load required R packages
require(LandsatTS)
require(data.table)
require(tidyverse)
require(sf)
require(leaflet)
require(mapview)

# Load Landsat data for Noatak sites, or read in file using data.table::fread().
data(noatak.dt)

# Format the exported data
noatak.dt <- lsat_format_data(noatak.dt)

# Clean the data by filtering out clouds, snow, water, etc.
noatak.dt <- lsat_clean_data(noatak.dt)

# Summarize the availability of Landsat data for each pixel (Fig. 3)
lsat_summarize_data(noatak.dt)

# Continue to Code Box 3...

 1
6

0
0

0
5

8
7

, 2
0

2
3

, 9
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://n
so

jo
u

rn
als.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
1

1
1

/eco
g

.0
6

7
6

8
 b

y
 U

n
iv

ersitaet Z
u
erich

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

6
/0

2
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



Page 8 of 15

in this dataset is rather small, we use a pre-processed dataset 
of Landsat observations that were randomly sampled from 
across northern high-latitudes ecosystems and are included 
for this purpose with ‘LandsatTS’. The function gener-
ates and returns a series of graphs (Fig. 4) and tabular data 
(Table 2) that help with evaluating model performance and 
can optionally be written to a user-specified directory. As 
desired, calibration visually (Fig. 4) and statistically (Table 2) 
reduced the bias between Landsat 7 NDVI and Landsat 5 
and 8 NDVI.

As a step towards estimating annual NDVImax, we fit phe-
nological models to the calibrated NDVI time series using 
lsat_fit_phenological_curves(). The function automatically 
returns a figure with Landsat observations and fitted phe-
nological curves for nine random sample locations in the 
dataset (Fig. 5). Each phenological curve characterizes the 

seasonal progression of NDVI using observations pooled 
over a multi-year period (here a 7-year moving window) and 
should be smooth and hump-shaped. Beware of phenologi-
cal curves with long straight lines that could suggest inad-
equate seasonal distribution of data used when fitting the 
curves. Phenological models were not fit for three sites that 
were minimally vegetated (NDVI < 0.15) because it is chal-
lenging to extract a meaningful vegetation phenology signal 
under these conditions. After fitting phenological models for 
94 field sites, we then generated growing season summary 
statistics, including estimates of NDVImax, using lsat_summa-
rize_growing_seasons(). The lsat_evaluate_phenological_max() 
can be used to output a figure that allows for visually assess-
ing the performance of modeled NDVImax (Fig. 6). In the 
case of the Noatak example dataset, modeled estimates of 
NDVImax tend to be biased slightly low (~ 1%) when only 

Figure 4. Relationships between Landsat 7 Normalized Difference Vegetation Index (NDVI) and both (a) Landsat 5 NDVI and (b) Landsat 8 
NDVI using (left panels) original data and (right panels) data that were calibrated using polynomial regression models. Each point is a sample 
location from the Arctic–Boreal domain with temporally overlapping measurements from pairs of Landsat sensors. Orange diagonal lines 
depict 1:1 relationships. Model performance metrics are provided in Table 2. Cross-calibration substantially reduces biases between sensors.

Table 2. Summary of original biases, performance of polynomial regression models for cross-sensor calibration, and post-calibration biases in 
Normalized Difference Vegetation Index (NDVI) between Landsat 7 ETM+ and either Landsat 5 TM or Landsat 8 OLI. Each model was trained 
using 75% of available data selected at random and then cross-validated using the remaining 25% of data. RMSE, root mean squared error.

Satellite sensor

Number of sites Original data Cross-validated error metrics

Train Eval. RMSE Median bias Median % bias r2 RMSE Median bias Median % bias

Landsat 5 TM 5237 1746 0.052 −0.04 −6.1 0.974 0.032 < 0.01 < 0.1
Landsat 8 OLI 5927 1976 0.050 0.03 4.9 0.965 0.035 < 0.01 < 0.1
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one or two observations are available from a growing season 
(Fig. 6), yet there were rarely such few observations during 
the period from 2000 to 2022 (Fig. 3). The final step fol-
lowing the cross-calibration and phenological modeling is the 
time series analysis.

Part 4: Analyze vegetation greenness time series

Finally, we evaluate the interannual trend in NDVImax from 
2000 to 2022 for each sample point. We calculate temporal 
trends using the lsat_calc_trend() function that implements 
and summarizes non-parametric trend assessments (Table 3). 
Note how we use the ‘yrs’ argument to restrict the time series 
analysis to the years between 2000 and 2022 to avoid using 
the low number of observations in the record prior to the 
turn of the millennium. We then create a histogram of recent 

NDVImax trends using lsat_plot_trend_hist() (Fig. 7) and also 
create an interactive map showing the trend at each sample 
point (Fig. 8). These figures indicate extensive greening across 
the study area in recent decades.

Results and interpretation of the example analysis

Our analysis showed annual maximum vegetation greenness 
(i.e. NDVImax) increased 5.5 ± 10.8% (mean ± 1 SD) from 
2000 to 2022 across sample points in the Noatak National 
Preserve (Fig. 7). During these years, vegetation green-
ness increased by at least 10% at 20% of sample points. 
Vegetation greenness systematically (α = 0.10) increased at 
32% of sample points, decreased at 1% of sample points, 
and exhibited no systematic change at the remaining 67% of 
sample points. Greening was especially prevalent in western 

Figure 5. Seasonal progression of Landsat Normalized Difference Vegetation Index (NDVI) and phenological curves for nine random 
sample points in the Noatak National Preserve. Each dot is an observation that is colored by the year of acquisition ranging between 1985 
and 2022. Each line represents a phenological curve that was fit to observations pooled over a 7-year window centered on the focal year as 
indicated by the color of the line. Color coding helps illustrate how individual curves are fit to observations. These figures can visually 
highlight long-term changes in phenology and can provide a quick visual assessment of how well curves are being fit to observations, espe-
cially when the function is run using the parameter test.run = TRUE.
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Code Box 3. Cross-calibration and phenological modeling

# ... continuing from Code Box 2

# Compute the Normalized Difference Vegetation Index (NDVI)
noatak.dt <- lsat_calc_spectral_index(noatak.dt, si = 'ndvi')

# Cross-calibrate NDVI among sensors using polynomial regression (Fig. 4, Table 2)
noatak.dt <- lsat_calibrate_poly(noatak.dt,
                             band.or.si = 'ndvi',
                             train.with.highlat.data = T,
                             overwrite.col = T)

# Fit phenological models (cubic splines) to each time series (Fig. 5)
noatak.pheno.dt <- lsat_fit_phenological_curves(noatak.dt, si = 'ndvi')
# Summarize growing season characteristics
noatak.gs.dt <- lsat_summarize_growing_seasons(noatak.pheno.dt, si = 'ndvi')

# Evaluate estimates of annual maximum NDVI (Fig. 6)
noatak.gs.eval.dt <- lsat_evaluate_phenological_max(noatak.pheno.dt, si = 'ndvi')

# Continue to Code Box 4...

Code Box 4. Analyze and visualize vegetation greenness time series

# ... continuing from Code Box 3

# Compute temporal trend in annual NDVImax for each sample point (Table 3)
noatak.trend.dt <- lsat_calc_trend(noatak.gs.dt, si = 'ndvi.max', yrs = 2000:2022)

# Plot histogram of trends across sample points (Fig. 7)
lsat_plot_trend_hist(noatak.trend.dt, xlim = c(-21,21))

# Create interactive map showing NDVI trends (Fig. 8)
colors.dt <- data.table(trend.cat = c("greening","no_trend","browning"),
 trend.color = c("springgreen","white","orange"))

noatak.trend.dt <- noatak.trend.dt[colors.dt, on = 'trend.cat']

noatak.trend.sf <- st_as_sf(noatak.trend.dt,
                            coords = c("longitude", "latitude"),
                            crs = 4326)

leaflet() %>%
  addProviderTiles('Esri.WorldImagery') %>%
  addPolylines(data = noatak.sf, color = 'white', weight = 3) %>%
  addCircleMarkers(data = noatak.trend.sf,
                   color = 'white',
                   weight = 1,
                   opacity = 0.9,
                   fillColor = ~trend.color,
                   fillOpacity = 0.5,
                   radius = ~sqrt(abs(total.change.pcnt))*3) %>%
  setView(-160, 68, zoom = 7) %>%
  addLegend('bottomright',
            colors = colors.dt$trend.color,
            labels = colors.dt$trend.cat,
            title = 'NDVImax trend',
            opacity = 1)

# End of code examples
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parts of the preserve, as well as along in the northern foothills 
of the Brooks Range (Fig. 8).

These remotely sensed changes suggest tundra produc-
tivity and biomass increased in recent decades across large 
parts of the Noatak National Preserve. These changes are 
consistent with observed warming-induced expansion 
of trees and tall shrubs in the preserve (Tape et al. 2006, 
Terskaia et al. 2020, Dial et al. 2022), as well as with rising 
summer temperatures increasing the productivity of exist-
ing vegetation in this cold tundra environment (Suarez et al. 
1999, Berner et al. 2020, Dial et al. 2022). This preserve 
is also one of the most fire-prone regions in the Arctic and 
observed greening trends could partially be related to his-
torical fires causing near-surface permafrost thaw, nutrient 
release, and subsequent shrub proliferation (Gaglioti et al. 
2021). Greening in the preserve generally mirrors changes 

that have been observed more broadly across the Arctic 
tundra biome, though greening was slightly more preva-
lent in the preserve than in the broader Arctic (32% ver-
sus 27% of sample points, respectively) (Berner et al. 2020, 
Mekonnen et al. 2021).

This example analysis was based on Landsat data from 
100 random sample points, yet nearly identical results were 
obtained when the analysis was performed using 1000 sam-
ple points. Further insight into recent ecological changes 
could be garnered using a higher sample density with samples 
stratified by land cover type, ecological land unit, manage-
ment unit, or other factors (Gaglioti et al. 2021, Berner and 
Goetz 2022). Nevertheless, Landsat data from even a rela-
tively small random sample (n = 100) enabled robust infer-
ence about recent ecological changes that occurred over the 
past two decades within one of the most remote protected 
areas in the USA.

Package installation

The R package ‘LandsatTS’ is publicly available through a 
GitHub code repository. Users will need to have installed the 
R software environment on their computer. The ‘LandsatTS’ 
package is operating system agnostic and can be installed 
from within R using the install_github() function from the 
‘devtools’ package:

devtools::install_github("logan-ber-
ner/LandsatTS")

If the user would like to access the vignette from within 
R, then include the argument build_vignettes = TRUE when 
installing the package. Installation will compile the package 
from source code on the user’s computer, as well as acquire and 
configure external package dependencies (Table 4). However, 
to use the data extraction and preparation functions, users 
will need an account on GEE, and to have installed and 
configured the ‘rgee’ package to access GEE from R. Please 
see the GEE (https://earthengine.google.com/) and ‘rgee’ 

Figure 6. Raw estimates of annual maximum Normalized Difference 
Vegetation Index (NDVI) (NDVImax) are biased low when only a 
few Landsat observations are available from a given growing season, 
whereas phenologically modeled estimates of NDVImax are mini-
mally impacted by the availability of observations. The figure sum-
marizes how raw and modeled estimates of NDVImax differ from 
observed NDVImax based on number of observations, as determined 
using lsat_evaluate_phenological_max().

Table 3. Abridged summary of annual maximum Normalized Difference Vegetation Index (NDVImax) trends from 2000 to 2022 for each 
sample point (Sample ID) as generated using the function lsat_calc_trend(). Trends were assessed for each sample point by removing tem-
poral autocorrelation and then applying a Mann–Kendall trend test (Tau statistic and p-value provided). Slopes were calculated using the 
Theil–Sen slope estimators.

Sample ID Latitude Longitude n Slope Intercept Tau p-value Total change Total change (%)

S_1 67.70765 −157.404 22 0.00109 0.5918 0.181 0.2639 0.025 4.2
S_10 68.23443 −158.416 23 0.00127 0.6144 0.091 0.5728 0.029 4.7
S_11 67.8104 −157.097 21 0.0017 0.6366 0.105 0.5376 0.039 6.1
S_12 67.81419 −160.017 23 0.00155 0.6943 0.108 0.4986 0.036 5.2
S_13 68.12915 −161.226 23 0.00209 0.5268 0.541 < 0.001 0.048 9.1
S_14 68.26632 −157.32 23 0.00067 0.2369 0.403 0.0095 0.015 6.3
S_15 67.87087 −156.911 22 0.00073 0.6307 0.01 0.9759 0.017 2.7
S_16 68.18229 −156.824 23 0.00048 0.6445 0.065 0.693 0.011 1.7
S_17 67.64494 −158.002 23 0.00314 0.6726 0.541 < 0.001 0.072 10.7
S_18 67.94227 −161.809 23 −0.00086 0.7419 −0.152 0.3377 −0.020 −2.7
S_19 67.76848 −162.447 23 0.00623 0.5918 0.784 < 0.001 0.025 4.2
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(https://r-spatial.github.io/rgee/) websites for details on sign-
ing up for an account and configuring ‘rgee’, respectively.

Conclusions

The ‘LandsatTS’ package for R facilitates extracting and 
processing Landsat surface reflectance time series, as well as 
generating and analyzing metrics of vegetation greenness and 
other spectral indices. We demonstrated the functionality 
of this software by analyzing changes in annual maximum 
vegetation greenness from 2000 to 2022 across the Noatak 
National Preserve in northern Alaska, USA. However, we 
would like to highlight that these tools are also well suited 
for sample-based analyses of vegetation dynamics across geo-
graphic regions ranging from individual field sites to entire 
terrestrial biomes (Berner et al. 2020, Berner and Goetz 
2022). To date, ‘LandsatTS’ has been used for ecological 
studies focused on the Arctic tundra and boreal forest biomes, 
but many of the functions could be used for studies focused 
on lower latitude ecosystems, especially ecosystems without a 
multi-modal growing season. Overall, this software provides 
a suite of functions to enable broader use of Landsat satellite 

Figure 7. Histogram of relative change in Landsat Normalized 
Difference Vegetation Index (NDVI) NDVImax from 2000 to 2022 
among sample points across the Noatak National Preserve. Relative 
changes in percent are calculated based on the Theil–Sen slope and 
intercept estimates (Table 3).

Figure 8. Screenshot of a leaflet interactive map showing the trends in Normalized Difference Vegetation Index (NDVI) NDVImax from 
2000 to 2022 for sample points in the Noatak National Preserve located in northern Alaska, USA. The symbol for each sample point is 
colored based on a combination of NDVImax trend direction and significance (α = 0.10), and then sized based on the magnitude of relative 
change. For leaflet code simplicity, symbol size varies even for sample points without a significantly significant trend. Base map from ESRI 
World Imagery (ESRI 2022).
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data for assessing and monitoring Earth’s land surface over 
the past four decades in a sample-based framework suitable 
for local to global geographic extents.

To cite ‘LandsatTS’ or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘ver. 1.0’:
Berner, L. T., Assmann, J. J., Normand, S. and Goetz, S. J. 2023. 

‘LandsatTS’: an R package to facilitate retrieval, cleaning, cross-
calibration, and phenological modeling of Landsat time series 
data. – Ecography 2023: e06768 (ver. 1.0).
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