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Abstract

Can two parties reach an ex-post Pareto efficient trade agreement?
The importance of the question was elucidated by Coase (1960), and
Myerson and Satterthwaite (1983) provided a commonly accepted neg-
ative answer that such agreement is impossible when the parties are
privately informed. We show that this negative answer depends on the
assumption of quasi-linear preferences: efficient trade is possible if risk-
aversion or wealth effects are sufficiently large or if agents’ utility is
not too responsive to private information. Under empirically-grounded
specifications of risk aversion and elasticity of trade, two parties can
trade efficiently despite substantial asymmetry of information.
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1 Introduction

Coase (1960) pointed out that economic agents can reach efficient agreements
among themselves irrespective of the presence of externalities and without the
need for government intervention so long as property rights are unambiguously
enforced and there are no transaction costs. His analysis led to a rich literature
on the role of transactions costs in trade.1 A key insight of this literature is
that the presence of asymmetric information creates a form of transactions
costs that make reaching efficiency impossible. This insight was established
by Myerson and Satterthwaite (1983) for the canonical problem of whether
a seller and a buyer of an indivisible good can trade efficiently if they are
privately informed about their valuations for the good and ex ante either of
them might have the higher valuation.

Myerson and Satterthwaite’s impossibility theorem, a central result in
mechanism design, states that no Bayesian incentive-compatible, interim indi-
vidually rational, non-subsidized mechanism is ex-post Pareto efficient. This
impossibility theorem had a large impact on the economics literature and the
practice of market design.2 However, what is often disregarded is that this
theorem assumes that agents have quasilinear utility functions. We show that,
surprisingly, the impossibility of ex post Pareto efficient trade hinges on this
assumption. This matters because risk aversion and wealth effects, two phe-
nomena assumed away by quasilinearity, are important in many economic
environments, particularly those involving large trades.3

Our results establish that ex post Pareto efficient trade among privately
informed parties might be possible when the trading parties are risk averse or
their utility from the object traded depends on their wealth. In Theorem 1,
we show that efficient trade is generically possible as long as the asymmetry

1Cf. Demsetz 1968, Williamson 2010.
2See, for instance, Milgrom’s (2004) discussion of the role the impossibility theorem

played in the FCC deliberations on the first US spectrum auctions and Loertscher, Marx,
and Wilkening’s (2013) discussion of how the impossibility theorem led to the focus of
market design on primary markets.

3See, for instance, Weitzman’s (1977) analysis of the role of wealth effects in maximizing
social welfare in the presence of wealth inequality.
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of information is not too large, so that agents’ utilities are not too dependent
on private information. We provide a Bayesian incentive-compatible and in-
terim individually rational mechanism that, under these conditions, is ex-post
Pareto efficient and that does not rely on any subsidies or on budget break-
ing by third parties.4 The restriction on private information is necessary in
this general possibility result as the range of informational asymmetry that
allows for efficient trade diminishes as we approach the quasilinear limit of our
model.5 In Theorem 2, we show that when risk-aversion or wealth effects are
substantive, efficient trade may be possible even if agents’ utilities are highly
dependent on their private information. In particular, our results imply that
the central impossibility insight of mechanism design hinges on the assump-
tion of quasilinear utilities. In natural examples we show that the mechanisms
we construct generate exactly efficient trade under substantial asymmetry of
information when agents’ risk aversion takes values observed in empirical and
experimental studies of risk aversion as well as when the elasticity of substi-
tution between the good and money takes values observed in the literature
estimating such elasticities.

Why is efficient trade not possible with quasilinear preferences but might
be possible when agents are risk averse? There are two parts to the expla-
nation. First, a standard argument for the impossibility under quasilinear
preferences observes that, in an incentive compatible mechanism, each agent
needs to be provided with rents commensurate with her or his private infor-
mation, and the gains from efficient trade are not sufficient to cover the rents
of both parties. Risk aversion and wealth effects open up an additional source
of efficiency gains. A seller who sold the good has more money than the seller

4Like Myerson and Satterthwaite we look at ex-post efficiency in the sense that we
evaluate efficiency assuming that we know the agents’ types. With respect to the resolution
of the lotteries, our contracts are efficient not only ex post but also ex ante. We thus
establish the possibility of efficient trade for traders who are already informed. Our positive
result hinges on this as our Theorem 5 shows that ex-ante efficiency is in general not possible
in the environments we study.

5We show in an example in Section 4 that near the quasilinear case, the range of asym-
metric information allowing efficient trade is roughly linear in the coefficient of relative risk
aversion.
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who did not; if the seller’s marginal utility of money is decreasing in money
holdings then such a seller would prefer to have slightly more money when not
selling the good and slightly less when selling the good. For the same reason,
the buyer would like to pay less when receiving the good in exchange for paying
something when not receiving the good. When trading parties’ valuations are
close to each other—the valuation range that drives Myerson-Satthertwaite’s
impossibility—any deterministic allocation can be Pareto improved by a lot-
tery in which the good is transferred probabilistically and money transfers
are such that each trader’s money holdings (and hence marginal valuations
of money) depend less on whether the trader has the good or not.6 The role
for non-degenerate lotteries does not emerge in the case of quasilinear pref-
erences where efficiency means assigning the item to the highest-value agent
with probability one.

Second, the lotteries present in efficient trade mechanisms allow us to bal-
ance agents’ incentives in ways that are absent in the quasilinear setting. In
the quasilinear setting of Myerson and Satterthwaite, truth-telling cannot be
incentive compatible. If the seller overstates his value by a little bit, it results
in a higher price when he sells, a first-order gain, but the accompanying small
reduction in the probability of sale only arises in the case where he is almost
indifferent to selling, a second order loss. In our setting, the reported type
affects the probability of trade, even when the seller is far from indifferent be-
tween trading or not. In effect, the gains and losses from misreporting are both
of the first order creating countervailing incentives for the trading parties.7

To establish our possibility results, we need to develop a methodology to
study Pareto efficient trading mechanisms in settings with risk-averse agents.
For instance, in symmetric settings, the above discussion shows that Pareto ef-
ficiency requires randomization when agents’ valuations for the good are nearly
equal; thus the mechanism design problem we study is very different from the

6Randomization is also shown to be welfare improving in other settings with non-
quasilinear preferences e.g. in competitive equilibrium analysis of markets with indivisible
labor (Rogerson, 1988) and optimal education financing (Garratt and Marshall, 1994).

7We thank James Peck for suggesting the explanation in terms of countervailing incen-
tives.
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one studied by Myerson and Satterthwaite precisely in the range of types that
underlies their impossibility result. Unlike in their quasilinear setting, in ours,
the size of money transfers (which are conditional on the allocation of the good)
are uniquely determined by efficiency, but the allocation of the good itself is
not. The key to constructing the Pareto efficient mechanism is a judicious
choice of the probability of allocating the good to each of the trading agents;
in a direct mechanism the probability needs to respond to agents’ reports in a
way that ensures that truthful reporting is Bayesian incentive compatible and
interim individually rational. We reduce the problem of constructing such a
probability function to a non-standard system of partial differential equations
and offer a constructive way to solve this system of equations.

While we focused so far on risk averse agents, in the paper we also demon-
strate that the possibility of efficient trade does not require risk aversion if
there is synergy between having the good and having money, for instance,
when agents’ utility from the good and money take Cobb-Douglas form. Suf-
ficient synergy allows the agents to trade efficiently regardless of the extent of
informational asymmetry (Theorem 3). Furthermore a simple lottery mecha-
nism implements than efficient trade in dominant strategies. This is possible
when synergy implies that a winner-take-all allocation is efficient; we show that
efficiency can then be achieved without the need to elicit types. In settings
where an interior solution is required for efficiency, both dominant-strategy
and ex-post implementation are generically impossible (Theorem 4).

The question as to when efficient trade is possible is important and has been
extensively studied. Myerson and Satterthwaite show that efficiency can be
obtained in their quasi-linear setting provided the distribution of types is con-
tinuous and the buyer’s value is always higher than the seller’s value. Williams
(1999) extend the impossibility result to symmetric settings with many agents
while Makowski and Mezzetti (1994) show that for an open set of asymmetric
distributions trade can be efficient provided there are multiple buyers. Gresik
and Satthertwaite (1983), Wilson (1985), Makowski and Ostroy (1989), Rusti-
chini, Satterthwaite, and Williams (1994), Reny and Perry (2006), Cripps and
Swinkels (2006), Jantschgi et al (2022),and many others establish that trade is
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asymptotically efficient as the number of buyers and sellers becomes large (this
literature studies both interim and ex post efficiency). McAfee (1991) shows
that efficient trade can be possible when the ex ante gains from trade are large
and the two trading parties have access to an uniformed budget breaking third
agent.8

At the same time, we know of no successful attempt to go beyond My-
erson and Satthertwaite (1983) and demonstrate the possibility of fully effi-
cient mechanisms in their original context of two expected-utility maximizing
agents, one buyer and one seller.9 What was demonstrated is the possibility of
approximate efficiency in two contexts. Chatterjee and Samuelson (1983) show
that double-auctions are asymptotically efficient in the limit as the agents be-
come infinitely risk-averse; in contrast we establish efficiency for empirically
relevant levels of risk aversion.10 And, McAfee and Reny (1992) show that
when private values are correlated (and a hazard rate assumption is satisfied)
a judicious use of Cremer and McLean (1988) lotteries allows the parties to
reduce their incentives to misreport so as to permit outcomes as close to ef-
ficiency as desired; in contrast, our results allow for both independence and
correlation, and they do not rely on large bets in the spirit of Cremer and
McLean (all lotteries we employ are bounded by agents’ wealth levels).

While ours is likely the first paper to study efficient Bayesian incentive com-
patible bilateral trade mechanisms allowing for risk aversion and wealth effects,

8McAfee (1991) studied the problem of trading divisible goods; see (Riley 2012) for an
analysis with indivisible goods.

9Cramton, Gibbons, and Klemperer (1987) show that the buyer-seller ownership struc-
ture is essential to the impossibility result. When both trading parties initially own shares
of the the traded good, full efficiency might be possible already within the quasilinear frame-
work.

10Chatterjee and Samuelson (1983) also show that double auction is not efficient, and
Chatterjee (1982) shows that no mechanism in a large class of incentive compatible mecha-
nisms is efficient; these two papers are important precursors of Myerson and Satterthwaite’s
impossibility theorem. After Myerson and Satthertwaite, many authors provided alterna-
tive proofs of their impossibility result, including Williams (1999) and Krishna and Perry
(1998). Matsuo (1989) studied discrete distributions, while others, e.g., Copic and Ponsati
(2016) and Blumrosen and Dobzinski (2021), studied the efficiency loss of simple mecha-
nisms. Simultaneous or following ours work looks at bilateral trade among behavioral agents:
Wolitzky (2016) studies max-min agents, Crawford (2021) k-level agents, and Benkert (2022)
loss-averse agents.
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it follows a rich mechanism design literature studying risk aversion. This lit-
erature generally assumes that the seller is uninformed and it often restricts
attention to deterministic mechanisms (e.g. Holt (1980) and Morimoto and
Serizawa (2014)), or focuses on revenue-maximization (e.g. Matthews (1983),
Maskin and Riley (1984)).11 The closest prior paper is Garratt (1999) who
studies the Pareto frontier and shows that random mechanisms can dominate
deterministic ones in a complete information setting.

The model and assumptions are presented in Section 2. The possibility
results are presented in Sections 3 and 4. These results are complemented by
additional results in Section 5 that cover ex-post and strategy-proof implemen-
tation and ex-ante efficiency, and three examples in Section 6. The first two
examples in Section 6 show how to use the methodology we developed to study
two canonical utility specifications: constant relative risk aversion (CRRA)
and constant absolute risk aversion (CARA). The third example shows that
with Cobb-Douglas preferences efficient trade is possible for any distribution
of agents’ types, and for any distribution of agents’ initial wealth levels. In
this final example, efficient trade is ex post implementable and the mecha-
nism works regardless of whether or not endowed money holdings are private
information. Section 7 contains our concluding remarks.

2 Model and Assumptions

A seller is endowed with an indivisible good and money endowment ms while
the buyer has money endowment mb.12 Aggregate money holdings are denoted
by M = ms + mb. We assume that M > 0 and an agent’s money holdings
before and after trade belong to [0,M ]. The seller privately knows their type
(cost) c ∈ [c, c] ⊂ R+ and the buyer privately knows their type (value) v ∈
[v, v] ⊂ R+. The types are drawn from a joint distribution on [c, c] × [v, v];

11More recent work in this line includes Kazumura, Mishra, Serizawa (2020).
12We formulate our results in terms of trades in an indivisible good and money, thus up-

holding all elements of the Myerson and Satthertwaite’s environment except for the traders’
utility functions, but we could, of course, replace money with a divisible good or a basket
of goods.
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this distribution is commonly known and otherwise arbitrary. We assume the
utility function u (x,m, θ) of each agent is twice continuously differentiable in
money (m) and in type (θ), strictly increasing in having the indivisible good
(x), weakly increasing in type when x = 0 and strictly increasing in type when
x = 1, strictly increasing and strictly concave in money, and that it satisfies
the Inada condition, ∂

∂m
u (x, 0, θ) = +∞ for x ∈ {0, 1} and all types θ.13 For

notational convenience, we extend the utility function to lotteries over the
good: u (x,m, θ) = xu (1,m, θ) + (1− x) u (0,m, θ) for x ∈ [0, 1].

For simplicity of exposition, we assume that the good is normal in the
sense of Cook and Graham 1977: for any type θ and any relevant money levels
m, p, ϵ > 0, if u(0,m, θ) = u(1,m−p, θ) then u(0,m+ ϵ−p, θ) < u(1,m+ ϵ, θ).
Normality is an empty condition if there is no price p at which u(0,m, θ) =

u(1,m−p, θ); if there is such a price, then normality implies that it is unique.14

The normality assumption for an indivisible good is the natural counterpart
of normality for divisible goods, as it means that the more money an agent
has, the more they are willing to pay for the good. As normality requires that
each player’s reservation price for the good strictly increases with the agent’s
wealth, it does not hold under quasilinear utility.

We also impose the following assumption on how agents’ utilities respond
to their types: there exists a function ψ (x, θ) such that for any x ∈ [0, 1],
m ∈ [0,M ], and any type θ, we have

∂

∂θ
log

(
∂

∂x
u (x,m, θ)

)
>

∂

∂θ
log

(
∂

∂m
u (x,m, θ)

)
= ψ (x, θ) . (1)

That is, we want the type-elasticity of the marginal value of the good to exceed
13The differentiability, strict concavity and Inada conditions simplify the analysis, but as

we show in Theorem 3, these conditions can be relaxed if there is sufficient synergy between
the good and money.

14The normality assumption allows us to focus on a single region of nonconcavity of the
Pareto frontier, as we discuss below. It is not required, and can be relaxed by assuming
that there is a finite partition of wealth levels such that each player’s reservation price for
the good is strictly monotonic on each element of the partition. Relaxing normality in this
way would require us to modify Theorem 1 and Corollaries 1 and 2 and exclude a finite set
of money profiles, rather than just one.
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the type-elasticity of the marginal utility of money and the latter elasticity to
be constant in money. Both components of this assumption are automatically
satisfied when utilities are quasilinear in money, and higher types have higher
utility from consuming the good. The assumption is also satisfied when agents’
utilities are additively separable, i.e., u (x,m, θ) = θx + v (m). Furthermore,
this assumption is only needed for our analysis of the second-order condition
of the mechanism we construct, where it is sufficient—and guarantees that
the second-order condition is satisfied irrespective of value distributions—but
is is not necessary and in the presence of distributional assumptions can be
substantially relaxed.

Our assumptions on utility determine some features of the Pareto frontier
(see Figure 1 noting that the origin in this and other similar figures is not
necessarily the point (0,0); it is the point (u(1, 0, v), u(1, 0, c)).15 To describe
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B(c,v) 

 u(1,mS( c,v),c) 

 u(1,ms,c) 

 u(1,mB( c,v),v)       u(0,mb,v) Buyer utility 

Seller utility CS 

CB 

Figure 1: Pareto Frontier with a Normal Good.

the frontier, let us fix agents’ types c and v. The frontier is the upper envelope
of the curves

CS = {(u (1,m, c) , u (0,M −m, v)) : m ∈ [0,M ]}
15See Garratt (1999) for a more detailed discussion of the Pareto frontier for normal goods.
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and
CB = {(u (0,m, c) , u (1,M −m, v)) : m ∈ [0,M ]} .

The curve CS traces the utilities when the seller has the good, while the curve
CB traces the utilities when the buyer has the good. Since we assume that it
is better to have the good than not to have it, the curve CS starts higher than
CB on the axis of seller’s utilities (the vertical axis), and CS ends lower than CB
on the axis of buyer’s utilities (the horizontal axis). Thus, as we move along
the Pareto frontier from the seller’s most preferred point to the buyer’s most
preferred point, we start on the curve CS and we end on the curve CB. The two
curves might but do not need to intersect. If the curves CS and CB intersect,
as drawn, then normality implies that CS intersects CB only once and that
it does so from above. Further, the point at which they intersect cannot be
part of the frontier because normality implies that at this point CS intersects
CB strictly from above and hence a randomization over any point just to the
left of the intersection and any point just to the right of the intersection is
strictly preferred to the intersection point by both trading parties. The frontier
thus contains a flat part consisting of randomizations between two points:
S (c, v) ∈ CS and B (c, v) ∈ CB, where the seller strictly prefers S (c, v) to
B (c, v) and the buyer strictly prefers B (c, v) to S (c, v). The strict concavity
of u in money implies that these two points are uniquely determined. We
call them the critical points. If the curves do not intersect, then the frontier—
being an upper envelope—also contains a flat part consisting of randomizations
between two points: S (c, v) ∈ CS and B (c, v) ∈ CB, where the seller strictly
prefers S (c, v) to B (c, v) and the buyer strictly prefers B (c, v) to S (c, v).
In both cases, strict concavity of the utility function and the Inada condition
ensure that the flat part is tangent to the curves CS and CB, as shown in Figure
1, which illustrates the former case.

Let mS (c, v) denote the seller’s money holdings at S (c, v) and mB (c, v)

denote the buyer’s money holdings at B (c, v). The critical levels of money
holdings depend upon agents’ reports of their types. By the Inada condition,
the critical points S (c, v) and B (c, v) are in (0,M), and the money levels
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mS (c, v) and mB (c, v) are uniquely determined by the following equations

∂
∂mu

(
1,mS , c

)
∂
∂mu (0,M −mS , v)

=
∂
∂mu

(
0,M −mB, c

)
∂
∂mu (1,mB, v)

=
u
(
1,mS , c

)
− u

(
0,M −mB, c

)
u (1,mB, v)− u (0,M −mS , v)

.

(2)
These equations express the fact that the randomization interval is tangent to
the Pareto frontier at both critical points S (c, v) and B (c, v). The dependence
of the money holdings mS (c, v) and mB (c, v), on (c, v) is continuously differ-
entiable by the Implicit Function Theorem and the assumptions we imposed
on u. In Appendix B, we show that our assumptions also imply that

∂

∂c
mB (c, v) > 0 >

∂

∂c
mS (c, v) and ∂

∂v
mS (c, v) > 0 >

∂

∂v
mB (c, v) . (3)

Thus, each agent’s money holding at their preferred critical point of the Pareto
frontier is decreasing in their own type and increasing in the other agent’s type.

3 The First Possibility Theorem on Efficient
Trade

We now show that efficient trade is possible for the class of utility functions
described in Section 2 if the asymmetry of information is sufficiently bounded.
For an agent with type space Θ, we say that the asymmetry of information is
bounded by ∆ ≥ 0 if there exists a type θ∗ ∈ Θ such that ∆ is weakly larger
than the maximum of |u (x,m, θ)− u (x,m, θ∗)| over all θ ∈ Θ, m ∈ [0,M ] ,

and x ∈ {0, 1}.

Theorem 1. For any seller’s type and buyer’s type, any utility functions of
these types, any sum of money endowments M > 0, and any profile of money
endowments but one, there is ∆ > 0 such that if the seller’s and buyer’s asym-
metry of information is bounded by ∆, then there is an incentive-compatible,
individually-rational, and budget-balanced mechanism that generates efficient
trade.

As an immediate corollary we have
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Corollary 1. Fix a type profile (c∗, v∗) ∈ (0,∞)2, the sum of money endow-
ments M > 0, and the utility function u. For any profile of nonnegative money
endowments but one, there are intervals (c, c) ∋ c∗ and (v, v) ∋ v∗ such that: if
agents draw their types from arbitrary distributions on (c, c)×(v, v), then there
is an incentive-compatible, individually-rational, and budget-balanced mecha-
nism that generates efficient trade.

This corollary follows immediately from Theorem 1 because, for any ∆ > 0,
by taking the intervals (c, c) ∋ c∗ and (v, v) ∋ v∗ to be sufficiently small we
can ensure that the asymmetry of information is bounded by ∆. A special
case of interest obtains when c∗ = v∗; in that case the corollary establishes
efficient trade for any distribution of agents’ types on

(
θ, θ

)2 for some interval(
θ, θ

)
∋ θ∗, where θ∗ is the common value of c∗ and v∗.

For a given utility function u and aggregate money holdings M , the range
of types that permit efficient trade can be quite large. This aspect of the result
is illustrated by the examples of Section 6. In Example 1 (Log utility) efficient
trade is achieved for types drawn uniformly from [2, 100], in Example 2 (CARA
utility) efficient trade is achieved for types drawn from [1, 2]2, and in Example
3 (Cobb-Douglas utility) efficient trade is achievable for any distribution of
types in [0,∞)2. In general, the range in which efficient trade is possible
depends on the distance from quasilinearity. We examine this dependence in
the next section and show that efficient trade is possible on large type domains
for empirically grounded specifications of trading parties’ risk aversion or the
elasticity of substitution between money and the good.

Having already discussed the intuition behind the possibility of efficient
trade in the Introduction, we now turn to the main steps of the proof, with
the more technical parts relegated to the Appendix.

3.1 Proof of Theorem 1

Let us arbitrarily fix the seller’s type c∗ ∈ [c, c] and buyer’s type v∗ ∈ [v, v], the
utility functions of these types, and a distribution of endowed money holdings
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in which the seller’s initial money holding is anything but mS(c∗, v∗).16 Three
cases are possible depending on how much money the seller initially has.

The no-trade case. Suppose the seller’s endowed money holding is
strictly greater than mS(c∗, v∗). Then, it must also be true that for utili-
ties close to u(1,ms, c

∗) for the seller and u(0,mb, v
∗) for the buyer that the

no-trade mechanism is efficient. Hence there is ∆ > 0 that guarantees that
the no-trade mechanism is efficient and satisfies all our other requirements.

The sure-trade case. Suppose the seller’s endowment is such that the
seller’s initial utility level is strictly below u

(
0,M −mB (c∗, v∗) , c∗

)
. Then

there is a point on the Pareto frontier of (c∗, v∗) that strictly dominates the
agents’ utility at the initial endowments (point F in Figure 2). At this point
on the frontier the seller has no good and has money holdings mS + t for some
constant transfer t, while the buyer has the good and money holdings mB − t.
In particular, the pre-trade seller’s utility is strictly below u

(
0,mS + t, c∗

)
and

the pre-trade buyer’s utility is strictly below u
(
1,mB − t, v∗

)
. These bounds

on agents’ pre-trade utility remain true for type profiles close to (c∗, v∗). There
is then ∆ > 0 that guarantees that the mechanism that allocates the good
and money mB − t to the buyer and money mS + t (without good) to the
seller is Pareto efficient, individually rational, and does not require a subsidy.
Furthermore, this mechanism is incentive compatible as it does not rely on
agents reports.17

The type-dependent-trade case. Suppose the seller’s endowment is
intermediate: their initial money holding is strictly below mS (c∗, v∗), and their
initial utility level is weakly above u

(
0,M −mB (c∗, v∗) , c∗

)
. The efficient

trade direct mechanism we construct takes the following form: with probability
π (c, v), the seller has the good and money holdings mS (c, v) , while the buyer

16It follows that the buyer’s initial money holding is anything but M −mS(c∗, v∗). While
types c∗ and v∗ need not be the same as the reference types in the ∆-bound on asymmetric
information, it is without loss of generality to assume that they are these reference types,
because if asymmetric information is bound by ∆ relative to some type then it is bound by
2∆ relative to any other type.

17A similar fixed-terms-of-trade mechanism delivers efficient trade whenever there exists
a point on the Pareto frontier that is strictly preferred by both the buyer and seller to status
quo, and strictly more favorable to the buyer than having the good and money mB (c∗, v∗).
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Figure 2: Individually Rational Part of the Pareto Frontier. The Case of Trade
at Fixed Price.

has the remaining money M − mS (c, v); with probability 1 − π (c, v), the
buyer has the good and money holdings mB (c, v) , while the seller has the
remaining money M − mB (c, v). We set π (c∗, v∗) = π∗ ∈ (0, 1) so that the
pair of agents’ expected utilities give us a point F = F (c∗, v∗; π∗) on the flat
part of the frontier, strictly between S(c∗, v∗) and B(c∗, v∗) (see Figure 3),
that is strictly preferred by the buyer and the seller to the initial situation,
(us(1,ms, c

∗), ub(0,mb, v
∗)). The assumptions of the present case ensure that

such a π∗ exists. By making ∆ > 0 sufficiently small, we can ensure that for
all type profiles (c, v) the critical money holdings mS (c, v) and mB (c, v) are
sufficiently close to mS (c∗, v∗) and mB (c∗, v∗), respectively, so that the point
F (c, v; π (c, v)) on the frontier selected by our mechanism is strictly preferred
by the agents to the initial situation when π is sufficiently close to π∗.

The crux of the reminder of the argument is to construct a function π whose
values are close to π∗ when ∆ is small, and that makes the above mechanism
Bayesian incentive compatible. Incentive compatibility means that for the
seller

ΠS (c, ĉ) = Ev
(
π (ĉ, v) u

(
1,mS (ĉ, v) , c

)
+ (1− π (ĉ, v)) u

(
0,M −mB (ĉ, v) , c

))
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Figure 3: Individually Rational Part of the Pareto Frontier. The Case of Trade
at Varying Prices.

is maximized at ĉ = c, and similarly, for the buyer,

ΠB (v, v̂) = Ec
(
π (c, v̂) u

(
0,M −mS (c, v̂) , v

)
+ (1− π (c, v̂)) u

(
1,mB (c, v̂) , v

))
is maximized at v̂ = v. We guarantee these properties by constructing π so
that truthful reporting satisfies the agents’ first-order conditions. Solving the
first-order conditions is sufficient for incentive compatibility because—as we
show in Appendix C.1—condition (1) implies that the second-order condition
of each agent’s maximization problem is satisfied at every point at which the
first-order condition is satisfied.

Assuming truthful reporting by the other agent, the first-order condition
for the seller is

0 = Ev

{
∂

∂ĉ
π (ĉ, v)u

(
1,mS (ĉ, v) , c

)
+ π (ĉ, v)

∂

∂m
u
(
1,mS (ĉ, v) , c

) ∂

∂ĉ
mS (ĉ, v)

− ∂

∂ĉ
π (ĉ, v)u

(
0,M −mB (ĉ, v) , c

)
− (1− π (ĉ, v))

∂

∂m
u
(
0,M −mB (ĉ, v) , c

) ∂

∂ĉ
mB (ĉ, v)

}
(4)
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and the first-order condition for the buyer is

0 = Ec

{
∂

∂v̂
π (c, v̂)u

(
0,M −mS (c, v̂) , v

)
− π (c, v̂)

∂

∂m
u
(
0,M −mS (c, v̂) , v

) ∂

∂v̂
mS (c, v̂)

− ∂

∂v̂
π (c, v̂)u

(
1,mB (c, v̂) , v

)
+ (1− π (c, v̂))

∂

∂m
u
(
1,mB (c, v̂) , v

) ∂

∂v̂
mB (c, v̂)

}
. (5)

We want ĉ = c to satisfy the seller’s first-order condition and v̂ = v to satisfy
the buyer’s first-order condition. Hence, the two conditions give us a system
of partial differential equations (PDEs) on π (c, v) of the form analyzed in the
following lemma.

Lemma 1. Let I be a bounded interval of positive length and let F be a joint
distribution of (c, v) over domain [c, c] × [v, v] ⊆ R2. Let S1 (·, ·) , S2 (·, ·) and
B1 (·, ·) , B2 (·, ·) be functions defined on [c, c] × [v, v], and ϕ be a function
on [c, c] and ψ on [v, v]. Suppose that all these functions are continuously
differentiable and that S1, B1 ̸= 0 for all arguments (c, v). Then, for any
(c∗, v∗) ∈ [c, c] × [v, v], π∗ > 0 and boundary condition π (c∗, v∗) = π∗, the
system of PDEs

Ev

[
S1 (c, v)

∂

∂c
π (c, v) + S2 (c, v) π (c, v)

]
= ϕ (c) , (6)

Ec

[
B1 (c, v)

∂

∂v
π (c, v) + B2 (c, v) π (c, v)

]
= ψ (v) (7)

has a solution π.

The lemma is of independent interest. It tells us that for any marginal dis-
tributions of the linear PDE formulas from the lemma, we can find a function
that implements these marginal distributions.18

18We have not been able to find this lemma in the literature on partial differential equa-
tions. The sufficient conditions for existence of solutions of non-averaged linear PDEs of
Thomas (1934) and Mardare (2007) can easily tell us that the lemma is true if ∂

∂v
S2

S1
= ∂

∂c
B1

B2
,

which is satisfied for instance when the coefficients Bi, Si are all constant, but they are not
satisfied in the general case we consider here (which is not surprising as it is much easier to
satisfy the PDEs on average than it is to satisfy them pointwise).
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We prove this lemma in Appendix C.4 establishing along the way a con-
structive procedure for finding the PDEs solutions.19 The lemma’s assump-
tions are satisfied by the first-order conditions above, as we verify in Appendix
C.2. Furthermore, in Appendices C.3 and C.5 we show that that by controlling
∆ we can guarantee that π takes values close to π∗. We can thus ensure that
π (c, v) ∈ [0, 1] and that individual rationality is satisfied. This concludes the
proof.

4 The Second Possibility Theorem on Efficient
Trade: Risk Aversion and the Distance from
Quasilinearity

As the results from the previous section indicate, any departure from quasi-
linear preferences results in efficient trade for sufficiently constrained environ-
ments. Corollary 1 expresses these constraints in terms of the range of player
types. An alternative approach is to fix the non-preference primitives and ask
whether a sufficient departure from quasilinearity is enough to ensure efficient
trade. We demonstrate this possibility for the case where agents have private
information about their valuation for the good, but their marginal utility of
money is commonly known. More specifically, we assume the agents’ utility
takes the following separable form

u (x,m, θ) = θx+ U (m) ,

where U is strictly increasing, concave, and twice differentiable.20

Theorem 2. Fix any continuous joint distribution of types on a compact type
space in (0,∞)2 and any non-equal and nonnegative money endowments ms

19Examples 1 and 2 in Section 6 illustrate this procedure.
20For simplicity we focus on the case where U and the type space is common to both

agents. This restriction is not crucial and an analogous theorem (in which the inequality
of budgets is replaced by another excluded budget configuration) can be proven via an
analogous proof.
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and mb. There is ∆ > 0 such that for all increasing, concave, and twice
differentiable functions U such that the coefficient of absolute risk aversion
|U ′′ (m) |/U ′ (m) ≥ ∆ for almost every m ∈ (0,ms +mb), agents with utilities
u(x,m; θ) = θx+ U(m) can trade efficiently.

In the case of CARA utility U(m) = 1−e−αm

α
, Theorem 2 says that efficient

trade is possible for a sufficiently large degree of risk aversion (i.e., sufficiently
large α). In the limit, as α goes to 0, CARA utility becomes linear. The
larger α is, the farther the utility is from quasilinearity. Hence, the result says
that efficient trade is guaranteed if each agent’s utility is sufficiently far away
from quasilinearity. Example 2 in Section 6 illustrates this result by fixing
the money endowments and type distributions and showing that α ≥ .2 is
sufficient to ensure efficient trade.21

We prove Theorem 2 in the Appendix. The argument builds on a natural
parallelism—via change of units of measurement—between imposing a high
Arrow-Pratt measure of absolute risk aversion and having a small interval of
types. This parallelism allows us to prove Theorem 2 using the methodology
we developed for Theorem 1. In cases where the initial money holding of the
seller exceeds that of the buyer, the problem trivializes as no trade is efficient
for high levels of risk aversion (high ∆). In the complementary case, where
the initial money holding of the buyer exceeds that of the seller, the analysis
is subtler. For instance, sure trade is not adequate even in the risk-aversion
limit e.g. if there is not enough money in the system to compensate the seller
for parting with the good. It is also not sufficient to sell a fixed probability of
the good at a fixed price as such mechanisms are in general not going to be
efficient because for probability of trade in (0, 1), efficiency requires the money
holdings to be responsive to the type profile.

Because m is bounded above by total money holdings M , Theorem 2 has
the following immediate corollary for relative risk aversion coefficients.

21In their seminal experimental analysis of risk aversion, Holt and Laury (2002) find
that α = .2 is the coefficient of absolute risk aversion that best describes their subjects.
The coefficient of absolute risk aversion is however not invariant to changes in the unit of
accounting and in general the literature finds the CRRA specification to better describe
attitudes to risk; we discuss CRRA traders below.
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Corollary 2. Fix any continuous joint distribution of types on a compact type
space in (0,∞)2 and any non-equal and nonnegative money endowments ms

and mb. There is ∆ > 0 such that for all increasing, concave, and twice
differentiable functions U such that the coefficient of relative risk aversion
|mU ′′ (m) |/U ′ (m) ≥ ∆ for almost every m ∈ (0,M), agents with utilities
u(x,m; θ) = θx+ U(m) can trade efficiently.

To see how the possibility of efficient trade depends on the relative risk
aversion and on the elasticity of substitution between good and money, con-
sider trade between a seller and a buyer whose utility is separable in good and
money and whose utility of money exhibits CRRA: u (x,m, θ) = θx + m1−γ

1−γ .
Given the indivisibility of the good traded, x ∈ {0, 1}, we can interpret the
CRRA utility specification as constant elasticity of substitution u (x,m, θ) =

θx1−
1
ρ + 1

1−γm
1− 1

ρ where ρ = 1
γ

is the elasticity of substitution.
The analysis we developed in the proof of Theorem 1 allows us to conclude

that when the buyer holds all the money, and prior to trade the utility of
the seller and buyer are equal for types c∗ = v∗, then, for sufficiently small
range [c, c]× [v, v] ∋ (c∗, v∗) over which cost and value types c, v are uniformly
distributed, the following mechanism is Bayesian incentive-compatible, interim
individually rational, and its outcome is always ex post Pareto efficient.22

Given total money holdings M , this mechanism generates money holdings

mB(c, v) =
c

1
γ

v
1
γ + c

1
γ

M and mS(c, v) =
v

1
γ

v
1
γ + c

1
γ

M,

and assigns the good with probability

π(c, v) =
1

2
+

∫ c

c∗

1

γx
M1−γ

∫ v

v

v
1
γ
−1

x
1
γ
−1(

v
1
γ + x

1
γ

)2−γ
1

v − v
dvdx−

∫ v

v∗

1

γx
M1−γ

∫ c

c

x
1
γ
−1

c
1
γ
−1(

x
1
γ + c

1
γ

)2−γ
1

c− c
dcdx.

22Our construction provides an efficient trading mechanism; this mechanism is not unique.
For brevity we omit the analysis establishing the properties of the mechanism presented as
this analysis follows the exact same steps as the detailed analysis we provide in Examples
1 and 2 of Section 6. Neither the symmetry embedded in c∗ = v∗ nor uniform distributions
play substantive role in the analysis. The assumptions on money and utility can be replaced
with requiring that in a neighborhood of c∗ = v∗ the efficient and individually-rational
assignment of the good and money depends on parties’ private information.
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Figure 4: The probability (vertical axis) of the seller keeping the good as a
function of c ∈ [5, 9] and γ ∈ (0, 1) for v = 5 (left), v = 7 (center), and v = 9
(right).

Figure 5: The expected gain (vertical axis) of the seller from participating in
the mechanism as the function of c ∈ [5, 9] and γ ∈ (0, 1) (left); the expected
gain of the buyer from participating in the mechanism as the function of v ∈
[5, 9] and γ ∈ (0, 1) (right).

The dependence of assignment probability π on c, v and γ is depicted in
Figure 4. The figure shows that π stays between 0 and 1 for γ ≥ .226; thus
the mechanism is well defined for all these values of relative risk aversion.23

Figure 5 shows that, for the same values of γ, the mechanism also raises the
utility of both buyer and seller, and hence participation is individually rational
for both trading parties.

Efficient trade is possible in the environment studied as long as the co-
23Note that π is increasing in c and decreasing in v and hence to conclude that π ∈

[0, 1] it is sufficient to check check π (5, 9) (illustrated on the left sub-figure) and π (9, 5)
(illustrated on the right subfigure). This and subsequent figures for CRRA utilities are
drawn in Mathematica.
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efficient of relative risk aversion γ ≥ .226, or, equivalently, as long as the
coefficient of the elasticity of trade ρ ≤ 4.425. These are empirically relevant
values of risk aversion and elasticity. For instance, Campbell (2018) reports
that rationalizing the equity premium puzzle leads to the values of relative risk
aversion between 5 and 36 in conservative estimates (with less conservative es-
timates requiring even higher γ); he also reports similarly high values of γ as
required to rationalize the risk-free rate puzzle. Other analyses of the field
data generate lower—but still higher than .226—estimates of γ.24 Estimates
of γ higher than .226 estimates are also obtained in experimental investiga-
tions of risk aversion. Holt and Laury (2002) estimate γ as being between .3

and .5 in low-stake experiments and .7 and 1 in high-stake experiments; these
estimates are in line with other experiments and field data they review. Also
studies of trade elasticity give us values at which efficient trade in the above
example is possible. A thorough evaluation of the elasticity of substitution
by Simonovska and Waugh (2014) puts the benchmark elasticity at ρ = 4.14;
they report the range of estimates across a variety of datasets as 2.79 to 4.46.

The CRRA example allows us to see what happens as the utility function
approximates the quasilinear case (γ → 0), thus complementing our discussion
of the quasilinear setting of Myerson and Satterthwaite that we presented in
the Introduction. The key constraint on the ability to trade efficiently in the
CRRA example as γ → 0 is the need to shift the probability of having the
good around the point v = c; the speed with which this happens explodes to
infinity as γ → 0, thus making it impossible to keep the probability π ∈ [0, 1]

on the entire range of costs and values [5, 9]2. In line with Theorem 1, trade
remains possible on sufficiently small cost and value ranges: as illustrated in
Figure 6, near γ = 0 the size of trading range is roughly linear in γ (left and
right subfigures). The figure also shows that as we approached γ = 1 (the
log utility) the trading range quickly grows (central subfigure) and the lower

24E.g., using data from a television game, Beetsma and Schotman (2001) estimate γ to
be between .42 and 13.08; using lifecycle consumption data, Gourinchas and Parker (2002)
estimate γ to be between .5 to 1.4; and using data on labor supply, Chetty (2006) estimates
γ at .71 and at .97 depending on assumptions made.
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Figure 6: The size x of range [5, 5 + x]2 ∋ (c, v) on which efficient trade is
possible as function of γ near infinity (left) and near zero (center), and the
size x of range

[
7− x

2
, 7 + x

2

]2 ∋ (c, v) on which efficient trade is possible as
function of γ (right).

bound of the range can approach 0 (right subfigure).25

5 Ex-post Implementation and Ex-ante Effi-
ciency

So far our analysis has focused on Bayesian implementation. Dominant-
strategy and ex-post implementation are more desirable, but are typically
much harder to achieve. In our setting, dominant-strategy implementation is
possible in cases where efficiency requires winner-take-all randomization. Such
cases arise in surprisingly familiar settings, as we demonstrate below.

Theorem 3. Suppose that for any type θ and any λ ∈ (0, 1) we have

λu (1,M, θ) + (1− λ) u (0, 0, θ) ≥ u (1, λM, θ) .

Then, efficient trade can be implemented in dominant strategies.

Theorem 3, proven in the appendix, demonstrates that the possibilities
for efficient trade in quasilinear settings extend beyond the cases captured by

25The flattening of the dependence as we approach γ = 1 (log utility) in the right-most
plot is due to the lower bound of the value and cost ranges, 7− x

2 , being then close to 0.
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Theorem 1 and Theorem 2. Remarkably, in Theorem 3, we do not need to
impose any assumptions on the distribution of traders’ types. Furthermore, we
can fully relax the differentiability, concavity, and Inada condition of the utility
function, as well as condition (1). Instead, Theorem 3 relies on the synergy
between money and the good captured by the assumption of the theorem.26

This synergy assumption is satisfied, for instance, when the agent’s utility of
money that arises when he or she has the good is increasing, at least linearly,
in money holdings, λu (1,M, θ) ≥ u (1, λM, θ), while the utility from no good
and no money is nonnegative. This assumption is satisfied by the popular
Cobb-Douglas utility function; see Example 3 in Section 6.

In interior cases, where efficiency requires randomization, both dominant-
strategy and ex-post implementation are generically impossible in our setting.
These ideas are formalized in the following result.

Theorem 4. When mS,mB ∈ (0,M) and the money endowments are such
that efficiency requires randomization, then for a generic utility function u, no
mechanism can implement efficient trade in an ex-post equilibrium.

To establish this result note that mS,mB ∈ (0,M) implies that money
transfers are determined by first-order conditions and—when efficiency re-
quires randomization—any mechanism implementing efficiency in ex-post equi-
librium assigns the good to the seller with probability π that satisfies (4)-(5).
The validity of Theorem 4 then follows from the standard theory of linear
partial differential equations, which established that generically there is no
solution to the system of equations (4)-(5) if expectations are not taken.27

Finally, it is easy to see that ex-ante efficiency cannot be achieved in gen-
eral:

Theorem 5. Suppose the range of types is sufficiently large so that either the
buyer or the seller can have strictly higher willingness to pay for the good. With
separable utility, there is no Bayesian-compatible mechanism that implements
ex-ante efficient trade.

26In stark contrast to Theorems 1 and 2, this synergy allows us to implement efficient
trade without even eliciting utility types.

27Cf. Thomas (1934) and Mardare (2007).
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Indeed, in the separable case efficient transfers do not depend on reports;
we prove this in Appendix D. At the same time ex-ante efficiency requires
that there is a cutoff ratio of the buyer’s and the seller’s values such that
above this ratio the buyer obtains the good with probability 1 and below this
ratio the seller does. Taken together, these two facts make it impossible to
elicit types, and hence these facts make it impossible to implement the efficient
allocation.28

6 Examples

We complete our analysis with three examples that illustrate both the possi-
bility of efficient trade and the tractability of the methodology we developed.
The discussion of the first two examples focuses on the key steps of the con-
struction of efficient mechanisms we developed in the proof of Theorems 1
and 2, with some of the calculations presented in Appendix A. Example 3
illustrates efficient trade in the environment of Theorem 3.

The trading parties in Examples 1 and 2 have separable utility of the form
u(x,m; θ) = θx + U(m). The separable case has several special features that
we use in our analysis of these two examples and that we establish in Appendix
D. In the optimal contract, each player’s money allocation is invariant across
states and hence each player receives the same money allocation regardless of
whether or not they consume the indivisible good:

mS =M −mB. (8)

The seller’s money allocation is implicitly defined by the equation

c =
∂
∂m
U(mS)

∂
∂m
U(M −mS)

v. (9)

The separable utility form and these formulas for money allocations allow us
28A similar argument establishes the non-existence of a Bayesian-compatible mechanism

that implements ex-ante efficient trade in the interior case of Theorem 3.
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to simplify the first-order conditions we derived in Section 3.1 to

0 = Ev{
∂π(c, v)

∂c
c+

∂U(mS(c, v))

∂c
} (10)

and
0 = Ec{−

∂π(c, v)

∂v
v +

∂U(mB(c, v))

∂v
}. (11)

Furthermore, condition (1) is satisfied, which is sufficient for the second-order
condition.29

Example 1: Log Preferences

Consider trade between a seller and a buyer whose utility of money is loga-
rithmic; log utility is a focal member of the family of CRRA utility functions
we discussed in Section 4. Each of the parties privately knows their value of
the good being traded. For each of them, utility is separable in money and
the good:

u (x,m, θ) = xθ + log (m)

where x = 1 when the agent has the good and 0 otherwise, θ is the privately
known value of the good—denoted by c for the seller and v for the buyer—
and m is money held. Suppose that c, v are distributed independently and
uniformly on [2, 100]. Suppose they have combined money holdings of M = 1,
and their initial money endowments mb and ms are such that their utilities
are equal if each agent has the mean type v = c = 51. Since the seller initially
owns the good, this implies that the buyer has most of the money.

We construct the mechanism implementing efficient trade as follows. Our
analysis of the efficient frontier—equations (8) and (9)—imply that the efficient

29Separability introduces an interesting interpretation—suggested to us by Gregory
Pavlov—of the contracts specified in Examples 1 and 2 as examples of a weighted Vickrey-
Clarke-Groves (VCG) mechanism. Define the efficient allocation to be that which maximizes
the weighted sum of utilities where weights are the reciprocals of the agents’ private val-
ues. Then, utility is quasilinear in the probability of receiving the good and VCG transfers,
expressed in terms of probability units, can be specified that ensure truth-telling and are
budget balanced in the sense that probabilities sum to 1. These “transfers” leave each agent
with exactly the consumption probabilities determined by our mechanism.
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money holdings are
mB(c, v) =

Mc

c+ v
and mS(c, v) =

Mv

c+ v
,

and that these holdings do not depend on which party receives the good. To
fully define the trade mechanism it remains to construct the probability π (c, v)
that the seller keeps the good; the probability the buyer receives the good is
then 1− π (c, v). In Appendix A.1, we follow the procedure from the proof of
Theorem 1 and show that
π(c, v) =

1

2
+

1

98

∫ 51

c

− log(100 + x) + log(2 + x)

x
dx+

1

98

∫ 51

v

log(100 + x)− log(2 + x)

x
dx

takes values in [0, 1] and gives us a Bayesian incentive compatible mechanism.
It remains to verify that for any pair of types in the range [2, 100]2 the

mechanism is individually rational. The expected utility of type c seller par-
ticipating in the mechanism is 1

98

∫ 100

2
π(c, v)c + log( v

c+v
)dv. Our choice of

money endowments is such that when v = c = 51, the endowment point lies at
the intersection of the two Pareto frontiers that correspond to the case where
the seller has the item and the case where the buyer has the item; this places
us in the interior solution case (the third case in the proof of Theorem 1) and
allows to calculate the initial money endowment of the seller to be 1

1+e51
. The

expected net utility gain for the seller of type c ∈ [2, 100] from participating
in the mechanism is

1

98

∫ 100

2

π(c, v)c+ log(
v

c+ v
)dv − c− log(

1

1 + e51
).

Likewise, the expected net utility gain for the buyer of type v ∈ [2, 100] from
participating in the mechanism is

1

98

∫ 100

2

(1− π(c, v))v + log(
c

c+ v
)dc− log(

e51

1 + e51
).

The plots in Figure 7 show that both functions are always strictly positive. In
particular, the expected net benefit to the seller at c = 100 and the buyer at
v = 2 is 0.79384 > 0.

The mechanism is most beneficial to low seller types and high buyer types.
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Figure 7: Net utility gain from participating in the mechanism. Left chart
shows the gain to the seller for seller types ranging from 2 to 100. Right chart
shows the gain to the buyer for buyer types ranging from 2 to 100.

This makes sense since the gains to trade are greatest when the seller value is
the lowest and the buyer value is the highest.

Example 2: CARA utility

Consider two traders whose utility of money, U(m) = 1−e−αm

α
, exhibits constant

absolute risk aversion. For the sake of the example, suppose that the traders’
types c, v are distributed independently and uniformly on [1, 2] and that their
money endowments are ms = 3.32 and mb = 16.68.30

We construct a mechanism implementing efficient trade—and hence show
that such trade is possible—for all α ≥ .2. For lower α our construction fails
and, as α goes to zero, the traders utilities approach the quasi-linear case
where efficient trade is not possible.31 Our analysis of the efficient frontier—
equations (8) and (9)—imply that the efficient money holdings are

mB(c, v) = 10 +
log(c)− log(v)

2α
and mS(c, v) = 10 +

log(v)− log(c)

2α
,

and that these holdings do not depend on which party receives the good. As
in Example 1, to fully define the trade mechanism it remains to construct the
probability π (c, v) that the seller keeps the good; the probability the buyer

30As in the log example, the chosen money endowments are such that for mean types
c∗ = v∗ = 1.5 the pre-trade utility profile can be Pareto improved by trade and efficient
trade requires eliciting traders’ values.

31Our construction fails for α < .2 because the values of the probability function π(c, v)
we construct are then no longer guaranteed to be in [0, 1].
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receives the good is then 1− π (c, v). In Appendix A.2, we show that

π(c, v) = 1− e−3.32α − e−16.68α

3α
+ (

√
2− 1)

e−10α

α

[
2√
v
− 2√

c

]
takes values in [0, 1] and gives us a Bayesian incentive compatible mechanism.

Appendix A.3 shows that trade improves type-c seller’s expected interim
utility by

π(
3

2
,
3

2
)c+

e−10α

α

(
4(
√
2− 1)2c− 4(

√
2− 1)

√
c
)
− c+

e−3.32α

α
,

and improves type-v buyer’s expected interim utility by

(1− π∗(α))v +
e−10α

α

(
4(
√
2− 1)2v − 4(

√
2− 1)

√
v
)
+
e−16.68α

α
.

When α ≥ .2, both these utility gains are positive for all types. As in the log
example above, seller’s utility gain from trade is strictly decreasing and utility
gain is strictly increasing in their respective types.

Example 3: Shifted Cobb-Douglas preferences

In our third example, we illustrate the possibility established in Theorem 3 of
implementing efficient trade in dominant strategies. Suppose that the seller’s
type c and the buyer’s type v are distributed according to an arbitrary dis-
tribution on [0, 1]2. Moreover, each agent has a shifted Cobb-Douglas utility:
u (x,m, θ) = (1 + θx)m. The mechanism that generates efficient trade allo-
cates the good and the sum of the money endowments of both agents to the
seller with probability ms

ms+mb
and it allocates the good and the sum of money

endowments to the buyer with the remaining probability mb

ms+mb
.

This mechanism ϕ is dominant-strategy incentive compatible because the
allocation and transfers do not depend on the agents’ reports. To see that the
mechanism is individually rational, notice that the mechanism gives the seller
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Figure 8: Pareto Frontier for the Shifted Cobb-Douglas example.

with type c an expected utility of

ms

ms +mb

(1 + c) (ms +mb) = (1 + c)ms

and that this expected utility is equal to the utility of the seller if no trade
takes place. Similarly, the mechanism gives the buyer with type v an expected
utility of

mb

ms +mb

(1 + v) (ms +mb) = (1 + v)mb

and this expected utility is larger than the utility of the buyer if no trade takes
place, which is equal to mb.

Finally, to see that the mechanism is efficient notice that the Pareto frontier
in this example consists of all randomizations among two outcomes: either the
seller keeps the good and gets all the financial wealth, or the buyer gets the
good and all the financial wealth. This can be immediately seen in Figure 8
(for an analytical argument see the proof of Theorem 3 in Appendix F).32

32Once one has seen this example, it is not surprising that efficient trade is possible
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7 Concluding Remarks

We focused on providing incentives for agents to truthfully reveal their cost/value
information. It is natural to think that preferences are not observable and need
to be elicited, while information such as the size of money holdings can be ob-
jectively verified. At the same time, in some environments, for instance in
Example 3 of Section 6, we can not only incentivize agents to reveal their
value/cost of the good, we can also provide incentives for them to truthfully
announce their money holdings, provided the cost of delivering more money
than one has (in the event one is asked to do it) is appropriately high. This
is so because—as long as the agent is able to deliver the money—each agent
benefits from reporting higher money holdings rather than lower.

Our results on efficient trade open the possibility that other problems might
have efficient solutions in non-quasilinear settings. For instance, our results
imply the possibility of an efficient mechanism for two agents to make a binary
decision, e.g. whether to provide a public good, when each of the agents
favors a different decision and each has higher marginal utility of money if his
preferred decision is taken.

We establish the generic impossibility of achieving efficient trade in an ex-
post incentive compatible way in our setting and we demonstrate that in some
special cases efficient trade can be accomplished in a strategy-proof way. While
we focus on bilateral trade, our analysis can also be used to show that, in the
allocation setting, generically no ex-post incentive compatible mechanism is
efficient.
in this specific setting. Even though agents have private information about their types,
private information does not create any uncertainty about the potential for gains from
trade. Whomever consumes the good has the highest (constant) marginal utility of wealth
and hence efficiency is achieved by giving whomever consumes the good all of the money.
Thus, efficiency is achieved by randomizing over the two extreme allocations identified in
Figure 8 and the only burden on the mechanism is to define the probability of exchange in a
way that ensures individual rationality. An even simpler example arises when agents’ have
standard Cobb-Douglas utilities over the good and the money, u (x,m; θ) = A (θ)xα(θ)mβ(θ)

for some functions A,α, β. With Cobb-Douglas utilities, the mechanism that allocates the
good and all the money to the seller implements efficient trade. Of course, such an example
is extreme since, without the indivisible good, agents have no use for money.
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A Examples 1 and 2: Constructing Probabil-
ity π

Our analysis of Theorem 1 shows that any probability function π solving the
first-order conditions (10) and (11) determines a Bayesian incentive compatible
mechanism, because the second-order condition assumed in our analysis is
always satisfied when agents’ utilities are separable in the good and money.

A.1 Construction of incentive compatible π (c, v) in Ex-
ample 1

Plugging in the formulas for money-holding from the example simplifies the
first-order conditions (10) and (11), to:

Ev

[
−∂π(c, v)

∂c
c

]
= Ev

[
− 1

c+ v

]
(12)

and
Ec

[
−∂π(c, v)

∂v
v

]
= Ec

[
1

c+ v

]
. (13)

By following the procedure we developed in the proof of Lemma 1, we find a
solution of this systems of partial differential equations of the form π (c, v) =

b (v)∆b (c, v) + s (c)∆s (c, v). As in the lemma, we can set ∆s (c, v) to be any
solution of the homogenous version of (12) and we can set ∆b (c, v) to be any
solution of the homogenous version of (13). In the separable case, one pair of
solutions is always

∆s (c, v) = 1, ∆b (c, v) = 1,

which is a major simplification of the general case. The right-hand side of (12)
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is

ϕ (c) = Ev

[
− 1

c+ v

]
= −

∫ 100

2

1

c+ v

1

98
dv =

− log (100 + c) + log (2 + c)

98
,

and the right-hand side of (13) is

ψ (v) = −Ec
[
− 1

c+ v

]
=

∫ 100

2

1

c+ v

1

98
dc =

log (100 + v)− log (2 + v)

98
.

The lemma procedure allows us to set the auxiliary function b (·) to be any
solution of the ordinary differential equation (ODE)

ψ (v) = Ec
[
B1 (c, v)∆

b (c, v)
]
b′ (v) + Ec

[
B1 (c, v)

∂

∂v
∆b (c, v) + B2 (c, v)∆

b (c, v)

]
b (v)

= Ec [v] b
′ (v) = vb′ (v) ,

and thus

b′ (v) =
log (100 + v)− log (2 + v)

98v
.

Similarly, the equation for s is ϕ (c) = cs′ (c), and thus

s′ (c) =
− log (100 + c) + log (2 + c)

98c
.

As ∆s = ∆b = 1, the variations in the seller’s report adjust the probability by
the amount ∫ 51

c

s′(x)dx =
1

98

∫ 51

c

− log(100 + x) + log(2 + x)

x
dx,

and the variations in the buyer’s report adjust the probability by the amount∫ 51

v

b′(x)dx =
1

98

∫ 51

v

log(100 + x)− log(2 + x)

x
dx.

Setting the anchoring probability at π∗ = .5—that is assuming that the seller
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retains the item with probability .5 when the reports are 51, 51—we obtain
that the probability that the seller gets the item if the seller reports c and the
buyer reports v is

π(c, v) =
1

2
+

1

98

∫ 51

c

− log(100 + x) + log(2 + x)

x
dx+

1

98

∫ 51

v

log(100 + x)− log(2 + x)

x
dx.

The probability π is increasing in c and decreasing in v, and hence to verify
that π(c, v) ∈ [0, 1], it is enough to verify that π(2, 100), π(100, 2) are in this
interval; they are. The proposed mechanism is thus well defined and, by
construction, incentive compatible.

A.2 Construction of incentive compatible π (c, v) in Ex-
ample 2

Plugging in the formulas for money-holding from the example simplifies the
first-order conditions (10) and (11), to:

0 = Ev

[
∂π(c, v)

∂c
c− e−10α 1

2
√
c
√
vα

]
and

0 = Ec

[
−∂π(c, v)

∂v
v − e−10α 1

2
√
c
√
vα

]
.

As in Example 1, we solve these equations by following the constructive pro-
cedure from the constructive proof of Lemma 1. Define

ψ (v) = −Ec
[
−e−10α 1

2
√
c
√
vα

]
=

1

α

∫ 2

1

e−10α 1

2
√
c
√
v
dc =

1

α
e−10α

√
2− 1√
v

and

ϕ (c) = Ev

[
−e−10α 1

2
√
c
√
vα

]
= − 1

α

∫ 2

1

e−10α 1

2
√
c
√
v
dv =

1

α
e−10α1−

√
2√

c
.

37



Following the lemma procedure, we set

∆s (c, v) = 1, ∆b (c, v) = 1.

The functions b (·) and s (·) are given by the ODEs ψ (v) = vb′ (v) and ϕ (c) =
cs′ (c), respectively. Thus, b′ (v) = 1

α
e−10α

√
2−1

v
3
2

and s′ (c) = 1
α
e−10α 1−

√
2

c
3
2

, and
the seller’s report adjusts the probability π by the amount

∫ 1.5

c
s′(x)dx =

−(
√
2 − 1) e

−10α

α

∫ 1.5

c
x−

3
2dx while the buyer’s report adjusts it by the amount∫ 1.5

v
b′(x)dx = (

√
2 − 1) e

−10α

α

∫ 1.5

v
x−

3
2dx. In effect, the probability that the

seller gets the item if the seller reports c and the buyer reports v is

π(c, v) = π∗(α) + (
√
2− 1)

e−10α

α

[∫ 1.5

v

x−
3
2dx−

∫ 1.5

c

x−
3
2dx

]
= π∗(α) + (

√
2− 1)

e−10α

α

∫ c

v

x−
3
2dx

= π∗(α) + (
√
2− 1)

e−10α

α

[
2√
v
− 2√

c

]
,

for some anchoring value π∗(α). In the log example at this point we set π∗(α)

to be 1
2

but in the present example we set this anchoring probability value to
be the following function of α:

π∗(α) = 1− e−3.32α − e−16.68α

3α
.

For the resulting mechanism to be well defined we need to show that this
choice of π∗(α) leads to π being a probability; the mechanism is then incentive
compatible by construction.

To verify that π(c, v) ∈ [0, 1], start by noticing that π is increasing in c

and decreasing in v. The verification thus reduces to ensuring that

0 ≤ π(1, 2) = π∗(α) + (
√
2− 1)

e−10α

α

[
2√
2
− 2√

1

]
,
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and
1 ≥ π(2, 1) = π∗(α) + (

√
2− 1)

e−10α

α

[
2√
1
− 2√

2

]
.

The resulting restriction

π∗(α) ∈
[
e−10α

α

(√
2− 1

)(
2−

√
2
)
, 1− e−10α

α

(√
2− 1

)(
2−

√
2
)]

is indeed satisfied by the above choice of π∗(α) for any α ≥ .2.33

A.3 Verifying Interim Individual Rationality in Exam-
ple 2

Interim individual rationality requires that any type of the buyer and any type
of the seller are better off under the mechanism than under no trade, under
the maintained assumption that α ≥ .2. The no-trade payoff of type-c seller
is c+ 1−e−3.32α

α
and the expected payoff from the mechanism is∫ 2

1

π(c, v;α)c+
1

α
− e−10α

α

√
c√
v
dv

=
1

α
+

(
π∗(α) + 4(

√
2− 1)2

e−10α

α

)
c− 4(

√
2− 1)

e−10α

α

√
c,

giving the expected net utility gain of

π∗(α)c+
e−10α

α

(
4(
√
2− 1)2c− 4(

√
2− 1)

√
c
)
− c+

e−3.32α

α
.

For α ≥ .2, this net gain is strictly decreasing in c over the interval [1, 2]
and achieves the minimum at c = 2. Thus, the seller’s participation constraint
is satisfied when

2(π∗(α)− 1)− 4(
√
2− 1)(

√
2− 2)

e−10α

α
+
e−3.32α

α
≥ 0.

33The choice of π∗(α) is made so as to make the minimum gain of the seller equal the
minimum gain of the buyer; both gains calculated in Section 6. The restriction to α ≥ .2 is
then needed to ensure that π(c, v) ∈ [0, 1].
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With π∗(α) defined as above, this restriction reduces to

e−3.32α − e−16.68α

3α
− 4(

√
2− 1)(

√
2− 2)

e−10α

α
+
e−16.68α

α
≥ 0,

and it is satisfied for α ≥ .2.34

Similarly, the no-trade payoff of type-v buyer is 1−e−16.68α

α
and the expected

payoff from the mechanism is∫ 2

1

(1− π(c, v;α))v +
1

α
− e−10α

α

√
v√
c
dc

=
1

α
+

(
(1− π∗(α)) + 4(

√
2− 1)2

e−10α

α

)
v − 4(

√
2− 1)

e−10α

α

√
v.

It follows that the expected net utility gain is

(1− π∗(α))v +
e−10α

α

(
4(
√
2− 1)2v − 4(

√
2− 1)

√
v
)
+
e−16.68α

α
.

For α ≥ .2, this net gain is strictly increasing in v over [1, 2] (due to our choice
of π∗(α)) and achieves a minimum at v = 1. Hence the buyer’s participation
constraint is satisfied when

(1− π∗(α))− 4(
√
2− 1)(

√
2− 2)

e−10α

α
+
e−16.68α

α
≥ 0.

With π∗(α) defined as above, this restriction reduces to the same formula as
the seller’s participation constraint and it is satisfied for α ≥ .2.

34While the validity of the formula is restricted to α ≥ .2, the formula itself is nonnegative
for all α > 0; similar comment is valid for the formula on buyer’s minimum net gain.
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Omitted Proofs for “Efficient Bilateral Trade”

Appendices For Online Publication

Rodney Garratt and Marek Pycia

B Derivation of Inequalities (3)

Here we derive the inequalities that play a crucial role in our analysis of the
second-order condition. We know from (2) that

∂
∂m

u
(
1,mS(c, v), c

)
u (1,mS(c, v), c)− u (0,M −mB(c, v), c)

=
∂
∂m

u
(
0,M −mS(c, v), v

)
u (1,mB(c, v), v)− u (0,M −mS(c, v), v)

.

Let us show that for m′ ≤ m (notice that M − mB(c, v) ≤ mS(c, v)), the
expression

∂
∂m

u(1,m,c)

u(1,m,c)−u(0,m′,c)
strictly decreases in c. To prove this it is enough to

show that
uc (1,m, c)− uc (0,m

′, c)

u (1,m, c)− u (0,m′, c)
>
ucm (1,m, c)

um (1,m, c)
(14)

for m′ ≤ m. Let us rewrite the left-hand side of (14) as

uc (1,m, c)− uc (0,m
′, c)

u (1,m, c)− u (0,m′, c)
=

[uc (1,m, c)− uc (1,m
′, c)] + [uc (1,m

′, c)− uc (0,m
′, c)]

[u (1,m, c)− u (1,m′, c)] + [u (1,m′, c)− u (0,m′, c)]

=
[uc (1,m

′, c)− uc (0,m
′, c)] +

∫ m
m′ ucm (1, m̃, c)

[u (1,m′, c)− u (0,m′, c)] +
∫ m
m′ um (1, m̃, c)

.

As in the analysis of the second-order condition in Section 3.1.2, we use the
facts that the inequality in (1) implies

uc (1,m
′, c)− uc (0,m

′, c)

u (1,m′, c)− u (0,m′, c)
>

∂
∂m
uc (1,m

′, c)
∂
∂m
u (1,m′, c)

(15)

and the equality in (1) implies

∂
∂m
uc (1, m̃, c)

∂
∂m
u (1, m̃, c)

=
∂
∂m
uc (1,m

′, c)
∂
∂m
u (1,m′, c)

=
∂
∂m
uc (1,m, c)

∂
∂m
u (1,m, c)

. (16)
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The inequality in (15) and the first equality in (16) establish that

uc (1,m, c)− uc (0,m
′, c)

u (1,m, c)− u (0,m′, c)
>
ucm (1,m′, c)

um (1,m′, c)

and then, by the second equality in (16), we have that (14) holds. Hence,
∂

∂m
u(1,m,c)

u(1,m,c)−u(0,m′,c)
strictly decreases in c.

Going back to the first equation of this Appendix, as we increase c while
keeping money levels constant the left-hand side decreases, while the right
hand side stays constant. Looking at the Figure 1 shows that to balance this
out, the critical point shifts towards higher utility of the buyer. And, thus the
seller’s money level mS decreases in this critical point. The analysis of other
critical money levels is similar.

C Proof of Theorem 1: Steps Omitted in Main
Text

C.1 Verifying the Second-Order Conditions

We check the second-order condition for the seller; the buyer’s problem is
analogous. Since at points at which the first-order condition is satisfied we
have

0 =
d

dc

(
∂

∂ĉ
ΠS (c, c)

)
=

∂

∂c

(
∂

∂ĉ
ΠS (c, c)

)
+

∂

∂ĉ

(
∂

∂ĉ
ΠS (c, c)

)
,

the second-order condition for the seller is implied if we show that

∂

∂c

∂

∂ĉ
ΠS (c, c) > 0.
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A straightforward calculation shows that ∂
∂c

∂
∂ĉ
ΠS (c, c) equals

Ev

{[
∂

∂c
π (c, v)

] [
uc

(
1,mS (c, v) , c

)
− uc

(
0,M −mB (c, v) , c

)]
+ π (c, v)

([
∂

∂m
uc

(
1,mS (c, v) , c

)] [ ∂

∂c
mS (c, v)

]
+

[
∂

∂m
uc

(
0,M −mB (c, v) , c

)] [ ∂

∂c
mB (c, v)

])
−

[
∂

∂m
uc

(
0,M −mB (c, v) , c

)] [ ∂

∂c
mB (c, v)

]}
.

We can substitute in for ∂
∂c
π (c, v) from the first-order condition obtaining that

∂
∂c

∂
∂ĉ
ΠS (c, c) is equal to (1− π (c, v)) ∂

∂c
mB (c, v) times[

∂

∂m
u
(
0,M −mB (c, v) , c

)] [
uc

(
1,mS (c, v) , c

)
− uc

(
0,M −mB (c, v) , c

)]
−
[
∂

∂m
uc

(
0,M −mB (c, v) , c

)] [
u
(
1,mS (c, v) , c

)
− u

(
0,M −mB (c, v) , c

)]
minus π (c, v) ∂

∂c
mS (c, v) times[

∂

∂m
u
(
1,mS (c, v) , c

)] [
uc

(
1,mS (c, v) , c

)
− uc

(
0,M −mB (c, v) , c

)]
−
[
∂

∂m
uc

(
1,mS (c, v) , c

)] [
u
(
1,mS (c, v) , c

)
− u

(
0,M −mB (c, v) , c

)]
.

By (3), ∂
∂c
mB (c, v) > 0 > ∂

∂c
mS (c, v), and thus, for π (c, v) ∈ (0, 1), the

second-order condition is satisfied provided both above displayed expressions
are strictly positive. Since mS(c, v) ≥ M − mB(c, v), the expressions are
positive if[
∂

∂m
u (0,m′, c)

]
[uc (1,m, c)− uc (0,m

′, c)]−
[
∂

∂m
uc (0,m

′, c)

]
[u (1,m, c)− u (0,m′, c)] > 0

and[
∂

∂m
u (1,m, c)

]
[uc (1,m, c)− uc (0,m

′, c)]−
[
∂

∂m
uc (1,m, c)

]
[u (1,m, c)− u (0,m′, c)] > 0
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for all m′ ≤ m. The second of these two inequalities has been proven in
Appendix B as inequality (14) and the proof of the first of these inequalities
follows the same steps as the proof of (14).

C.2 Verification that the first-order conditions in Sec-
tion 3.1 satisfy the assumptions of Lemma 1

To ensure that the coefficient in front of ∂
∂c
π (c, v) is positive, we multiply

equation (5) by −1. Then, equations (4) and (5) take the form

Ev

[
S1 (c, v)

∂

∂c
π (c, v) + S2 (c, v) π (c, v)

]
= ϕ (c)

Ec

[
B1 (c, v)

∂

∂c
π (c, v) + B2 (c, v) π (c, v)

]
= ψ (v)

where the coefficients in front of ∂
∂c
π and ∂

∂v
π are

S1 (c, v) = u
(
1,mS (c, v) , c

)
− u

(
0,M −mB (c, v) , c

)
> 0

B1 (c, v) = u
(
1,mB (c, v) , v

)
− u

(
0,M −mS (c, v) , v

)
> 0

the coefficients in front of π are

S2 (c, v) =

[
∂

∂m
u
(
1,mS (c, v) , c

)] [ ∂

∂c
mS (c, v)

]
+

[
∂

∂m
u
(
0,M −mB (c, v) , c

)] [ ∂

∂c
mB (c, v)

]
B2 (c, v) =

[
∂

∂m
u
(
1,mB (c, v) , v

)] [ ∂

∂v
mB (c, v)

]
+

[
∂

∂m
u
(
0,M −mS (c, v) , v

)] [ ∂

∂v
mS (c, v)

]
and the functions ϕ, ψ are given by

ϕ (c) = Ev

{[
∂

∂m
u
(
0,M −mB (c, v) , c

)] [ ∂
∂c
mB (c, v)

]}
ψ (v) = −Ec

{[
∂

∂m
u
(
1,mB (c, v) , v

)] [ ∂
∂v
mB (c, v)

]}
.

By assumption, u and its derivatives are continuously differentiable. The con-
tinuous differentiability of mS and mB—which are implicitly defined in (2)—

4



follows from the the Implicit Function Theorem and the strict concavity of
u.

C.3 Bounding money holding type-dependence and FOCs
coefficients in terms of ∆

The last step of the proof of Theorem 1 relies on the claim that by taking
sufficiently small ∆ we can ensure that the absolute value of the integrals of
S2

S1
, B2

B1
, ϕ
S1

, and ψ
B1

over any interval of length at most L is small. For small ∆,
the functions S1 and B1 defined in Appendix C.2 take values close to S1 (c

∗, v∗)

and B1 (c
∗, v∗), respectively, and hence are uniformly bounded away from 0.

By taking ∆ sufficiently small we thus want to ensure that integrals over S2,
B2, ϕ, and ψ can be made arbitrarily close to 0.

An inspection of the formulas for these four functions shows that it is
enough to notice that (a) the partials of u with respect to m (e.g., ∂

∂m
u) are

bounded uniformly in (c, v), and (b) for any ε > 0 there is ∆ > 0 such that
if the asymmetry of information is bounded by ∆, then, keeping fixed one
type (say c), the integral of the absolute value of partials of mB and mS with
respect to the other type (say v, e.g., ∂

∂v
mB (c, v)) over any interval of the

other type (here v) of length L is bounded by ε. Claim (a) follows because
u is twice continuously differentiable in money and type, the space [0,M ] of
possible money holdings and the space of types (c, v) are both compact and
the continuity of mB implies that ∂

∂m
u
(
1,mB (c, v) , v

)
is bounded uniformly

in (c, v).
To prove claim (b), we focus on ∂

∂v
mB (c, v); the argument for other par-

tials is analogous. Recall that the money levels mS (c, v) and mB (c, v) are
uniquely determined by equations (2). From the Implicit Function Theorem’s
expressions on the partials of mS and mB with respect to c and v, we now
infer that for any ε > 0 there exists ∆ > 0 such that with utilities u within ∆

of u(x,m; c∗) and u(x,m; v∗) the critical money levels mS and mB are within
ε of mS(c∗, v∗) and mB(c∗, v∗), respectively.

Multiplying equations (2) by the relevant denominators gives us the Jaco-
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bian

J =

[
∂F
∂mS

∂F
∂mB

∂G
∂mS

∂G
∂mB

]
where F (mS,mB) and G(mS,mB) are defined as follows (here, u′ is the deriva-
tive of u with respect to m):

F (mS ,mB) = u′(1,mS , c)[u(1,mB, v)−u(0,M−mS , v)]−u′(0,M−mS , v)[u(1,mS , c)−u(0,M−mB, c)],

G(mS ,mB) = u′(1,mS , c)u′(1,mB, v)− u′(0,M −mB, c)u′(0,M −mS , v).

We first show that the Jacobian J has a strictly positive determinant.
Introduce the short-hand notation X = u(1,mB, v)−u(0,M −mS, v) > 0 and
Y = u(1,mS, c)− u(0,M −mB, c) > 0. Then:

∂F

∂mS
= u

′′
(1,mS , c)X + u′(1,mS , c)u′(0,M −mS , v) + u

′′
(0,M −mS , v)Y − u′(0,M −mS , v)u′(1,mS , c)

∂F

∂mB
= u′(1,mS , c)u′(1,mB, v)− u′(0,M −mS , v)u′(0,M −mB, c)

∂G

∂mS
= u

′′
(1,mS , c)u′(1,mB, v)− u′(0,M −mB, c)u

′′
(0,M −mS , v)

∂G

∂mB
= u′(1,mS , c)u

′′
(1,mB, v)− u

′′
(0,M −mB, c)u′(0,M −mS , v).

Recognizing that u′(1,mS, c)u′(0,M−mS, v)−u′(0,M−mS, v)u′(1,mS, c) = 0

in the multiplication of ∂F
∂mS by ∂G

∂mB , we can write down the determinant as:

D = u
′′
(1,mS , c)u

′′
(1,mS , v)u′(1,mS , c)X + u

′′
(1,mS , c)u

′′
(0,M −mB, c)u′(0,M −mS , v)X

+ u
′′
(0,M −mS , v)u

′′
(1,mB, v)u′(1,mS , c)Y + u

′′
(0,M −mB, c)u

′′
(0,M −mS , v)u′(0,M −mS , v)Y

− u
′′
(1,ms, c)u′(1,mS , c)(u′(1,mB, v))2 + u

′′
(1,mS , c)u′(1,mB, v)u′(0,M −mS , v)u′(0,M −mB, c)

− u′(1,mS , c)u′(1,mB, v)u′(0,M −mB, c)u
′′
(0,M −mS , v)

+ u
′′
(0,M −mS , v)u′(0,M −mB, c)u′(0,M −mS , v)u′(0,M −mB, c).
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At the optimum G(mS,mB) = 0, and the last two lines of D are

u
′′
(0,M −mS , v)u′(0,M −mB, c)[u′(0,M −mS , v)u′(0,M −mB, c)− u′(1,mS , c)u′(1,mB, v)] = 0.

Likewise, the third line of D is

u
′′
(1,mS, c)u′(1,mB, v)[u′(0,M −mS, v)u′(0,M −mB, c)− u′(1,mS, c)u′(1,mB, v)] = 0.

Collecting terms in the first two lines gives

D =u
′′
(1,mS , c)X[u

′′
(1,mB, v)u′(1,mS , c) + u

′′
(0,M −mB, c)u′(0,M −mS , v)]

+ u
′′
(0,M −mS , v)Y [u

′′
(1,mB, v)u′(1,mS , c) + u

′′
(0,M −mB, c)u′(0,M −mS , v)]

=[u
′′
(1,mS , c)X + u

′′
(0,M −mS , v)Y ][u

′′
(1,mB, v)u′(1,mS , c) + u

′′
(0,M −mB, c)u′(0,M −mS , v)].

The terms in both sets of square brackets are strictly less than zero. Hence,
the determinant of the Jacobian is strictly positive.

Given the compactness of the space of arguments and twice continuous
differentiability of u, we infer that the infimum of the determinant D is also
strictly positive. We can thus use the Implicit Function Theorem to compute
the partial derivatives ∂mS

∂c
and ∂mB

∂c
(∂mS

∂v
and ∂mB

∂v
are computed similarly).

We have [
∂mS

∂c
∂mB

∂c

]
= − 1

D

[
∂G
∂mB − ∂F

∂mB

− ∂G
∂mS

∂F
∂mS

][
∂F
∂c
∂C
∂c

]
.

In particular, ∂mS

∂c
= − 1

D

[
∂G
∂mB

∂F
∂c

− ∂F
∂mB

∂G
∂c

]
. Because D ≥ D > 0, in order to

show that the integral of ∂mS

∂c
over an integral of types c is small it is enough

to show that by taking ∆ small we can ensure that the corresponding integral
of ∂F

∂c
is small and that ∂G

∂mB is uniformly bounded (and the analogue for ∂F
∂mB

and ∂G
∂c

). The latter obtains because

∂G

∂mB
= u′(1,mS, c)u

′′
(1,mB, v)− u

′′
(0,M −mB, c)u′(0,M −mS, v)

and u is twice continuously differentiable and has a compact domain. For the
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former, we have

∂F

∂c
=
∂u′(1,mS, c)

∂c
X − u′(0,M −mS, v)

[
∂u(1,mS, c)

∂c
− ∂u(0,M −mB, c)

∂c

]
where X = u(1,mB, v)− u(0,M −mS, v) and u′(0,M −mS, v) are bounded.
Writing explicitly the arguments in mB and mS the remaining task is to show
that ∂u′(1,mS(c,v),c)

∂c
and ∂u(1,mS(c,v),c)

∂c
− ∂u(0,M−mB(c,v),c)

∂c
are small for small ∆. The

difference is small because both its components are. Indeed, by the Implicit
Function Theorem mB and mS are twice continuously differentiable and hence
by taking L small we can ensure that

∣∣∣∂u(1,mS(c,v),c)
∂c

− ∂u(1,mS(c0,v),c)
∂c

∣∣∣ < ε
2

for all
c, c0 in the integration interval. At the same time, for ∆ = ε

4
, the ∆ bound

on asymmetric information implies that that the absolute value of the integral
of ∂u(1,mS(c0,v),c)

∂c
over any integration interval is smaller than ε

2
. Putting this

together and requiring that L ≤ 1, we conclude that the absolute value of the
integral of ∂u(1,mS(c,v),c)

∂c
over any interval of length L or less is bounded by ε.

An analogous argument obtains for the integrals over ∂u(0,M−mB(c,v),c)
∂c

.
Finally we bound the integral over ∂u′(1,mS(c,v),c)

∂c
over c taken from an arbi-

trary interval of length L or less. This is equivalent to bounding the difference
between u′(1,mS (c, v) , c) and u′(1,mS (c′, v) , c′) for |c − c′| ≤ L. Equations
(2) define the ratios

u′
(
1,mS (c, v) , c

)
u′ (0,M −mS (c, v) , v)

=
u′
(
0,M −mB (c, v) , c

)
u′ (1,mB (c, v) , v)

=
u
(
1,mS, c

)
− u

(
0,M −mB, c

)
u (1,mB, v)− u (0,M −mS, v)

.

By taking ∆ small we ensure that for all c, v the right-hand-side ratio u(1,mS ,c)−u(0,M−mB ,c)
u(1,mB ,v)−u(0,M−mS ,v)

is within ε of u(1,mS ,c∗)−u(0,M−mB ,c∗)
u(1,mB ,v∗)−u(0,M−mS ,v∗)

because the nominator and denominator
of this expression are positive and bounded away from 0. By the Implicit
Function Theorem, mS (c, v) is twice continuously differentiable in c, and
hence the continuous differentiability of u′ in wealth implies that, for small
∆, we keep u′

(
0,M −mS (c, v) , v

)
within ε of u′

(
0,M −mS (c∗, v) , v

)
. As

u′
(
1,mS (c, v) , c

)
is the product of the two quantities we just bounded, these
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bounds implies that by setting ∆ small we can ensure that

∣∣u′(1,mS (c, v) , c)− u′(1,mS (c′, v) , c′)
∣∣ < ε

for all c and c′ in the domain (and hence in particular for all c and c’ such that
|c− c′| ≤ L).

C.4 Proof of Lemma 1

As a preparation, consider the PDEs

S1 (c, v)
∂

∂c
π (c, v) + S2 (c, v) π (c, v) = 0 (17)

and

B1 (c, v)
∂

∂v
π (c, v) + B2 (c, v) π (c, v) = 0. (18)

Considered separately, these equations are standard ODEs. Given the reg-
ularity assumptions we imposed, these ODEs have solutions for any initial
conditions. Let us fix a solution ∆b > 0 to the first equation and a solution
∆s > 0 to the second that satisfy the initial conditions

∆b (c∗, v) =
1

2
and ∆s (c, v∗) =

1

2

for any c, v. For continuously differentiable functions b (·) and s (·), set

π (c, v) = b (v)∆b (c, v) + s (c)∆s (c, v)

and consider the second PDE from the lemma. The contribution of the second
summand above to the equation’s left-hand side is zero for each v, and thus it
is zero in expectation. Thus, the second equation reduces to

ψ (v) = Ec

[
B1 (c, v)

∂

∂v

[
b (v)∆b (c, v)

]
+B2 (c, v) b (v)∆

b (c, v)

]
, (19)
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where the right-hand side is equal to

Ec
[
B1 (c, v)∆

b (c, v)
]
b′ (v)+Ec

[
B1 (c, v)

∂

∂v
∆b (c, v) + B2 (c, v)∆

b (c, v)

]
b (v) .

Since B1∆
b > 0, this equation has solutions. Let b be one such solution

satisfying the initial condition b (v∗)∆b (c∗, v∗) = 1
2
π∗. Similarly, we can find

a function s for which the first PDE from the lemma is satisfied and such that
s (c∗)∆s (c∗, v∗) = 1

2
π∗. Thus, for these two functions b and s, the function

π defined above satisfies the system of PDEs from the lemma, as well as the
initial condition.

C.5 The bound ∆ on informational asymmetry and ap-
proximate flatness of π

To show the final (flatness) claim of the proof of Theorem 1 we establish the
following property of the solution π constructed in the proof of Lemma 1: for
any δ > 0 there are K,K > 0, ε > 0 and L > 0 such that if (i) |ϕ|, |ψ|, |B1|,
|S1|, |B2|, |S2| are bounded from above by K and |B1|, |S1| are bounded from
below by K, (ii) for any v, the absolute value of the integral of S2(c,v)

S1(c,v)
over c

in any interval of length at most L is bounded from above by ε, and (iii) for
any c, the absolute value of the integral of B2(c,v)

B1(c,v)
over v in any interval of

length at most L is bounded from above by ε, then the PDEs and the boundary
condition of Lemma 1 have a solution π such that |π (c, v)− π (c∗, v∗)| ≤ δ for
any c ∈ [c, c] and v ∈ [v, v].35 The proof of Theorem 1 will be then complete
because the analysis in Appendix C.3 shows that for any δ we can find such ε
and L by taking ∆ sufficiently low. To show the italicized implication we first
bound the differences of functions ∆s and ∆b, and then bound the functions b
and s.

Consider ∆b which is the solution to (17). The coefficient in front of the
derivative in this equation is non-zero everywhere and dividing this differential

35An inspection of the argument below shows that the claimed δ bound holds even if
assumption (i) is substantially weakened.
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equation by this coefficient we obtain

∂

∂c
∆b (c, v) +

S2 (c, v)

S1 (c, v)
∆b (c, v) = 0,

with solutions
∆b (c, v) = k exp

(
−
∫ c

c

S2 (c̃, v)

S1 (c̃, v)
dc̃

)
parametrized by k ∈ R. By assumption, for any v, the integral of S2(c,v)

S1(c,v)
over

c in any interval of length at most L is bounded from above by ε; hence, for
any δ̂ > 0, by taking ε small enough, we can guarantee that

∣∣∆b (c, v)− k
∣∣ < δ̂

for any c and v in their respective bounded domains. An analogous argument
allows us to ensure that

|∆s (c, v)− k| < δ̂

for any c and v in their respective domains.
Consider now b, whose defining ODE is (as above)

Ec
[
B1 (c, v)∆

b (c, v)
]
b′ (v)+Ec

[
B1 (c, v)

∂

∂v
∆b (c, v) + B2 (c, v)∆

b (c, v)

]
b (v) = ψ (v) .

As B1 is continuously differentiable and non-zero, it is always strictly above
0 or else always strictly below 0. Consider the former case; the latter case is
analogous. For δ̂ ∈

(
0, k

2

)
the above bounds give us 3

2
k > ∆b (c, v) > k

2
> 0

for all c, v. As B1 is continuous, its infimum on the domain is some B1 > 0,
and thus, Ec

[
B1 (c, v)∆

b (c, v)
]
> k

2
B1 > 0 for all v. The ODE coefficient

Ec
[
B1 (c, v)

∂
∂v
∆b (c, v) + B2 (c, v)∆

b (c, v)
]

is bounded because B2, ∆b, and
B1 are bounded as is ∂

∂v
∆b (c, v); the latter is bounded in light of the exponen-

tial formula above because of the continuous differentiability of S2 (c̃, v) and
S1 (c̃, v) in v and the strictly positive lower bound on S1 established at the
beginning of Appendix C.2. As ψ (v) is bounded by K, we infer that there
is a solution b that is uniformly bounded from above and the bound does not
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depend on δ̂ ∈
(
0, k

2

)
. Analogously, s is uniformly bounded from above.

Taking δ̂ sufficiently small and combining the above bounds, gives us
|π (c, v)− π (c∗, v∗)| ≤ δ, thus proving the flatness claim.

D Derivation of the Efficient Contract for
the Case of Separable Utilities (Including
Equations (8)–(11))

In the separable case, the equations given in (2) that define the money levels
mS(c, v) and mB(c, v) associated with the points S(c, v) and B(c, v) in Figures
1-3, reduce to

∂
∂m
U(mS)

∂
∂m
U(M −mS)

=
∂
∂m
U(M −mB)
∂
∂m
U(mB)

(20)

and

c+U(mS) = U(M−mB)+
∂
∂m
U(mS)

∂
∂m
U(M −mS)

∗ [v+U(mB)−U(M−mS)]. (21)

Equation (20) implies (8). To see this, suppose mS > M −mB. Then, mB >

M − mS and since U is strictly increasing in m, the left-hand side of (20)
would be strictly greater than the right-hand side, contradicting (8). The
reverse contradiction occurs if we assume mS < M −mB. In other words, in
the optimal contract for the separable case, each player has equal money in
each state.

Substituting (8) into (21) yields (9). Given any pair (c, v), equation (9)
uniquely defines mS(c, v), and mB(c, v) is then given by (8).

Equation (8) implies that ∂
∂ĉ
u(1,mS(ĉ, v); c) = ∂

∂ĉ
u(0,M − mB(ĉ, v); c) =

∂
∂ĉ
U(mS(ĉ, v)) and that ∂

∂v̂
u(0,M−mS(c, v̂); v) = ∂

∂v̂
u(1,mB(c, v̂); v) = ∂

∂v̂
U(mB(c, v̂)).

Thus, the first-order equations we derived in Section 3.1 take the form (10)
and (11).

The second-order conditions of the incentive-compatibility analysis are sat-
isfied in the separable case. Indeed, in light of Appendix C.1, it is suffi-
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cient to verify condition (1), which is satisfied in the separable case because
∂log(θ)
∂θ

= 1
θ
> 0 and ∂log(U ′(m))

∂θ
= 0.

E Proof of Theorem 2

The ratio of seller’s and buyer’s marginal utility from having the good is equal
to the ratio of their types. Because the types come from a compact subset of
(0,∞)2, we may assume that the types belong to [θL, θH ] for some θH > θL > 0.
Let ∆SB > θH

ΘL
; in particular, for every profile of types this ratio belongs to

the interval
[

1
∆SB

,∆SB

]
.

First consider the case that the buyer initially has less money than the
seller. Observe that were the money split half-half, our assumptions imply
that seller/buyer ratio of marginal utilities of money is equal to 1. Thus, for
sufficiently high ∆, the assumption that |U ′′|/U ′ is above ∆ at almost all rel-
evant money levels implies that the seller/buyer ratio of marginal utilities of
money is smaller than 1

∆SB
at the initial money holdings (and after every pos-

itive money transfer from the buyer to the seller). The preceding observation
on utility ratios thus implies that no-trade is Pareto efficient.

Second consider the complementary case that the buyer initially has more
money than the seller. Let mB denote the initial money holdings of the
buyer and mS the initial money holdings of the seller. Let us take a pa-
rameter γ > 0 and consider an auxiliary problem in which types θ̃ belong to[
θH+θL

2
− θH−θL

2γ
, θH+θL

2
+ θH−θL

2γ

]
and the utility of money is

Ũ (m) = U

(
mS +mB

2
+

1

γ

(
m− mS +mB

2

))
.

In particular, U (m) = Ũ
(
mS+mB

2
+ γ

(
m− mS+mB

2

))
. For fixed Ũ , Theorem

1 implies that if γ is sufficiently large then in the auxiliary problem, efficient
trade is possible except at the critical initial money distribution. This excep-
tion never obtains for large γ because (a) the proof of Theorem 1 tells us that
the critical money distribution is such that the ratio of buyer and seller types

13



exactly equal the ratio of marginal utilities of money at initial money holdings;
and (b) as we increase γ while keeping mS,mB, and Ũ constant, the ratio of
marginal utilities of money stays constant and different from 1, and the ratio
of types is arbitrarily close to 1.

To close the proof we build on our analysis of incentive compatible mech-
anisms in Theorem 1 to conclude that we obtain efficient trade if γ is suffi-
ciently high and Ũ satisfies |Ũ ′′|/Ũ ′ ≥ ∆̃ almost everywhere for sufficiently
large ∆̃ > 0. From Section D of the Appendix and the constructive proof of
Lemma 1, we know that a candidate efficient trade solution is given by the
efficient money shares mS (c, v) and mB (c, v) given by

cŨ ′ (M −mS
)
= vŨ ′ (mS

)
(22)

and mS +mB =M , where M is the total money amount.
Claim. Equation (22) has a solution provided |Ũ ′′|/Ũ ′ ≥ ∆̃ almost every-

where for sufficiently large ∆̃ > 0.
To prove this claim, note that we can rewrite (22) as

cU ′
(
M

2
+

1

γ

(
M −mS − M

2

))
= vU ′

(
M

2
+

1

γ

(
mS − M

2

))
We use the Intermediate Value Theorem to show that this equation has a
solution. We first show that if mS = 0, then LHS < RHS. At mS = 0 we have

LHS = cU ′
(
M

2

(
1 +

1

γ

))
and RHS = vU ′

(
M

2

(
1− 1

γ

))
.

By strict concavity of U , we know U ′
(
M
2

(
1 + 1

γ

))
< U ′

(
M
2

(
1− 1

γ

))
. Hence,

if c < v we are done. On the other hand, if c > v, then we use the fact that
for sufficiently large ∆ > 0, |U ′′|/U ′ ≥ ∆ almost everywhere implies that
U ′(ms)
U ′(mb)

> θH
θL

for all mb > ms. This condition ensures that U ′(M
2 (1−

1
γ ))

U ′(M
2 (1+

1
γ ))

> c
v

for

all γ and for all c and v such that c > v, proving that LHS < RHS at mS = 0.

14



Second, we show that if mS =M , then LHS > RHS. At mS =M we have

LHS = cU ′
(
M

2

(
1− 1

γ

))
and RHS = vU ′

(
M

2

(
1 +

1

γ

))
.

Similar to before, by strict concavity of U , if v < c we are done. On the
other hand, if v > c, then we use the fact that for sufficiently large ∆ > 0,
|U ′′|/U ′ ≥ ∆ almost everywhere implies U ′(ms)

U ′(mb)
< θL

θH
for almost all mb < ms.

This condition ensures that U ′(M
2 (1+

1
γ ))

U ′(M
2 (1−

1
γ ))

< c
v

for all γ and for all c and v such

that v > c, proving that LHS > RHS at mS =M . The existence of a solution
mS with 0 ≤ mS ≤M follows from continuity of U and the Intermediate Value
Theorem.

Having proven the claim, we return to the proof of Theorem 2. Note that
mS > mB if and only if c > v. As we grow γ keeping Ũ constant, money
levels mS and mB both converge towards M

2
for all c, v in the support, and

differentiating equation (22) with respect to c gives us

∂mS

∂c
=

Ũ ′ (M −mS
)

cŨ ′′ (M −mS) + vŨ ′′ (mS)
.

For large ∆̃, this implies that almost everywhere ∂mS

∂c
is small in absolute value;

it belongs to
(
− 1
c∆̃
, 0
)

. An analogous argument works for the other partial of
mS and for the partials of mB. Furthermore, for large γ the support of types is
small and the two differential equations are roughly symmetric ensuring that
efficient money levels mS and mB are both close M

2
.

In line with the analysis of Lemma 1, ∆b (c, v) = 1 is a solution to the aux-
iliary equation c∂π(c,v)

∂c
= 0, and ∆s (c, v) = 1 is a solution to the analogous sec-

ond auxiliary equation. For the probability of passing the good, we can hence
take π (c, v) = C+b (v)+s (c), where C is an arbitrary constant set so as to en-
sure π ∈ [0, 1], b is a solution to the equation Ec

{
b′ (v) v + ∂

∂v
Ũ ◦mB (c, v)

}
=

0, e.g.

b (v) =

∫ v

v
−
Ec

{
∂
∂v
Ũ ◦mB (c, ṽ)

}
ṽ

dṽ,
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and s is a solution to the analogous equation, e.g.

s (c) =

∫ c

c
−
Ev

{
∂
∂v
Ũ ◦mB (c̃, v)

}
c̃

dc̃.

Setting θ∗ = θH+θL
2

, we may observe that 1
c̃
≈ 1

θ∗
and Ũ ′ ≈ Ũ ′ (M

2

)
are both

roughly constant for large γ, and our bounds on the partials of mS,mB imply
that s and b can be taken to be close to 0 for large ∆̃. Thus, for large γ

and ∆̃, the efficient probability transfers can be implemented in an incentive
compatible way (as guaranteed by the analysis of Lemma 1) with a nearly
constant probability of object transfer. In particular, for any C ∈ (0, 1) the
probabilities π (c, v) are indeed in [0, 1] for all c, v as soon as γ and ∆̃ are
sufficiently large.

The last thing to check is that by setting C properly we can ensure the
individual rationality of both the buyer and the seller. Notice that for C close
to 0, the seller’s individual rationality is satisfied. The post-trade total welfare
is strictly larger than it is at the status quo because the post-trade welfare
differs vis-a-vis the status quo primarily by the shift of money from the buyer
with relatively low marginal value of money to the seller with relatively high
marginal value of money. As we increase C, we shift the surplus from the seller
to the buyer while the total welfare stays constant by construction. There are
two cases:

(a) For C close to 1 the individual rationality of the buyer θ∗ is strictly
satisfied. Then, for high γ individual rationality is satisfied for all buyer types.
Consequently, there is a range of C in which both buyer and seller’s individual
rationality is satisfied for all types, and the theorem obtains.

(b) For C = 1 the buyer’s individual rationality fails or is exactly satisfied
for buyer’s type θ∗. The welfare gain of the sure trade with money levels mS

and mB is bounded away from zero for all buyer and seller types, and the utility
gain of seller types are also bounded away from zero. (Note that we do not
claim that sure trade with money levels mS and mB is incentive compatible;
it is not). We can then find a monetary transfer T that does not depend on
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the type configuration, that is smaller than the transfer MB−mB (where MB

denotes the initial money holdings of the buyer) for all buyer and seller types,
and such that sure trade accompanied by transfer T is Pareto efficient (where
Pareto efficiency follows from T < MB −mB (c, v) for all types).

F Proof of Theorem 3

First notice that without loss of generality we can normalize M = 1. Consider
the mechanism that assigns the good and all the money to the seller with
probability ms (the initial seller’s share of the aggregate money holding) and
with the complementary probability mb = 1 − ms, it assigns the good and
all the money to the buyer. As we do not need to elicit the types, strategy-
proofness is for free. The individual rationality for the seller follows directly
from the inequality assumed in the theorem by setting θ = c and λ = ms

M
and

recognizing that the inequality is satisfied also for λ ∈ {0, 1}. The individual
rationality for the buyer follows from the inequality assumed in the theorem
by setting θ = v and λ = mb

M
and recognizing that u (1, λM, θ) ≥ u (0, λM, θ)

for any λ ∈ [0, 1]. Because the latter inequality is strict, the buyer strictly
gains from trade.

To prove that the outcomes are ex-post Pareto efficient, consider any out-
come in which the seller gets the object and money y with probability π and no
object and money z with probability 1− π; while the buyer gets the reminder
in both states. The seller’s expected utility is

uS = πu (1, y, v) + (1− π) u (0, z, v) ,

and using the assumption of the theorem we can bound it from above by a
convex combination of the outcomes of our mechanism:

uS ≤ π (yu (1,M, v) + (1− y) u (0, 0, v)) + (1− π) (zu (1,M, v) + (1− z) u (0, 0, v))

≤ (πy + (1− π) z) u (1,M, v) + (π (1− y) + (1− π) (1− z)) u (0, 0, v) .
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Furthermore, this convex combination also bounds buyer’s utility uB from
above:

uB ≤ (π (1− y) + (1− π) (1− z)) u (1,M, c) + (πy + (1− π) z) u (0, 0, c) .

Thus, the mechanism is Pareto efficient.
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