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A B S T R A C T   

Signals used for Earth observation, when travelling through the atmosphere, are sensitive to refractivity; espe-
cially high spatio-temporal variations of water vapor are difficult to model and correct. Remaining unmodeled 
tropospheric delays deteriorate the positioning solution and therefore limit the accuracy of sensing and navi-
gation applications. These delays are usually computed with empirical models based on ground meteorological 
parameters (pressure, temperature and water vapor partial pressure). However, existing models are not accurate 
enough for high-precision applications such as GNSS, where in consequence the so-called zenith total delay 
(ZTD) has to be estimated together with other unknown parameters (coordinates etc.). 

For decades, the Institute of Geodesy and Photogrammetry at ETH Zurich has been studying collocation 
methods for the modeling of tropospheric delays using meteorological parameters, successfully interpolating 
pointwise or integral atmospheric observations. Meanwhile, machine learning has become a widely used and 
valuable alternative, when big datasets are available for the training process. Indeed, we have already suc-
cessfully predicted ZTDs based on meteorological parameters with an accuracy of 1–2 cm for locations (GNSS 
stations) already used in the training phase. However, difficulties arise to predict delays at new locations. 

In this work, we take a step forward in investigating the combination of machine learning algorithms and 
physical models used in a collocation approach to derive atmospheric delay fields at a very high resolution. Thus, 
without processing any GNSS data we can predict tropospheric delay fields everywhere in the area of investi-
gation. In this paper, we firstly describe the designed architecture of the neural network, secondly, the combi-
nation of least-squares collocation and artificial neural networks for high-resolution prediction of tropospheric 
delays. We benefit from the complementary characteristics of these algorithms. While machine learning is 
capable of successfully predicting the variation of time series for given points, empirical models based on 
collocation are well suited for describing spatial variations within the area of investigation. Finally, we report the 
achieved performance for the entire territory of Switzerland (1–2 cm in terms of RMS), showing that the synergic 
combination of these algorithms can overcome the individual drawbacks of each method and provide more 
accurate delay estimates than either method individually. 

Datasets of 11 years, covering the territory of Switzerland, consisting of GNSS ZTDs from 72 permanent 
AGNES/COGEAR (swisstopo, ETHZ) stations and meteorological data from MeteoSwiss were used for this 
research.   

1. Introduction 

Atmospheric water vapor is a very important gas in meteorology, 
climatology and hydrology. It is a crucial element of the hydrological 
cycle, as well as directly connected to natural disasters (floods, draughts, 
glacier melting, etc.) and global climate change [1]. However, its high 

spatio-temporal variations make it very difficult to be modeled or pre-
dicted [2]. Meanwhile, microwave satellite signals, e.g. signals from 
Global Navigation Satellite Systems (GNSS) travel through the tropo-
sphere before they can be received at the user site. Due to high fluctu-
ations of water vapor these signals are delayed and/or distorted, 
affecting the outcome of the technique. The experienced delay is a direct 
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function of the refractivity (and thus the meteorological parameters) 
along the signal path. The simplest approach to deal with this nuisance 
in GNSS signal processing, is to model it using empirical formulations 
based on ground meteorological data [3,4]. Although these empirical 
models may be accurate enough for low-cost GNSS receivers, higher 
accuracy is needed in case of geodetic applications. Clearly, the main 
problem of these models is the description of high variations of water 
vapor. Furthermore, in case of GNSS stations without close-by meteo-
rological sensors, interpolating the meteorological parameters affects 
furthermore the results. Thus, scientists and engineers have routinely 
estimated these tropospheric effects during the processing of GNSS 
measurements. These has led to time series of tropospheric parameters 
with high-temporal resolution over several decades containing infor-
mation about the water vapor, with the most typical one being the zenith 
total delay (ZTD) [5,6]. However, the spatial resolution may not be 
considered high, depending on the network. 

Machine learning has become very popular in different fields of 
science, where the complex mathematical models can be trained 
appropriately from a large amount of data [7]. Indeed, in our previous 
works [8,9], we have successfully shown that the trained machine 
learning models can predict zenith delay time series based on meteo-
rological parameters. Initially a simple algorithm (such as random for-
est) was deployed and then the results were further improved with a 
multi-layer perceptron (MLP) algorithm. Our trained models could 
predict time series for trained locations at 1–2 cm accuracy. However, 
the prediction at new locations was not very successful, experiencing a 
bias increasing with the distance to the closest trained location. Other 
works [10], uses Long Short Term Memory (LSTM) algorithms to predict 
future zenith wet delays based only on past time series, whilst [11] 
utilizes a Gaussian Process (GP) to predict tropospheric corrections in 
Interferometric Synthetic Aperture Radar (InSAR) based on zenith de-
lays. Furthermore, some researchers use machine learning to fuse 
tropospheric delays in geodetic signals in numerical weather prediction 
models [12]. 

At the Institute of Geodesy and Photogrammetry, the least squares 
collocation software COMEDIE (Collocation of Meteorological Data for 
Interpretation and Estimation of Tropospheric Path Delays) has been 
developed and used for decades to interpolate/extrapolate atmospheric 
parameters produced by several meteorological sources (such as nu-
merical weather prediction models, GNSS, InSAR, etc.) [13,14], [15,16]. 
The main feature of COMEDIE is the spatial interpolation of meteoro-
logical parameters; for instance, ZTDs can be interpolated with sub-cm 
level accuracy [15]. This is the case for the Swiss GNSS networks 
(shown later), with a relatively good height distribution of the network 
stations. 

In this work, we take a step forward and combine the two methods 
previously utilized in our lab. On one side, we use machine learning 
algorithms to predict tropospheric delays from meteorological obser-
vations at stations already trained in the network. On the other side, we 
collocate the predicted delays and then interpolate them at any point in 
the area of investigation. Our goal is to benefit from the different spatio- 
temporal error distributions of machine learning and collocation. 

1.1. Tropospheric delay in GNSS 

There exists a direct relation between the delay microwave signals 
experience because of the troposphere and the meteorological parame-
ters, as follows: 

ΔρTROPO = 10
−6

∫

0

Slant Path

N(s)ds (1)  

N = k1

Ptot − Pwet

T
+ k2

Pwet

T
+ k3

Pwet

T2
(2)  

where the tropospheric delay is the integral of the refractivity N along 
the slant path, which is directly described by the total pressure, water 
vapor partial pressure and the temperature (Ptot, Pwet and T). In Ref. [17] 
the coefficients, k1, k2 and k3 are respectively 77.6890 KhPa−1, 71.2952 
KhPa−1 and 375,463 K2hPa−1, which are also the values we have used in 
our works. 

Empirical models based on ground meteorological parameters are 
used to model tropospheric effects in GNSS signals (typical for low-cost 
receivers), [3,4]. For instance, the most typical one is the Saastamoinen 
model: 

ZTD= 0.002277f
(

φ, hellip

)

[

Ptot +

(

1255

T
+ 0.05

)

Pwet

]

(3)  

where f is a function of the geographical latitude φ, and the ellipsoidal 
height hellip. 

The ZTD is the most basic tropospheric parameter, that the GNSS 
community uses, which is estimated in the GNSS adjustment, where 
individual slant delays from each visible satellite are combined into one 
parameter. 

1.2. GNSS and meteorological networks 

In this work, the dataset used is the same as that of our previous 
works [8,9]. 

Fig. 1 shows the GNSS and the meteorological networks in 
Switzerland in blue and orange, respectively. The GNSS network in-
cludes three sub-networks: the AGNES network (operated by swisstopo), 
the COGEAR network (operated by the Mathematical and Physical 
Geodesy group (MPG) of ETH Zurich) and the NAGRA network which is 
the densification in the northeast part of Switzerland [18]. The meteo-
rological network is the SwissMetNet network, operated by MeteoSwiss 
[19]. 

The dataset that we use covers the time period from 2008 to 2018, 
where swisstopo and MeteoSwiss have removed the outliers beforehand. 
An example of the time series is provided in Fig. 2, where the GNSS ZTD 
time series is plotted for station ERDE and the respective meteorological 
parameters for its closest meteo station SIO. Initially, it is important to 
point out that there are data missing in the time series, as shown in the 
GNSS ZTDs. Furthermore, from the four time series, a correlation can be 
seen between the periodicity of ZTDs and that of temperature and water 
vapor partial pressure, while the correlation with total pressure is less 
visible. 

Notice that in this paper we focus on ZTDs, while it may be argued 
that modeling wet delays may be more reasonable, since the hydrostatic 
part in the ZTDs varies very little. One reason of our choice is the fact 
that for practical applications (such as tropospheric corrections to low- 
cost receivers such as smartphones) providing total tropospheric 

Fig. 1. AGNES/COGEAR/NAGRA GNSS (orange) network and SwissMetNet 
(blue) meteorological network, same as in Ref. [8]. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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delays is more appropriate. Furthermore, since the total delay is a sum of 
the deterministic hydrostatic delay and a variable wet delay estimated 
during GNSS processing, the accuracy of the estimated total delay is the 
same as that of the wet delay. Therefore, we would expect ML to perform 
similarly for these two variables. In fact, we have performed some tests 
only using wet delays, and we obtained comparable results to the ones 
we display here. 

More information regarding the dataset utilized here is provided in 
Ref. [9]. 

2. State-of-the-art 

In our previous works [8,9], we have applied machine learning to 
predict GNSS time series of ZTDs from meteorological parameters. For 
comparison purposes, we also developed another approach, based on 
the collocation of meteorological parameters and the Saastamoinen 
model. Furthermore, collocation of ZTDs in the software COEMDIE has 
been performed for decades [15,20,21]. These methods, which are 
state-of-the-art for our laboratory, as well as for this work, are shown in 
Sections 2.1 to 2.3, and the respective results are summarized in Section 
2.4. Further information can be found in the references above. 

2.1. Machine learning 

The machine learning algorithm used here is MLP, which is an arti-
ficial neural network. All neurons of one layer are fully connected to all 
neurons of the next layer whilst the first and the last layers are the input 
and output values, respectively, as displayed in Fig. 3. 

Each neuron is a function of the input from the neurons in the pre-
vious layer, where each input is weighted and also a bias is added to the 
neuron itself. All the biases and weights of each neuron are the pa-
rameters of the neural network [22]. To introduce possible non-
linearities, the Rectified Linear Unit (ReLU) activation function is used, 
described in Ref. [22]. The network is trained by searching for a local 
minimum in the loss function, which is in our case the mean squared 

error (mse) between the label and the prediction [23]. Table 1 sum-
marizes the formulas of the neuron, the activation and loss functions, as 
well as the chosen parameters of the neural network. 

In this work, we use neural networks to predict zenith delays, how-
ever in Refs. [8,9] we have used simpler algorithms such as random 
forest. We also deployed gradient boosting for internal comparisons and 
achieved similar results as with the random forest. Therefore, in this 
work we only display the results with neural network and use the neural 
network prediction to combine with collocation. MLP are universal 
approximators, meaning there exists a network that is the best fit to 
relate the inputs and outputs, [24]. In addition, from common knowl-
edge the MLP algorithm mostly outperforms simpler machine learning 
algorithms, such as random forest, decision trees or gradient boosting. 
There may be more advanced machine learning algorithms, such as deep 
learning ones, which may perform better for our application than MLP, 
however they are more complex and have more parameters to be tuned. 
In this work, it is not our ultimate goal to find the best machine learning 
algorithm to predict ZTDs. Our objective is to show the combination of 
machine learning and collocation exploiting their different character-
istics for time series prediction and spatial interpolation. 

2.2. Saastamoinen model based on collocation 

To compute the Saastamoinen model, initially we collocate the 
meteorological parameters (pressure, temperature and water vapor 
pressure) individually. Collocation accounts for a so-called ‘signal’ part, 
which is correlated noise of the residuals. The measurement l is 
described by the functional part f , the signal s and a Gaussian noise ε, as 
follows [15]: 
l= f + s + ε (4) 

For instance, the functional part of pressure measurements, is 
described as follows [13]: 

P(x, y, h, t) = (P0 + a(x− x0)+ b(y− y0)+ c(t− t0)) • e−
h−h0

Hscale (5)  

where the parameters in red, estimated in the adjustment process, are P0 
at reference position, the gradients a, b and c in East, North and time, 
and the scale height Hscale. Therefore, the pressure can be computed at 
any point inside the network by introducing the coordinates and time x,
y, h, t. As for x0, y0, h0 and t0, they are the coordinates and time of a 
reference location, chosen usually as the mean of all measurements. 

A covariance matrix, which is determined empirically and contains 
information about the correlations of the measurements, describes the 

Fig. 2. ZTD time series for the station ERDE and meteorological parameters for 
the nearby station SIO, same as [8]. 

Fig. 3. Fully connected neural network (source: http://cs231n.github.io/).  

Table 1 
Neural network description and chosen parameters.  

Neuron neuron = f(∑n
i=1 inputi ∗ weighti + bias)

Activation function f(x) = max (0,x)
Loss function mse =

1
n

∑n
i=1(predi − labeli)2 

Layers  Neurons Parameters 
Input 27 – 

Hidden 1 512 14,336 
Hidden 2 128 65,664 
Hidden 3 128 16,512 
Hidden 4 128 16,512 
Hidden 5 128 16,512 
Output 1 129 

Hyperparameters Learning rate Batch size Epochs 
0.0001 1000 250 

Feature Inputs Output  
1 Pressure, temperature and water vapor 

partial pressure at 4 closest stations  
2 Coordinates of the meteo stations  
3 Coordinates of the GNSS stations 

ZTD 

Dataset Training Validation Testing 
2008–2016 2017 2018  
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signal. More information is provided in Refs. [13–15]. 
By introducing the estimated parameters and the desired coordinates 

in Eq. (5), pressure can be calculated at any point inside the network. 
Thus, the collocation method is used for interpolation. Similarly, the 
collocation and interpolation of temperature and water vapor partial 
pressure is performed, [13]. 

Finally, the Saastamoinen model can be computed based on the 
interpolated parameters, using Eq. (3). 

2.3. Collocation of ZTDs 

In case of ZTDs, the functional part is [15]: 

ZTD(x, y, h, t)= [ZTD0 + aZTD(x− x0)+ bZTD(y− y0)+ cZTD(t− t0)
]

• e
−

h−h0

HZTD

(6)  

where, ZTD0 is the ZTD at the reference position (x0, y0, h0, t0), aZTD, bZTD 
and, cZTD are the gradient parameters in the East and North coordinate 
and time, and HZTD is the scale height to be estimated. 

As for the signal part, it is a function of a modeled covariance Css, 
s(Css,x, t), where Css is defined as: 

Css(i, j)=
σ2

0

1 +

[

(

xi−xj

Δx0

)2

+
(

yi−yj

Δy0

)2

+
(

hi−hj

Δh0

)2

+
(

ti−tj

Δt0

)2
]

• e
−

hi+hj

2h0

(7)  

with x, y, h, t being the space and time coordinates of two measured 
points i and j. Δx0, Δy0,Δh0,Δt0, h0 are the correlation lengths in space 
and time and the scale height modifying the correlation lengths as a 
function of height. More information can be found in Ref. [20]. 

Furthermore, the refractivity can be formulated by simply deriving 
the ZTD in the zenith direction [20]: 

N(x, y, h, t)= −
∂ZTD(x, y, h, t)

∂h
(8)  

N(x,y,h, t)=
1

HZTD

[ZTD0 +aZTD(x−x0)+bZTD(y−y0)+cZTD(t− t0)

]

•e
−

h−h0

HZTD

(9) 
Also the covariance matrices that relate the pathdelays with refrac-

tivity, describing the signal part, are shown in Ref. [20]; they are ob-
tained by deriving the covariance of the delays with respect to height. 

Therefore, using collocation fields of zenith delays and 3D fields of 
refractivity can be produced. 

2.4. State-of-the-art results 

In this section, we summarize the results obtained by our state-of- 
the-art methods. Whilst the results of the machine learning and Saas-
tamoinen approach based on collocation have been displayed before in 
Refs. [8,9], the collocation results for this dataset have not been pub-
lished before. 

2.4.1. Machine learning and saastamoinen approach 
In Fig. 4 an example of time series of ZTD is shown, predicted with 

ML and the Saastamoinen model, for station WEHO; this station is 
simply chosen for illustration. In Fig. 5 the RMS for the year 2018 are 
displayed for each station, for both approaches (the Saastamoinen 
approach is represented by rectangles and the ML by circles). For every 
station the ML has a lower RMS compared to the Saastamoinen approach 
based on collocation. Furthermore, the ML predicted delays do not 
exceed an RMS of 2 cm, while this happens quite often for the Saasta-
moinen approach. A deeper analysis of these results is shown in Refs. [8, 
9]. Since in this work we would like to put the main focus on section 3 
where the combination is shown, here we do not make a deeper analysis 
of these results. 

We must point out that we also used the GPT3 model to model the 
ZTDs, where the Askne and Nordius model is used to compute the wet 
part, supposedly more accurate. However, from our results, the Saas-
tamoinen model resulted in the most accurate and therefore, in this 
section we only present those results. 

2.4.2. Machine learning performance at untrained locations 
The performance of ML is quite good at already trained locations, 

since we use several years of time series training the model. However, to 
show the performance at untrained stations, we removed the station 
from the training process and then used the ML model to predict time 
series of that station. An example (for station HGGL) is shown in Fig. 6, 
where we can clearly see a bias between the actual and the predicted 
delays. Furthermore, we did the same for three different stations, which 
have different distances to the closest trained GNSS station. From the 
results in Fig. 7, it is obvious that the further the untrained location is 
away from the trained station, the bigger the bias in the residuals 
(computed as difference of predicted and actual delays). Indeed, for 
station ZIMJ (which has a twin station nearby), there is no bias visible, 
and the residuals of station HGGL, which is the furthest away from the 
closest trained GNSS station, experience the largest bias. 

The bias in the ML-only solution is explained by the limited data 
available for training the ML algorithm. Our GNSS network consists of 
72 locations, therefore only these locations together with their closest 4 
meteorological stations have been trained. For these locations, in total 9 
years of data is available, which leads to a good performance of the ML 
algorithm for the trained locations. However, the algorithm fails to 
generalize to a certain extent when applied to new locations. This em-
phasizes the very different performance of time and space prediction, 
which is also a motivation behind this paper, to find an alternative to 
solve the spatial interpolation by combination with collocation. 

2.4.3. Collocation 
For the year 2018, we performed a collocation of the ZTDs for each 

GNSS station. The ZTDs of the other stations were used to estimate the 
collocation parameters. Finally, the parameters are used to compute the 
ZTD for the station excluded from the collocation process. Therefore, 71 
stations enter the collocation and 1 station is excluded, and a cross 
validation between the collocated ZTDs and the actual ones estimated by 
GNSS processing is performed. This section is simply to show the good 
performance for spatial interpolation of our collocation method. Fig. 8 
shows the residuals for 5 stations between the collocated and the actual 
ZTDs. These 5 stations are only chosen for illustration purposes. The 
residuals of the time series are much lower than 1 cm for most of the 

Fig. 4. Actual estimated delay and the respective neural network and Saastamoinen predictions (same as [8]).  
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epochs. Furthermore, Fig. 9 displays the RMS, standard deviation and 
mean of all the time series for the year 2018 for all stations. The statistics 
are clearly below 1 cm (or even 5 mm) for most of the stations (the 
statistics of only few stations are around 1 cm). 

With further tuning of the model parameters in Section 2.3 it may be 
possible to improve the statistics of stations at about 1 cm; however, this 
is out of the scope of this paper where the main goal is to illustrate the 
spatial performance of collocation for our time series. 

3. Proposed combination 

As mentioned before, the goal of this work is to benefit from the 
characteristics of machine learning and collocation. In the next Section 
3.1 the combination architecture is displayed and in Section 3.2 the 

Fig. 5. Root mean square errors for the neural network and the Saastamoinen predictions for every station of the GNSS network.  

Fig. 6. Actual estimated delay and the respective neural network prediction at 
untrained station HGGL. 

Fig. 7. Residuals of ML predictions for three untrained stations at different 
distances from the closest trained station. 

Fig. 8. ZTD residuals of the collocation for different GNSS stations dur-
ing 2018. 

Fig. 9. Statistics of collocation of ZTDs for all GNSS stations during 2018.  
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results achieved with this combination approach are shown. 

3.1. Combination architecture 

Fig. 10, shows the workflow of computing ZTDs by using both, ML 
and collocation. There are three parts in the workflow:  

- Used measurements: for the combination we make use of exactly the 
same measurements (meteorological parameters and zenith total 
delays) as in the case where we only use ML, as shown in Section 2.  

- Machine Learning: in this part we perform exactly the same steps as 
performed in Section 2 for the ML approach, where training and 
validation are performed with the years 2008–2017. Then, with the 
trained ML models and the meteorological parameters for 2018, we 
predict ZTDs at already trained locations.  

- Collocation: the predicted ZTDs from the ML algorithm are used as 
input to the collocation process, to compute the state vector, as 
explained in Section 2.3. Therefore, the model parameters and the 
coordinates of any point inside the network, can be used to generate 
ZTDs (as well as refractivities), at any location (trained or 
untrained). 

3.2. Combination results 

Section 3.2.1 shows the results of our combination method for the 
three stations also displayed in Section 2.4.2, while Section 3.2.2 con-
tains the results of the combination approach over all Switzerland. 

3.2.1. Specific stations 
In Fig. 11 in the top plots, the ZTD time series at untrained locations 

are displayed predicted by ML (in blue), and the ZTD time series of our 
combination approach (in red), as well as the reference ZTD in black, for 
the year 2018. In the lower subplots, the respective residuals (difference 
between the predicted delays, via ML alone or combination, and the 
actual delays) are shown. For both stations, we can clearly see that the 
time series of the combination are much closer to the actual delay, while 
for the lower subplots we can clearly see that the residuals of the com-
bined method (in red) do not experience a visible bias as those that only 
leverage ML to obtain a prediction (in blue). This is clear for both sta-
tions, at ~5 km and at ~15 km away from the closest trained GNSS 
station. In Table 2, all the statistics for these three stations are displayed. 
We can confirm from these statistics that with our combination method 
the bias and the standard deviation are improved compared to the case 
when the stations are not trained. Furthermore, the combination 

statistics is similar to the case when the stations are part of the training 
dataset. 

We emphasize that the time series of these three stations are not used 
to train the ML network, but the rest of the stations (69 stations) train the 
NN. Therefore, we use the predicted time series of the 69 stations for 
year 2018 as input to the collocation for computing the ZTD for the three 
untrained locations. Fig. 10 gives an overview about the workflow. 

3.2.2. Results all over Switzerland 
Fig. 12 shows the performance of the combination approach for all 

stations in Switzerland. In this case, we iteratively removed each of the 
stations from the training in ML and then performed the workflow 
shown in Fig. 10 using the rest of the stations. Therefore, we used the 
collocation of the predicted delays to interpolate ZTDs to the untrained 
station, for year 2018. 

From these results we can see that:  

- the results are area and/or station-dependent, i.e. south of 
Switzerland the combination statistics are better compared to North 
of Switzerland. It must be pointed out that this was also the case 
when all stations were trained using the ML approach, as shown in 
Fig. 5.  

- the range of the RMS (as well as its distribution over Switzerland) for 
the combination (Fig. 12) is similar to the range of the RMS (and its 
distribution over Switzerland) for the case where all stations were 
used to train the ML models (Fig. 5). 

The main reason for this distribution of RMS is the fact that in the 
north of Switzerland the GNSS stations are at lower altitudes, thus 
experiencing more the effects of water vapor. Therefore, the GNSS 
estimated ZTDs used for training and testing, are less accurate due to the 
higher water vapor variations. To verify this finding, initially we 
checked the relative error, and the values vary between 0.4 and 0.65%, 
with a general similar distribution as the RMS in Fig. 12, i.e. with larger 
relative errors in the north and smaller ones in the southern part. 
Furthermore, we plotted the standard deviation of the ZWDs (not shown 
here) also provided by swisstopo and we noticed that in the north the 
ZWDs vary more for the year 2018, while in the south there is lower 
variations. We point out that there are some stations which do not obey 
this rule, however most of the stations confirm this result. 

Other possible reasons may be related to the GNSS station equipment 
quality (for instance the GNSS antenna), or GNSS processing. Indeed, we 
found a case of twin stations (few m away) which time series had biases 
larger than expected. We opted not to use those observation in our 

Fig. 10. Workflow of the proposed combination approach.  
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evaluation, since this investigation was out of our scope. 

4. Conclusions and discussion 

In this work, we presented a combination approach where the 
different spatio-temporal characteristics of the error distribution of 
machine learning and collocation are exploited. In this context, machine 
learning is used to predict zenith delays based on meteorological 

parameters, while collocation is used to spatially interpolate the zenith 
total delays predicted by ML. 

The datasets utilized are meteorological and GNSS time series for 
2008–2018 from the SwissMetNet and AGNES/COGEAR/NAGRA net-
works in Switzerland. 

Initially, a review of the ML and collocation methods, as well as their 
performance for our dataset were provided. Afterwards, the combina-
tion workflow and the respective results were displayed. For the 

Fig. 11. Top plots: the actual estimated delay (black) and the respective neural network (blue) and combination (red) predictions for two untrained stations (BZBG 
(left) and HGGL (right), respectively ~5 km and ~15 km away from the closest trained station). Lower plots: the respective residuals of predictions of neural network 
and from the combined approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Root mean square errors for the combination predictions, for all the GNSS network, for the year 2018.  

Table 2 
Statistics for the three investigated stations.  

Unit [mm] ZIMJ BZBG HGGL 
RMS STD BIAS RMS STD BIAS RMS STD BIAS 

SAAS 22.2 19.4 10.8 20.6 20.6 1.5 20.7 20.4 3.1 
ML station included 17.2 17.0 2.5 19.5 19.5 0.6 19.2 19.1 1.8 
ML station excluded 16.9 16.8 2.1 60.3 20.2 56.8 81.3 20.9 −78.6 
Comb. ML&Coll 16.9 16.7 2.7 19.2 19.2 0.5 18.1 18.2 0.01  
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validation of our method, we used the GNSS time series themselves, 
which were removed from the training process and considered as a new 
untrained location. From the results displayed, we can conclude that our 
combined approach reaches similar results as in the case where these 
time series are used to train the ML network. Indeed, this was the case 
for the entire network in Switzerland, where the reported accuracy is in 
the range of 1–2 cm (depending on the station) in terms of RMS. 

Therefore, we can produce tropospheric delays (and thus refractivity 
fields) with very high temporal and spatial resolution simultaneously, 
without processing any GNSS data. These outputs can be beneficial for 
low-cost GNSS receivers (to model their tropospheric effects), as well as 
to cross validate the estimated delays of permanent stations. Further-
more, they can be used in precise navigation to enhance Precise Point 
Positioning (PPP) methods, or to correct the tropospheric effects in other 
remote sensing techniques such as InSAR. Finally, their contribution to 
meteorology, climatology and hydrology (although at this point out of 
the scope of this work) may be considered, especially for locations, 
where the density of meteorological stations is low. 
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