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ABSTRACT:

Deforestation has a significant impact on the environment, accelerating global warming and causing irreversible damage to ecosys-

tems. Large-scale deforestation monitoring techniques still mostly rely on statistical approaches and traditional machine learning

models applied to multi-spectral, optical satellite imagery and meta-data like land cover maps. However, clouds often obstruct

observations of land in optical satellite imagery, especially in the tropics, which limits their effectiveness. Moreover, statistical

approaches and traditional machine learning methods may not capture the wide range of underlying distributions in deforestation

data due to limited model capacity. To overcome these drawbacks, we apply an attention-based neural network architecture that

learns to detect deforestation end-to-end from time series of synthetic aperture radar (SAR) images. Sentinel-1 C-Band SAR data

are mostly independent of the weather conditions and our trained neural network model generalizes across a wide range of deforest-

ation patterns of Amazon forests. We curate a new dataset, called BraDD-S1TS, comprising approximately 25,000 image sequences

for deforested and unchanged land throughout the Brazilian Amazon. We experimentally evaluate our method† on this dataset and

compare it to state-of-the-art approaches. We find it outperforms still-in-use methods by 13.7 percentage points in intersection

over union (IoU). We make BraDD-S1TS‡ publicly available along with this publication to serve as a novel testbed for comparing

different deforestation detection methods in future studies.

1. INTRODUCTION

Deforestation is one of the most significant causes of climate

change (Shukla et al., 1990, Heidari et al., 2021). Human activ-

ities such as farming, mining, and logging in forest regions are

responsible for a majority of deforestation, causing even more

harm than natural disasters. The rate of deforestation is alarm-

ing and a large portion is caused by the enormous demand for

arable land by the food industry, especially in the Brazilian

Amazon (Nepstad et al., 2008). To monitor deforestation, the

Brazilian government implements a few deforestation alert sys-

tems based on remote sensing imagery, including PRODES and

DETER (Assis et al., 2019). The existing systems primarily

rely on optical remote sensing imagery acquired by airborne

or space-borne platforms like Landsat. Their effectiveness is,

however, limited by heavy cloud coverage during the wet sea-

son in the Amazon. An alternative that is largely independent of

cloud coverage is Synthetic Aperture Radar (SAR) data. Espe-

cially for rapid-alert systems that strive for detecting deforest-

ation as early as possible, SAR data acquired by satellite mis-

sions with high-revisit rates like the Sentinel-1 C-Band sensor

(Torres et al., 2012) provide a promising source of evidence.

In this paper, we aim to take an initial step toward developing

a deforestation detection system that can ultimately assist gov-

ernmental organizations and other stakeholders in safeguarding

forested areas. By providing timely alerts before deforestation

reaches an irreversible level, our system can aid in preventing

irreparable damage to the environment.

The major challenge of this task is that SAR data is suscept-

ible to the speckle effect and exhibits effects like shadowing,

layover, and foreshortening (Moreira et al., 2013). It is, thus,

∗ Corresponding author
† https://github.com/kaankaramanofficial/BraDD-S1TS
‡ https://zenodo.org/record/8060250

often easier for human annotators to work with optical satellite

imagery for mapping deforestation as in the case of PRODES

and DETER. While SAR images are available for the entire

Brazilian Amazon (and beyond), existing label masks annot-

ated by experts are usually based on optical images. This does

not only introduce slight geometric differences due to the dif-

ferent imaging principles of optical and SAR sensors but also a

time gap between the manual annotation of the ground truth la-

bel masks and the acquisition of the SAR image. A deforested

region can only be labeled manually in an optical satellite im-

age under cloud-free conditions whereas a C-Band SAR image

can collect evidence immediately through clouds. This mis-

alignment between often late labels from optical imagery and

early SAR image acquisition can cause label noise, which neg-

atively impacts model optimization and detection performance

(Kendall and Gal, 2017). Another challenge is that the time

gap between consecutive Sentinel-1 acquisitions does vary for

different locations. To cope with these challenges, we propose

an attention-based neural network approach for detecting de-

forestation from the time series of Sentinel-1 SAR images. Our

method builds on the U-TAE work of (Garnot and Landrieu,

2021), and adapts it to deforestation detection with SAR im-

agery. The U-TAE model incorporates an attention mechanism

to encode the non-uniformly sampled temporal information and

combines it with a U-Net architecture to extract semantic in-

formation in the images. This allows us to simultaneously learn

deforestation patterns over space and time. Although our ap-

proach does not have the ability to detect deforestation in near-

real time, our study takes a first step in this direction. It explores

how longer time series of more than 50 images per sequence can

benefit deforestation detection.

To the best of our knowledge, no publicly available deforesta-

tion detection dataset exists in the literature that covers a large

area (i.e., the whole Amazon), is multi-temporal, and consists
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of Sentinel-1 SAR data. We thus collect the first multi-temporal

Sentinel-1 SAR dataset based on PRODES alerts (Assis et al.,

2019) for deforestation detection to serve as a testbed for our

method and to compare it to related work. We publicly release

it to serve as a new benchmark dataset to facilitate comparisons

between different methods. Our experimental results demon-

strate that the attention-based U-TAE architecture outperforms

previous methods and sets a new state-of-the-art. Additional

experiments with temporal dropout that reduces temporal in-

formation during the training phase indicate the crucial role of

longer satellite image time series for accurate deforestation de-

tection. In summary, our contributions are the following:

• Building on the attention-based U-TAE neural network ar-

chitecture of (Garnot and Landrieu, 2021), we propose a

deforestation detection approach that relies on Sentinel-1

SAR image time series. Experimental evaluation shows

that our U-TAE approach outperforms existing ones for

detecting deforestation.

• We introduce a new multi-temporal dataset that consists

of Sentinel-1 SAR images and ground truth masks de-

rived from the PRODES project. This dataset called

Brazilian Amazon Deforestation Dataset with Sentinel-1

Time Series (BraDD-S1TS) includes ∼ 25, 000 image se-

quences. Each image sequence consists of ∼ 50 images

acquired over a period of 1 year and the corresponding

binary deforestation masks. Images in the sequence have

size 48×48 pixels, covering 480×480 m2 area. We make

this dataset publicly available such that it can serve as a

new testbed for future research on deforestation detection

using SAR imagery.

The structure of this paper is as follows: We review related

work in Section 2 and define the task and explain our proposed

method in Section 3. Section 4 describes the properties of the

newly collected BraDD-S1TS dataset in detail. Experiments

are presented in Section 5 and we finally draw conclusions in

Section 6.

2. RELATED WORK

A large body of literature exists for change detection in remote

sensing images and more specifically, for deforestation detec-

tion and mapping. While a full review of all existing research

is beyond the scope of this paper, we provide examples of the

most relevant research related to ours below.

Deforestation detection with traditional machine learning

Two of the most prominent and widely used approaches in prac-

tice for deforestation detection at a very large scale using se-

quences of satellite images are GLobal Analysis and Discovery

(GLAD) (Hansen et al., 2016) and RAdar for Detecting De-

forestation (RADD) (Reiche et al., 2021). Both methods use

traditional machine learning techniques and compare changes

in forests over multiple consecutive images. GLAD works

with optical data from Landsat, whereas, RADD is based on

Sentinel-1 SAR images as input, like our approach. Because

RADD is based on SAR images as input, it works independ-

ently of cloud coverage and is thus capable of extracting evid-

ence over denser time series per region of interest. This is a sig-

nificant improvement over the Landsat-based GLAD alerts, es-

pecially in the Amazon forest, which is cloudy very frequently

(Reiche et al., 2021). Both GLAD and RADD alerts are probab-

ilistic models based on Bayesian Rule, as described in (Reiche

et al., 2015). A Gaussian mixture model is computed for each

pixel, and the time information is taken into account by mov-

ing step-by-step along the temporal dimension. In addition to

the core probabilistic model, there are extensive pre- and post-

processing steps and seasonality removal techniques that signi-

ficantly improve performance (see Subsection 5.3). Both alert

systems are commonly used for worldwide deforestation detec-

tion and up-to-date alerts can be found on Global Forest Watch.

Deep learning-based deforestation detection Modern deep

learning approaches for bi-temporal change comparing one re-

mote sensing observation before the deforestation event, and

one afterward, are compared in (De Bem et al., 2020). The

authors train several deep-learning-based models on a data-

set of optical satellite images and achieved better performance

compared to classical approaches. In another, similar study

(Ortega Adarme et al., 2020) several approaches using multi-

spectral Landsat images are compared for deforestation detec-

tion in the Brazilian Amazon. The models in this paper also

use bi-temporal samples as inputs to predict binary deforesta-

tion masks. It draws a similar conclusion as (De Bem et al.,

2020), which deep-learning-based models significantly exceed

the performance of the standard machine learning approaches.

Recently, (Cherif et al., 2022) proposes to use longer image se-

quences and multi-class data. The authors apply multiple com-

mon deep learning approaches such as U-Net and DeepLab on

combined optical and SAR data of the Sentinel-1 and Sentinel-

2 missions. They propose two merging techniques for combin-

ing multi-modal time series and obtain better outcomes for rare

classes in their dataset. These findings highlight the potential

benefits of utilizing longer image time series to leverage the

performance of classification on remote sensing data.

Except (Cherif et al., 2022) (which mostly investigates the

optical-SAR fusion methods), there is only limited research

in deforestation detection using deep learning models that use

more than two images according to surveys such as (Gong et

al., 2016, You et al., 2020, Khelifi and Mignotte, 2020, Shi et

al., 2020, Jiang et al., 2022). The primary reasons are the large

dataset size when using more than two images per scene and

the computational costs associated with managing longer time

series of satellite images. The acquisition of more evidence over

time of the same location, however, does potentially enable the

reduction of noise and ultimately more accurate results. We ex-

plore this idea in this paper and build on modern deep-learning

approaches for satellite image sequence analysis.

According to a survey (Shi et al., 2020), there is still a lack

of openly available large SAR datasets in the literature. Al-

though there are a few numbers of works on forest monitor-

ing, the datasets exploited for training the models vary from

study to study. It is therefore difficult to make a fair compar-

ison between different studies. To address this issue, we create

a new SAR dataset for the deforestation detection task whose

samples are selected from the whole Brazilian Amazon region.

It should be highlighted that this new dataset also fills the gap in

publicly available datasets for multi-temporal change detection

tasks from SAR images in remote sensing.

Satellite time series analysis via deep learning Our research

presented in this paper is inspired by recent advances in crop

classification using multi-temporal remote sensing data. One

of the first studies that proposed modern deep learning for crop

classification from satellite image sequences is (Rußwurm and

Körner, 2017). The authors design an LSTM to learn temporal
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evidence from optical, Sentinel-2 data. The same authors ex-

tend their approach in (Rußwurm and Körner, 2018) and intro-

duce a convolutional-LSTM and as well as GRU directly learn

to filter out redundant, cloudy images from the input data. An

alternative approach (Pelletier et al., 2019) proposes Temporal

Convolutional Neural Networks (Temp-CNNs) to learn tem-

poral information through convolutions from Formosat-2 multi-

spectral optical image series and get better performance than

RNN-based models. Another more recent approach (Turkoglu

et al., 2022), however, with an RNN at its core proposes the

STAckable Recurrent cell (STAR) architecture to reduce the

number of trainable parameters in deep learning-based models

compared to standard LSTM and GRU designs, and improves

the performance. Modern self-attention methods are explored

in the works of (Rußwurm and Körner, 2020, Garnot et al.,

2020). In (Rußwurm and Körner, 2020), various mechanisms

are compared on the same optical dataset for crop type identi-

fication, and the transformer-based method outperforms RNN-

based approaches. Furthermore, (Garnot et al., 2020) merges

the point-set encoder with the transformer and used it for crop

classification. This approach achieves a new state-of-the-art

result over the standard implementation of the transformer.

Recent studies propose solutions such as using Ordinary Differ-

ential Equations (ODEs) with RNNs to address the issue of ir-

regular temporal spacing (Metzger et al., 2021). Another prom-

ising solution to this problem is the U-Net-inspired Temporal

Attention Encoder (U-TAE) proposed by (Garnot and Landrieu,

2021), which employs a multi-head attention mechanism to pro-

cess temporal information and U-Net architecture (Ronneber-

ger et al., 2015) for spatial encoding. By leveraging trans-

formers, the proposed U-TAE model is able to extract rich tem-

poral features, while being computationally more efficient than

RNNs that require sequential processing. Furthermore, its ar-

chitecture inspired by U-Net can efficiently encode spatial in-

formation image-wise, making it possible to achieve state-of-

the-art performance on the public PASTIS dataset while us-

ing fewer computational resources compared to RNN-based ap-

proaches. Overall, the combination of transformers and U-Net

architecture in U-TAE results in both improved performance

and resource efficiency.

In this work, we build on the recently proposed U-TAE ap-

proach of (Garnot and Landrieu, 2021) and evaluate the model’s

performance on a new task of deforestation detection using a

newly collected Sentinel-1 SAR image time series dataset with

a different data distribution than the optical one that U-TAE

was tested previously. Our primary motivation for utilizing U-

TAE is to leverage its temporal and spatial encoding capabilities

while minimizing memory consumption, which is particularly

critical when designing a model for the entire Amazon region

or for the whole globe.

3. METHOD

We frame the problem of deforestation detection as a semantic

segmentation task applied to a time series of SAR images. Our

model takes a sequence of Sentinel-1 SAR satellite images from

a specific area as input and produces a binary spatial mask, with

each output pixel value indicating whether the region is defores-

ted or not. Time intervals between consecutive images are irreg-

ularly sampled because the revisit frequency of the Sentinel-1

satellites varies between 6 to 12 days depending on the location.

More formally, let D = {(xi, ti, yi)}
N
i=1 be a dataset which

contains N samples. Each xi ∈ R
T×C×H×W denotes pixel

values of the SAR image time series and yi ∈ {0, 1}H×W de-

notes the label mask of the sample i. T , C, H , and W are the

number of time steps, channels (VV and VH polarization for

SAR images), height, and width of an image at a time step, re-

spectively. For evaluation on the patch level (image-level), the

patch label mask y ∈ {0, 1} takes on values 1 for a deforested

(changed) region and 0 for undisturbed (unchanged) land cover.

In addition to the images, we utilize the temporal coordinates

of the images to compute the positional encoding of the atten-

tion mechanism. Following (Garnot and Landrieu, 2021), we

express the dates as ti ∈ ZT
>0, which represents the relative day

difference between the acquisition dates of the images in xi.

Note that the acquisition intervals vary due to different revisit

rates of the Sentinel-1 mission, as explained before.

We use the U-TAE architecture as introduced by (Garnot and

Landrieu, 2021) as the model defined by fθ(·, ·). The U-TAE

is based on the U-Net architecture (Ronneberger et al., 2015),

which consists of an encoder and a decoder for spatial pro-

cessing. Each encoder block reduces the feature maps by a

factor of two, and each decoder block doubles them. For our

deforestation detection task, we adopt the U-TAE structure of

(Garnot and Landrieu, 2021), where the network has four de-

coder and encoder blocks. The output feature map is predicted

in the same spatial size as the input image. Multi-head self-

attention blocks are employed to extract temporal information

from the unevenly sampled satellite image series in addition to

the spatial encoding.

Consequently, we obtain the output probability map ŷ ∈
[0, 1]H×W along with the attention masks A ∈ R

T×m×h×w,

where h and w are the height and width of the encoded fea-

ture space. A pixel at (i, j) has a probability ŷ(i,j) of belong-

ing to the deforestation region. In our setup, h = H/24 and

w = W/24, since we have four blocks for the encoder and m
represents the number of heads in the temporal encoder.

We train our model fθ(·, ·) using a loss function L(·, ·). This

loss function takes the ground truth labels y and predicted labels

ŷ as inputs. Instead of a standard cross-entropy loss, we opt

for a focal loss to deal with the imbalanced class distribution,

i.e., our dataset is dominated by unchanged land cover and only

a small portion of all pixels covers deforestation events. The

formula of α-balanced focal loss (Lin et al., 2017) is shown in

Equation 1, where α and γ are hyperparameters.

LFL(y, ŷ) =− y · α · (1− ŷ)γ · log(ŷ)

− (1− y) · (1− α) · ŷγ · log(1− ŷ).
(1)

4. DATASET COLLECTION

As shown in Section 2, multi-temporal deforestation detection

from radar time series lacks a large-scale dataset benchmark.

We introduce BraDD-S1TS to fill this gap. Our dataset contains

25, 988 Sentinel-1 image time series and their associated bin-

ary deforestation mask (see Figure 1). We use Ground Range

Detected (GRD) observations at a 10× 10 meters per pixel res-

olution. Each time series covers a patch of 48 × 48 pixels and

contains 50 observations on average, all with the same descend-

ing orbit. Depending on the availability of Sentinel-1 platforms

the actual number of observations varies between 19 and 63
dates (see Figure 2 for the distribution). BraDD-S1TS covers an
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Figure 1. A random sample in the dataset is used for testing the models during the experiments. The optical data is only for

visualization, it is not provided in BraDD-S1TS.

area of 57.5 km2 in total in the Amazon rainforest, and contains

14, 373 different deforestation events from PRODES (Assis et

al., 2019). The total size of the dataset is 17.7 GB and is freely

available at the link. We further describe how we construct the

dataset in the following paragraphs.

Figure 2. The distribution of the number of time steps in a

sample.

Deforestation Labels We use the PRODES alerts as ground

truth labels1. These alerts are annotated by human experts on

optical satellite observations and range from 2008 to 2021. We

focus on alerts raised between July 17, 2020, and November 12,

2021. Each alert consists of a geo-referenced polygon showing

the extent of the observed deforestation, and the date at which

the deforestation was observed. We show the distribution of the

alert dates in Figure 3. Note that the alert dates cluster during

the dry months of July and August. This is because cloud ob-

struction prevents labeling during the rainy season. As a result,

a deforestation event happening during the rainy season is typ-

ically flagged with a long delay. We refer to this problem as the

temporal uncertainty of the labels. The lack of precise temporal

1 http://terrabrasilis.dpi.inpe.br/en/home-page/

Figure 3. The temporal distribution of the alert dates.

labels motivates us to frame the problem as a time series clas-

sification instead of deforestation date prediction, and we leave

this more challenging setting for further research. Here, since

the annotation campaigns of the PRODES mission are done on a

yearly basis, we consider that an alert implies that deforestation

happened at some point during the year preceding the alert.

Positive samples We randomly select positive patches of two

types: First by randomly selecting a point within a PRODES

polygon, and second by choosing a random point on the bound-

ary of the polygon. These points then serve as centers of the

48× 48 patches. This ensures that our dataset contains patches

of completely deforested pixels, as well as mixed patches with

both changed and non-changed pixels. In total, we select 8, 712
inner and 2, 294 boundary positive samples. This increases the

diversity of the positive samples. In addition, the boundary

patches may be affected by the shadowing effect of SAR which

can be used by a detector. For all selected points, we make sure

that the corresponding patch does not overlap with any other

PRODES polygon to avoid confusing samples. For each posit-

ive patch, we collect the available Sentinel-1 observations start-
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ing from 1 year and 2 weeks before the alert date until 2 weeks

after it, with a 2-week error margin. This ensures that the de-

forestation event happened sometime between the first and last

observation.

Negative samples We select three types of negative samples

to make for a challenging benchmark:

• Non-forest regions: We select 1, 953 patches in locations

corresponding to non-forest vegetation land cover. We use

Copernicus Land Cover Dataset (Buchhorn et al., 2020)

and select patches in the herbaceous, agricultural, and

shrub land cover types.

• Already-deforested regions: Since the aim is to detect a

change from forest to deforestation, we also include in our

negative samples patches of already deforested areas. Spe-

cifically, we select 7, 557 patches within PRODES poly-

gons and collect satellite observations starting at least 6

months after the corresponding alert.

• Unchanged forest: Lastly we include 5, 472 patches from

undisturbed forest areas as identified by (Assis et al.,

2019).

When selecting starting and ending dates for negative samples,

we ensure that they are chosen randomly to maintain a similar

distribution as for the positive samples, and thus avoid a dataset

bias. For each negative sample, the time difference between

the starting and ending date is always the same as that of the

positive samples.

SAR data We use Sentinel-1 data in GRD format with 10-

meter ground sampling distance. We utilize the data without

any additional pre-processing beyond the standard ones applied

by Google Earth Engine (GEE) (Gorelick et al., 2017), which

includes four primary steps: (1) removal of border noise in

GRD data, (2) removal of thermal noise, (3) radiometric cal-

ibration, and (4) terrain correction. The pixel values are down-

loaded in dB scale.

For each time series, we first identify all available SAR images

from Sentinel-1 between the given start and end date. Then,

we determine the most frequent relative orbit number in this

sequence and collect the images only from this relative orbit

Figure 4. Distribution of negative (blue) and positive (red)

BraDD-S1TS samples across the nine Brazilian states.

Figure 5. The positive pixel distribution in positive samples.

number in order to avoid potential problems resulting from dif-

ferent orbits. However, for some regions in our dataset, only

one platform can acquire images, while for others, both plat-

forms can obtain images. Furthermore, due to technical issues,

the time intervals between the acquisition dates of the images

are not even. Figure 2 illustrates the non-uniform distribution

in our dataset.

In terms of spatial dimensions, we opt to use patches in the

dataset that cover 480 meters by 480 meters, with each patch

containing H = W = 48 pixels. Our primary concerns when

choosing these numbers are to ensure that they are small enough

to enable memory-efficient processing and large enough to util-

ize the surrounding pixels’ information. In this context, we con-

sider the channel as the polarization of SAR images, with the

first channel denoting co-polarization (VV), and the second one

representing cross-polarization (VH).

Dataset summary In summary, we collect a dataset on the

Brazilian Amazon region, which covers 9 federal units in

Brazil, as shown in Figure 4. The dataset comprises a total of

25, 988 samples, with 11, 006 positives and 14, 982 negatives,

resulting in a positive sample ratio of 42.35%. The imbalance

ratio at the pixel level, on the other hand, is 15.86%. The dis-

tribution of the ratio of positive pixels in positive samples is

shown in Figure 5. Further information on the dataset can be

found from the metadata in the link.

5. EXPERIMENTS

5.1 Implementation details

We split the BraDD-S1TS dataset into train (15, 625 samples),

validation (5, 251 samples), and test (5, 112 samples) sets,

and keep it fixed across all our experiments. We build our

model based on the official PyTorch implementation of U-

TAE (Garnot and Landrieu, 2021) from https://github.

com/VSainteuf/utae-paps, keeping the initial learning rate

fixed at 10−3 and a weight decay of 10−6. The model is trained

using the AdamW optimizer (Loshchilov and Hutter, 2017), and

we employ a scheduler of ReduceLROnPlateau over the IoU

score on the validation set. We use a batch size of 4. The source

code of our implementation has been made publicly available in

this GitHub repository.
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Following this, we implement the core RADD model based on

the paper (Reiche et al., 2021) from scratch. This approach

enables us to evaluate the results of RADD without pre- and

post-processing explained in (Reiche et al., 2021), which we

compare with other models that do not utilize such operations.

To further evaluate RADD, we also obtain results with pre-

and post-processing for the geo-locations in our dataset

from https://data.globalforestwatch.org/datasets/

gfw::deforestation-alerts-radd/about. These results

are noted as RADD+. To ensure the fairness of our results,

we only take into account the RADD+ alerts for each sample

by considering the start and end dates of the image sequence

in that region. That is, we filter the downloaded alerts by date

in the same range given to the other models. Because the other

model can only process the time sequences between these dates.

5.2 Performance Metrics

We report Intersection of Union (IoU), Precision, and Recall of

the positive (deforestation) class. We compute the metrics at

pixel and patch level (image-wise). Indeed, the spatial impre-

cision of the PRODES polygons (mentioned in Section 1) can

negatively impact the reported pixel-based performance met-

rics. We consider a patch to be positive when it contains at

least one deforested pixel, and negative otherwise. Similarly, a

predicted patch is positive if at least one pixel is predicted as

positive. This way, the patch-based metric reflects how well the

method detects a deforestation event, regardless of the precision

of the pixel-level delineation of its extent.

5.3 Experimental results

Comparison to non-deep-learning baselines First, we

benchmark the performance of U-TAE against existing ap-

proaches. Here, we train the default U-TAE configuration with

different numbers of attention heads and with cross-entropy

loss. To the best of our knowledge, the state-of-the-art for

multi-temporal deforestation classification from radar data is

based on the statistical approach of RADD alert. We also test

the models of Conv-GRU, Conv-LSTM, and 3D-UNet (Rus-

towicz et al., 2019) from the crop-type mapping literature on

our dataset.

Method IoU (%) ↑ P (%) ↑ R (%) ↑

P
at

ch

RADD 27.9 39.6 48.5
RADD+ 57.0 72.4 76.1
Conv-GRU 61.2 65.0 91.3
Conv-LSTM 63.7 71.6 85.3
3D-UNet 68.1 80.5 81.5
U-TAE (1 head) 67.2 76.1 85.1
U-TAE (2 head) 70.7 82.4 83.2
U-TAE (8 head) 67.7 73.1 90.2
U-TAE (16 head) 69.5 76.1 88.9

P
ix

el

RADD 1.7 6.1 2.3
RADD+ 19.7 75.1 21.1
Conv-GRU 41.8 66.5 53.0
Conv-LSTM 44.6 68.4 56.2
3D-UNet 45.8 69.3 57.4
U-TAE (1 head) 43.8 67.0 55.8
U-TAE (2 head) 44.0 75.4 51.4
U-TAE (8 head) 47.3 70.9 58.6
U-TAE (16 head) 46.1 72.9 55.6

Table 1. Test scores of the methods. P and R stand for precision

and recall, respectively.

We compare the performance of all these deep learning meth-

ods to this baseline in Table 1. The top nine rows show patch-

level scores, while the bottom rows show pixel-level scores.

RADD refers to the method applied to raw images without pre-

processing, while RADD+ refers to the final results from the

RADD deforestation alert system with pre- and post-processing

steps mentioned in (Reiche et al., 2021). Results in the table

show that the U-TAE, even with only a single head, achieves a

pixel IoU of 43.8, roughly twice that of the RADD+ baseline

and 10 times that of the RADD alert. Our findings demon-

strate that deep learning modeling can greatly benefit defor-

estation classification from radar series. Despite the signific-

ant improvement over existing statistical-based approaches, the

level of performance remains moderate for a binary classifica-

tion problem. This highlights the fact that deforestation mon-

itoring from the SAR time series is a challenging problem that

should be further explored in future research.

At the patch level, U-TAE with a single head achieves a better

IoU score of 67.2, significantly higher than the two non-deep-

learning baselines. These results indicate that the model can be

used to flag deforested regions on a coarse grid of 480 × 480
meters. Table 1 also displays results of the U-TAE with varying

numbers of attention heads. For the sake of simplicity, we use

only the U-TAE model with eight heads and pixel-level IoU

scores in our further investigations.

Importance of the temporal dimension In this paper, we ar-

gue that leveraging the full-time series of SAR observations is

crucial for better deforestation detection, as opposed to mono-

temporal or bi-temporal change detection approaches. To in-

vestigate this hypothesis experimentally, we re-train the U-TAE

model with varying numbers of input image patches over time.

We start with training on only one image patch, i.e., the last

available date in the time series. Second, we check for the bi-

temporal case and train on only two image patches, i.e., the first

and the last available observations. We then gradually increase

the number of image patches per time series until all available

observations are used. We report the pixel-level test IoU of

these different models in Figure 6. This experiment shows that

correctly predicting deforestation from a single SAR observa-

tion is extremely challenging (IoU= 3.3%). Bi-temporal de-

forestation detection reaches a significantly better performance

of 36.0% IoU. The performance is then still increased signific-

antly with longer time series, and seems to saturate around 10
dates.

Figure 6. The graph of pixel-level scores versus different

settings for temporal dropout. Note that the maximum length of

time-series in BraDD-S1TS is 65.

Dealing with data imbalance Our dataset contains a slight

imbalance of 15.86% (at pixel level), which might negatively

impact the optimization. Here, we explore how focal loss helps
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Before Optical After Optical Before SAR (VH) After SAR (VH) Target RADD+ U-TAE

Figure 7. Sample image patches of BraDD-S1TS. The first and second columns taken from the optical data (Sentinel-2) are for

visualization only, they are not included in the dataset.

Alpha

Gamma 0.25 0.5 0.75

1.0 35.9 47.2 48.6
2.0 35.0 47.0 48.2

Table 2. Test IoU scores of the models at pixel level with

different hyper-parameters of focal loss.

alleviate this issue. We show in Table 2 the test perform-

ance of the U-TAE at pixel-level trained with different hyper-

parameters α and γ. We observe that α = 0.75 and γ = 1 lead

to an increase of 1.3% IoU.

5.4 Qualitative Results

We complement our quantitative analysis with qualitative res-

ults shown in Figure 7. This figure shows the prediction masks

obtained for four randomly chosen test patches. Our results

demonstrate that pixel-level accuracy is adequate for deforesta-

tion monitoring in real-life systems.

6. CONCLUSION

In this study, we have introduced BraDD-S1TS, a novel, pub-

licly available dataset of multi-temporal SAR observations for

deforestation detection in the Amazon rainforest. We evalu-

ated existing state-of-the-art methods and proposed to use re-

cent advances in attention-based deep learning models on this

task. Our experiments showed that such deep learning methods

significantly improve overall performance. We have also shown

that leveraging the full time series of available observations dur-

ing one year almost doubles the performance compared to bi-

temporal change detection. We hope our encouraging results,

as well as the open access dataset, will foster further research

into this problem, as the achieved performance leaves room for

improvement. Finally, we argue that designing methods that

are able to predict the exact date of the deforestation event is a

challenging and exciting venue for further research.
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