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ManuKnowVis: How to Support Different User

Groups in Contextualizing and Leveraging

Knowledge Repositories
Joscha Eirich , Dominik Jäckle , Michael Sedlmair , Christoph Wehner , Ute Schmid , Jürgen Bernard ,

and Tobias Schreck

Abstract—We present ManuKnowVis, the result of a design
study, in which we contextualize data from multiple knowledge
repositories of a manufacturing process for battery modules used
in electric vehicles. In data-driven analyses of manufacturing data,
we observed a discrepancy between two stakeholder groups in-
volved in serial manufacturing processes: Knowledge providers
(e.g., engineers) have domain knowledge about the manufacturing
process but have difficulties in implementing data-driven analyses.
Knowledge consumers (e.g., data scientists) have no first-hand
domain knowledge but are highly skilled in performing data-driven
analyses. ManuKnowVis bridges the gap between providers and
consumers and enables the creation and completion of manufac-
turing knowledge. We contribute a multi-stakeholder design study,
where we developed ManuKnowVis in three main iterations with
consumers and providers from an automotive company. The itera-
tive development led us to a multiple linked view tool, in which, on
the one hand, providers can describe and connect individual entities
(e.g., stations or produced parts) of the manufacturing process
based on their domain knowledge. On the other hand, consumers
can leverage this enhanced data to better understand complex
domain problems, thus, performing data analyses more efficiently.
As such, our approach directly impacts the success of data-driven
analyses from manufacturing data. To demonstrate the usefulness
of our approach, we carried out a case study with seven domain
experts, which demonstrates how providers can externalize their
knowledge and consumers can implement data-driven analyses
more efficiently.

Index Terms—Design study, H.5.2 [Information interfaces and
presentation]: User interfaces–graphical user interfaces (GUI),
user-centered design, visual analytics in manufacturing.
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I. INTRODUCTION

V
ISUALIZATION has an intrinsic motivation and long-

standing tradition of applied and problem-driven re-

search [30]. The typical goal of such projects is to enable domain

experts to understand and analyze their own domain data through

carefully designed visualization interfaces [44]. In other words,

data expertise is brought to domain experts through interactive

visualization. While this scenario still resonates well with many

classic scientific setups, with the advent of data science now

also collaborative setups are becoming more common, in which

data scientists and domain experts collaborate toward a joint

solution. Instead of enabling domain experts directly, the main

challenge in such setups lies in bridging the knowledge gap

between differently-skilled stakeholder groups. We argue that

visualization plays a key role in bridging the gap between

stakeholders with different levels of knowledge and we report

on an example of such a multi-stakeholder design study from

the automotive industry.

This industry currently faces fundamental changes due to the

digitization of its production processes [25], where data-driven

analyses are already firmly integrated into industrial manufac-

turing processes [24]. Recent success stories show how such

analysis efforts result in substantial manufacturing improve-

ments. Examples are the visual exploration of assembling line

performance to detect inefficiencies [54], the analysis of acous-

tic signatures of electrical engines to improve manufacturing

quality [12], or the identification of patterns in machine repair

logs to decrease maintenance costs [20]. However, data-driven

analyses exist that cannot be executed by only one stakeholder

group alone. As a results, there exists a knowledge gap between

those that provide knowledge, and those that consume it (See

Fig. 1 top left). We will study exactly this discrepant relationship

within a real-world scenario of the automotive industry.

Knowledge providers, such as engineers, have domain knowl-

edge about specific parts of the manufacturing process. For

instance, they know exactly what data is recorded at manufac-

turing stations. However, providers do not have the necessary

skills to perform sophisticated data-driven analyses, such as

the training of machine learning models. Such analyses are

usually performed by highly skilled data experts, such as data

scientists. However, this group does not have first-hand domain

knowledge about the manufacturing process. For example, we

interviewed seven data experts, who reported that for previous

1077-2626 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Relevant stakeholders, data sources, and high-level ontology for ManuKnowVis. Technologists and planners provide and implementers and assessors
consume knowledge. We use six different data sources as input data for ManuKnowVis. A manufacturing process can be described with the entities ”Station”,
”Step”, ”Part”, and ”Variable”. Each entity can be represented with existing data and enhanced by providers. Consumers can inspect this high-quality process
knowledge to improve analysis outcomes.

data-driven analyses they required knowledge about a robotic

arm location inside a manufacturing station that might con-

tain an error or about the interconnection of battery cells for

different derivatives of battery modules. Therefore, they rely

on consuming knowledge, which is why we refer to them as

consumers.

Instead of enabling providers directly via visualization inter-

faces, the main challenge in manufacturing setups is to bridge

the knowledge gap between these two groups and foster fruitful,

effective, and seamless collaborations. While such setups have

been rarely reported in visualization studies so far, we argue

that these setups will become increasingly common and thus

also important for the visualization community. The goal of

our work is to report an example of such a multi-stakeholder

design study in collaboration with the BMW Group to illustrate

the value that visualization can add to such scenarios. In this

regard, we report the challenges consumers face when access-

ing manufacturing knowledge and how providers can leverage

visualization interfaces to externalize their knowledge.

At the beginning of each data analysis project, consumers

strongly rely on gathering relevant information, such as where

relevant data is located. In theory, providers can support con-

sumers with exactly this knowledge. However, we observed

that providers and consumers have different mental models and

thus required a long time to find a common language as the

foundation for a discussion. Consumers can also study existing

documentation about the manufacturing process, such as process

flow diagrams. However, these documents are often complex

while consumers also manually have to join many data sources to

get a holistic overview of the manufacturing process. Thus, even

though rich valuable repositories of knowledge exist, consumers

find it hard to access and comprehend these repositories. As a re-

sponse, we propose ManuKnowVis (Manufacturing Knowledge

Visualization), a visualization system [18] that resulted from a

design study [44] project in collaboration with providers and

consumers at the BMW Group.

We base our study on existing documentation from different

data sources, which give a holistic depiction of an assem-

bly line for battery modules from one of the BMW Groups’s

manufacturing facilities. Furthermore, we base our study on

an existing ontology that served us as a baseline to model

existing data sources with ManuKnowVis. Providers can use

ManuKnowVis to enrich existing manufacturing entities with

their knowledge by describing and connecting entities. Manu-

KnowVis provides them with visual interfaces to externalize

their knowledge [35], [52], such as grouping stations via anno-

tation functionalities directly on shop floor layout images. Con-

sumers can use ManuKnowVis to get a detailed understanding of

distinct data-driven analyses they are addressing. Consumers can

inspect annotations to answer questions such as how are different

stations connected or what property of a product do specific

variables measure? Therefore, ManuKnowVis bridges the gap

between providers and consumers by supporting providers in

externalizing their knowledge in a systematic and structured way

and by providing consumers with efficient access to knowledge,

which was previously inaccessible.

In summary, we contribute 1) the problem abstraction about

accessing knowledge for a manufacturing process; 2) the design

of ManuKnowVis, which supports providers in externalizing

their knowledge and consumers in accessing knowledge; and 3)

the evaluation of ManuKnowVis with a case study and reflec-

tions of our design process.

II. RELATED WORK

First, we summarize related work about knowledge manage-

ment systems in the context of industry 4.0 (Section II-A) and

design studies in the automotive sector (Section II-B).

A. Knowledge Management Systems in the Context of

Industry 4.0

Industry 4.0 refers to the creation of networks of intercon-

nected machines and processes in manufacturing enterprises

with the help of information and communication technolo-

gies [55]. This infrastructure provides an unprecedented oppor-

tunity to connect different data-generating instances from man-

ufacturing processes. The goal is to achieve the effective digital

integration of the entire manufacturing enterprise [53]. Recorded
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data can be used for several purposes, such as predictive mainte-

nance [6], [9] or energy efficiency management [36], [45], [51],

to name a few. Thus, instead of machines that simply perform

routines, within industry 4.0, machines are capable of commu-

nicating with each other and collaborating autonomously [17].

One important resource to cope with such complex and

fully digitized manufacturing systems is expert knowledge. This

knowledge, however, is provided by various stakeholder groups

inside organizations, for example about the machine and product

properties or data-driven analyses [13]. Hence, the efficient

management of these distributed knowledge repositories is a

key resource for the successful digitization of manufacturing

processes [15], [59].

In this regard, Knowledge Management is a productive series

of iterative and systematic exploitation and exploration activi-

ties, which aim to make information actionable and reusable [1],

[16], [32]. Here, knowledge can be divided into two types:

explicit knowledge that can be externalized easily, for example,

in words or numbers; and tacit knowledge that is inherent to

the individual [15], [18], [35], [52]. The latter is often not

recognized by the individual as knowledge but rather expressed

through action, commitment, and involvement, which renders it

notoriously difficult to externalize [18].

Despite the efforts to reflect Knowledge Management contri-

butions to organizational learning, in the era of Industry 4.0 it

has not been widely studied so far [1], [2], [58].

For example, in a recent literature review Fakhar et al. [17],

pointed out that constantly-connected manufacturing environ-

ments comprising machines that monitor processes continuously

and produce reports also increase the potential for knowledge

creation exponentially. As a result, substantially more unstruc-

tured data and information are recorded and congest organiza-

tional information systems. In our research, we aim to contribute

to the body of knowledge management in the context of industry

4.0. To do so, we contextualize explicit and tacit knowledge of

various stakeholder communities within an industry 4.0 setting.

By contextualizing, we mean setting the knowledge in context

with other data sources.

B. Design Studies in Automotive Industry

Visualization to date has contributed substantially to help to

analyze complex data in manufacturing settings, as the recent

survey by Zhou et al. [57] shows. A key domain is the automo-

tive sector. There, design studies and resulting VA applications

mainly support product design, condition monitoring of stations,

the optimization of testing procedures, or the visual support

of high cognition tasks. Efforts were carried out to visualize

in-car communication networks [41], [42], [43], to facilitate the

exploration of multi-criteria alternatives for rotor designs [7], to

detect and analyze anomalies in test stations [14], [50], the visual

exploration of assembling data to detect inefficiencies [54], and

to support mechanical engineers in the analysis of acoustic

signatures of electrical engines [12].

Some of the mentioned studies explicitly acknowledge the

need for externalizing tacit expert knowledge [14]. For example,

the Cardiogram system [43] stores externalized expert knowl-

edge in the form of state machine diagrams, while IRVINE [12]

stores expert knowledge in the form of labels for electric engines

and annotations in the raw sensor data. All mentioned studies

succeeded in creating insights for engineering experts based on

machine sensor data. The problem we face, however, is how

consumers with a much lower level of engineering knowledge

can leverage expert knowledge. Grounded on previous findings,

we built a system that processes, combines, and contextualizes

different explicit knowledge repositories, which are enriched

with tacit knowledge from multiple providers. The resulting

combined knowledge is available for consumers through visual

interfaces, which supports them in better performing data-driven

analysis.

III. METHODS

During this study, we primarily followed Sedlmair et al.’s

nine-stage framework for design studies [44]. In addition, we

used the Nested Model for visualization design and validation

by Munzner [34], which guides a more detailed problem charac-

terization, the data operation and abstraction, the visual encoding

and interaction design, and the algorithm design.

To understand the domain problem, we performed online

interviews with seven consumers and seven providers. We asked

consumers about how they perform data-driven analyses, what

kind of challenges they face, or which information they need

during such projects. Regarding the providers, questions were

about what information is generally important when analyzing

manufacturing data or what general documentation tasks they

perform in their daily business are. The interviews helped us

in understanding and abstracting the domain and the domain

problem of missing knowledge during data-driven analyses.

To describe production processes and involved stakeholders,

we relied on an existing ontology from the BMW Group. The

ontology provided us with a formal baseline to represent man-

ufacturing data with ManuKnowVis. A detailed description of

the ontology and how knowledge sources are embedded into it

is provided in Section V-A.

Our system development went through three main iterations

over five months, during which we interviewed providers and

consumers, tested design alternatives, and held discussions with

visualization experts. Each iteration was carried out in close

collaboration with two providers and two consumers. They

accompanied the system development with knowledge about

the data characterization (Section IV-C), and resulting tasks

(Section V-C). They also gave a constant stream of feedback on

the visual design of our system. The exchange with each expert

took place in up to two meetings per week ranging from 30-90

minutes. During these meetings, characterization and design as-

pects were discussed and open issues were clarified. We evaluate

ManuKnowVis with a case study. Methodological details for this

downstream evaluation are provided in Section VIII.

IV. PROBLEM AND DATA CHARACTERIZATION

We report the characterization of the problem domain about

transferring knowledge between providers and consumers.
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Fig. 2. Electrical energy storage system consisting of four main parts cover
(A), module contacting system (B), battery modules (C), and cooling system
(D). In our design study, Battery Modules (C - red outline) are the targets of our
analysis.

First, we introduce the manufacturing processes we analyzed

(Section IV-A), Next, we describe the problem our collaborators

face (Section IV-B) and the data we included (Section IV-C).

A. Background on Analyzed Manufacturing Process and

Stakeholders

In our design study, we will analyze data from the manufac-

turing of electrical energy storage systems as part of a car battery

(see red outline Fig. 2).

Each individual subcomponent is produced during hundreds

of manufacturing steps. An example of such a step is the

stacking of individual lithium-ion cells together into packs of

40 cells to form a battery module. These manufacturing steps

are performed at various physical manufacturing stations. An

example of a station is multiple collaborating robotic arms,

which paint lithium-ion cells to shield and protect them against

external influences. To increase manufacturing output, stations

run in parallel and execute the same manufacturing steps. For

example, multiple robotic arms are all involved in the step cell

painting. Thus, a station represents a physical entity, while a

step represents the process performed by the station. At each

station dedicated sensors record variables. For example, at the

same painting station, sensors record the temperature inside the

station, the thickness of paint layers, and the voltages of each

battery cell after painting.

In terms of the relevant stakeholder groups involved in the

manufacturing of battery modules, we interviewed seven con-

sumers in charge of coordinating data-driven analyses, perform-

ing data analyses, or building data infrastructures. In addition,

we interviewed seven providers responsible for the planning

of manufacturing processes or specific stations in an assembly

line.

Characterization of Consumers: After interviewing the con-

sumers, we learned that they could be divided into two overar-

ching groups implementers and assessors, which are outlined on

the top left in Fig. 1. All had a background in computer science

and can be described as follows:

Implementers are required to perform data-driven analyses.

They are highly skilled at data-related tasks, such as data visual-

ization (e.g., the development of dashboards for manufacturing

data), data engineering (e.g., setting up data infrastructures

to store machine sensor data), or sophisticated data analyses

(e.g., training machine learning models to predict manufacturing

output quality). They are interested in specific information about

the manufacturing process, for example, the functionality of a

single station or where to find variables for a step.

Assessors evaluate and prioritize data-driven analysis projects

and assign implementers to them. For them, it is important to

have a high-level overview of the manufacturing process, for

example, to ensure that data from all manufacturing stations are

recorded properly.

Characterization of Providers: In our design study, we sur-

veyed that the most relevant providers are planners and tech-

nologists (See Fig. 1). All planners and technologists have a

background in mechanical or electrical engineering and can be

described as follows:

Planners have general knowledge about the manufacturing

process as a whole integrated system. They know where stations

and steps are located, how they are connected, and how parts are

flowing through assembly lines.

Technologists have detailed knowledge about individual steps

in the manufacturing process. They know what individual sta-

tions do, what variables they measure, and what kind of parts

are produced.

B. Domain Problem

The challenge of accessing manufacturing knowledge is

present across the manufacturing sector [7], [12], [33], [42].

Like many companies, the BMW Group is also investing large

resources in the digitization of its processes. In this regard,

consumers and providers face the following challenges when

investigating existing data sources or interacting with each

other:

Investigate Existing Data Sources: The interviewed con-

sumers and providers reported that existing documentation is

often perceived as complex for other stakeholders with no back-

ground in the same domain. As one implementer noted “I had a

case where several sensor recordings, such as temperatures or

voltages were related to the same variable. Only after consulting

a colleague, I found out that this was because the values were

actually points on a time series curve of a variable.”

Another challenge from existing data sources is that con-

sumers often do not know where to find relevant information.

Furthermore, information is fragmented across multiple tools,

which are not integrated. Hence, there is not only a single

location to find all relevant information. In this regard one

assessor mentioned that “sometimes documentation can be scat-

tered across different databases. Hence, we sometimes have

difficulties finding out if we have all relevant information at our

disposal.”

a) Access different documentation tools: Providers re-

ported that they need to use non-unified documentation solu-

tions, such as local files, to document their knowledge. This

makes it even harder for consumers to access existing documen-

tation, while providers find it tedious to document their knowl-

edge. Here, one technologist reported that “[we] do not have

a system, which can easily join data from multiple databases.
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Having such a system at hand would ease documentation efforts

for the manufacturing process”.

Request Support of Providers: Consumers and providers re-

ported that due to their background, they also have different

mental models. Here, one technologist explained that “espe-

cially when data-driven analyses start, we do not have a common

language. I remember that we had a kick-off meeting, where all

participants needed more than 40 minutes until it was clear what

we were talking about”. Furthermore, providers are often hard

to reach, where one assessor noted “we had a project where

timelines between us and engineers were challenging to align

risking a delay”.

Due to these challenges, it is relevant for consumers to access

knowledge about the manufacturing process more effectively. In

turn, providers need a way to easily support their documentation

efforts.

C. Data Sources

Providers and consumers reported that they consider the

following heterogeneous data as important to give a holistic

overview of the manufacturing process.

Production Control Documents: In these documents, planners

describe manufacturing steps (e.g., welding or gluing) and the

sequence of how stations perform these steps. This information

is relevant to know what is done at stations and how they are

related to each other.

Sensor Data Metadata: When conceptualizing an assembly

line, technologists specify what variables are recorded at sta-

tions. This includes information about variables (e.g., what unit

the variable has or at which step a variable is recorded). That

information is relevant to know what kind of variable is recorded

and how it can be interpreted.

Computer-aided designs (CAD): When designing new prod-

ucts, technologists produce various CADs, which are images

showing the products. This information is relevant to under-

standing how the parts - being the core object of many analyses

- look like. In this study, we got access to 2D projections of CAD

files.

Shop floor layouts: Each manufacturing plant contains various

shop floors, where parts are produced and assembled. Here,

planners arrange stations in shop floor layouts. This information

is relevant to review at which stations parts are assembled into

new parts and how stations are related. Basically, this data can

be represented as a graph structure with nodes containing X and

Y coordinates that are connected by edges

Part lists: When designing new products, technologists do not

only provide CADs for individual parts, such as battery cells but

also information on how parts are arranged to form another part

(e.g., a battery module contains battery cells and heat-conducting

plates). This information is relevant to understanding how parts

are related to each other with this clearly defined hierarchical

structure.

Sensor data: Technologists specify what kind of data must be

recorded inside each station, to monitor either the station itself

or the parts it produces (e.g., multiple temperature or voltage

recordings). So basically, this data can be seen as multivariate

numerical time series data

Fig. 3. Knowledge maturity levels of ontology entities. Entities either need a
description or must be related to other entities.

V. ABSTRACTIONS

Based on the domain problem and the used data sources,

we provide further abstractions. First, we relate users and

data to an existing ontology (Section V-A). Next, we develop

Knowledge Maturity Levels as the main goal of ManuKnowVis

(Section V-B). Last, we abstract tasks, which aim to support

providers in externalizing their knowledge and consumers in

accessing this knowledge (Section V-C).

A. Data Characterization

The high-level ontology, depicted in Fig. 1, outlines how we

abstracted from existing data sources and how users interact

with such data sources. The ontology comprises four entities

(station, step, part, variable) and describes an assembly line

of a manufacturing process. Steps, such as gluing or welding,

occur in stations and output parts. To represent the sequence of

steps, stations, and parts, these entities can have a successor. For

example, station 2 can follow station 1. Variables are measured

at steps and stations and help to evaluate parts.

The existing data sources (see Section IV-C) already provide

a description of entities and their relation in the ontology. For

example, part lists indicate how parts are assembled into new

parts. Since the existing data may be incomplete, providers

can enhance each entity in light of their own knowledge. For

example, a planner can use ManuKnowVis as a visual editor to

arrange stations on a shop floor layout or technologists can assign

a unit to a variable. While providers enhance each entity of the

ontology, consumers can inspect each entity and the relations

between entities to better understand aspects of the manufac-

turing process. For example, an implementer can analyze what

variables belong to a step or an assessor can check in which step

a part is produced.

B. Knowledge Maturity Levels

The goal of ManuKnowVis is to enhance knowledge about

entities of the ontology (See Fig. 1). We refer to this as knowledge

maturity levels. To compute maturity levels for each entity, we

were guided by the available data sources (See Section IV-C).

For example, the shop floor images include the location of

stations but no information about part flows. As such, we can use

shop floor images to describe stations but not parts. As a result,

we derived the necessary information for each entity in Fig. 3,
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Fig. 4. The ManuKnowVis system. On the user’s desktop screen two views are shown side by side, where users can freely switch between each view using the
navigation panel on top. ManuKnowVis is divided into four views aligned to all entities from Fig. 1. Parts are displayed as an icicle plot in (A). Steps are shown
with a Sugiyama layout in (B). Stations are displayed in (C) and arranged following the physical layout of an assembly line, which is shown as a background
image. Selected variables for a part, step, or station are displayed in (D). Metadata variable attributes are shown in (D1) and their distribution in (D2). Depending
on their type, variables are displayed as histograms, multiple boxplots, or donut charts. Knowledge maturity levels are shown as donut charts (e.g., A1, B1) in the
views (A), (B), (C), and (D). Details for entities are displayed in (E).

which is necessary to achieve a sufficient knowledge maturity

level.

Entities can either be provided with a relation or a description.

In terms of entity descriptions, a station needs a location on the

shop floor. Parts, variables, and steps all need a description,

while variables further require a unit. Furthermore, entities need

a relation to other entities. For example, a variable can be

measured for a part, a station can have a successor, or a step

can be executed by multiple parallel running stations.

As a result, we can compute the knowledge maturity for

each entity by checking what information is necessary to fully

enhance it. In Fig. 3, for instance, a variable needs a description

and a relation to one part. If a provider adds a description and a

unit, the knowledge maturity level is 66%.

C. Task Abstraction

We present the abstracted tasks that serve as primary design

targets for ManuKnowVis. Providers (P-T) and Consumers (C-

T) interact differently with ManuKnowVis, which is why we

differentiate between their tasks below:

P-T1 Describe Entity: Providers need to describe each entity

in the ontology. They can describe entities in multiple ways,

such as text inputs or annotations.

P-T2 Connect Entity: To define the relationships among en-

tities, providers also need to connect different entities. Entities

can be connected by assigning different kinds of entities to each

other, such as a step to a product, or by connecting entities with

the same type, such as a station to a successor station.

C-T1 Overview of Entities and Relations: Consumers need

to locate relevant entities in the manufacturing process, for

example, where a step of interest is executed. Furthermore,

consumers need to evaluate how entities are related, such as

which stations belong to a part.

C-T2 Drill-Down and Expand: Consumers exploring large

numbers of entities need support for the drill-down to entities of

interest. The information needed may differ between the location

of stations or the distribution of measured variables. After an

entity of interest is identified it needs to be evaluated in the

context of other entities, for example, what other stations also

measure variables of the same unit. Thus, consumers also require

support to expand back to an overview.

C-T3 Hypothesize: Consumers need to constantly be able to

confirm or reject hypotheses. Such hypotheses can regard single

entities, for instance, what unit does a variable of interest have,

or multiple distinct entities, such as how is the data quality of

all variables for a product.

VI. THE MANUKNOWVIS SYSTEM

We present the design and implementation of ManuKnowVis.

All views are shown in Fig. 4. We use the notation A-E to refer

to the views and sub-components (e.g., A1, B1) later on. (A)

shows available “Parts”, B “Steps”, C “Stations”, D “Variables”,

and E details for the views A,B,C. Apart from E, each view

represents an entity from Fig. 1. Two views are always displayed

side by side. Users can switch between the three views using the

top panel in Fig. 4. All views include zooming and panning

functionalities to ease navigation.

The goal of an analysis is either to enhance knowledge-

maturity levels or increase knowledge about entities. We display

knowledge-maturity levels as donut charts in all views (e.g.,

A1, B1), where the green area indicates the completeness of an

entity. Hovering over the donuts displays a tooltip indicating to

which degree an entity is completed and which information is

missing. As outlined in Section V-B, we compute the knowledge

maturity degree by inspecting how much information for each

entity is provided according to Fig. 3. As soon as providers
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Fig. 5. Details dialog for parts. (1) shows available CADs for a part and (2)
its variables. Providers can connect both entities by executing the steps (1) →
(2) → (3).

have enhanced an entity, its knowledge maturity representation

updates in each view. Filters for maturity levels are available on

the top right of A, B, and C.

The views (A,B,C) represent an entry point into an analysis,

while (D,E) show details from previous selections [46]. Each

view for an entity of Fig. 1 can either be used for an individual

analysis or combined in a workflow switching between multiple

views. For example, by starting analyzing a part (A) and then

reviewing all stations (C) for the part followed by an analysis of

variables (D) from a station of a part. Hence, we first will provide

a description of each individual view A-E (Sections VI-A,

VI-B, VI-C, VI-D, VI-E) before outlining interaction workflows

between the views (Section VI-F). Each Section closes with an

exemplary workflow of how users can interact with the view

based on observations we made during the system development.

For the views, we used the showcase data set from an assembly

line for battery modules containing the described data sources

from Section IV-C. Due to non-disclosure agreements with the

BMW Group, we anonymized all data.

A. Parts

Parts are represented by an icicle plot in (A). A legend in (A1)

shows, which parts contain a CAD object. Selecting such parts

gives users the opportunity to open up a new dialog (A2), which

is shown in Fig. 5. In this dialog, consumers can inspect available

CADs (see Fig. 5(A)) and recorded variables (see Fig. 5(B)) for

this part. Parts can have multiple CADs, which are shown as

in a carousel view. Variables can either be single measurements

or recorded as a “sequence” of dependent measurements. An

example of a single measurement is the recording of a single

temperature value. In turn, an example of a sequence is resistance

values recorded at each battery cell of a module containing 40

cells.

Furthermore, providers can relate variables to locations on

the part in the CAD dialog. This is important since some vari-

ables only measure specific part properties, which can only be

accessed at certain part locations. For example, the resistance of

a cell can only be measured at its welds on the minus and plus

pols.

To provide this relation, providers have to follow a three-step

process. First, they need to select a variable from the table (see

Fig. 5(1)). Next, a rectangle appears directly on the CAD (see

Fig. 5(2)), which can be freely moved on the CAD via dragging.

Finally, providers need to resize the rectangle by dragging its

borders (see Fig. 5(3)). Of course, steps 2 and 3 can be executed

multiple times and change in their order. When the rectangle is

positioned and saved, it is directly available for later changes

or analyses. We quote this linking from variables to parts as

annotations, since one is “annotating” the CAD by drawing a

rectangle on it. Annotations are valuable to consumers since they

enable them to relate variables not only to a part but also to a

specific region of interest on the part.

An exemplary workflow, we observed during the usage of the

parts view was the following. Providers were asked to enhance

parts for battery modules. Thus, they first observed the hierarchy

of the icicle plot. Next, they selected a specific sub-component

deeper in the hierarchy from the icicle plot, for example, a cell

contacting system as a sub-component of a battery module.

To select an appropriate CAD for annotations, they evaluated

how individual CADs looked like using the carousel feature.

Furthermore, they evaluated what variables were recorded, for

example, resistances and voltages. Finally, they selected resis-

tance variables and added annotations by following the steps

(1-3) from Fig. 5.

B. Steps

Steps are shown as a sequence that can be executed by

multiple stations in parallel (B). We display this sequence with

a Sugiyama layout [11]. We draw the sequence of steps on the

horizontal axis from left (start of the assembly line) to right (end

of the assembly line). On the vertical axis, we draw the stations

so that different stations can be shown in parallel. Stroke colors

indicate the step type (pink: testing step, blue: assembly step,

yellow: reworking step).

An exemplary workflow, we observed during the usage of the

steps view was the following. Consumers wanted to evaluate

what steps existed and how they are related. Thus, they interacted

with the steps view via zooming and panning. They also used the

slider for knowledge maturity levels (upper right of (B)) to filter

for steps with high knowledge levels. Finally, they looked for

specific steps, such as electrical testing steps for battery cells,

and analyzed the respective step descriptions in the details view,

which we demonstrate in detail in Section VI-D.

C. Stations

Stations are displayed as rectangles on top of the real shop

floor image as a node-link diagram (C). To do so, we first extract

the x and y coordinates, as well as the width and height of

each station rectangle from the shop floor image using computer

vision. To extract the coordinates, as well as the height and with,

we apply the library OpenCV [8]. Next, we extract the name of

each station from written strings on the image with the neural

network tesseract [47]. As a result, we position station rectangles
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according to their original position on the shop floor where we

use the same color coding as in (A, B). Stations that are available

on the shop floor but not in other data sources are displayed as

missing stations with gray rectangles. The position of stations

can be changed at any time by dragging a station rectangle.

Width and height can be adapted by dragging its borders.

As a next step, providers need to connect stations to their

successor or predecessor stations. This is done by first clicking

on a rectangle and then dragging a line to another station rect-

angle. This results in a straight line between the two stations.

However, in the real assembly line, station links are not always

straight lines. Hence, we allow to freely adapt each line by setting

individual breakpoints on lines to draw lines “around corners”.

An exemplary workflow, we observed during the usage of

the station view was the following. Providers were asked to first

evaluate if the positions of the stations from our computer vision

based preprocessing were correct. Stations, which were posi-

tioned in wrong locations on the shop floor were repositioned by

providers via dragging and resizing the station rectangles. Next,

providers connected stations to their successors or predecessors

by drawing lines as explained above between stations.

D. Details for Parts, Steps, and Stations

In addition to the individual part, steps, and station views,

we provide another view to enhance and inspect these entities.

By selecting an entity from (A, B, C), its details are displayed

in (E). (E1) shows entity descriptions as text area and (E2)

additional entity attributes as a drop-down. For example, in the

case of steps, these attributes are step types (testing, assembly,

or reworking step) and parts that are outputted by the step.

Both can be changed at any time. An exemplary workflow, we

observed during the usage of the details view was the following.

Consumers were browsing through the part, step, and station

views and evaluated details considering certain entities they

selected. For example, one consumer wanted to know what the

step “plasma activation” from (B) means and reviewed in the

details view the following description. “The plasma activation

is a necessary step to prepare battery cells for painting. In this

step, the battery surface is treated with plasma so that it is cleaned

and paint molecules stick better to it.”

E. Variables

Variables for parts, steps, and stations can be displayed by

selecting either one from these entities and then clicking on the

button “show sensor values” on the top left in (D). This displays

all variables in a table view in (D1) and the distributions of senor

recordings in (D2). Besides the name of a variable, the table view

also includes metadata attributes, such as the unit, the meaning

of the unit, and a description of the variable. These attributes

can be changed at any time.

We show distributions on a grid and differentiate between

the following three variable types: Categorical variables, (e.g.,

status ok versus status not ok) are displayed as donut charts.

Numerical variables (e.g., one temperature recording for mul-

tiple parts) are displayed as a histogram. Sequence variables

(e.g., multiple numerical recordings for multiple parts) are dis-

played as a sequence of boxplots. Regarding histograms, we

use 20 bins according to the empirical studies and guidelines

of Shanann et al. [39]. To inspect the same variable for parallel

running stations, users can add additional station recordings by

clicking on a button “show neighbor stations” on top of (D).

This replaces the button with a legend of available stations

with the colors green, orange, and blue. Furthermore, it displays

additional recordings on top of each grid cell in (D2) for each

station. In our design study, we never encountered situations

where more than three stations recorded the same variable. To

overcome visually overlapping variable recordings for parallel

stations, users can filter for single stations by selecting individual

stations in (D3).

An exemplary workflow, we observed during the usage of the

details view was the following. Consumers wanted to know if

the available variables for lithium-ion cells were suitable for a

model. As a result, they clicked on the part “lithium-ion” cells

in the part view, and next the button “show sensor recordings”

in (D). Furthermore, they wanted to know how the variable was

distributed at different stations and clicked the button “show

neighbor stations”.

F. Linking of Views

All entities from Fig. 1 are linked. Hence, we also want to

provide this linkage in our visualization design and provide

a close linking of all views from ManuKnowVis. By doing

so, we aim to implement a drill-down and expand workflow,

where consumers select an entity from one view, drill down to

an entity of another view and then again expand to a different

view to analyze how this entity is related to other entities. The

same linking also supports providers in identifying where to

find entities that must be further enhanced. Hence, our linking

mechanisms are included both for the enhancement and the

inspection of entities, which we outline in detail in the following:

Enhancing Entities. The change of an entity also affects

the entities to which it is connected. For example, connecting

stations in (C) also changes the step view in (B) by adding

more steps to the Sugiyama layout. Another Example is the

annotating of CADs, which we mentioned in Section VI-A.

Here, the information of the annotation is also saved for the

variable and thus available during the inspection of variables.

Inspecting Entities. Inspecting one entity with ManuKnowVis

also highlights all related entities in other views. We achieve this

by including hovering mechanisms. Hovering over an entity in

each of the views, highlights related entities in the other two

views. An example is provided in Fig. 6. Here, a battery cell

is selected in 1) and according steps are highlighted in 2) and

stations in 3) (red outline in Fig. 6). Regarding variables, we

display existing CAD annotations as a tooltip. By hovering over

histograms or columns of boxplot sequences in (D2), the accord-

ing CAD and the provided annotation are shown as demonstrated

in Fig. 7. In (A) the first column of the distribution is selected

and the according annotation is shown on the first battery cell

of the CAD of a 40-cell battery module. In (B) the 20th column
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Fig. 6. Linking of one entity (part) to related entities (steps and stations). Hovering over a part in (1) highlights its steps (2) and stations (3).

Fig. 7. Tooltip to show the relation of a variable to a part. Hovering over the
1st column in (A) displays the annotation on the 1st battery cell for the battery
module CAD. Hovering over the 20th column in (B) displays the 20th battery
cell for the CAD.

is selected and the according annotation is shown for the 20th

battery cell in the CAD.

One typical workflow we observed during the usage of our

linking mechanisms was the following. Consumers wanted to

know more about variables recorded for the part battery cell.

Hence, they hovered over this part and reviewed all existing

stations. Next, they also inspected the highlighted steps and

clicked on individual steps to inspect their descriptions. Finally,

they selected one step and inspected the variables that were

recorded during this step.

VII. DESIGN ITERATIONS

ManuKnowVis was designed and developed during three

main iterations. In the following Section, we will describe each

iteration in detail:

Iteration 1: Many applications of ontology-based systems

are visualized with a force-directed layout [10]. Furthermore,

Landesberger et al. [27] found out that a force-directed layout is a

visualization approach that is usually well adopted by users, who

are not that well educated in sophisticated visualization sciences.

Since, we also rely on an ontology and dealt with users with little

experience in sophisticated visualization science, at the time of

the first iteration, we also experimented with a force-layout [37],

[48], which is shown in Fig. 8(1). In this approach, we focused on

visualizing steps as a sequence, where green and purple strokes

indicated the step types (assembly and testing step). In the same

graph, we also represented stations with a blue stroke (1a) and

the assembly line with a red stroke (1b). Selecting a step from

the graph unfolded its stations (See red outline in Fig. 8(1)).

However, consumers and planners reported that displaying all

entities in a graph was confusing since they all have to be

interpreted differently. Furthermore, users reported that edge

crossings made the results incomprehensible. Regarding our

color coding, one of our collaborators reported having color

deficiencies and was not able to distinguish between different

entities.

Iteration 2: In the second iteration, we first adapted our color

scales to account for color deficiencies [31]. Next, we aimed

to show the sequence of steps and stations in a more organized

manner avoiding edge crossings. Instead of fo-

cusing on steps, we intended to display a se-

quence of nodes containing high-level informa-

tion about parts, steps, and stations of an assembly line (C-T1).

On the top of each node, we showed the step name, then stations,

and below that the number of sub-processes (S) and variables

(V). Parts (P) were displayed as gray rectangles on the right side

of a node. As outlined in Fig. 8(2), we displayed nodes as a

sequence with line breaks.

However, consumers and providers reported that displaying

steps as a sequence in one line was not correct, since this

did not reflect the real situation of a manufacturing process.

Furthermore, consumers and providers reported that they found

it difficult to identify the relationship between different nodes

and wished to separate parts, steps, and stations, which is why

we decided to provide different views for each entity.
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Fig. 8. Evolution of step and station sequences. In the first attempt in (1), we used a force layout, which we changed to a directed sequence of nodes containing
steps and stations in (2). In (3), we display parts, steps, and stations in individual views.

Iteration 3. In the last iteration, we separated parts, steps, and

stations for an assembly line in separated views as shown in

Fig. 8(3). All three entities contain a hierarchical data structure.

Therefore, we experimented with several hierarchical visualiza-

tion designs to represent parts, steps, and stations. Regarding

parts, we tried out hierarchical node-link diagrams or table

views. However, we found that icicle plots turned out to be the

most adequate and space-conserving choice to represent this

specific entity [27]. This design choice was also most liked by

our study collaborators. Since, a part is composed of several

sub-parts, for example, a battery module containing lithium-ion

cells, isolation films, and glue, we consider this representation

appropriate. Regarding the steps view, we also experimented

with node-link diagrams or table views. Nevertheless, we found

that a Sugiyama representation is more appropriate since it is

specifically designed to display hierarchical relations and avoids

edge crossings. In terms of the station representation, a node-link

representation directly on top of the shopfloor layout turned out

to be most appropriate, since it represents the reality of the real

manufacturing process for battery modules.

VIII. EVALUATION

We provide examples of how our approach supports providers

and consumers with a case study. Case studies are a method

to dive deep into a specific domain to provide insights into

a phenomenon within its environment [19], [44], especially

when the practical context and the phenomenon are not clearly

evident [56]. Considering the problem and the users, we are in-

terested in how ManuKnowVis helps providers in externalizing

their knowledge and how consumers can leverage this previously

inaccessible knowledge to better perform data-driven analyses.

Since these processes are difficult to observe outside of orga-

nizational context, we consider a case study as an appropriate

approach [26].

Participants: We performed the case study for an assembly

line for battery modules in collaboration with seven participants

(two female, five male). The demographics of our study partic-

ipants are shown in Table I. For the providers, we recruited one

planner, with general knowledge about the entire assembly line,

and two technologists responsible for specific manufacturing

TABLE I
DEMOGRAPHICS OF OUR STUDY PARTICIPANTS

stations in the same assembly line. For the consumers, we re-

cruited three implementers involved in data-driven analyses from

the assembly line and one assessor, who evaluated data-driven

analyses about the assembly line. The study participants were

between 28 and 40 years of age. Two consumers worked at

other companies before starting at the BMW Group. Regard-

ing the seniority of working directly at the BMW Group, our

study participants worked at the BMW Group for between three

and eight years. However, compared to their seniority in other

fields, almost all participants were relatively new in the field of

the manufacturing of electrical vehicles. Hence, especially the

consumers were in many cases in more need of manufacturing

knowledge.

Data: For the case study, we uploaded data from all six

described data sources of Section IV-C. In this regard, a battery

module consisted of over 15 parts (e.g., heat-conducting sheet,

battery cell). For eight parts, CAD drawings were available.

Parts were produced at over 50 steps, manufactured at over

100 stations, and contained over 1,000 variables. Furthermore,

we uploaded sensor measurements from 753 randomly selected

battery modules.

Procedure: First, we performed kick-off meetings with all

study participants to introduce all features of ManuKnowVis.

Sessions were held online and took from 60 - 90 minutes. After

that participants used ManuKnowVis for two weeks. The case

study was separated into two phases. In the first phase, we asked

providers to document entities in the form of describing and

connecting entities. After that, in the second phase, Consumers

were encouraged to analyze entities and evaluate whether they

were able to use available information for data-driven analyses.

The data-driven analyses were about identifying whether cell
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Fig. 9. Connecting stations for cell contacting systems. (1) shows the part,
step, and station view for a cell contacting system as the selected part (red
outlined on the top right). Hovering over the part in (1) reveals that in the station
view connections are missing. In (2), a provider connected all missing stations
for the part cell contacting systems (red outline in part view). (A) shows the step
view that adapted automatically after connecting more stations in (B).

contacting systems were correctly attached to battery modules

and the evaluation of cell thicknesses for their compression

into modules. After the study, we interviewed providers and

consumers to evaluate how ManuKnowVis supported them with

their tasks. To quantitatively assess the usability of the system,

we also applied the system usability scale (SUS) [28]. Due to

our small sample size, the SUS scale does not provide empirical

evidence of the usability of our visualization but rather a rough

direction to support the assumptions of our design choices.

A. Results for Providers

To demonstrate how providers used ManuKnowVis to exter-

nalize knowledge, we first provide a real example we observed

during our evaluation in Fig. 9. In (1), the provider started

hovering over parts in the part view and reviewed, which steps

and stations were highlighted in the respective views. He noticed,

that when hovering over the part “cell-contacting system” (top

red outline in (1)) some stations were missing for this part.

Hence, he first connected the missing stations in (2). This

resulted in an automatically adapting step view in (2B). Next, he

selected the newly appeared steps and saw in the drop-down of

the details view (See (E2) of Fig. 4 that no part was assigned to

them. Hence, he assigned the part “cell-contacting system” to the

steps. After hovering over the same part in (2), more steps (2 A)

and stations (2B) are highlighted in their respective views. This

information was then stored in ManuKnowVis and available for

further usage by other provider and consumers.

Furthermore, providers described how ManuKnowVis sup-

ported them in their documentation efforts. Especially the fea-

ture of connecting variables to parts was noted as helpful where

one provider noted that “I cannot remember how often we

executed the exact same annotation task, where I drew rectangles

of CAD images and saved them on my local file storage”.

Furthermore, providers reported that documenting knowledge

with ManuKnowVis would impact data-driven analyses posi-

tively where one provider made the following example: “I am

currently involved in an ongoing data analysis project with two

technologists and another data scientist. In this project, we have

to do the same analysis for a large data set every three months.

However, every time we have to do this analysis, we somewhat

have to start from the beginning because we have to figure

out which exact part we have to analyze, which variables are

recorded, and how the variables are related to the part. Using

ManuKnowVis would have saved us a lot of time in the past

because we could have documented exactly this information”.

Finally, providers were satisfied with the accuracy of how we

managed to automatically position stations on the shop floor

image using computer vision since only 2% of all stations had

the wrong position.

That said, all interviewed providers reported that they found

that ManuKnowVis represents an excellent addition to the tools

we are using to document important information about the

manufacturing process. In this regard, one provider explained

that “at the moment we have to document everything in text and

tables. ManuKnowVis, however, provides a much more efficient

way for our documentation, since much information is already

automatically generated. We just have to fill out the missing

parts. This makes it one the one side easier for us and also less

error-prone.”

Providers also recommend some system improvements,

which we will include in further iterations of ManuKnowVis.

First, they requested to include more data sources for entities to

improve their own analyses. For example, process flow diagrams

show how parts circulate in an assembly line. Here, providers

suggested tracking individual parts along with their stations in

the manufacturing process. Another suggestion was to visualize

multiple floors of an assembly line. For instance, sometimes

parts are transferred to elevators and then continue on the ceiling

of the shop floor. Even though our analyzed assembly line did

not include elevators it is necessary to visualize such processes

for additional assembly lines.

B. Results for Consumers

To demonstrate how consumers used ManuKnowVis, we first

provide an real example, we observed during our evaluation

in Fig. 10. The consumer had an analysis scenario where she

needed to understand data from the case of a battery module.

Hence, she selected this part from the part view (red outline

upper left in 10) and evaluated which steps and stations were

related to the part (A and B). During the usage, she noted that

“this is fantastic since normally I would need to look through

masses of tables and join them myself. Here, I have this informa-

tion immediately, which drastically reduces the amount of time I

need to understand the data I am looking at. Next, she browsed

through the steps view and selected the step “case welding” in

B1 since that step contained the most available variables. After
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Fig. 10. Example of analyzing data from multiple linked views. For the selected battery module in (A), the steps are highlighted in (B), and stations in (C). The
variables for a selection from (B1) are displayed in the variable view. Here, (D) shows variables, which only record one value and can be excluded from an analysis.

that, she switched the station with the variables panel and plotted

all variables. During that analysis, she noticed three variables,

which she could exclude from her analysis because they only

recorded the same value (see the red outline on the right in

Fig. 10). Furthermore, she reported that the descriptions in the

variable table helped her significantly in better understanding

the variables for that step. After working with ManuKnowVis,

the consumer reported that she was able to dive into her analysis

much faster since she did not have to look up all information

in distinct databases and ask providers for additional help in

finding and understanding the data.

Furthermore, consumers reported that ManuKnowVis helped

them in better comprehending data-driven analyses. For in-

stance, ManuKnowVis supported them in understanding what

data is currently available for the assembly line, where one

consumer noted that “seeing which variables for stations are

available helps us in identifying which data we can use for an

analysis of manufacturing data”. Furthermore, ManuKnowVis

provided them with a good overall understanding of the assem-

bly line. In this case, a consumer explained that “since the station

view is very similar to what planners are using it feels a little

bit like we see the world through a planner’s eye. This helps

us in understanding how they work and what they need from

us during data-driven analyses.” Also, metadata attributes of

variables, such as units were noted as helpful to understand the

meaning of variables.

In addition to that success story, we outlined three other

situations in Fig. 11, where consumers showed us how Manu-

KnowVis helped them in better understanding variables for data-

driven analyses. Fig. 11(1) shows how coloring different stations

impacts the analysis of two variables. Before ManuKnowVis,

consumers did not make a differentiation between stations.

However, in some cases, this differentiation is necessary, since

due to distinct calibrations of stations, stations sometimes mea-

sure variables slightly differently. Furthermore, ManuKnowVis

supported consumers in identifying variables, which contain

outliers (see Fig. 11(2)). Here one consumers mentioned that

“some variables contained some outliers, which I will have a

closer look at.” ManuKnowVis also provides information about

which variables might be excluded from further analyses. For

example, Fig. 11(3) illustrates one variable which always records

Fig. 11. Three different scenarios of how ManuKnowVis supported consumers
in analyzing variables. (1) shows two variables that must be analyzed separately,
since their stations perform slightly different measurements. (2) illustrates
variables that contain outliers and (3) variables that record the same value are
less adequate for deeper analyses.

the same value. Such variables might be of less importance for

data-driven analyses.

When asking consumers how the knowledge-maturity degrees

helped them during their analyses, they all reported that they

especially used them for filtering for entities where information

was already present. Furthermore, they felt more confident

working with entities with high maturity degrees. Here, one

consumer reported that “I feel more confident if I know that

all the information I potentially need is already there and that I

do not have to approach other experts to get this information

in person. One reason for that could be that consumers we

interviewed were relatively new in the field of electric mobility.

In this regard, one consumer reported that “especially when you

are new to a specific field, such system help tremendously to

better understand the context you are working in.”

As system improvements, consumers suggested including a

new view to visualize knowledge maturity levels of entities as

ordered list to immediately see, which entities need enhance-

ments. Furthermore, they wished to include more assembly lines

to evaluate how parts, steps, and stations are related in a broader

context.

C. Results From the System Usability Scale

Considering the quantitative results of the usability survey, our

system provides very good usability according to the adjective

equivalent of the achieved SUS score [3]. The individual scores
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TABLE II
RESULTS FROM THE SYSTEM USABILITY SCALE WITH THREE PROVIDERS AND

THREE CONSUMERS

for providers and consumers are outlined in Table II. Manu-

KnowVis scores highest on the integration of individual views

(Q5) and lowest on using the system frequently (Q1). This shows

that our study participants relied on the strong focus of linked

views for individual entities. A possible explanation for the

results for Q1 is that once providers only need to use the system a

few times to document all necessary entities of a manufacturing

process. Once, consumers have gathered enough knowledge they

do not need to use ManuKnowVis that frequently anymore.

However, we are not able to draw a final conclusion on this

observation, because of the low number of participants involved.

IX. DISCUSSION

In this design study, we contribute to the problem charac-

terization and abstraction of the externalization and contex-

tualization of knowledge about a manufacturing process for

battery modules. We further report the interactive design of

the presented visualization system ManuKnowVis, which we

evaluated together with seven consumers and providers. Our

design study represents a very detailed view of the problem

domain. From a more abstract point of view, we integrated a

visualization system into the workflows of providers to support

their documentation efforts and of consumers to help them in

understanding complex manufacturing data to better perform

data-driven analyses. To the best of our knowledge, the problem

we described in Section IV-B about the relation between con-

sumers and providers is unique inside the BMW Group and has

not been addressed by other researchers so far. We thus argue that

a design study with a detailed analysis of the problem domain

and resulting abstractions was necessary to successfully support

related stakeholder groups with their very specific tasks.

The overall usability usefulness of our approach is demon-

strated by our high usability score and the fact that both providers

and consumers reported that they were able to reach their goals

outlined in Section V-B better with ManuKnowVis. Before

ManuKnowVis, providers had to externalize their knowledge

mostly manually in local documents or in personal discussions

with consumers. In turn, consumers had no system at hand, that

contextualizes knowledge from different databases across the

BMW Group. With ManuKnowVis, providers now have for the

first time a system at hand that drastically reduced documen-

tation efforts for them and provides them with an interface to

easily externalize their knowledge. This on the other hand is

highly important for consumers, who now can get fast access

to information they normally would only get in a very tedious

manner by manually browsing through database tables, docu-

ments, and engaging with providers in private discussion. Our

evaluation, however, is constrained by the fairly small sample

size of participants. However, it is rather unusual to build solu-

tions for specific domain problems, where more than a couple

of experts are actually able to evaluate the proposed approaches

as demonstrated by other case study evaluations [4], [5], [21],

[29], [49]. Nevertheless, we believe that our system is a step

toward bridging the gap between providers and consumers and

allows consumers to access previously inaccessible knowledge

to better perform data-driven analyses.

Although the design was specific to knowledge about one

assembly line at the BMW Group, some aspects can provide

guidance to the design in other manufacturing-related domains.

Some of that guidance results in the following lessons learned

(L) to contextualize knowledge for complex domains and design

similar systems:

L1) Use Ontologies to Abstract From Data: The ontology

guided us in connecting different existing data sources. For

example, how stations are related to steps. All data sources are

currently available at different databases at the BMW Group

but before ManuKnowVis, consumers had to analyze docu-

ments in each database individually. Ontologies also support

the definitions of knowledge maturity levels. In our case, we

were able to derive the exact information necessary to com-

plete the documentation of entities and their relations, such

as stations that need a sub-line. We therefore were able to

directly address knowledge maturity levels with the specific

provider tasks, describe and connect entities. The resulting

guided workflows supported providers in easily enhancing all

used data sources. We believe that our ontology can be used

by many other practitioners in the manufacturing domain. Our

ontology provides a simple yet generalizable overview of many

existing automated manufacturing processes that record data.

For example, a manufacturing process for washing machines

also contains ”stations”, ”steps”, ”parts”, and ”variables” that

are related exactly as we pointed out in our paper. Considering

that the same data as in our research is present, one can even use

the same visualizations as we described in our research.

L2) Consider the Relation Between Providers and Con-

sumers: In this work, we outlined the discrepancy between

providers and consumers and gave insights on their interac-

tions. We believe that the concepts of knowledge providers and

consumers in data driven projects can be abstracted to various

domains. For example, in the medical sector, physicians could

take on the role of a provider by labeling medical images, while

machine learning engineers could take on the role of a consumer

to build a classifier that improves diagnosis capabilities. Even

though we only analyzed a case from the manufacturing industry,

our proposed concept of providers and consumers also supports

researchers and practitioners from other domains to analyze the

relationship between these separate user groups.

L3) Use Linked Views for Individual Entities of an Ontology:

In our first attempt, we tried to build a system showing all entities

of our proposed ontology and their relations in a single force-

directed layout. However, our study participants reported that

this did not reflect the real process of an assembly line. Hence, we
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propose to represent entities with simple individual views, such

as tree layouts or process diagrams. This finding can be leveraged

by researchers and practitioners in other domains. Instead of

creating a visualization system that shows an entire ontology,

visualization researchers might consider how each entity can be

represented in a single view and how these views can be linked

with each other. In Section VI, we provided several examples of

what such linking can look like (E.g., Fig. 6).

L4) Consider Annotations to Externalize Knowledge: We

present guided workflows with our visualization on how to

externalize and store knowledge. Besides simple features, such

as text inputs for variable descriptions, we included more ab-

stract functionalities in the form of annotations. Here, drawing

sub-lines allowed to cluster stations, while drawing rectangles

on CADs allowed providers to connect variables to specific

part regions. This form of externalizing knowledge is currently

completely new at the BMW Group. It does not only help

providers in easily performing their documentation tasks but

also consumers involved in current analyses of manufacturing

data or even outside the application domain [15]. Annotations of

variables, for instance, can be queried by external stakeholders,

such as suppliers in charge of developing specific manufacturing

stations to evaluate how variables are related to specific regions

of a part.

We believe that these four recommendations can help other

researchers and practitioners when investigating similar manu-

facturing domains. For example, Sun et al. [49] developed the

system PlanningVis, which also visualizes part dependencies

to support the exploration and comparison of manufacturing

processes. To consider the relation of parts to other entities,

they could connect them via ontologies to distinct data sources

that provide details about stations or variables (L1). Another

application area might be building management [22]. Here,

Ivson et al. [23] developed the system CasCADe to support

engineers in analyzing the construction processes of oil and gas

plants. Here, they can also rely on ontologies (L1) to connect

different building entities via linked views (L2). Furthermore,

they could leverage expert knowledge from engineering experts

(L3) in the form of annotations (L4) for distinct building objects

and their relation to the final oil and gas products.

Even though these four insights might seem rather abstract

and generic, we demonstrate how they would apply to domains

outside the manufacturing sector, for example in supply chain

management. Here a toy example can be the field of shipping

logistics. By using ontologies (L1), all providers (L2) for dif-

ferent containers on a ship (cars, sugar, etc.) could rely on the

same semantic layer to structure their data, which facilitates the

analysis of provided data later on. For example, all containers

could include the variables, timestamp, product, weight, quan-

tity, supplier, and supplier location. Next, by using linked views

(L3), the cargo company in the role of a consumer (L2) could

evaluate the route of a ship and which container was loaded

on a ship, and where it is unloaded using the Sugiyama view

or the node-link diagram. The same cargo company could also

have the role of a provider (L2) by using the station view and

connecting different entities (L4). For example, the station view

could be changed to a world map and each station to a harbor

on the map. The cargo company could then connect different

harbors to annotate the routes of a ship on this map. Finally,

the receiving company in the role of a consumer (L2) could use

the whole visualization system to analyze, where the containers

that contain the products for further storage will arrive at what

destination.

In terms of scalability, we believe that ManuKnowVis already

is appropriate for larger application scenarios. First, all views

contain zooming and panning functionalities. This coupled with

the strong linking of the views already helps users to immedi-

ately find locations of interest in the other views. For example,

one could zoom out in the step and station view and hover over

part of interest. As demonstrated in our paper, this immediately

shows the locations of related steps and stations. Nevertheless,

the individual views could benefit from some more adoptions to

scale for even larger data sets.

In terms of the part view, the icicle plot already represents

a space-conserving layout. Including more parts and a deeper

hierarchy of parts could be addressed by including additional

zoom events where clicking on a node unfolds nodes deeper

in the hierarchy. Regarding the step view, one could introduce

additional filters that allow the selection of specific parts of

interest. For example, users could have an additional horizontal

brush filter to ease the navigation in this view as demonstrated by

Schwab et al. [40]. Regarding the station view, again additional

filters could show distinct node-link station graphs for individual

assembly lines. This, however, requires enhancing the ontology

with the new entity assembly line. Another way to provide

scalability of the station view can be to collapse all stations to

one assembly line in a single rectangle. Clicking on an assembly

line rectangle would then uncollapse all stations belonging to the

assembly line. A similar graph-based approach is demonstrated

by Reitz et al. [38]. In terms of the variable view, again additional

filters and ordering mechanisms would ease the analysis of larger

amounts of selected variables. For example, one could filter for

sequence variables only or variables with specific units, such as

only voltages.

The design also had some limitations, which we briefly sum-

marize here. In our visualization, we use data from only one

assembly line. This is because the current ontology is designed

for single assembly lines. A solution for this can be the adaption

of the ontology via introducing successor assembly lines, as is

already the case for parts, steps, and stations. To be consistent

with our recommendations of providing views for separate en-

tities, this results in the need to introduce an additional view to

also navigate between assembly lines. Furthermore, we do not

consider the fact that assembly lines can have different floors

to transport parts. A solution for that could be to either include

different filters in the station view to show different floors or to

represent the assembly line in a three-dimensional space.

X. CONCLUSION AND FUTURE WORK

This article presents a design study on the development of a

visualization approach to contextualize and leverage the knowl-

edge of a manufacturing process for battery modules. The result-

ing system ManuKnowVis addresses two different user groups
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with distinct levels of manufacturing knowledge. Providers can

use ManuKnowVis to externalize their knowledge via describing

and connecting different entities, such as parts, steps, stations,

or variables. They can do so with different techniques, such as

providing text inputs or annotating entities. Consumers can use

ManuKnowVis to access previously inaccessible knowledge to

better understand data-driven analyses of manufacturing data.

ManuKnowVis comprises four different views that are based on

an existing ontology, which we show in Fig. 1. Here, users can se-

lect parts from an icicle plot, steps from the Sugiyama layout, or

stations from the station view, to inspect individual variables of

each of the three entities. The variable view shows variable meta-

data attributes and their distributions. ManuKnowVis evolved

iteratively in close cooperation with providers and consumers

from the BMW Group. The success of our design is shown

in a case study, where we outline different success scenarios

and how it helped in externalizing and comprehending complex

manufacturing knowledge.

There are several avenues for our research. One is to inves-

tigate the flow of parts through an assembly line to identify

bottlenecks or to trace back errors and the resulting challenges

for future visualizations. A second challenge is to evaluate how

additional manufacturing entities, such as plants, can be added to

the visualization interfaces of ManuKnowVis. Finally, the gen-

eralizability of our visualization concept should be investigated

in other application domains.
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