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With their highly social nature and complex vocal communication system,

marmosets are important models for comparative studies of vocal communi-

cation and, eventually, language evolution. However, our knowledge about

marmoset vocalizations predominantly originates from playback studies or

vocal interactions between dyads, and there is a need to move towards study-

ing group-level communication dynamics. Efficient source identification from

marmoset vocalizations is essential for this challenge, and machine learning

algorithms (MLAs) can aid it. Here we built a pipeline capable of plentiful

feature extraction, meaningful feature selection, and supervised classification

of vocalizations of up to 18 marmosets. We optimized the classifier by build-

ing a hierarchical MLA that first learned to determine the sex of the source,

narrowed down the possible source individuals based on their sex and then

determined the source identity. We were able to correctly identify the

source individual with high precisions (87.21%–94.42%, depending on call

type, and up to 97.79% after the removal of twins from the dataset). We

also examine the robustness of identification across varying sample sizes.

Our pipeline is a promising tool not only for source identification from

marmoset vocalizations but also for analysing vocalizations of other species.

1. Introduction
Comparative studies of primate communication are crucial for understanding

the evolutionary origins of human speech [1–4]. Much progress has been

achieved over the last decades, mainly by recording and simultaneously anno-

tating the vocalizer or physically separating social partners to track individual

contributions to conversations. The vocal communication of callitrichid mon-

keys appears particularly rich among non-human primates, with several

features thought to be precursors of language. For instance, common marmo-

sets (Callithrix jacchus) have been shown to possess superior control and

flexibility in their calls, one of the requirements for speech. Among others,

they can actively interrupt ongoing calls [5,6], make long-term changes to call

frequency in response to noise [5], converge in vocal space to a social partner

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution

License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original

author and source are credited.
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[7] and engage in antiphonal call conversations similar to

antiphonal speech in humans [8]. As immatures, they go

through a babbling phase [9], and contingent vocal feedback

from caregivers contributes to fully developing their reper-

toire [10,11], not described in any other primate and

reminiscent of vocal learning—an essential building block

for language. Marmosets may be particularly relevant

because, like humans, they are cooperative breeders, which

may have played a major role in language evolution [12].

However, our knowledge of how marmosets and other pri-

mates communicate under more naturalistic situations and

beyond dyadic contexts is rather limited (but see [13]).

Given the highly social nature of marmosets, the next frontier

in studying marmoset vocal communication is to do so under

more naturalistic conditions—in social groups, where they

fully display their communication skills.

A major bottleneck for studying group-level communi-

cation in naturalistic settings without separating animals is

to accurately determine the vocalizer (source identity).

There are at least two approaches to doing this. On the one

hand, microphone arrays can localize sounds in three-dimen-

sional space. This information can then be integrated with

visual monitoring or signal-based individual localization to

match the vocalization to its source individual. This is

mostly feasible in captive conditions. On the other hand, a

more broadly applicable alternative is to use individual

signatures in the vocalizations to classify calls.

Previous attempts to determine source identity from

animal vocalizations have used a broad range of unsuper-

vised (e.g. k-means [14], Gaussian mixture models [14],

Bayesian functional mixed models [15], hidden Markov

models [16]) and supervised machine learning (ML) classi-

fiers (e.g. discriminant function analyses [17], support

vector machines [18], random forests [19], artificial neural

networks [20]) mostly with mixed results (16.26–91.5% accu-

racy, but see [21,22] for instances of greater than 95%

accuracy). To improve classifier performance, the focus has

largely been on hyperparameter optimization [23], feature

selection [24] and data quality enhancement techniques

[25]. However, for instances of supervised classification, train-

ing datasets available to researchers often contain not only

individual identities but additional information such as the

sex, age class or social status of the individual. Such

additional information could aid in improving classifier per-

formance when implemented in hierarchical machine

learning algorithms (MLAs). Furthermore, increasing the

number of features extracted before feature selection would

give the classifier a more detailed representation of the voca-

lizations and a larger feature space. The current study aims to

demonstrate this for source identification from marmoset

vocalizations by addressing the two issues with (i) plentiful

feature extraction to achieve detailed representations of the

calls and (ii) hierarchical MLAs that take sex into account

as the first hierarchical layer.

First, the traditional approach to representing animal

vocalizations involves spectral feature extraction. Specific

spectral features are chosen because we understand how

sound modifications affect these feature values, making

them easy to interpret. Software like Raven (The Cornell

Lab of Ornithology, Ithaca, NY, USA), Avisoft SASLab Pro

(Avisoft Bioacoustics, Germany) and Kaleidoscope (Wildlife

Acoustics Inc., USA) offer easy solutions to extracting these

features and have been widely used along with custom

scripts for feature extraction from animal vocalizations. A

drawback of this approach is that not all animal vocalizations

show maximum variability along these ‘pre-selected’ feature

values. The small feature space and reduced class separability

of calls due to limited features prevent ML approaches from

achieving their maximum potential for obtaining high classi-

fication accuracies. One workaround is to initially extract a

vast number of acoustic features and let the MLAs decide

which ones would be most helpful for their classification

task. For this, recent advances in time series analyses allow

for multiple operations to be performed that provide mean-

ingful information about the nature of the time series [26].

This can be exploited by viewing the acoustic waveform as

a time series of pressure points and performing time-series

analyses on acoustic data. In contrast to spectrogram-based

feature extraction software, time series analyses can extract

up to 7700 features from a single vocalization [27]. In this

paper, we implement time-series analysis for plentiful feature

extraction and use tree-based classifiers to extract the most

meaningful features. This enables us to provide detailed rep-

resentations of the marmoset calls as input for the classifier.

Second, we hypothesize that using a hierarchical ML clas-

sifier will improve classification accuracies by breaking up the

classification problem into a hierarchy of smaller ones. Callitri-

chid vocalizations contain information about the sex of the

caller [28–30], which can potentially assist MLAs with efficient

source identification. We, therefore, develop a hierarchical ML

classifier that first determines the sex of the source, thus nar-

rowing down the possible source individuals, and then

determines the source identity. We compare its performance

with the non-hierarchical approach by applying it to three

major marmoset call types relevant to group coordination

and affiliative behaviours: trills, phees and food calls. Trills

are used as within-group close-contact signals. They are

between 0.3 and 0.8 s in duration and are characterized by

quick sinusoidal variations in pitch between 5 and 8 kHz

throughout the call [31]. Phees are louder long-distance contact

calls with variable durations between 0.5 and 2 s and a narrow

frequency band between 6 and 8 kHz [31]. Food calls are extre-

mely short (approx. 0.05 s), steep downsweeps (10–6 kHz)

elicited by individuals when they see food, during feeding

and to initiate food sharing [31,32]. Example spectrograms

for each call type are provided in figure 1. Finally, we analyse

the acoustic features used by the hierarchical classifier for the

various steps in the hierarchy and compare the precisions

and recalls of the non-hierarchical and hierarchical classifiers

at different sample sizes (i.e. number of calls per individual).

2. Methods

2.1. Experimental subjects
This study used marmoset vocalizations collected by Zürcher

et al. [7]. The data contained vocalizations from 20 adult

common marmosets, 10 males and 10 females. They were

housed in 2.4 × 1.8 × 3.6 m enclosures with at least one other indi-

vidual, with each group having access to a personal outdoor

enclosure of the same dimension and a common experimental

room. Lighting was regulated to maintain a 12/12 h day/night

cycle. Animals were fed a predetermined amount of vitamin-

enriched mush in the morning, vegetables and fruits during

noon, and one of either gum, boiled egg, cottage cheese or insects

after noon. Ad libitum access to water was always provided. All
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experiments were approved by Zürich’s cantonal veterinary

office (licence ZH223/16).

2.2. Vocalization recordings and segmentation
Individuals were recorded in their home enclosures or in a separate

experimental room in sessions lasting for approximately 30 min.

Each individual went through approximately 17 recording sessions

(17.3 ± 15.5 mean± s.d.) spread over approximately 8 days (7.6 ± 7.6

mean ± s.d.). As phee calls are long-distance contact calls, focal indi-

viduals were separated from their group to elicit them. In this case,

the focal individual was only visually isolated but acoustically in

contact with other group members. For eliciting food calls, the

focal individual’s highly preferred food was provided until

enough vocalizations were obtained during that session. Trills

could be recorded without any such interference. A condenser

microphone (CM16/CMPA, Avisoft Bioacoustics, Germany) con-

nected to Avisoft UltraSoundGate 116H (Avisoft Bioacoustics,

Germany) was used for recordings, and calls were labelled in real

time using Avisoft Recorder (Avisoft Bioacoustics, Germany).

Calls were recorded at a sampling rate of 62 500 Hz and segmented

manually using Avisoft Pro (Avisoft Bioacoustics, Germany). The

start and end of calls were determined by visual inspection of the

spectrogram. Only those calls that were visible clearly on the spec-

trogram, had no interference with other calls and could be

accurately assigned to the categories of trill, phee or food call

were included for further analyses. See [7,33] for detailed

information about the recording procedure and processing.

2.3. Datasets and feature extraction
An imbalanced dataset with a skewed data distribution biases

the classifier towards the majority class, often preventing it

from learning the underlying patterns that make the classes

different and limiting its generalizability. Such a problem can

be solved by balancing the dataset. As the original dataset was

imbalanced (the number of calls per call type per individual

was highly variable), a combination of majority class random

undersampling and synthetic minority oversampling technique

(SMOTE) [34,35] was used to create 18 datasets (one original

and five generated, for each of the three call types). SMOTE is

a data augmentation technique that synthesizes new data for

minority classes without repeating the original datapoints to

make them equal to the majority class. For this, first, a call

belonging to a minority class was randomly selected (obser-

vation). Next, the nearest minority class ‘neighbours’ of this

call in the high-dimensional feature space (and not necessarily

belonging to the same individual) were determined. Then, the

feature vector of the observation was subtracted from that of

the nearest neighbours, multiplied by a random number between

0 and 1, and added to the feature vector of the observation. This

effectively synthesized new data points within the hypervolume

bounded by the neighbours. The datasets are listed as follows

(X = T for trills, P for phees, F for food calls in the name of the

dataset):

1. Original-X: The original dataset after feature extraction.

Consisted of 1247 trills, 1443 phees and 4434 food calls

from 20 individuals each.

2. Imbalanced-X: Marmosets with less than 25 calls per call type

were removed from the Original-X datasets to make them

suitable for ML processing. No undersampling was done.

Consisted of 1207 trills from 16 individuals, 1374 phees

from 10 individuals and 4419 food calls from 18 individuals.

3. Balanced-X: SMOTE was applied on Imbalanced-X to obtain

balanced datasets. Consisted of 4528 trills, 3350 phees and

15 372 food calls.

4. Balanced197-X: From the Imbalanced-X dataset, classes with

greater than 197 calls were undersampled to 197 calls.

SMOTE was applied to this. Consisted of 3152 trills, 1970

phees and 3546 food calls.

5. Balanced99-X: From the Imbalanced-X dataset, classes with

greater than 99 calls were undersampled to 99 calls. SMOTE

was applied to this. Consisted of 1584 trills, 990 phees and

1782 food calls.

6. Balanced50-X: From the Imbalanced-X dataset, classes with

greater than 50 calls were undersampled to 50 calls. SMOTE

was applied to this. Consisted of 800 trills, 500 phees and

900 food calls.

The smaller Balanced197-X, Balanced99-X and Balanced50-X

datasets were used to test the capability of the ML approach to

classify calls in limited sample size scenarios.

For feature extraction, the MATLAB-based highly compara-

tive time series analysis (HCTSA) [27] toolbox provides an

architecture to extract over 7700 features from every call, and

we implemented this for marmoset calls. When inputted,

HCTSA views the acoustic waveform as a time series of pressure

points, performs several time-series analyses on acoustic data,

and provides a matrix of feature measurements. Features

common across calls of all individuals for a given call type

were used for further analyses. As every call is a point in a

very high-dimensional feature space, we required a dimensional

reduction technique to visualize the trill, phee and food call data-

sets. We did so using t-distributed stochastic neighbour

embedding (t-SNE) [36], an unsupervised MLA for nonlinear

dimensional reduction.

We trained individual multi-class adaptive boosting

algorithms with decision trees as weak learners and 10-fold

cross-validation (henceforth AdaBoost) for determining the

important features to use for classification and for performing

the classification itself. This method uses multiple weak learners

to create a strong learner [37]. Unlike random forests, in which

multiple trees are trained in parallel, and their collective decision

(using a ‘voting’ system) is obtained, AdaBoost trains trees in a

sequential manner wherein every new tree aims to be specialized

30
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Figure 1. Marmoset call types. Example spectrograms of a single trill, phee and food call (FC, 0.08s in length) of common marmosets. Spectrograms were obtained

using the Hann filter of size 512 samples, hop length of 256 samples and discrete Fourier transform (DFT) bin size of 512 samples.
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in correcting the errors of a previous tree. AdaBoost is considered

better than random forest classifiers due to its higher accuracy

and lower susceptibility to overfitting [38,39]. We first trained

AdaBoost (using MATLAB’s ‘fitcensemble’, ‘AdaboostM10,

and ‘AdaboostM20 functions) on Imbalanced-X, Balanced-X,

Balanced197-X, and Balanced99-X datasets to classify calls

based on source identity—as a direct or ‘non-hierarchical

approach’ (in contrast to the hierarchical approach that was

used later)—to determine source identity from calls. We chose

the number of trees and learning rate based on the observations

of the classification loss function.

Although classification accuracy is the most widely used

metric to assess MLAs, it does not represent the model’s per-

formance on class-imbalanced datasets. This is because the

classifier can get away with a high accuracy score by simply pre-

dicting most data points as belonging to the majority class. In

such cases, the receiver operating characteristic (ROC) curve

can be used to evaluate the classifier’s performance. The ROC

curve visualizes how the true positive rate changes as a function

of the false positive rate at various threshold values. The area

under this ROC curve, simply ‘area under curve’ (AUC), can

be a useful tool for examining classifier performance along

with accuracy. Therefore, for assessing the performance of Ada-

Boost on Imbalanced-X datasets, ROC-AUC was calculated in a

one versus rest setting for each class in the dataset, along with

the accuracies.

Even while assessing the performance of MLAs on balanced

datasets, accuracy does not represent how variable the predic-

tions for each class (marmoset individuals) are. Class-specific

precision and recall values represent individual-specific perform-

ance of the classifier and how they vary across individuals.

Therefore, for the rest of the classifiers, precisions and recalls

for each class were calculated using the formulae below, and

the summary (means and standard deviations) of these values

was used to assess their performance.

precision ¼
true positives

true positivesþ false positives

and

recall ¼
true positives

true positivesþ false negatives
:

For inspecting if individual variability of calls within marmo-

set groups can be explained by variation in sex and whether

MLAs could exploit this to perform better, individual AdaBoosts

were trained on Imbalanced-X and Balanced-X datasets to clas-

sify calls based on sex, and then the source individual. Sex was

chosen as a cue because previous studies in callitrichids have

shown that they can discriminate calls based on the sex of the

source [28–30], and in our case, the total number of classes

could be split into half based on the sex of the individual (10

males and 10 females out of 20 individuals). Later, each dataset

was divided into two sub-datasets based on the ‘true’ sex of

the source individual, and separate AdaBoosts were trained on

each of them. This was the hierarchical approach to determine

first the sex and then the source identity from calls (figure 2).

To assess the performance of the classifiers for the hierarchical

classification approach, precisions and recalls for each individual

were calculated for all classifiers as

Yfinal(sex,ind) ¼ Y(sex)� Yðind j sexÞ:

Y is the precision or recall, and ind is the individual identity of

the marmoset. For example, the final precision for a female indi-

vidual would be the precision for determining the sex as a

female, multiplied by the precision for determining the source

individual among females.

We performed Wilcoxon signed-rank test to compare

precision and recall scores for every class between the two

approaches because the classes, i.e. the individuals for both

approaches, were the same.

2.4. Feature importance scoring
Along with classifying calls, each fold of AdaBoost also provides

predictor importance scores for each feature, which represents

start

HCTSA

trills

phees

food calls

AdaBoost

AdaBoost

important
features

important
features

important
features

individual
identities

individual
identities

AdaBoost

> 3250 features

males

females

Figure 2. The hierarchical classification approach. Features from trills, phees, and food calls were extracted using HCTSA. These features were used to train AdaBoost to

first classify calls based on sex and then individual identities. The oval denotes start, parallelograms inputs/outputs, rectangles processes, and the diamond a decision.
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how important that feature was for AdaBoost in the classification

task. First, we checked how (non-hierarchical) AdaBoost per-

formed the feature selection task. For this, we ranked features

by predictor importance scores given by the most accurate of

the 10 models (run on 10 different folds) in the AdaBoost for

each dataset. Then, for the three Balanced-X datasets, we used

the top-20 features to visualize t-SNE clusters. t-SNE plots were

generated using MATLAB’s ‘tsne’ function with the Barnes–Hut

algorithm keeping the Barnes–Hut trade-off parameter at 0.5 to

increase processing speed for large datasets. Exaggeration was

set to 4, perplexity to n/100, and learning rate to n/12 (where n

is the total number of calls for that call type) as these values are

shown to provide robust results when datasets are large [40].

We compared these with t-SNE plots of the corresponding

datasets generated using 20 random features. For a more quanti-

tative comparison, we selected 20 random features from each of

the three datasets 100 times, plotted the histograms of the mean

silhouette scores, fit Gaussians to these distributions, and calcu-

lated the probability of getting a mean silhouette score greater

than that of the top-20 features by chance. For the hierarchical

classifiers, we analysed the features used by the various levels

in the hierarchy when implemented on the three Balanced-X

datasets.

3. Results

3.1. Datasets and feature extraction
The sample sizes of each of the datasets obtained are listed in

table 1. The Original-X and Imbalanced-X datasets have vari-

able number of calls per call type and individual (electronic

supplementary material, table S1).

We could extract between 3776 and 4553 features from

each marmoset call in the Original-X datasets, with 3255,

3395 and 3477 features common across the calls of all

individuals for trills, phees and food calls, respectively.

3.2. Machine learning classifiers and feature importance

scoring
We monitored the classification loss function of AdaBoost

with the addition of every new weak learner. We observed

the loss function to plateau at approximately 500 trees

while training AdaBoost to determine sex and approximately

2500 for other tasks, and these number of trees were therefore

used.

3.2.1. Balanced versus unbalanced datasets
Classification accuracies ranged from 60.8% to 70.96% for

imbalanced datasets versus 71.43% to 83.92% for balanced

datasets (chance probabilities = 6.25% for trills, 10% for

phees and 5.56% for food calls). Mean ROC-AUCs were

higher for all the Balanced-X datasets compared with

Imbalanced-X datasets (table 2).

3.2.2. Top-20 versus random-20 features
t-SNE plots obtained using top-20 features on the Balanced-X

datasets showed visibly better clusters compared with t-SNE

plots obtained using random-20 features on the correspond-

ing datasets (figure 3, electronic supplementary material,

tables S2–S4). The top-20 features provided by AdaBoost

gave significantly greater silhouette scores than what would

be obtained by chance for trills (Z = 7.0154, p < 0.001), phees

(Z = 4.8361, p < 0.001) and food calls (Z = 6.8922, p < 0.001).

3.2.3. Hierarchical versus non-hierarchical classifiers at large

sample sizes
The accuracies of AdaBoost to classify the following datasets

based on sex were: Balanced-T = 99.4%, Balanced-p = 96.8%,

Balanced-F = 96.7%. The hierarchical classification approach

Table 1. Sample sizes of the datasets.

dataset

trills phees food calls

female male total female male total female male total

Original-X 895 352 1247 565 878 1443 1906 2528 4434

Imbalanced-X 895 312 1207 533 841 1374 1904 2515 4419

Balanced-X 2547 1981 4528 1420 1930 3350 7686 7686 15 372

Balanced197-X 1773 1379 3152 788 1182 1970 1773 1773 3546

Balanced99-X 891 693 1584 396 594 990 891 891 1782

Balanced50-X 450 350 800 200 300 500 450 450 900

Table 2. Non-hierarchical AdaBoost performance for imbalanced and balanced datasets. Imbalanced-X and Balanced-X datasets were used. Mean ± s.d. are

provided for ROC-AUC scores.

call classes (individuals)

imbalanced balanced

sample size ROC-AUC (%) accuracy (%) sample size ROC-AUC (%) accuracy (%)

trills 16 1206 92.63 ± 4.30 64.84 4528 98.95 ± 0.91 82.91

phees 10 1498 94.36 ± 4.54 70.96 3550 98.55 ± 1.42 83.92

food calls 18 4419 92.72 ± 5.08 60.8 15 372 97.04 ± 2.31 71.43
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gave significantly better precision and recall scores than the

non-hierarchical approach for the corresponding Balanced-X

datasets ( p < 0.05 across all call types, Wilcoxon signed-rank

test; table 3). A thorough evaluation of the precisions and

recalls for each individual by the hierarchical classifier

revealed that the trills of two individuals—Washington and

Wisconsine (female twins)—had significantly lower scores

(precisions: 74.23% and 67.46%, respectively, recalls: 75.07%

and 72.99%, figure 4). The mean precision and recalls for

trills for all except these two individuals were as high as

97.79% and 97.07%, respectively. The phee precision and

recall scores for Washington and Wisconsine were also

slightly lower than that of other females (electronic

supplementary material, figures S1a,b). For food calls, the

precision and recall scores of these two individuals were

similar to or higher than the mean scores of all females

(electronic supplementary material, figure S1c,d).

3.2.4. Hierarchical versus non-hierarchical classifiers at reduced

sample sizes
With the decrease in sample size per class, the difference

between the mean precisions and recalls of the hierarchical

and non-hierarchical approaches was reduced for all three

call types (figure 5 for precision, electronic supplementary

material, figure S3 for recall).
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Figure 3. Qualitative and quantitative comparisons of random-20 and top-20 features for clustering data. (a) Qualitative comparison. Figures are t-SNE plots

(squared Euclidean distance metric) of Balanced-X datasets using 20 randomly chosen features or the top-20 features for classification by AdaBoost for that

call type. Each point is a call, coloured according to the source individual. (b) Quantitative comparison. Blue bars depict frequencies (histogram) of mean silhouette

scores obtained after performing t-SNE using 20 random features selected 100 times for that call type (trills/phees/food calls) on Balanced-X datasets. The grey line

depicts the Gaussian function fit to the histogram. Orange vertical bars denote the mean silhouette scores obtained after performing t-SNE using top-20 features for

classification by AdaBoost for that call type. The p-value shown is the normalized area under the Gaussian function to the right of the orange bar.

Table 3. Comparing non-hierarchical and hierarchical approaches for classifying calls based on source identity. Mean ± s.d. precisions and recalls with

corresponding p-values for testing the hypotheses: mean precisions/recalls of non-hierarchical = hierarchical. Both approaches were tested using the Balanced-X

datasets.

call classes (individuals)

non-hierarchical hierarchical p-value

precision (%) recall (%) precision (%) recall (%) for precision for recall

trills 16 83.42 ± 11.48 82.87 ± 8.63 94.42 ± 9.61 94.19 ± 8.24 0.017 0.01

phees 10 84.15 ± 9.84 83.93 ± 8.63 92.57 ± 3.30 92.55 ± 3.79 0.027 0.037

food calls 18 72.23 ± 15.09 71.43 ± 13.13 87.21 ± 9.71 86.65 ± 5.62 0.01 0.002
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3.2.5. Feature selection at various levels of the hierarchical

classifier
The features selected by each level of the hierarchy varied

with the task. Approximately 30%–60% of the features were

used solely for determining sex across call types. Only a

few features were common for determining individual iden-

tities among males and females (figure 6). The family of

features from which most of the top-10 important features

for each classification task came are presented in electronic

supplementary material, table S5.

4. Discussion
We show that the information about sex and source identity

encoded in marmoset calls can be harnessed for constructing

hierarchical ML classifiers. Such hierarchical classifiers exhi-

bit higher precisions and recalls than their non-hierarchical

counterparts. Our findings have implications for marmoset

communication research and will benefit understanding

group-level communication dynamics. The same methods

can also be extended for efficient source identification in

other species.
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4.1. Optimizing source identification
Of the large number of features extracted with HCTSA, we

found that the AdaBoost reliably selected the most important

features that would best cluster the data for its classification

task (figure 3, electronic supplementary material, tables S1–

S3). Intriguingly, the selected features varied with the task

of the classifier (figure 6). Secker et al. [41] have previously

used a hierarchical classifier with independent feature selec-

tion by the components to classify proteins successfully.

They suggest that independent feature selection maintains

high predictive performance while improving computational

efficiency. In our case, the independent feature selection

enabled the hierarchical classifier to efficiently use broader-

category cues (i.e. sex) for classification, boosting perform-

ance over its non-hierarchical counterpart. AdaBoost thus

provides task-specific and flexible feature extraction with a

customized set of features for every dataset and can be

applied to a wide range of animal vocalization datasets.

Even with the substantial number of features provided by

HCTSA, AdaBoost performed poorly on the unbalanced

dataset, with accuracies below 70% (table 2). A large body

of ML literature points out the problem of class-unbalanced

datasets and its solutions [42,43]. Recent reviews have

emphasized using data augmentation and balancing tech-

niques to improve ML accuracy when handling acoustic

data [44,45]. Consistent with other studies [46,47], balancing

the datasets significantly improved the performance of Ada-

Boost across call types. Therefore, data balancing using tools

like SMOTE combined with random undersampling is

important before running MLAs on any dataset.

Classifying data points from a noisy dataset to multiple

classes (10–18 individuals in our case) is often demanding

for an MLA. Here, we broke the problem of classifying calls

to over 10 sources into the problem of first assigning the sex

of the source and, only then, given the sex, classifying source

identity in a second step (figure 2). With this hierarchical

approach, we showed that at large sample sizes, mean pre-

cisions and recalls across datasets increased by more than

eight percentage points (table 3). We found the accuracies of

the hierarchical classifier on the largest balanced datasets to

remain satisfactory and higher than most recent studies classi-

fying animal vocalizations using MLAs [48–50], despite the

number of samples per class of data being lower than those

studies. The same was reflected in the performance of the hier-

archical classifier on the originally collected calls (electronic

supplementary material, figure S2).

The difference in precisions and recalls between the hier-

archical and non-hierarchical approaches diminished as the

sample sizes decreased, suggesting that the hierarchical classi-

fier requires exposure to enough data to perform significantly

better than its non-hierarchical counterpart (figure 5, electronic

supplementary material, figure S3). Lower sample sizes pose a
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Figure 6. Mutual and distinct features used by hierarchical classifiers at various levels of classification. Venn diagrams denote the set of features used for determin-

ing the sex, source identity among females (female ID), and source identity among males (male ID). The area of the circle is scaled to the number of features at that

level. The percentage of total features used by the hierarchical classifier belonging to each area within the Venn diagram is denoted.
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higher risk of error cascading in the hierarchical classifier, and

this has been identified in similar classifiers developed for text

classification [51,52]. However, this limitation only arises at the

level of the training dataset.

The requirement of a large training dataset and the

presence of a small collected dataset can almost always be

bridged. The median sample sizes per individual in our Imbal-

anced-X datasets were 47 for trills, 83 for phees and 173 for

food calls (electronic supplementary material, table S1).

Using this small, highly imbalanced dataset, we could gener-

ate larger balanced datasets and train and test our classifiers

on them (see Methods). Therefore, to obtain optimal perform-

ance from the hierarchical classifier, one need not necessarily

acquire a large number of calls to begin with (see performance

of the hierarchical classifier on the Imbalanced-X dataset in

electronic supplementary material, figure S2).

While we find that source identification from vocaliza-

tions can be optimized by using broader-category cues with

the help of hierarchical classifiers for marmoset calls, the

same methods can be extended to other tree-based classifiers

and vocalizations from other animals due to two reasons.

First, as tree-based classifiers inherently follow a hierarchical

decision-making process, we predict that embedding them

in a larger hierarchical framework and providing more

information about the vocalizations will improve their

performance. Second, the ability to select customized features

for every dataset and task, combined with the supervised

nature of learning, makes our pipeline highly flexible and

extendable for analysing vocalizations of diverse animal

species. However, because our pipeline uses a supervised

MLA, a major requirement is that the calls of all individuals

need to be represented in the training dataset. The source

identity options available for the classifier to return as the

output for any source determination task is simply the set

of all the individuals it has encountered in the training

dataset. Our method will not be useful, for example, for

estimating the number of individuals in a large number of

animal vocal recordings, as this information is required as

input for the pipeline to work. In such cases, unsupervised

MLAs such as Gaussian mixture models and hidden

Markov models (see [53,54]) are suitable alternatives. How-

ever, the pipeline can classify calls of all individuals it has

‘seen’ during the training step. In the future, we hope to

extend the idea to larger, more complex animal vocalization

datasets with a greater number of individuals that would

require multiple levels in the hierarchy and use other cues,

such as the age and social status of the animal, for efficient

source identification.

4.2. Implications for understanding the marmoset

communication system
The classification precisions and recalls for food calls were

lower than trills and phees, despite over three times higher

sample sizes (table 3). In particular, food calls required a

higher sample size per class to be classified as accurately as

trills and phees (figure 5). This could be due to three possible

reasons, or a combination of them: (i) food calls are a highly

heterogeneous group of call types [55]. As the calls function

in signalling other individuals about the availability of food

and in inducing food sharing, it is highly likely that their

acoustic structure is influenced by the food type, the internal

state of the marmoset, its motivation to share food, and the

social bond strength between the signaller and the surround-

ing individuals. Our method may therefore show limited

performance in cases where the acoustic structure of calls

change significantly with time (e.g. through seasons or

during development) or context. This can be especially prob-

lematic if the variation in calls due to the aforementioned

reasons surpass the levels due to inter-individual variability.

Nevertheless, a prudent approach would involve uniformly

sampling calls across various temporal and contextual settings

for training the classifier. (ii) As the primary purpose of food

calls is to alert other individuals about a food source, it may

be under lower selection pressure to encode source identity

information as compared with contact calls like trills and

phees. (iii) Food calls are predominantly produced in bouts

of multiple repeated call units [56]. Furthermore, each call

unit is much shorter than a trill or a phee [56,57], providing

reduced information for time series analysis. The poor classifi-

cation results could thus arise because some of the source

identity information may well be encoded at the level of

the bout. This is testable in the future by repeating the

classification procedure on bouts of food calls.

Intriguingly, the mean precision and recall for determining

source identity from trills when considering all except two

individuals were as high as 98.38% and 97.65%, respectively

(figure 3). The two marmosets with low scores happened to

be twins of the same sex. Thus, the low classification scores

were probably due to the high vocal similarity between the

twins’ calls, which is also probably why the female identity

classifier performed poorer than the male identity classifier

(figure 4). It is known that in multi-class classifiers, decision

boundaries for classes are not independent; therefore, poor

performance on one class may negatively affect the perform-

ance of other classes [58]. Similar patterns were present to a

lesser extent for phee calls but not for food calls (electronic

supplementary material, figure S1). Whereas the food calls

may require further scrutiny at different levels of analyses

(see above), the contrast between trills and phees is interpret-

able with regard to their biological function. Signalling

identity is essential for phee calls that individuals typically

use to establish acoustic contact when visual contact is not

possible [59]. In contrast, trill calls are given in close proximity

to a social partner, and the caller’s identity is thus redundant

(marmosets may also use visual or olfactory cues to identify

the partner) [60]. It is, therefore, possible that the twins actively

diverged from each other in their phee calls but not in their trill

calls. This is consistent with a recent study [33] on newly

paired marmosets that found that partners would converge

in the structure of their phee calls. However, newly formed

pairs that had initially similar phee calls diverged rather

than converged in their call structure, supposedly to make

themselves better distinguishable.

Callitrichids can differentiate between contact calls

originating from cage-mates versus foreign individuals and

from males versus females [29,30]. An intriguing question is

how they achieve that and whether their decision-making

process may likewise be hierarchically structured with

broader-category cues used as a first distinction. Multiple

studies on humans allude to the hierarchical nature of

decision-making in various contexts [61–65]. Some frog

species seem to employ hierarchical decision-making for

prey capture [66]; a hierarchical decision-making model

appears to explain best the strategies used by rhesus maca-

ques while playing a slightly modified, semi-controlled
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adaptation of a video game [67]; sea lions use a hierarchy of

multimodal cues during mother–offspring recognition

[68,69]; and evidence from fruit flies, locusts and zebrafish

suggest that they break down a complex problem of deciding

between spatially distributed options into a series of smaller

problems [70]. Hierarchical decision-making may thus be a

widespread feature of cognitive processing. Given that sex

could be attributed with extremely high precision by our

classifier, we hypothesize that marmosets, too, use these

sex-based cues for efficient source identification from calls,

and they are doing so in a hierarchical manner, similar to

the hierarchical classifier. Cognitive and psychological

experiments will be required to test this hypothesis.

Even though recent studies have turned towards

collecting large amounts of group-level acoustic data from

animals [71–74], they lack information about the identity of

the callers, which is important for understanding the ecology

and behaviour of the species. With few manually labelled

vocalizations, one can train our algorithm to determine

source identities of a larger number of unlabelled vocaliza-

tions. This can be done by passing the unlabelled

vocalizations through feature extraction and the same hierar-

chy of classifiers the labelled dataset was passed through. In

this case, the sex labels provided by the first level of the hier-

archical classifier are to be used to split the data into male

and female vocalizations. These have to be passed through

separate individual-level classifiers trained on the vocaliza-

tions of the respective sex. Our pipeline is thus an easy yet

powerful tool to add source identity information to non-

individualized datasets. It will support the analysis of vocal

signals from groups of animals simultaneously, in contrast

to the traditional method of focusing on one focal individual

in a group or isolating individuals for recordings. Such a step

is essential for understanding group-level communication

dynamics of highly social species like marmosets and shed-

ding light onto the communicative interactions that help in

group-level coordination for raising young, which is thought

to be a driver for the evolution of language.
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