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Plant Methods

Evaluating potential of leaf reflectance 
spectra to monitor plant genetic variation
Cheng Li1*, Ewa A. Czyż1, Rayko Halitschke2, Ian T. Baldwin2, Michael E. Schaepman1 and 
Meredith C. Schuman1,3 

Abstract 

Remote sensing of vegetation by spectroscopy is increasingly used to characterize trait distributions in plant commu-
nities. How leaves interact with electromagnetic radiation is determined by their structure and contents of pigments, 
water, and abundant dry matter constituents like lignins, phenolics, and proteins. High-resolution (“hyperspectral”) 
spectroscopy can characterize trait variation at finer scales, and may help to reveal underlying genetic variation—
information important for assessing the potential of populations to adapt to global change. Here, we use a set 
of 360 inbred genotypes of the wild coyote tobacco Nicotiana attenuata: wild accessions, recombinant inbred lines 
(RILs), and transgenic lines (TLs) with targeted changes to gene expression, to dissect genetic versus non-genetic 
influences on variation in leaf spectra across three experiments. We calculated leaf reflectance from hand-held field 
spectroradiometer measurements covering visible to short-wave infrared wavelengths of electromagnetic radiation 
(400–2500 nm) using a standard radiation source and backgrounds, resulting in a small and quantifiable measure-
ment uncertainty. Plants were grown in more controlled (glasshouse) or more natural (field) environments, and leaves 
were measured both on- and off-plant with the measurement set-up thus also in more to less controlled environ-
mental conditions. Entire spectra varied across genotypes and environments. We found that the greatest variance 
in leaf reflectance was explained by between-experiment and non-genetic between-sample differences, with subtler 
and more specific variation distinguishing groups of genotypes. The visible spectral region was most variable, distin-
guishing experimental settings as well as groups of genotypes within experiments, whereas parts of the short-wave 
infrared may vary more specifically with genotype. Overall, more genetically variable plant populations also showed 
more varied leaf spectra. We highlight key considerations for the application of field spectroscopy to assess genetic 
variation in plant populations.

Keywords Leaf reflectance, Field spectroscopy, Genetic variation, Genotype x environment interactions, Multiparent 
Advanced Generation Inter-Cross (MAGIC), Transgenic plants, Nicotiana attenuata

Introduction
As synthesized by Jaquemond and Ustin [1], great natural 

variation in the color, texture, and form of leaves corre-

sponds to phylogenetic differences, reveals symptoms of 

plants under stress from nutrient or water deficiency or 

from herbivores and pathogens, and is characterized by 

phenological shifts like the unfurling of leaf buds—green, 

white, brown, or black - into green leaves, or the colors 

of leaf senescence at the end of a growing season. These 

optical properties, as well as many which are outside 
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the range of visible light, result from features of leaf bio-

chemical composition and structure. The optical domain 

of solar radiation ranging from 350  nm to 2500  nm 

comprises three parts past the edge of UVA radiation 

(320–400  nm). The visible range (VIS, 400–700  nm) is 

characterized by strong absorption of light by pigments. 

In the near infrared “plateau” (NIR, 800–1300  nm) 

absorption is limited to dry matter and water but the 

multiple scattering within the leaf, related to the fraction 

of air spaces, i.e., to the internal structure, drives reflec-

tance and transmittance of light. The middle or short-

wave infrared (SWIR) is also a zone of strong absorption, 

primarily by water in a fresh leaf, overlaid with the 

absorption by dry matter which becomes more appar-

ent in a dried leaf (Fig. 1). The SWIR1 (1550–1800 nm) 

and SWIR2 (2000–2400  nm) regions are separated by 

major water absorption bands [2]. Leaf dry matter con-

tent refers to a variety of organic compounds including 

phenolics, cellulose, and lignin, and nitrogen-containing 

compounds including proteins; generally, any component 

which comprises ca. 1% or more of dry mass may have 

a measurable contribution [3]. Leaf biochemical compo-

sition and structural components which influence leaf 

optical properties are well studied and are known to be 

controlled by developmental, metabolic, and signaling 

gene variants and their regulation by environmental fac-

tors [4]. Related indices of vegetation characteristics have 

an even longer history of use in earth observation, such 

as the commonly used normalized difference vegetation 

index (NDVI) [5], which is widely used in remote sens-

ing to assess and monitor plant growth, vegetation cover, 

and biomass production from satellite imagery, providing 

critical information for environmental management and 

study [6].

Recently, traits observable via the optical properties of 

plants, often coupled with light detection and ranging 

(LiDAR) for high-resolution structural information, have 

been used to survey plant community structural and bio-

chemical composition and to assess functional or species 

diversity from aerial images [7]. Spectroscopy has shown 

potential for assessing genetic variation, with studies 

demonstrating its use in identifying Arabidopsis mutants 

having altered leaf pigment status [8], differentiating 

populations within the oak genus (Quercus) [9], studying 

heritable variation in Scots pine (Pinus sylvestris L.) [10], 

and finding correlations between airborne imaging spec-

troscopy and microstatellite-derived genotype groups 

[11] or genetic distances [12]. A comprehensive study by 

Meireles and colleagues integrated leaf spectra with phy-

logeny on a global scale, revealing evolutionary dynam-

ics of leaf chemistry and structure that can be detected 

using spectroscopy [13]. All of these studies indicate that 

leaf spectra have the potential to reveal genetic variation 

among plants. Furthermore, imaging spectroscopy used 

in remote sensing has the potential to cover large areas 

within short times and thus offers unique possibilities 

for timely and repeated monitoring of biodiversity under 

global change. However, it is challenging to distinguish 

environmental and genetic influences on variation in 

plant and leaf spectra, and the detection of spectra by 

aerial or spaceborne remote sensing adds additional lay-

ers of uncertainty [12]. Thus, controlled studies deter-

mining genetic contributions to variation in leaf spectra 

are needed. Figure  1b shows the conceptual framework 

for this study.

Here, we employed a subset of the genetic tools devel-

oped over decades by Ian Baldwin’s group for the ecologi-

cal model plant Nicotiana attenuata Torr. ex. Wats., the 

wild coyote tobacco. We used leaf spectroscopy to phe-

notype a multi-parent advanced generation inter-cross 

(MAGIC) genetic mapping population and its parental 

lines, which capture a wide range of phenotypic varia-

tion within this species [14]. We also measured leaf spec-

tra from several N. attenuata transgenic lines knocked 

down in genes whose products should affect leaf optical 

properties, and which have been previously characterized 

in both glasshouse and field conditions (Table  1). Our 

experiments were conducted in both more controlled 
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(glasshouse) and field conditions. In the context of com-

paring results from transgenic lines to results from natu-

ral genetic variants, and because we aimed to study plants 

in a natural setting, we avoided extreme manipulations 

which would endanger plant viability in the field. For 

example, genes involved in chlorophyll and carotenoid 

biosynthesis were described in the 1990’s [15] and knock-

ing down PHYTOENE DESATURASE (PDS) is known to 

produce white plants, presumably due to photobleach-

ing, even under low light [16]. However, plants with pro-

nounced deficiencies in chlorophyll or carotenoids are 

unlikely to be viable in many natural environments. In 

particular, N. attenuata inhabits high-light, nutrient-rich, 

post-fire semi-arid deserts. In the following, we introduce 

genes which were manipulated in this study.

The protein RuBPCase activase (RCA) controls the 

activity and turnover of the carbon dioxide-fixing pho-

tosynthetic protein RuBisCO in plants [17]. RCA thereby 

controls both photosynthetic activity as well as leaf pro-

tein content, because RuBisCO is the most abundant 

protein in leaves, and so can be expected to impact both 

the VIS and NIR, and especially the SWIR regions of the 

spectrum.

Lignin contributes ca. 1–10% to leaf dry matter content 

and is important to the structural integrity of leaves and 

stems [18–20]. Lignins comprise long chains of phenolic 

building blocks and specific phenolic monomers may be 

flexibly incorporated [20–23]. Lignins and other phenolic 

and polyphenolic compounds which act as defense com-

pounds, antioxidants, and sunscreens in leaves and on 

their surface also influence leaf optical properties in the 

SWIR2 region; for example, leaf lignin content has been 

related to absorption features at 1120, 1200, 1420, 1450, 

1690, 1940, and 2100 nm ([1, 24] Table 3.4). The protein 

CINNAMYL ALCOHOL DEHYDROGENASE (CAD) 

catalyzes a key step in canonical lignin biosynthesis. 

When CAD is silenced in N. attenuata, lignin composi-

tion changes, resulting in plants unable to stand upright 

in the absence of UV-B radiation, and which stand 

upright but form red stems with exposure to UV-B due to 

the stimulation of lignin biosynthesis from atypical phe-

nolic monomers [20].

The proteins CHALCONE SYNTHASE (CHAL) and 

HYDROXYCINNAMOYL-CoA QUINATE TRANS-

FERASE (HQT) catalyze rate-limiting steps in the syn-

thesis of phenylpropanoids and flavonoids generally 

(CHAL), and chlorogenic acid specifically (HQT) [25–

27]. N. attenuata plants modified to knock down their 

expression of CHAL (irCHAL) do not increase produc-

tion of phenolic compounds in response to UV-B and 

may be more susceptible to tissue damage and growth 

inhibition by UV-B [28, 29]. Thus knocking down expres-

sion of CAD, CHAL, or HQT is expected to alter leaf 

reflectance in the NIR region dominated by leaf struc-

tural features, as well as in the SWIR region which is 

influenced by leaf dry matter content.

Phytohormone signaling modulates regulatory and bio-

synthetic protein activities in response to developmental 

and environmental stimuli. In particular, the jasmonate 

hormones mediate the reduction of photosynthesis 

and general metabolism and induction of specialized 

metabolism in response to many biotic stressors such as 

herbivore attack, in addition to their roles in floral devel-

opment and fertility [30]. Jasmonates also play develop-

mental roles related to defense such as regulating the 

density of leaf glandular trichomes, and countering the 

growth-promoting action of auxins [31]. Jasmonates are 

produced via an oxylipin biosynthesis pathway from pre-

cursor fatty acids cleaved from plastid membranes, and 

the proteins ALLENE OXIDE CYCLASE (AOC) and a 

specific lipoxygenase (in N. attenuata, LIPOXYGENASE 

3 or LOX3) perform rate-limiting steps in jasmonate bio-

synthesis [31, 32]. The action of jasmonates is modified 

by the gaseous hormone ethylene, which is produced 

from the precursor 1-aminocyclopropane-1-carboxylic 

acid (ACC) by ACC OXIDASE (ACO) [33]. In addition 

Table 1 Transgenic lines used in this study

Genotype Gene Process Line and reference

irACO ACC oxidase 1, NIATv7_g18038.t1 Ethylene biosynthesis A-03-321-10-1, [33]

irHQT Hydroxycinnamoyl-CoA quinate transferase, NIATv7_g12918.t1 Chlorogenic acid biosynthesis A-13-153-6-3, [27]

irCHAL Chalcone synthase, NIATv7_g39367.t1 Phenylpropanoid and flavonoid biosynthesis A-06-283-1-2, [25]

irLOX3 Lipoxygenase 3, NIATv7_g32174.t1 Oxylipin biosynthesis (OPDA and jasmonates) A-03-562-2, [40]

irAOC Allene oxide cyclase, NIATv7_g34489.t1 Oxylipin biosynthesis (OPDA and jasmonates) A-07-457-1-2, [41]

irCAD Cinnamyl alcohol dehydrogenase, NIATv7_g23398.t1 Lignin biosynthesis A-07-206-1, [20]

irRCA RuBisCo activase, NIATv7_g06559.t1 Photosynthesis (CO2 fixation) A-03-462-7-1, [17]

pRESC2NC Empty vector control Transformation control A-03-009-1-2, [42]

pSOL3NC Empty vector control Transformation control A-04-266-3-5, [42]
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to modulating herbivory-induced wound healing and 

defense responses, ethylene also regulates the production 

of phenolic compounds interactively with jasmonates 

[34–36]. Using genetic modification to abrogate expres-

sion of genes involved in jasmonate or ethylene biosyn-

thesis could have wide-ranging contextual effects on leaf 

reflectance. When investigating leaves of a standardized 

developmental stage without recent damage from herbi-

vores, we would expect the effects of knocking down eth-

ylene biosynthesis (ACO) may have pronounced effects 

on the basal accumulation of phenolic compounds affect-

ing the SWIR, while knocking down jasmonate signaling 

(AOC, LOX3) is expected to have broad effects across the 

entire VIS-SWIR spectrum.

In this study, we ask how well we can explain variation 

in leaf spectra by plant genetic variation, using both natu-

ral genetic variants as well as transgenic variants targeting 

specific gene expression in otherwise-isogenic lines, both 

across and within several different sets of experimental 

conditions. Specifically, we used 360 inbred genotypes 

of the ecological model plant N. attenuata generated via 

two different approaches: a forward genetics approach to 

establish a MAGIC genetic mapping population compris-

ing recombinant inbred lines (RILs) derived from natural 

genetic variants (parental lines, PLs); and a reverse genet-

ics approach to generate transgenic lines (TLs) with tar-

geted changes in gene expression in otherwise-isogenic 

plants. To be able to make comparisons among different 

experiments, we grew an inbred line, used to generate 

all transgenics and included as a PL, in all three environ-

ments as a reference (Utah wild-type, UT-WT). Further-

more, we used two different empty vector (EV) lines as 

a reference for the TLs. In an initial experiment, the PLs 

and TLs were measured in a standardized glasshouse 

environment with lighting to mimic natural sunlight 

including UV-B, and the differences in within-group pat-

terns and variance in leaf reflectance were compared to 

the reference genotypes for groups of plants varying sub-

stantially in their genomes (PLs) or else differing primar-

ily in their transcriptomes (TLs). TLs, PLs and RILs were 

then measured in two independent field experiments in 

different plantations within the plant’s native habitat: 

one established for the field release of transgenic plants 

(southwestern Utah) and the other for experiments with 

the RIL populations (central Arizona). Seven TLs were 

measured alongside co-planted and size-matched EV 

reference plants in replicate, repeatedly over multiple 

days, in order to capture variance over time in the same 

plants, which might be important to detect differences 

caused primarily by changes to gene expression patterns. 

Different standardized (older or younger) leaf positions 

were also measured in a set of UT-WT plants grown in 

the same environment, to assess the effect of leaf choice 

on reflectance spectra. In Arizona, two sibling RIL pop-

ulations, each comprising 325 RILs, were measured 

alongside the PLs and additional, co-planted and distrib-

uted replicates of the UT-WT using a high-throughput 

screening approach with freshly harvested, hydrated, cut 

leaves. This experiment was used to describe patterns 

of spectral variance for populations with variable (PLs, 

RILs) versus invariant (UT-WT) genomes, and to com-

pare spectral variation in the parental (PL) and offspring 

(RIL) populations. We used Principal Component Analy-

sis (PCA) on all three datasets and Analysis of Variance 

(ANOVA) across UT-WT samples to investigate variance 

across datasets and the contribution of experimental 

conditions. Within environments, we used Coefficient of 

Variation (CV) and measurement uncertainty analysis as 

well as PCA to characterize variance within experiments, 

followed by linear models to assess the effects of genetic 

variation in comparison to other within-experiment 

effects. The effects we investigated, including measure-

ment time and leaf choice , were determined based on 

the specific design and aims of each experiment.

Material and methods
Plant material

We measured inbred lines of Nicotiana attenuata Torr. 

ex S. Watson generated using two different approaches 

by the Molecular Ecology department at the Max Planck 

Institute for Chemical Ecology, Jena. A forward genetics 

approach established a 26-parent Multiparent Advanced 

Generation Intercross (MAGIC) population compris-

ing 325 recombinant inbred lines (RILs) capturing natu-

ral variation within the species [14]. A reverse genetics 

approach used Agrobacterium-mediated transformation 

followed by selfing to generate homozygous transgenic 

lines (TLs) to study the consequences of changes in the 

expression of specific genes [37].

Multiparent Advanced Generation Intercross (MAGIC)

In MAGIC designs, multiple inbred founders are inter-

crossed several times in a specified order to com-

bine genetic material of all the founders in each single 

descendent line [38]. This leads to highly diverse geno-

types each with a unique mosaic of founder alleles. In 

this study, the MAGIC population captures the majority 

of the phenotypic diversity measured among approxi-

mately 400 natural accessions of N. attenuata that have 

been collected over the past three decades of fieldwork, 

as described by Ray and colleagues [14]. Diallelic cross-

ing was performed on 26 PLs (each PL crossed with 

every other), resulting in a population of 325 RILs (26 × 

25/2), each harboring genetic contributions from all 26 

PLs in their genome. Two of six sibling populations were 

selected and inbred for six subsequent generations to 
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ensure mean 99% homozygosity across all loci. For com-

parison, a 30x inbred line was used, derived from seeds 

originally collected from natural populations of N. atten-

uata from the Desert Inn Ranch near Santa Clara, UT, 

USA [39]. This line, here called UT-WT (short for Utah 

wild-type), has been used as the reference wild-type line 

for decades in the N. attenuata system.

Transgenic lines (TLs)

The TLs used in this study were derived from inbred 

generations of the UT-WT line described above. Gene 

expression was knocked down using inverted repeat (ir) 

RNA interference (RNAi) constructs, and two lines each 

containing an insertion of the vector without an RNAi 

construct (empty vector, EV) were used as controls, as 

described (Table  1 and references therein). We selected 

lines with targeted alterations in physiological processes 

expected to influence leaf optical properties via biosyn-

thesis of polyphenols (irHQT), phenylpropanoids and fla-

vonoids (irCHAL), and lignin (irCAD); regulation of the 

photosynthetic protein RuBisCO (irRCA); or the regula-

tion of these and other environmentally responsive pro-

cesses via hormonal signaling pathways (irACO, irLOX3, 

irAOC) (Table 1).

Reference genotypes

To compare spectral variation within and between 

experimental conditions, we grew UT-WT plants in all 

three environments (for details, see Fig.  2). Two differ-

ent EV lines, which were derived by inserting two dif-

ferent empty transformation vectors into the UT-WT, 

and the 30x inbred UT-WT were included in the Glass-

house experiment in Jena. One of the EV lines and the 

30x inbred UT-WT were used in Field_UT, and the 30x 

inbred UT-WT was used in Field_AZ as reference. We 

refer to the 30x inbred UT-WT (from here on, simply 

UT-WT) and the two EV lines as the reference genotypes, 

or Ref for short. These “references” were replicated and 

measured interspersed with the other plants measured 

during field and glasshouse experiments. Differences 

Experiment A

Experiment B

Genotype a Genotype b
Vegetation spectra

measured with ASD

Within-genotype variation

Among-genotype variation

Measurement

uncertainty

Arizona Utah Jena

Growth Environment Field Field Glasshouse

Plant genotypes Ref(UT-WT),

PL, RIL

Ref(UT-WT,

EV), TL

Ref(UT-WT,

EV), PL, TL

Measurement Date & Time 15.07.2019 -

21.07.2019

ca. 7am-7pm

24.05.2019 -

27.05.2019

am, noon, pm

13.12.2018

ca. 10am-1pm

Location Field station Field Glasshouse

Method Cut-off On plant On plant

(a)

(b)

Fig. 2 Overview of datasets. a Conceptual overview of the datasets, which allows for comparison between genotypes within experimental 
environments, and within genotypes among experimental environments, incorporating estimated measurement uncertainty. ASD, an abbreviation 
for Analytical Spectral Devices. b Summary of dataset characteristics
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measured within the reference population thus indicate 

variation within experimental environments and within 

genotypes over the course of our measurements, includ-

ing technical variation.

Growth conditions and environments

The plants were grown in three different environments: 

a glasshouse in Jena, Germany, a field plantation near 

Prescott, Arizona, USA, or a field plantation near St. 

George, Utah, USA. The three environments are referred 

as Glasshouse, Field_AZ, and Field_UT. The data gen-

erated from the three environments are referred as the 

Glasshouse dataset, Field_AZ dataset, and Field_UT 

dataset. The whole dataset refers to these three datasets 

combined. For analyses of diurnal effects, measurements 

from 7 am to 12 pm counted as “am”, from 12 pm to 4 pm 

as “noon” (afternoon), and from 4 pm to 8 pm as “pm” 

(late afternoon/evening).

Jena glasshouse

The glasshouse was located at the Max Planck Insti-

tute for Chemical Ecology, Jena, Germany (50.911260, 

11.569520). Measurements in the glasshouse comprised 

an initial screening of lines and populations for use in 

this study and were conducted on one to three plants 

per genotype (three per genotype for all transgenic lines 

and UT-WT, one per genotype for all parental lines of 

the MAGIC population) in December 2018 prior to field 

experiments in 2019. RILs of the MAGIC population 

were in the final phase of inbreeding at the time of these 

measurements, prior to seed collection for field planta-

tions, and were not included in the glasshouse experi-

ment. Seeds were germinated directly in potting soil (8 × 

13 Teku flats) imbibed from below with a solution from 

native soil collected in the Utah field environment, pre-

pared by stirring 10 mL of soil stored in the dark at room 

temperature in 1  L of tapwater for 1  h, allowing to set-

tle for 30 mins and then decanting the supernatant into 

a new bottle; the supernatant was used to imbibe the soil 

for ca. 2 h (1 L per flat). Seeds were incubated in a ger-

mination cue solution of sterilized diluted liquid smoke 

(House of Herbs, diluted 1:50), 5 mL for each seed lineage 

in a 15 mL culture tube, with GA3 (10 µL/mL of a 0.1 M 

solution in ethanol) for 1  h; this solution was decanted 

and 5 mL per culture tube of fresh sterilized 1:50 diluted 

liquid smoke was added and seeds were left in the smoke 

solution overnight. Seeds were sown directly from the 

smoke solution onto imbibed soil in Teku pots by placing 

gently onto the top of the soil with a glass Pasteur pipette, 

one seed per Teku pot. Line positions were indicated with 

plastic labels in pots as well as with a layout map which 

was kept together with the pots. Germination proceeded 

and seedlings grew large enough for transfer to 1 L pots 

over a period of 18 d. During this period, trays contain-

ing Teku pots were kept in the glasshouse on a common 

germination table at 23–25◦ C daytime/19–23◦ C night-

time temperatures under 16  h supplemental lighting 

from Master Sun-T PIA Agro499 or Plus 600W Na light 

(Philips, Turnhaut, Belgium). Clear plastic lids were kept 

closed over Teku trays for the first 5 d, then opened grad-

ually over 2 d and finally removed by glasshouse staff who 

also monitored the Teku pots for sufficient moisture by 

watering from below as needed. From the second week 

a dilute fertilizer was used for watering: 3 g/10 L Peter’s 

Allrounder 20−20−20+TE (www.scotsprofessional.com).

Seedlings were transferred to potting soil in 1  L pots 

on the 18th day and moved to a table underneath LED 

supplemental lighting (Valoya NS-1 LEDs) to maintain 

a spectrum similar to the outside solar spectrum, and 

under the same temperature and photoperiod as for ger-

mination. Water with fertilizer was provided from below 

by a drip irrigation system. Fertilization of potted plants 

was previously described [37]. Plants were additionally 

exposed to UV-B light at a low dose so as to stimulate the 

production of UV-responsive compounds without dam-

aging vegetation, as the glasshouse panels absorb UV-B 

light. UV-B treatment was done for two days at the end of 

the rosette stage of growth and beginning of bolting (32 

and 33  d after sowing, on December 11th and Decem-

ber 12th, 2018) using the same system as Santhanam and 

colleagues [28] but for two one-hour periods close to 

solar noon (10:00–11:00, 12:00–13:00) on each day, and 

plants were measured the day following the second UV-B 

exposure.

Arizona field plantation

The Arizona field site was located at the Walnut Creek 

Center for Education and research (WCCER) near 

Prescott, Arizona, USA, within the native range of N. 

attenuata [14], managed in cooperation with the South-

west Experimental Garden Array (SEGA). Germination 

was conducted in peat pots (Jiffy-7®, http:// www. jiffy 

pot. com/) in the week of April 19th, 2019 and otherwise 

identically as described for the glasshouse in Jena, with 

the modification that Jiffy pots were kept in closed trans-

parent plastic boxes (Sterilite 32 Quart Latch) first in 

shade, and then moved to sunlight once true leaves were 

visible, at which point the lids were removed from the 

plastic boxes during sunlit hours of the day; temperature 

was maintained in the boxes by floating them in shallow 

pools of water. Hardened-off seedlings ca. 1.5–2  cm in 

diameter were planted on May 14th–17th 2019 into holes 

in a black weed-suppressing cloth (DeWitt 12-year weed 

barrier, 4′ x 300′ [12 YR-4300]) covering the field plot. 

Details of growth conditions were previously described 

by He and colleagues [43] and Bai and colleagues [44]. 

http://www.jiffypot.com/
http://www.jiffypot.com/
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The plantation comprised two replicates each of two sib-

ling MAGIC RIL populations, M1 and M2, as well as the 

PLs used to generate these RILs; and plants of the inbred 

UT-WT line as reference samples (Ref ). Plants were 

planted in 4-plant clusters (Additional file  1: Fig. S1a), 

each watered by one dripper from a drip line, consisting 

of three of the RIL and PL plants and one UT-WT plant 

in a random configuration [44].

Utah field plantation

The Max Planck field station in southwest Utah, USA 

is situated within the native range of N. attenuata [14], 

at the Lytle Ranch Preserve (plot corners: 37.145504, 
−114.021260; 37.145305, −114.020760; 37.144964, −

114.021602; 37.144800, −114.021077) owned and oper-

ated by Brigham Young University, Provo, Utah. Germi-

nation was conducted as in Arizona; seedling cultivation, 

hardening-off and planting were conducted similarly and 

hardening-off and planting procedures are described in 

more detail by McGale and colleagues [45]. Germina-

tion was conducted on March 16th, 2019. The plantation 

comprised replicates of seven transgenic lines, including 

an EV line (pRESC2NC) and the UT-WT as reference 

samples. Transformed seeds were imported and released 

at the Lytle Ranch Preserve under the US Department of 

Agricultural Animal and Plant Health Inspection Service 

(APHIS) permit numbers 07-341-101n, 12-320-103  m, 

and 18-282-103r.

Overview of the datasets

The three datasets, including the measurements from the 

Arizona field, Utah field, and Jena glasshouse, respec-

tively, are summarized in Fig. 2. Field_AZ included PLs, 

RILs, and reference (UT-WT). Field_UT included TLs 

and reference (pRESC2NC and UT-WT). The Glass-

house included PLs, TLs, and reference (both EV lines 

and UT-WT). These are three independent experiments 

conducted at different dates & times, as specified in the 

table. In Field_UT and Glasshouse, the leaves were meas-

ured directly on the plants where they grew. In Field_AZ, 

because of the large number of plants to be measured and 

because individual plants were not measured repeatedly, 

the leaves were cut, hydrated and measured in a field sta-

tion; for details, see section Measurement procedures.

Optical measurements and calculation of leaf reflectance

Equipment

Leaf optical properties were measured using two Field-

Spec 4 spectroradiometers (serial numbers 18140 and 

18141) coupled with a plant probe and a leaf clip (serial 

numbers 445 and 455). The FieldSpec® 4 spectroradiome-

ter contains three detectors covering the visible and near 

infrared (VNIR, 350–1000 nm) to the shortwave infrared 

(SWIR, 1001–1800  nm and 1801–2500  nm) range of 

electromagnetic radiation. The VNIR detector is a sili-

con photodiode array while the two SWIR detectors are 

thermo-electrically cooled indium gallium arsenide. The 

spectral resolution is 3 nm at 700 nm and 10 nm at 1400 

and 2100  nm. Date are interpolated by the calibrated 

FieldSpec system to output a value for every nanometer 

of the spectrum between 350 and 2500 nm. Detectors are 

covered by order separation filters. The contact probe is 

a holder with a round glass window allowing radiation 

from a halogen radiation source to pass through, and 

contacted by the tip of the fiber-optic cable transmitting 

radiation to the three detectors, such that the radiation 

source and detection are on the same side of the sample 

and both are fixed in position relative to each other and 

the sample. Randomly distributed, individual fibers of the 

fiber-optic cable each direct radiation to one of the three 

detectors and radiation is dispersed by a holographic dif-

fraction grating (ASD Inc, 2010). The leaf clip is a cyl-

inder which can be turned to show either a flat white 

background or a flat back background and the flat sides 

can be affixed against the window with a gentle clipping 

mechanism (ASD Leaf Clip Manual from URL: https:// 

www. azom. com/ equip ment- detai ls. aspx? Equip ID= 5411).

Measurement procedures

In all cases, leaves were measured at the widest part of 

the leaf, avoiding the midvein, with the adaxial side of 

the leaf facing the light source and fiber-optic cable; see 

further details in the Equipment section. For each sam-

ple, the measurements consisted of 20 scans under four 

conditions in order: 5 scans of the white background 

reference (WR), 5 scans of the white background refer-

ence with the leaf (adaxial side facing the sensor, WRL), 5 

scans of the black background reference (BR), 5 scans of 

the black background reference with the leaf (adaxial side 

facing the sensor, BRL).

In the Glasshouse, the measurements were performed 

on leaves at a standardized position directly on plants 

(+2, rosette, denoting the second fully expanded leaf 

[46]), and the instrument was adjacent to the growth 

table (each pot was moved to a cart for measurement). 

Measurements were conducted on December 13th, 2018, 

34 d after sowing, after plants had bolted and had mature 

stem leaves, but before they had reached their full height 

or begun to flower. Additional test measurements were 

also conducted prior to the UV-B treatment; because 

these did not include the full set of replicates, and as we 

are not interested here in the specific influence of UV-B 

light on plants in the glasshouse, those data were neither 

included nor used for the analysis presented here.

In Field_AZ, plants were bushy. Because of the large 

number of plants to be measured, we cut leaves off the 

https://www.azom.com/equipment-details.aspx?EquipID=5411
https://www.azom.com/equipment-details.aspx?EquipID=5411
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plants and placed them into individual cups contain-

ing a layer of water at the bottom, so that petioles were 

in water and lamina were not, and measured the cut-off 

leaves inside the nearby field station. The total time from 

detachment to measurement did not exceed 2 h. Leaves 

remained turgid during this period. We note that some 

water absorption features did significantly differentiate 

leaf spectra of the reference genotype in this experiment 

from those in the two other experiments, but these same 

water absorption features also differed between the Field_

UT and Glasshouse experiments, in which all meas-

urements were made with leaves still on the plant (see 

Results). Due to the different sizes of leaves, we harvested 

and measured either one or two stem leaves to fill the 

leaf clip. When measuring two leaves, leaves were placed 

adjacent to each other to fill the measurement window 

without overlap or gaps. We selected intact, mature, non-

senescent, sun-exposed stem leaves at a similar position 

(S2–S5, [46] when possible or else a similar position on 

a side branch). As long as leaves were sufficiently intact 

to measure (no large holes), we did not exclude damaged 

leaves if they were generally representative of the condi-

tion of leaves on the plant. Each batch included seven 

4-plant clusters (Additional file 1:  Fig. S1a). Within one 

batch, RIL and PL leaves, and three of the UT-WT plants 

were collected and measured. Not all UT-WT plants 

were measured in the interest of time. Measurements 

were conducted on 7 contiguous days, from the 15th to 

the 21st of July 2019 (ca. 87-93  d after sowing), when 

plants were large and reaching reproductive maturity 

but the great majority of leaves were still photosyntheti-

cally active (non-senescent). This timing was coordinated 

to follow earlier observations of the same plants [44]. 

Measurements started shortly after dawn and ending at 

dusk (ca. 7 am–8 pm). On day one, three batches of 8–17 

samples each (including 1–2 Ref samples per batch) were 

measured; from day two onward, measurements were 

done on batches of 24 samples (21 RILs/PLs + 3 Ref ).

In Field_UT, measurements were conducted on intact, 

mature, non-senescent leaves at a standardized devel-

opmental stage from plants directly in the field (upper 

rosette or lower stem leaf: 0, S1 or S2 chosen to match 

developmental stage and avoid damage, [46]; for the 

leaf position experiment leaves at all three positions 

were measured within the same plant). The phenology 

of plants at the Utah site is ca. one month earlier than 

those at the Arizona site, and experiments in UT were 

conducted at the end of May 2019 (69–72 days after sow-

ing), at which time plants were in a similar growth stage 

as in the Glasshouse experiments, although stalk elonga-

tion had proceeded further in comparison to the growth 

stage used in Glasshouse measurements. To compare 

TLs across different days and measurement times, the 

same set of plants (TLs, EV) were measured at three dif-

ferent time points (at am on May 24th, at noon on May 

27th, at pm on May 25th, 2019). To compare the effects 

of leaf position, we conducted a separate experiment, 

where three leaves (old—rosette, intermediate—lower 

stem, young—mid-stem) were measured within the same 

plant for a set of UT-WT plants at three different time 

points (at am on May 25th, at noon on May 26th, at pm 

on May 24th, 2019, see section Growth conditions and 

environments). Note that the leaf position experiment 

was conducted at different times from the TL screening 

experiment described above, i.e., these two experiments 

were measured at different time points even within the 

same day. Twenty measurement scans of the develop-

ment experiment were missing on the first measurement 

day (May 24), and thus we excluded all measurements of 

the development experiment on this day.

Raw data processing

We performed raw data processing with R (version 4.3.0, 

mainly using the packages spectrolab (version 0.0.10) [47] 

and DescTools(version 0.99.49) [48]. We removed outli-

ers with a three-step approach. In the first step, we visually 

inspected the plots of different measurement types (white 

reference, white reference with leaf, black reference, black 

reference with leaf) and removed samples that clearly did 

not belong to the measurement type, e.g., measurements 

that were supposed to be of a white reference but which 

showed a shape typical of a leaf spectrum were consid-

ered to be errors and were removed. In the second step, 

we applied the Local Outlier Factor (LOF) method [49] to 

each measurement type. This method is a standard and 

widely accepted technique for outlier detection and is 

particularly suited to our dataset. LOF takes into account 

both the density and distance of data points, providing 

robust detection amidst variable spectral data across geno-

types. Its local approach is particularly important—LOF 

compares each data point primarily with its neighbors – 

as certain genotypes, such as TLs, might exhibit spectra 

that substantially differ from others due to specific gene 

expression interference, and these differences are not nec-

essarily indicative of outliers. Lastly, after the calculation 

of reflectance (see section Calculation of leaf reflectance), 

we performed a final visual inspection. Given the signifi-

cant impact of outliers on major components of our analy-

sis (coefficient of variation, linear modeling), we combine 

LOF and visual checks to strictly exclude outliers. The first 

scan under each condition was systematically removed to 

avoid potential contamination from previous readings and 

to ensure stabilization of the signal. When another scan or 

more than one of the remaining four scans were detected 

as outliers, the corresponding scan (if only one under each 

condition) or the corresponding plant (more than one scan 
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under each condition) was removed. Additional file 1:  Fig. 

S2a–c illustrates examples of outliers detected at each 

step. More details and records can be found in the code 

“RawDataProcess.R” (see section Availability of data and 

code). After the raw data processing, in total for Field_AZ, 

five samples (137, 165, 209, 813, 815) and for the Glass-

house, three scans (73, 403, 554) were removed. For Field_

UT, since the same plants were measured three times, to be 

able to use as much data as possible, we only excluded the 

sample in the corresponding measurment time in which it 

was detected as an outlier, and not necessarily in the other 

two measurment times. For the main experiment, plants 

31 and 35 were removed from am measurements, plants 

42 and 47 and scans 784, 1361, and 1381 were removed 

from noon measurements, and plants 21, 42, 47, 59, 61, 69 

, and scans 984 and 976 were removed from pm measure-

ments. For the leaf position side experiment, plant 13 leaf 

1, and scans 602, 629, 579, 659, 779, and 819 were removed 

from am measurements, and plant 11 leaf 2, plant 13 leaf 1, 

and scan 696 were removed from noon measurements. As 

described in section Measurement procedures, we did not 

include pm measurements on May 24 of the leaf position 

experiment because 20 scans were missing.

Calculation of leaf reflectance

We analyzed the spectral range from 400–2500  nm 

because the regions at the beginning (350–399  nm) have 

a poor signal:noise ratio [9] and are commonly removed 

from downstream analysis. As detailed in the section Raw 

data Processing, the first scan was dropped because of the 

potential influence from previous readings or the open-

ing of the leaf clip. Then the averaged reflectance under 

each condition was obtained with the mean reflectance of 

the last four scans (or three scans for a few specific cases 

in which one of these four scans was an outlier, see section 

Raw data Processing):

where

The calculated reflectance of a sample was obtained from 

the mean of scans above ( Rc ) using the following formula 

from [50]:

The absolute measurement uncertainty (AU) of a sample 

was calculated using the formula from [51], which was 

derived from [50]:

(1)Rc = (Rc,2 + Rc,3 + Rc,4 + Rc,5)/4

(2)c = {WR,WRL,BR,BRL}

(3)CR = (RWR · RBRL − RBR · RWRL)/(RWR − RBR)

Then the relative measurement uncertainty (RU) of a 

sample was calculated as the absolute uncertainty divided 

by reflectance (see Petibon and colleagues, [51]).

Analyses of calculated reflectance

We expect that genetic effects on leaf reflectance vary 

both by experiment and by genotype. Even in the TLs, 

where genetic differences are targeted and specific, we 

expect differences among genotypes to affect several 

regions of the leaf reflectance spectrum due to the mul-

tiple physiological effects from silencing target gene 

expression. Here, we ask to what extent variance in leaf 

reflectance spectra is affected by growth environment 

and genetic variation of the measured plants, as well 

as other experimental factors including measurement 

time, different numbers of measured leaves (1 or 2), and 

different leaf positions within the same plant.

Principal components analysis

In order to describe variance structure across and 

within datasets, we conducted principal components 

analyses (PCA) using the R package factoextra (version 

1.0.7). First, we conducted a PCA on the whole data-

set to assess the main sources of variance in general, 

both for all lines together, and for one genotype (UT-

WT) only, in order to better understand the magni-

tude of variance contributed by genotype groups and 

experimental conditions. We described the variance 

explained by each principle component, as well as the 

contribution of variables (leaf reflectance calculated at 

each wavelength) to each component. Then, we con-

ducted the same analyses on the three datasets sepa-

rately, in order to characterize the relative contribution 

of genotype groups to total variance by experiment. 

(4)
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More details can be found in the code “Plots_PCA.R” 

(see section Availability of data and code).

Coefficient of variation, and bootstrapping

We furthermore calculated the coefficient of variation 

(CV) (referred to as spectral variation by Petibon and 

colleagues, [51]) as an indicator of the variation within 

or, more often, among groups. When there were une-

qual numbers of samples in groups, we used bootstrap-

ping to downscale the sample size of the group with 

the larger number of samples, to the sample size of the 

smaller group. For each run, we conducted bootstrap-

ping 100 times using the sample() function in R. More 

details can be found in the code “Plots_PCA.R” and 

“Plots_Models.R” (see section Availability of data and 

code).

Linear regression and linear mixed models

To study the influence of genetic and non-genetic vari-

ance on differences in measured leaf reflectance within 

each environment, we built models within each data-

set to determine the effects of different factors, such as 

measurement of test lines (PLs, RILs, and TLs) versus 

reference lines (UT-WT and EV), or measurement at 

noon or in the afternoon (pm) compared with measure-

ment in the morning (am) (Table 2). Based on the experi-

mental setting and research questions for each dataset, 

we built different models including one-way ANOVA, 

linear regression (with post-hoc tests when further pair-

wise comparisons were needed using a Tukey adjust-

ment), and mixed models where random effects due to 

repeated measurements over different days on the same 

plant were taken into account. We used the following R 

packages to conduct the regression, select the best-fit-

ted models, and generate figures: lme4 (version 1.1-31, 

[52]), nlme (version 3.1-160, [53]), MASS (version 7.3-

58.1, [54]), emmeans (version 1.8.2, [55]), and tidyverse 

(version 1.3.2, [57]). We used R package report (version 

0.5.5, [56]) to generate formatted reports of models. In 

the reports, effect sizes were labeled following Field’s rec-

ommendations [58].

For model selection, we first determined the main 

effects based on our knowledge and experimental set-

tings. For each dataset, we selected 4 wavelengths that 

contributed most to the first 4 PCs of the corresponding 

dataset. We then used Akaike’s Information Criterion 

(AIC, [59]) to compare different models, and selected 

the model (with main effects) that fit best in the majority 

of these 4 wavelengths. We then used forward stepwise 

selection, starting from the selected model with main 

effects, and with the full model including all interactions 

among these main effects, to determine the final model. 

When the number of main effects was equal to or smaller 

than two, we included the interactions and compared the 

models directly for simplicity. More details can be found 

in the script Plots_Models.R (see section Availability of 

data and code).

The final models used in this study are summarized in 

Table 2. We conducted one-way ANOVA on the UT-WT 

samples across the three experiments (Table 2 Model 1) 

using the formula Reflectance ∼ Experiment. For Field_

AZ, we fitted a linear model (estimated using ordinary 

least squares regression, OLS) to predict reflectance 

with genotype groups (Table  2, Model 2), measurement 

time, batch, and leaf numbers: formula, Reflectance ∼ 

GeneGroup + Mtime + Batch + Leaf_Num, and a linear 

model contained only UT-WT samples to predict reflec-

tance (Table 2, Model 3) with measurement time, batch, 

and leaf numbers: formula, Reflectance ∼ Mtime + Batch 

+ Leaf_Num. In Glasshouse, we conducted one-way 

ANOVA on the reference samples (UT-WT, EV1, EV2) 

using the formula Reflectance ∼ Reference line (Table 2, 

Model 4). We then divided the dataset into two subsets 

(PLs + UT-WT, TLs + EV) and selected two models on 

each subset. Table 2, Model 5 contained PLs and UT-WT 

Table 2 Models built in this study

Model Experiment Variables Random effect n Figure

1 Field_AZ, Field_UT, 
Glasshouse

Experiment (UT-WT only) 119 4

2 Field_AZ Genotype group, measurement time, batch, 
leaf number

779 6a, b, 8c, Additional file 1: S4a, c, 9a,

3 Field_AZ measurement time, batch, leaf number 99 8d, 9b, Additional file 1: S4b, d

4 Glasshouse Reference line 13 Additional file 1: S3a

5 Glasshouse Genotype group 39 7d

6 Glasshouse Genotype 28 7c

7 Field_UT Measurement time, genotype 1  Plant ID 149 7a, 8a, b

8 Field_UT Measurement time, leaf position 1  Plant ID 39 9a, b
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samples, and the genotype group as the only predic-

tor, thus it was the same as a one-way ANOVA with 

the formula Reflectance ∼ GenoGroup. Table  2, Model 

6 contained TLs and EV samples. Here we also fit a lin-

ear model to predict Reflectance with GeneGroup (for-

mula: Reflectance ∼ GeneGroup). In Field_UT, we built 

two models for the line-screening experiment and leaf 

position experiment separately, both accounting for the 

repeat-measure design. Table  2 Model 7 contained TLs 

and EV (screening experiment). We fit a linear mixed 

model (estimated using REML and nlminb optimizer) to 

predict reflectance with measurement time, genotypes, 

and their interaction (formula: Reflectance ∼ 1 + Mtime 

* Genotype). The model included plant ID as a random 

effect (formula: ∼ 1  Plant_ID). Table  2 Model 8 corre-

sponds to the leaf position experiment. We fitted a lin-

ear mixed model to predict Reflectance with GeneGroup, 

measurement time, and leaf ID (formula: Reflectance ∼ 

1 + GeneGroup + Mtime + leaf ). The model included 

Plant_ID as random effect (formula: ∼ 1  Plant_ID).

P‑value adjustment for multiple testing

We adjusted p-values for the multiple tests conducted 

across wavelengths with the function p.adjust() in R 

using method “BY” based on the study of Benjamini and 

Yekutieli [60]. This controls the false discovery rate: the 

expected proportion of false discoveries amongst the 

rejected hypotheses, which is commonly used e.g. for the 

analysis of transcriptomic or metabolomic datasets hav-

ing similar or more dimensions compared to our spec-

troscopy dataset of ca. 2 000 wavelength “features” [61].

Results
Model performance

Here, we report model test results for wavelength 500 nm 

to indicate total variance explained, and variance struc-

ture, for the various linear models used across the data-

set (Table 2). In linear models and linear mixed models, 

the standardized parameters were obtained by fitting 

the model on a standardized (normalized) version of the 

dataset. The 95% Confidence Intervals (CIs) and p-values 

were computed using a Wald t-distribution approxi-

mation. Adjusted p-values across all wavelengths are 

presented alongside supporting analyses (PCA, CV com-

parison) in the following sections.

We conducted one-way ANOVA on the UT-WT 

samples across the three experiments (Table  2 Model 

1), which suggested that the main effect of experiment 

was statistically significant and large  (F2, 142 = 18.63, p 

< 0.001;  Eta2 = 0.21, 95% CI [0.11, 1.00]). We also used 

one-way ANOVA for the comparison of UT-WT, EV1, 

and EV2 samples in the Glasshouse (Table  2 Model 4). 

This ANOVA (formula: Reflectance ∼ Genotype_ID) 

indicated that the main effect of Genotype_ID was statis-

tically non-significant and small when comparing these 

three reference genotypes  (F2, 10 = 0.27, p = 0.769;  Eta2 = 

0.05, 95% CI [0.00, 1.00]).

For Field_AZ, we fit two linear models. (One (Table 2 

Model 2), built to predict reflectance with genotype 

groups, measurement time, batch, and leaf numbers, 

explained a statistically significant and moderate pro-

portion of variance  (R2 = 0.17,  F39, 739 = 3.76, p < 0.001, 

adj.  R2 = 0.12). The model’s intercept, corresponding to 

UT-WT plants in the morning measurement, batch 1, 

one leaf, was at 0.09 (GeneGroup = UT-WT, Mtime = 

am, Batch = 1, Leaf_Num = 1, 95% CI [0.08, 0.11],  t739 

= 11.77, p < 0.001). The second model (Table  2 Model 

3) was designed to explore the same non-genetic effects 

with only the UT-WT samples. This model explained a 

statistically not significant but substantial proportion 

of variance  (R2 = 0.46,  F36, 62 = 1.45, p = 0.098, adj.  R2 

= 0.14). The model’s intercept, corresponding to morning 

measurement, batch 10, one leaf, was at 0.09 (Mtime = 

am, Batch = 1, Leaf_Num = 1, 95% CI [0.08, 0.10],  t62 = 

17.37, p < 0.001).

In the Glasshouse, we divided the dataset and selected 

two models on each subset. Table  2 Model 5 contained 

PLs and UT-WT samples, and genotype group was the 

only predictor, thus it was the same as one-way ANOVA. 

The ANOVA suggested that the main effect of genotype 

group was statistically significant and large (F(1, 37 = 

10.93, p = 0.002;  Eta2 = 0.23, 95% CI [0.06, 1.00]). Table 2 

Model 6 contained TLs and EV samples. We fit a linear 

model to predict reflectance with genotype group, and 

this explained a statistically not significant but substan-

tial proportion of variance  (R2 = 0.35,  F7, 20 = 1.54, p = 

0.211, adj.  R2 = 0.12). The model’s intercept, correspond-

ing to GeneGroup = EV, was at 0.07 [95% CI (0.07, 0.08), 

 t22 = 49.92, p < 0.001].

In Field_UT, we built two models for the line screening 

experiment and the leaf position experiment separately. 

Table 2 Model 7 contained TLs and EV samples. We fit a 

linear mixed model to predict reflectance with measure-

ment time, genotypes, and their interaction, including 

plant ID as a random effect due to the repeated measures 

design. The model’s total explanatory power was sub-

stantial (conditional  R2 = 0.19) and the part related to 

the fixed effects alone (marginal  R2) was 0.12. The mod-

el’s intercept, corresponding to Mtime = am, Genotype 

= EV, was at 0.08 (95% CI [0.07, 0.09],  t94 = 18.74, p < 

0.001). Table  2 Model 8 corresponded to the leaf posi-

tion experiment. We fit a linear mixed model to predict 

reflectance with measurement time, and leaf ID, includ-

ing plant ID as a random effect. The model’s total explan-

atory power was substantial (conditional  R2 = 0.25) with 

the the part related to the fixed effects alone (marginal 
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 R2) equal to 0.13. The model’s intercept, corresponding to 

GeneGroup = UT_WT, Ctime = am, leaf = 2, was at 0.11 

(95% CI [0.09, 0.12),  t29 = 18.83, p < 0.001].

Total variance across the three experiments

We conducted principal component analysis (PCA) 

across all three datasets (Fig. 3a–c). The Field_UT dataset 

(orange) had the largest range of variance and the Glass-

house dataset (green), the smallest. The two field-col-

lected datasets revealed overlapping distributions along 

PC1 and PC2, with the Field_UT dataset being more 

widely scattered and the Field_AZ, more tightly clus-

tered. The Glasshouse dataset was clearly separated from 

the Field_AZ dataset along PC2, but overlapped along 

PC1. The two field-collected datasets have a more simi-

lar range of variance along PC3 and PC4, where Field_AZ 

dataset was distributed within the range of Field_UT 

along PC3, and partly separated along PC4. The Glass-

house dataset was distributed within the range of the two 

field-collected datasets along PC3 and PC4. Together, the 

first four components explained ca. 95% of total variance. 

Thus, we examined the contributions of wavelengths to 

these components (Fig. 3c).

Measured wavelengths contributed almost evenly to 

PC1. PC2 was dominated by wavelengths in the near-

infrared (NIR) especially from ca. 1100–1400  nm, 

indicative of cell structure, and water absorption bands 

between SWIR1 and SWIR2 and the wavelengths follow-

ing SWIR2, with relatively large contributions from the 

VIS range ca. 550–700 nm and in the SWIR1. PC3 was 

dominated by wavelengths at the red edge and NIR from 

750–1000  nm, the SWIR1, and a peak at ca. 1400  nm 

in the water absorption band between NIR and SWIR1. 

VIS wavelengths contributed most to PC4. The over-

all distribution of experiments along the first 4 PCs was 

similar when analyzing only reference (UT-WT) sam-

ples (Fig. 3d, e), except that PC2 was instead dominated 

by VIS, the water band between NIR and SWIR1 and the 
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Fig. 3 Principle components analyses (PCA) across all three datasets indicate that experimental setting determines variance structure. a, b PC1-4 
of PCA across all samples in the three datasets. Each blue circle is a sample measured in Field_AZ, each orange triangle is a sample measured 
in Field_Utah, and each green square is a sample measured in the Glasshouse. This color scheme is retained in further figures, unless stated. Shaded 
regions indicate 95% confidence intervals. c Contribution of reflectance calculated at each wavelength to the first 4 PCs. Blue: PC1, orange: PC2, 
green: PC3, grey: PC4. d, e PC1–4 of PCA across the three datasets using only UT-WT samples; f contribution of wavelengths to the first 4 PCs. The 
color and shading scheme of (d)–(f) is the same as in (a)–(c)
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SWIR1, indicating that experimental differences, rather 

than different compositions of genotypes in each experi-

ments, explained a large proportion of the variance struc-

ture across the three datasets.

We furthermore conducted Analysis of Variance 

(ANOVA) on the reference (UT-WT) samples in the 

three experiments for leaf reflectance at each wave-

length across 400 nm-2500 nm (Table 2 Model 1), fol-

lowed by Tukey post-hoc pairwise tests and using the 

Benjamini-Yekutieli adjustment for multiple testing, 

to indicate non-genetic variation (Fig. 4). We used the 

coefficient of variation (CV) of the calculated reflec-

tance (section Coefficient of variation, and bootstrap-

ping) to represent the variation among different groups 

of plants. Such variation may result from several fac-

tors, including growth environment, measurement time 

and methods, as summarized in Fig.  2. We investigate 

these factors in more detail in the following sections.

The differences across all reference (UT-WT) sam-

ples were greatest across the VIS, NIR and SWIR2 parts 

of the spectrum, including some bands between the 

NIR and SWIR1, and between the SWIR1 and SWIR2 

regions, dominated by water absorption, as shown 

in Fig.  4a. Water absorption differed among environ-

ments regardless of whether measurements were made 

on-plant (Glasshouse, Field_UT) or on hydrated cut 

leaves (Field_AZ), as seen in Fig. 4b. When comparing 

glasshouse measurements to either field measurement, 

spectra varied most in the VIS and into the red edge, 

water absorption bands and the SWIR2. Interestingly, 

Field_UT samples also differed strongly from Glass-

house samples in the NIR, while Field_AZ samples did 

not, although leaf morphology in the AZ experiment 

was distinct from the Glasshouse and Field_UT experi-

ments (Additional file  1:  Fig. S1d). Samples from the 

two field experiments differed from each other most 

in the red edge between the VIS and the NIR, water 

absorption bands, and in the SWIR2 region (Fig.  4b). 

Thus, the common difference between the glasshouse 

and field experiments was in the VIS and in the water 

absorption bands in the SWIR.

Total variance within each experiment

We then investigated variance within each of the three 

datasets individually. Figure 5a–c shows the coefficient of 

variation for different groups and relative measurement 

uncertainty in each dataset. For the Field_AZ and Glass-

house datasets, the reference samples were the least vari-

able group across most bands, but not for the Field_UT 

dataset. Measurement uncertainty of three datasets is 

shown separately in Fig. 5d, and was mostly smaller than 

1% across the analyzed wavelengths. This corresponds 

to less than 10% of spectral variation within each experi-

ment, which ranged from ca. 5–20% in the Field_AZ and 

Glasshouse experiments and from 10–40% in the Field_

UT experiment. Figure  5e–g shows the distribution of 
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Fig. 4 Comparing leaf spectra of Reference (UT-WT) samples reveals widespread effects of experimental setting on the VIS, NIR and SWIR2, 
and water absorption bands, and a common effect of field versus glasshouse settings on visible wavelengths. a Each shaded region in blue, orange, 
or green indicates the range of calculated reflectance for all UT-WT samples in the corresponding experiment (Field_AZ, Field_UT, Glasshouse). 
Each solid colored line is the coefficient of variation of all UT-WT samples in the corresponding experiment. The pink dotted line shows the p-values 
from a one-way ANOVA across all UT-WT samples with experiment as the factor. The pink dashed line shows the p-values after Benjamini-Yekutieli 
adjustment. Horizontal pink dotted lines indicate a p-value of 0.05, which is commonly used as a threshold for statistical significance. b P-values 
from Tukey post-hoc tests for pairwise comparisons following the ANOVA: blue, Field_AZ vs. Glasshouse; orange, Field_UT vs. Glasshouse; black, 
Field_AZ vs. Field_UT. Dashed lines: original p-values from post-hoc tests; solid lines: Benjamini-Yekutieli-adjusted p-values
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samples along PC3 and PC4 in the two field datasets, or 

PC1 and PC2 in the Glasshouse dataset, which are the 

principle components that best distinguished the refer-

ence and non-reference groups in each experiment (see 

distributions along other PCs in Additional file  1: Fig. 

S3). In all three datasets, the first PC explained more 

than half of the variance, and the first four PCs explained 

over 95% of the total variance (Additional file 1: Fig. S3). 

Clusters comprising either reference samples (UT-WT 

and/or EV) or non-reference samples (PLs, RILs, and/

or TLs, see Fig. 2) mostly overlapped along PCs 1 and 2 

in field datasets, and differed more along PCs 3 and 4 in 

their region of overlap, especially for Field_AZ (Fig. 5e). 

As for the Glasshouse dataset, reference samples clus-

tered more tightly than non-reference samples along PCs 

1 and 2 (Fig. 5g), while the two groups mostly overlapped 

along PCs 3 and 4. Figure 5h–k shows the contribution of 

reflectance at each wavelength to the first 4 PCs.

PC1 explained 60–71% of variance per dataset (Addi-

tional file 1: Fig. S3). The region from 400–500 nm (vio-

let to green light) contributed about five times as much 

to PC1 for the two field datasets, as for the Glasshouse 

dataset. Otherwise, there was a similar contribution of 

different wavelengths to PC1, except for the range around 

500–700 nm (green to red light) and the red edge, which 

contributed least to PC1 in Glasshouse and Field_AZ 

(Fig. 3d). From ca. 800 nm onward (NIR), contributions of 

individual wavelengths to PC1 ranged from about 0.03%, 

to about 0.08% (which was the maximum contribution of 

any wavelength to PC1), with longer wavelengths tending 
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Fig. 5 Genotype groupings influenced variance structure differently within each of the three experiments, with visible and SWIR absorption bands 
contributing most consistently to the PCs that best distinguish genotype groups. a–c Coefficient of variation for spectra of genotype groups 
compared to relative measurement uncertainty within each experiment. The measurement uncertainty of the three experiments is separately 
shown in (d) for comparison. e–g Distribution of samples along PCA dimensions best distinguishing different genotype groups: PC3 and PC4 
for the field experiments (e, f), and PC2 (shown versus PC1) for the glasshouse experiment (g). Shaded regions show 95% confidence intervals 
for each group, i.e. reference samples (UT-WT, EV) versus non-reference samples (PLs, RILs, TLs). h–k Contribution of reflectance at each wavelength 
to the first 4 PCs in each dataset
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to contribute more in all of the individual datasets (but 

with dips in the water absorption bands).

PC2 explained 11–25% of total variance in each 

dataset (Additional file  1: Fig. S3) and was gener-

ally dominated by contributions in the NIR, but with 

more variable patterns. In the Glasshouse – where PC2 

explained 25% of total variance, and where reference 

samples clustered more tightly than non-reference sam-

ples along PC2 – the region from 400 nm to ca. 600 nm 

(violet to orange light) contributed about six times as 

much as it did in the field datasets. This corresponds to 

higher spectral variation in that region for the PLs than 

for the reference genotypes in the Glasshouse dataset 

(Fig. 5c). For Field_AZ, where PC2 explained only 11% 

of total variance, the NIR region of greatest reflectance 

from ca. 800–1100  nm contributed about twice as 

much to PC2, as it did for the other two datasets. For 

Field_UT, where PC2 explained 16% of total variance, 

the SWIR2 region and neighboring water absorption 

bands contributed about twice as much to PC2 as for 

Field_AZ, with the water absorption bands contribut-

ing relatively more. The pattern of contributions to PC2 

in the SWIR was similar for the Glasshouse and the 

Field_UT datasets, and the magnitude of contribution 

was only slightly lower in the Glasshouse.

The entire VIS region dominated contributions to 

PC3 across all three datasets (explaining 7–10% of total 

variance per dataset, Additional file 1: Fig. S3), but this 

contribution was most pronounced for Glasshouse 

from ca. 650–750  nm (red wavelengths), followed by 

the two field datasets.

Finally, PC4 explained 2–7% of total variance per 

dataset (Additional file 1: Fig. S3). For Field_AZ, where 

PC4 explained 7% of total variance, VIS wavelengths, 

especially from ca. 500–600  nm (green-orange) and 

700–750  nm (red light), contributed most, together 

with the water absorption bands between SWIR1 and 

SWIR2, and wavelengths near 2500  nm. In Field_UT, 

where PC4 explained only 2% of total variance, the 

greatest contributions came from wavelengths in the 

NIR region (from ca. 1000–1100  nm), and part of the 

water absorption band following SWIR1, with substan-

tial contributions in the red and other NIR and SWIR1 

wavelengths and part of the water absorption band 

between NIR and SWIR1. For the Glasshouse, where 

PC4 explained only 3% of total variance, the greatest 

contributions came from several regions in the VIS 

(ca. 400–600 nm, blue to orange), NIR (red edge to ca. 

1100 nm with a dip at ca. 1000 nm), SWIR1, and from 

the same absorption bands in the SWIR which also 

loaded onto PC4 for Field_AZ.

Genotypic effects on spectral variation

To study the genotypic effects on variance within each 

experiment, we first investigated features distinguishing 

populations in the MAGIC forward genetics experiment. 

We conducted comparisons separately for Field_AZ and 

Glasshouse measurements (Fig. 6).

In the larger experiment conducted in Field_AZ, we 

compared three groups of genotypes: the MAGIC RILs, 

MAGIC PLs, and the interspersed UT-WT reference, 

using linear model 2 in Table  2. The difference among 

all three groups was significant from 400 nm to 1800 nm 

except for ca. 800–1100  nm, including the VIS, NIR, 

and SWIR1 regions (Fig.  6a): differences starting from 

the end of the red edge at 760 nm, to the middle of the 

NIR region at 1000 nm, and from 1018 nm to 1127 nm, 

became non-significant after adjustment. In pairwise 

comparisons (Fig.  6b), these were the regions that dif-

fered significantly between RILs and the reference plants, 

whereas PLs differed from the reference only in the VIS 

region. PLs and RILs did not significantly differ in pair-

wise comparisons (Fig. 6b). Figure 6c, d shows the com-

parisons of CV. Overall, the spectral variation amongst 

both the RILs and the PLs was greater than that amongst 

the reference samples across most spectral bands, even 

when using bootstrapping to control for different total 

Fig. 6 PLs and RILs are best distinguished from reference genotypes (UT-WT, EVs) by visible and near-infrared reflectance peaks, in the field 
and in the glasshouse. a ANOVA across reflectance of PLs, RILs, and reference (UT-WT) samples in Field_AZ. Each colored shade in orange, yellow, 
or grey is the range of reflectance of all samples from the corresponding genotype group (PL, RIL, UT-WT). The pink dashed line is the p-value 
of ANOVA on all samples in three groups, and the pink solid line is the p-value after adjustment. b Adjusted p-values from post-hoc tests for pairwise 
comparison. Orange shows the comparison between PLs and UT-WT, yellow between RILs and UT-WT, and black between PLs and RILs. c The 
coefficient of variation (CV) of RILs and UT-WT samples. The yellow shaded area indicates the range of bootstrapped (100 times) CV results for RILs 
and the dotted yellow line indicates the mean of the bootstrapped results. The black line shows the CV of the UT-WT samples. d The CV of PL 
and UT-WT samples. The grey shaded area indicates the range of bootstrapped (100 times) CV results for the UT-WT samples and the dotted 
black line indicates the mean of the bootstrapped results. The orange line shows the CV of the PL samples. e ANOVA across reflectance of PLs 
and reference(UT-WT, EVs) samples calculated from Glasshouse measurements. Interpretations of colors and lines are the same as in (a). f The CV 
of PLs and reference samples. The orangle shaded area indicates the range of bootstrapped CV results for PLs (100 times) and the dashed line 
indicates the mean of the bootstrapped results. The black line shows the CV of the reference samples

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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sample numbers, and especially outside of the NIR region 

of highest absolute reflectance values (Fig. 6c, d).

The smaller glasshouse experiment included the PLs 

compared to a set of reference lines comprising both 

UT-WT and two EV genotypes, which did not differ sig-

nificantly from each other (Additional file 1: Fig. S4). In 

an ANOVA (Table  2 model 4), the greatest differences 

between the glasshouse-measured PLs and reference 

samples were in the VIS as well as the NIR regions, at spe-

cific wavelengths (400–427  nm, 502–641  nm and 694–

1142  nm, Fig.  6e). The differences in total within-group 

variation were less pronounced in the glasshouse, espe-

cially when controlling for different sample numbers, but 

were clearest in the VIS and NIR regions (Fig. 6f ).

We then compared reflectance of samples from the 

different genotypes in the reverse genetics experi-

ments using transgenic lines. We again conducted 

comparisons separately for Field_UT and Glasshouse 

measurements. In Field_UT, we built a mixed model as 

summarized in Table  2 (model 7). In the Glasshouse, 

we used linear model 6 in Table  2. In Fig.  7a and c, 

each dashed colored line indicates the p-values of the 
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Fig. 7 Reflectance spectra of irCHAL differed significantly from the reference genotype (EV) at the beginning of the VIS in the field, and the irAOC 
line differed significantly from EV in infrared wavelengths in the glasshouse, corresponding to generally greater variation among the TLs 
in the infrared in the glasshouse, but not in the field. a TLs compared with EV in mixed models in Field_UT. Each dashed colored line indicates 
the p-value of the corresponding TL—green: irCHAL, vermilion: irLOX3 – compared with EV in the mixed model, without adjustment for testing 
multiple wavelengths. The solid colored line shows the adjusted p-value of the TL versus EV. All other comparisons of EV with transgenics become 
1 across all wavelengths after adjustment and can be found in Additional file 1: Fig. S4. (b) The coefficient of variation (CV) of TL and EV samples 
in Field_UT. The blue shaded area indicates the range of bootstrapped (100 times) CV results for TLs and the dashed blue line indicates the mean 
of the bootstrapped results. The black line shows the CV of the EV samples. (c) TLs compared with EV in the linear model in the Glasshouse. 
Each dashed colored line indicates the p-value of the corresponding TL—blue: irAOC, orange: irRCA—compared with EV in the linear model 
without adjustment. The solid colored line shows the adjusted p-values. d The coefficient of variation (CV) of TLs and EVs samples in the Glasshouse. 
Interpretations of colors and lines are the same as in (b)
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corresponding TL compared with EV, prior to correc-

tion for multiple testing across wavelengths. Following 

correction, none of the TLs differed significantly from 

EV in the field, and in most cases, corrected p-values 

were equal to 1 across the spectrum, except for irCHAL 

and irLOX3 in Field_UT, and irAOC and irRCA in the 

Glasshouse. We therefore only showed the results of 

these lines in Fig. 7a and c. The full results are shown 

in Additional file 1: Fig. S4b, c. The CVs (Fig. 7b) were 

generally larger in Field_UT than in the other experi-

mental settings (Field_AZ, Glasshouse). Surprisingly, 

the EV group showed a similar or higher CV as the 

TLs group in Field_UT, indicating larger within-gen-

otype than between-genotype effects on variance in 

this experiment. In Field_UT, the spectra of one TL, 

irCHAL, showed significantly different patterns from 

those of EV after p-value adjustment for multiple test-

ing across wavelength 400–420 nm in the beginning of 

the VIS range. In the glasshouse, irAOC – like irLOX3, 

deficient in jasmonate hormones – showed significantly 

different patterns across wavelengths 1135–1889  nm 

and 2034–2381  nm in the NIR and SWIR ranges (7c). 

The CV of TLs tended to be greater than the CV of EV 

plants grown in the glasshouse (Fig. 7d).
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Fig. 8 Time of day of measurement effects on leaf reflectance. a Effects of measurement time in the mixed model in Field_UT. Shaded areas 
indicate the range of reflectance for samples measured at am (yellow), noon (orange), and pm (blue). The dashed pink line shows the p-value 
of the efect of time, and the solid pink line shows the adjusted p-values. b P-values from the post-hoc pariwise comparison. The dashed yellow 
line shows the p-values of am vs. noon measurements. blue line am vs. pm, orange line noon vs. pm. The solid colored lines indicate the adjusted 
p-values. c and d Effects of measurement time in the linear model 2 (with all samples) and 3 (with only UT-WT samples) in Field_AZ. The colors 
and lines have the same interpretation as in (a)
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Other within‑experiment effects on spectral variation

Effects of measurement time

In Field_UT, the experiment was designed to broadly 

assess repeatability over time, and thus the same plants 

were measured three times, at three different time 

points (see section Growth conditions and environ-

ments). The effects of measurement time were assessed 

with the mixed model 7 in Table 2. Figure 8a shows the 

range of reflectance values by time point, as well as the 

p-values of the effect of time, before and after adjustment 

for multiple testing. The effect of time was significant 

in multiple ranges, including in the VIS (424–611  nm), 

from the red edge to NIR (696–1364  nm), and SWIR1 

(1511–1788 nm). Figure 8b shows the post-hoc pairwise 

comparison on the effect of time. Comparing noon and 

am measurements, all p-values were 1 after adjustment. 

The difference between pm and am was a bit larger, and 

adjusted p-values were less than 1 at some bands in the 

VIS, around the red edge (671–700 nm), and the whole 

NIRrange, but never approached the threshold for sig-

nificance. However, there was a large difference between 

noon and pm measurements, with this comparison 

showing very similar p-values with the total effect of time 

in Fig.  8a, indicating that the difference between noon 

and pm contributed most to the significant overall effects 

of time in this dataset.

In Field_AZ, measurements were done in batches to 

include RILs regularly interspersed with plants of the ref-

erence genotype (UT-WT) and the PLs were randomly 

distributed among the RIL samples, corresponding to the 

blocked and randomized planting design. These measure-

ments were conducted over 7 consecutive days between 

dawn and dusk, moving across the field plot from west 

to east. We divided the daily batches into the same 

three time groups as for Field_UT (see section Growth 

conditions and environments). Although the genotype 

composition of the plants was randomized across meas-

urements (excepting the consistent and regular inclu-

sion of the UT-WT reference genotype), not every one 

of the ca. 350 genotypes could be measured within each 

measurement time window, and some genotype group 

variation thus likely contributed to the other variables in 

Model 2. To obtain a better estimation of the effects of 

time, leaf number, and batch, we therefore constructed 

an additional Model 3 using only the UT-WT samples. 

Fig. 8c and d show the results of time effects from Model 

2 and Model 3 in Table  2. The corresponding post-hoc 

pairwise comparisons can be found in Additional file  1: 

Fig. S5a, b. We observed significant time effects in Model 

2, and the significance regions were very similar to those 

identified for Field_UT (see 8a), although the VIS range 

was not significant, and patterns around the latter part of 

SWIR1 differed. In contrast, these time effects were not 

significant in Model 3, although prior to adjustment for 

multiple testing, the p-values showed a similar pattern 

and reached the significance threshold at NIR and some 

water bands, as well as the second half of SWIR2. Simi-

larly, we found a strong batch effect (Additional file 1: Fig. 

S5c) in Model 2 which was significant across almost all 

wavelengths (except 1898–2001 nm at the water absorp-

tion region), even after p-value adjustment. In contrast, 

the adjusted p-values for the batch effect all became 1 in 

Model 3. Together, this indicates that the significant time 

and batch effects observed in the overall analysis of the 

Field_AZ dataset are driven by genetic variation among 

the PLs and RILs, which is not present in the UT-WT 

samples. This highlights the importance of consider-

ing genetic variation when assessing non-genetic effects 

(time, leaf number, and batch in our case) on leaf reflec-

tance measurements.

Leaf number and leaf position

In Field_AZ, the plants were bushy and varied morpho-

logically across the field plot. For between-genotype 

comparisons, this was accounted for by the blocked and 

randomized design. However, as a result, some plants did 

not have mature, non-senescent, sunlit leaves at a com-

parable height which were also large enough to fill the 

measurement window of the spectroradiometer. In such 

cases, we conducted the measurement placing two leaves 

next to each other, side-by-side, in order to fill the meas-

urement window with lamina, without overlapping but 

also avoiding gaps between leaves. In linear Models 2 and 

3 described in Table 2, we included leaf number as a pre-

dictor variable. Figure 9a and b shows the resulting p-val-

ues. For Model 2, which included all genotypes measured 

in Field_AZ, the number of leaves (1 or 2) significantly 

affected reflectance at 508–641  nm, 693–707  nm, 731–

1148 nm, 1400–1539 nm and 2344–2500 nm after adjust-

ment: mostly in portions of the VIS and NIR, and in one 

water absorption region. In Model 3, which included 

only the reference UT-WT genotype, the effects of leaf 

number were not significant following p-value adjust-

ment, but were strongest in the NIR and the second half 

of SWIR2. The selection of two leaves versus one leaf for 

measurement was dependent on leaf size as described 

in the section Measurement procedures, and could have 

affected some genotypes more than others.

In Field_UT, we measured three leaves (older, interme-

diate, younger) within the same plant for a set of UT-WT 

plants in order to determine the spectral variation 

between older and younger leaves at standardized posi-

tions (see section Growth conditions and environments). 

This experiment include 39 UT-WT samples (3 leaves/

plant from 13 UT-WT plants). We tested the influence 
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of leaf position and measurement time, controlling for 

plant ID in a mixed model (Table 2, model 8). Figure 9b 

and c show the reflectance, resulting p-values from this 

model, and the post-hoc compairwise comparison. For 

both comparisons between rosette (older) vs lower stem 

(intermediate), and younger stem (younger) vs lower 

stem (intermediate), p-values became 1 across all wave-

lengths after adjustment. There were larger differences 

between younger stem (younger) and rosette (older) 

leaves in the latter part of VIS, which largely contrib-

uted to the total leaf position effect shown in Fig. 9a. Leaf 

position “intermediate” is equivalent to the leaf position 

used for the screening experiment in Field_UT and rep-

resentative of the developmental stage for leaves chosen 

in all three experiments.

Discussion
We investigated the use of optical spectroscopy to 

assess plant genetic variation using 360 inbred lines of 

the wild tobacco Nicotiana attenuata, in a set of three 

experiments under different (glasshouse and field) con-

ditions, and using different types of genetic variation, 

from natural variants, to a genetic mapping population 

derived from those variants, to transgenic lines. Plant 
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Fig. 9 Leaf number required to fill measurement window, and leaf position corresponding to leaf age, affected reflectance at different 
wavelengths. Effects of number of leaves (one or two) used for reflectance measurements in linear model: a Model 2 (with all samples), b Model 
3 (with only UT-WT samples) in Field_AZ. Shaded areas indicate the range of reflectance for samples measured with 1 leaf (light orange), versus 2 
leaves placed side-by-side to form one layer (blue), which was done when needed to fill the measurement window in Field_AZ due to leaves 
being generally narrower in that experiment. The dashed pink line shows the p-value for 1- vs. 2-leaf measurements. The solid pink lines indicate 
adjusted p-values. c Effects of leaf position in the linear model in Field_UT. Shaded areas indicate the range of reflectance for yellow: younger (Leaf 
1), orange: intermediate (Leaf 2), and blue: older (Leaf 3) leaves. The dashed pink line shows the p-value for effects of the leaf position, solid pink line 
after adjustment. P-values from the post-hoc pariwise comparison. The dashed yellow line shows the p-values of Leaf 1 and Leaf 2 measurements, 
blue line Leaf 1 vs. Leaf 2, orange line Leaf 2 vs. Leaf 3. Solid colored lines are the p-values after adjustment



Page 21 of 28Li et al. Plant Methods          (2023) 19:108  

composition, time course of measurement, aspects of the 

measurement method (on-plant or off, specific leaf devel-

opmental stages) and experimental setting varied within 

and across the three experiments (see Growth conditions 

and environments for details, and the summary table in 

Fig.  2b). These factors, some introduced by design and 

others by necessity, limit the comparisons we can make, 

but allow us to study effects of common experimental 

factors on our ability to detect differences among a large 

and controlled set of natural and transgenic genotypes, 

and to compare measurements across experiments.

We first analyzed the overall variance structure among 

and within experiments using principal component 

analysis (PCA), and found that experimental setting 

(Field_AZ, Field_UT, Glasshouse) had large effects on 

total variance. We found an influence of genetic varia-

tion on clustering along PC2 (explaining up to 25% of 

variance), PC3 (explaining ca. 10% of variance), or even 

PC4 (explaining up to 7% of variance), depending on the 

experiment (Fig.  5d–f). We then analyzed genetic and 

non-genetic sources of variance within each experiment 

separately. We compared the spectrally resolved coeffi-

cients of variation for genotype groups while controlling 

for different sample sizes, and we built linear regression 

and mixed models to study the effects of different fac-

tors across leaf spectra. We described the magnitude 

of variance resulting from these factors and the wave-

length regions affected. The results can help to design 

future studies using spectroscopy to assess plant genetic 

variation.

Experimental conditions had the greatest influence 

on differences among leaf spectra

Differences among individual leaves and plants were the 

largest source of variance, and these were strongly influ-

enced by experimental conditions. The Field_UT dataset 

showed the largest range of variance, both in the PCA 

across the whole dataset (Fig.  3a, b) as well as in spec-

trally resolved coefficients of variation, which were about 

two times as large (reaching around 40%) across the spec-

trum (Fig. 5a–c) as for the other two experiments (reach-

ing around 20%). Although the Field_AZ and Glasshouse 

experiments showed a similar range of variation, CV’s 

of VIS and NIR spectra were about two times as large 

in Field_AZ as in the Glasshouse. In the Glasshouse, 

the TLs group showed a larger CV than the reference 

group in the SWIR and some water absorption bands. In 

contrast, differences between TLs and the reference in 

Field_UT were indistinct and not statistically significant, 

with the exception of one TL, irCHAL, differing signifi-

cantly in a narrow wavelength range at the beginning of 

the VIS (Fig.  7). This supports other studies indicating 

that leaf spectra can serve as sensitive indicators of plant 

responses to changing environments, and suggests that 

control of experimental conditions is important when 

using spectroscopy to detect subtler genetic differences 

[2, 7].

The relatively large variation in the Field_UT dataset 

may result from changes in single leaves over the multi-

ple measurement days, as this was the only experiment 

in which the same leaves were measured repeatedly. Also, 

measurements in Field_UT were conducted on-plant 

outdoors while those for the Glasshouse and Field_AZ 

were conducted indoors, and so changing environmen-

tal conditions during measurements may have contrib-

uted to greater overall variance. Consistently with this, 

measurement uncertainty was about twice as great in 

Field_UT as in the other two datasets (Fig. 5k), although 

measurement uncertainty accounted for at most 1% of 

total variance in each of the experiments.

In the Glasshouse dataset, which had the smallest range 

of variance (Fig.  3) and the most standardized environ-

ment, plants generally looked most similar to each other 

(Additional file  1: Fig. S1d). Differences were observed 

in the Glasshouse between the EV reference and TLs, 

especially the irAOC line, which were not detected for 

the same lines in Field_UT, and the TLs as a group were 

more variable than EV plants in the Glasshouse but not 

in the field (Fig.  7). The plants in the glasshouse were 

also measured within the smallest time window (Fig. 2b), 

likely minimizing between-individual variation within 

each genotype, which had a much larger effect on vari-

ance than did measurement time per se in our experi-

ments (Fig.  8). One line, irCHAL, differed significantly 

from the reference in Field_UT, but only for a small 

range at the beginning of the VIS (400–420 nm) and of 

our range of measurement, which is subject to relatively 

higher measurement uncertainty (see Fig. 5d). However, 

the CHAL gene affects the synthesis of compounds that 

absorb UV light, and so the difference in this wavelength 

range near the transition from UV to VIS light is consist-

ent with CHAL gene function [25].

We observed significant effects of measurement time 

on leaf reflectance in both the Field_UT and Field_AZ 

experiments (Fig. 8). In the Field_UT experiment, where 

the same plants were measured at three different time 

points across three days, we found significant time effects 

across multiple wavelength ranges, including the VIS, 

from the red edge to the NIR, and SWIR1 (Fig. 8a). Inter-

estingly, the most significant differences were observed 

between noon and pm measurements (Fig.  8b). These 

two time frames may best capture the difference between 

plants at peak photosynthetic activity, and entering the 

non-photosynthetic evening period. However, measure-

ments in Field_UT were conducted at a time in the sea-

son when the ambient weather conditions ranged from 
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rain to sun, and variation in weather conditions and 

changes in plants over time contribute to the effect of 

time in this dataset. In the Field_AZ experiment, where 

measurements of different plants (no repeat measure-

ments) were conducted over seven consecutive days from 

dawn to dusk and later put into the same three groups 

(am, noon, pm) as used in Field_UT, we also observed 

significant time effects across similar spectral regions 

(Fig.  8c). However, when we constructed a model using 

only UT-WT samples, these time effects were no longer 

significant (Fig. 8d). This suggests that the time effects in 

Field_AZ may be increased by genetic variation among 

the PLs and RILs – perhaps including genotypic differ-

ences in phenology and environmental responses across 

the week of measurement – which was not present 

among the UT-WT samples. Similarly, we found a strong 

overall batch effect in the Field_AZ experiment, which 

was significant across almost all wavelengths even after 

p-value adjustment (Additional file 1: Fig. S5c), but was 

not observed in the model using only the UT-WT sam-

ples (Additional file 1: Fig. S5d), further highlighting the 

influence of genetic variation on leaf reflectance meas-

urements. Overall, the Field_AZ dataset showed inter-

mediate variance (Fig. 3a, b), which likely resulted from 

the large number of natural and intercrossed genotypes 

(351; Fig. 6) as well as the gradient of plant growth across 

the field plot, which was larger than the plots in Field_UT 

due to the greater number of plants (Additional file  1: 

Fig. S1). In sum, our data indicate relatively weak time-

of-day effects on leaf reflectance measurements during 

the photophase (when using a standardized light source 

and background), and relatively stronger day-to-day and 

plant-to-plant variation, especially when including mul-

tiple genotypes.

A PCA was conducted only on the UT-WT samples 

from each experiment in order to remove the effect of 

genotype and thus reveal non-genetic effects. This analy-

sis showed the same relative differences in total variance 

among experiments, which was again greatest within 

samples from Field_UT, followed by Field_AZ and the 

Glasshouse (Fig. 3d, e). This is consistent with the infer-

ence that environmental factors were the main determi-

nants of total variance in each dataset. Contributions to 

PC1 were evenly distributed among wavelengths (Fig. 3f ). 

Thus PC1 may have been mostly influenced by the 

brightness of the measured signal rather than particular 

molecular absorption or structural features. Contribu-

tions from NIR dominated PCs 2 and 3 while VIS wave-

lengths dominated PC4. The SWIR1 region, influenced 

by water absorption and non-pigment dry matter con-

tent, contributed more to PCs 2 and 3, and the SWIR2 

region contributed more to PC1 and PC3. Spectra from 

UT-WT plants across the three experiments furthermore 

differed significantly at most wavelengths, except some 

water absorption wavelengths following NIR; the SWIR1 

region; and a small part of the water absorption bands 

following SWIR1; with WT samples in the Field_UT 

experiment differing most from the other two experi-

ments (Fig. 4).

UT-WT samples from the two field environments 

(Field_AZ and Field_UT) differed from each other pri-

marily in the red edge between the VIS and NIR regions, 

the NIR, some water absorption bands, and most of 

SWIR2 (Fig. 4). This likely reflects the difference in phe-

nology and growth form of the plants measured in Field_

UT (younger and less bushy) and Field_AZ (older and 

branchier, Additional file 1: Fig. S1), although we meas-

ured leaves at a comparable developmental stage across 

environments. Mature, non-senescent, light-exposed 

leaves in Field_AZ, however, came from side branches 

and were smaller than leaves of the same developmental 

stage in the other two environments, and so sets of two 

leaves were measured in Field_AZ when necessary to fill 

the measurement window, which especially affected the 

NIR and many water absorption bands between NIR and 

SWIR1 (Fig.  9a). Nevertheless, Field_UT measurements 

differed more from Glasshouse measurements than did 

Field_AZ, even though the measurement approach was 

most similar for UT and the Glasshouse (on-plant) and 

the structure of the measured plants was also most simi-

lar (younger and less branchy). The Field_UT and Glass-

house samples differed across the VIS and most of the 

NIR, in some water absorption bands, and in the SWIR2 

region influenced by non-pigment dry matter content. 

In comparison, UT-WT plants grown in Field_AZ did 

not differ from glasshouse-grown plants in the NIR, but 

otherwise differed in the same regions as those grown in 

Field_UT (VIS to red edge, SWIR2, and water absorp-

tion bands). Interestingly, the Glasshouse and Field_AZ 

samples clustered separately along PC2, both for the 

entire dataset (Fig. 3a) and for the UT-WT samples only 

(Fig. 3d); the NIR region of highest reflectance, related to 

leaf structure, contributed more to PCs 2 and 3 than to 

the other PCs.

Finally, we analyzed the effect of leaf position on reflec-

tance in a small side experiment in Field_UT (Fig. 9c, d), 

using the reference UT-WT. This analysis indicates that 

different leaf positions, which in this experiment are cor-

related with leaf age and not correlated to sun exposure, 

did not differ significantly when comparing younger, 

intermediate, or older leaves after p-value adjustment. 

Position mostly affected the VIS region into the red edge 

(514–714  nm), which tended to differ between younger 

versus older leaves. Within each experiment described in 

this study, leaves at a comparable physical position, light 
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exposure, and developmental stage were used in order to 

avoid such effects.

In summary, non-genetic factors had the largest influ-

ence on variation among measured leaf spectra, and 

these effects were spread across the spectrum. Thus, 

caution is advised when comparing leaf spectra datasets 

from different experiments, and it is challenging to iden-

tify signatures of genetic variation in spectra across envi-

ronments and experiments: genetic variation may not 

be a dominant feature, but a subtler facet of the dataset. 

Across all experiments, genetic variation seemed to most 

influence variation in parts of the VIS and SWIR regions 

and the red edge between VIS and NIR, and less consist-

ently in the NIR.

Specific aspects distinguish leaf spectra of different 

genotype groups

Together, the Field_AZ and Glasshouse data indicate 

consistently greater variation in the VIS range among 

the PLs and derived RILs, in comparison to the UT-WT 

and derived EV reference genotypes, and the other TLs 

derived from the UT-WT (Figs.  5a–c and 6). It is not 

surprising to find, on average, more visible variation 

among natural accessions and their derived offspring, 

than among inbred plants and otherwise-isogenic TLs 

targeting genes not directly involved in pigment or wax 

production. This is often one reason to prefer the use of 

genetically modified, otherwise isogenic plants to eluci-

date ecological gene function [62]. More specifically, PLs 

and RILs in the Field_AZ experiment varied more than 

the UT-WT reference in the VIS range between 400–

537 nm and 662–700 nm, and PLs showed more variabil-

ity compared to UT-WT reference across the whole VIS 

in the Glasshouse. This corresponds to violet, blue, blue-

green, and red light, and is within the overlapping region 

of absorption for chlorophylls a (absorption maximum at 

ca. 440 nm) and b (absorption maximum at ca. 470 nm), 

together with carotenoids (spectral feature at 520  nm) 

[63]. These results contrast with a recent phylogenetic 

analysis of plant spectra indicating that evolution is most 

tightly constrained in this part of the visible spectrum, 

and rapidly progresses towards optimization [13]. This 

contrast may be resolved by the difference in focus of our 

dataset, which analyzes variation across 360 genotypes of 

one species replicated across environments, as compared 

to macro-evolutionary studies focused on species means. 

Intraspecific variation and micro-evolutionary processes 

cannot be inferred from data on macro-evolutionary pat-

terns [64–66]. Our results characterize distinct natural 

variation in the optical properties of N. attenuata, which 

may reflect underlying differences in various leaf charac-

teristics, potentially including the accumulation of pig-

ments such as chlorophylls and carotenoids.

In the Glasshouse, the red edge and much of the NIR 

region, from 694 nm to 1142 nm, also significantly dif-

ferentiated the PLs from the reference genotype. The 

RIL population generated from the PLs, which was 

grown only in Field_AZ, differed significantly from 

the reference genotype across the VIS, NIR, and water 

absorption bands right before SWIR1 (413–1528  nm). 

Although the RILs differed significantly from the refer-

ence across a much greater range of the spectrum than 

did the PLs, the RILs never differed significantly from 

the PLs from which they were derived (same genetic 

material). Generally, greater variation in spectra across 

specific regions indicated greater genetic variability 

within both the Field_AZ and Glasshouse experiments 

(Fig. 6c, d, f ), which was best detected in the VIS (dom-

inated by differences in pigments) and around the tran-

sition from NIR to SWIR (explained by variation in leaf 

structure, water absorption, and non-pigment dry mat-

ter content). The much larger region of significant dif-

ference for the RILs vs. the reference, as compared to 

their parental lines vs. the reference, may simply be due 

to the much larger number of RILs sampled, as indi-

cated by the comparison of bootstrapped CVs in Fig. 6.

In contrast, the TLs, which were genetically identi-

cal to the reference genotypes except for the insertion 

of a specific small construct designed to knock down 

expression of a target gene and thereby manipulate spe-

cific traits, mostly did not show any significant differ-

ences to the reference (EV) either in the Glasshouse, or 

in the field (Field_UT). In Field_UT, irCHAL differed 

significantly from the EV reference in the main experi-

ment across a small window of 20 nm at the beginning 

of the measurement range, and there was no region of 

the spectrum where the CV of reflectance among TLs 

was systematically greater than for the reference EV 

genotype, when controlling for differences in sample 

number (Fig. 7a, b). By far the greatest region of spec-

tral variation in Field_UT was in the SWIR, peaking 

between SWIR1 and SWIR2 and at the end of the spec-

trum following SWIR2.

In the Glasshouse, only one TL, irAOC, differed sig-

nificantly from the reference genotypes (Fig.  7c), from 

the longer NIR wavelengths to water absorption bands 

following SWIR1 (1135–1889  nm), and most of SWIR2 

(2034–2384  nm). This line is knocked down in a gene 

coding for allene oxide cyclase, which catalyzes a rate-

limiting step in biosynthesis of the jasmonate plant hor-

mones: key regulators of specialized metabolites which 

mediate resistance against insects as well as necrotrophic 

pathogens [14, 41, 67]. Interestingly, the TL differing 

most from EV in Field_UT (though not significantly) 

was irLOX3, knocked down in a gene for a lipoxygenase 

enzyme which is also a rate-limiting step in jasmonate 
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biosynthesis, upstream of AOC [40]. Thus among the 

eight TLs manipulated in the expression of genes affect-

ing hormone production, phenolic accumulation, leaf 

structure, and photosynthesis (Table 1), manipulation of 

the jasmonates had the greatest effect. In the Glasshouse, 

the TLs as a group tended to be more variable than the 

reference in the same spectral regions that significantly 

differed for irAOC (Fig.  7d). These do not overlap with 

the parts of the spectrum that differed significantly 

between the PLs and the reference lines in the Glass-

house. Thus in this experiment, the traits manipulated 

in the selected TLs had a signature different from the 

natural variation measured among the PLs, even though 

the PLs were selected to include natural variation in jas-

monate signaling [14]. Taken together, this indicates that 

we were best able to detect natural variation affecting the 

VIS and NIR parts of the spectrum.

In summary, differences among groups of natural vari-

ants (PLs, RILs) were most pronounced in the VIS, espe-

cially around chlorophyll and carotenoid absorption 

features (Fig.  6) which are predicted to evolve rapidly 

towards optima across plant species [13]. The trans-

genic lines, selected for their differences in photosyn-

thetic rates but also protein content as well as contents 

of various non-pigment constituents (Table  1), indeed 

showed greater variation in SWIR wavelengths related 

to water absorption and non-pigment dry matter. Only 

the irAOC line deficient in jasmonate defense hormones 

and, in a narrow part of the blue range, the irCHAL line 

deficient in phenolic acccumulation, showed significant 

differences compared to reference genotypes. Variation 

distinguishing the TLs was masked by between-plant dif-

ferences in the Field_UT experiment, where overall varia-

tion was greatest (Fig. 7).

Limitations and outlook

We analyzed measurements of leaf reflectance from 

three different experiments including 360 characterized, 

homozygous genotypes of one wild plant species, Nicoti-

ana attenuata. These experiments were conducted at two 

different field locations and in a third, glasshouse loca-

tion, and plants were accordingly grown and measured at 

different times of year. Although the same measurement 

instruments and procedures for determining leaf reflec-

tance were used, aspects of the measurement approach 

also varied according to the experimental size and set-up.

We were not able to test directly for effects of all varia-

bles that may have affected leaf reflectance in our dataset. 

We did not compare measurements conducted on-plant 

directly with measurements of hydrated, cut leaves, an 

approach which varied by experiment, as did the place-

ment of the instrument in a more controlled indoor envi-

ronment versus carrying it from plant to plant outdoors. 

Differences were observed in water absorption bands 

across all three experiments regardless of whether leaves 

were measured on-plant, or cut and hydrated; and on-

plant glasshouse measurements were more similar to 

cut-leaf measurements from Field_AZ than to on-plant 

measurements from Field_UT (Fig.  4b). Measurement 

uncertainty, which is affected by instrument stability and 

thus indoor versus outdoor measurement environment, 

never exceeded 1% of total variation in any experiment 

(Fig. 5d).

The“effects of time” in our study were under specific 

conditions: in Field_UT, we measured the same set of 

plants in morning, noon, afternoon but on different days; 

in Field_AZ, measurements were conducted over seven 

consecutive days from dawn to dusk, without repeating 

any measurements on the same plants. The time effect in 

Field_AZ therefore incorporated not only different days, 

but also a randomized distribution of different genotypes. 

To address this, we constructed an additional model in 

Field_AZ using only the UT-WT samples. Limiting time, 

as well as measurement batch analyses to include only 

the reference genotype eliminated all significant effects 

of both factors. Leaf position, a proxy for developmen-

tal stage rather than light exposure in this study, likewise 

had a relatively small and non-significant effect on leaf 

spectra within the reference UT-WT genotype (Fig.  9). 

Plants in both the Glasshouse and Field_UT had a sim-

ple growth form with one main stem allowing to select 

single large leaves at comparable developmental and 

stem positions across plants, whereas the bushier growth 

form of plants in Field_AZ led us to choose leaves on side 

stems of comparable height and mature, non-senescent 

developmental stage, but which varied more in size (also 

within the reference UT-WT genotype). As a result, we 

sometimes used two leaves for measurements in Field_

AZ. When comparing across all reference, PL, and RIL 

genotypes in the Field_AZ experiment, this had signifi-

cant effects on part of the green-red window of the VIS 

(508–641 nm, 693–707 nm) which is the local reflectance 

maximum; the local reflectance maxima of the red edge 

and NIR region (731–1149  nm), the water absorption 

band between the NIR and SWIR1 (1400–1539 nm), and 

the SWIR2 from 2344 nm till the end (Fig. 9a). Although 

effects of leaf number were not significant when includ-

ing only UT-WT samples in Field_AZ, unadjusted p-val-

ues showed a consistent pattern with the results of the 

model including all genotypes. Because this includes sev-

eral of the regions varying most among genotype groups, 

it is important to consider accounting for differences in 

leaf number (one or two) used to fill the measurement 

window when analyzing specific genotype-phenotype 

associations in this dataset.
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In this study, we have not yet investigated specific gen-

otype-phenotype associations (e.g. by GWAS or QTL 

mapping), but first assessed overall effects by genotype 

group versus other influences. Specific genotype associa-

tions with candidate genes and loci will in some cases be 

stronger than the overall, subtle effects presented here; 

these stronger effects can be reliably assessed if impor-

tant confounding factors are taken into account, and 

specific associations can be verified by gene functional 

studies. Here, our main aim is to assess the spectral sig-

natures and relative influence of these confounding fac-

tors, versus spectral variation which seems to be more 

consistently associated with genetic variation. The bands 

from ca. 400-530  nm (violet to blue light) and from ca. 

660-700 nm (red light), which showed consistent differ-

ences between RILs and PLs versus the reference geno-

type, may give the most reliable indication of genetic 

variation in our dataset, by avoiding conflation with other 

experimental effects.

Removing outliers from our analysis, using the tracea-

ble procedure described and justified in the methods sec-

tion, did significantly influence our results. For instance, 

in the Field· UT dataset, two of the five plants removed 

during the final visual inspection (step 3) were UT-WT 

samples. The inclusion of these outliers notably altered 

the shape of the CV curve, particularly in the SWIR2 

region, leading to a pattern distinct from other genotypic 

groups. Upon their removal, the CV for the UT-WT 

group aligned more closely with the patterns observed 

in other groups, suggesting these two samples were 

likely anomalies rather than representative data points. 

We acknowledge that outlier removal can be subjective 

and may impact the analysis results. We thus detailed 

our outlier detection and removal process in the Meth-

ods section and an associated Additional file 1 figure for 

transparency and replicability. Careful identification and 

removal of outliers are crucial for accurate data interpre-

tation, as their inclusion can distort results.

While our study focused on individual leaf reflectance 

measurements using a contact probe, it is important to 

acknowledge the role of leaf angle in remote measure-

ments of canopy reflectance. Leaf angle can significantly 

affect the distribution of light within the canopy and 

consequently, the reflectance measurements obtained 

from remote sensing platforms [68, 69]. This is particu-

larly relevant when scaling up from leaf to canopy or 

landscape level measurements, where the complexity 

of the canopy structure, including leaf angle distribu-

tion, can introduce additional variability [70]. However, 

in our study, the influence of leaf angle was minimal as 

we conducted direct measurements of individual leaves 

using a standard measurement orientation. Future stud-

ies aiming to link leaf-level measurements with canopy 

or landscape-level reflectance should consider the role 

of leaf angle and other structural characteristics of plant 

canopies, which are also subject to both genetic and envi-

ronmental influences.

Conclusion
Imaging spectroscopy can support more frequent and 

widespread biodiversity monitoring, including assess-

ment of the spatial genetic diversity which encodes 

the current potential of species populations to adapt to 

global change. This study dissected variation due to com-

mon experimental factors using a large and controlled set 

of plant genotypes under field and glasshouse conditions. 

Our dataset shows the dominating effect of experimen-

tal and environmental factors on within-species differ-

ences in leaf reflectance spectra across most wavelengths, 

except for parts of the SWIR1 and some water absorption 

bands. However, differences related to natural genetic 

variants were most pronounced in parts of the VIS and 

NIR regions. In particular, pigment absorption regions 

varied consistently in natural genetic variants compared 

with a reference genotype across environments, and 

this variation could be distinguished from experimen-

tal effects within environments. In contrast, differences 

among otherwise-isogenic transgenic lines targeting 

several genes involved in photosynthesis, development, 

and environmental responses were clearest in the SWIR 

region, and only under the most standardized plant 

growth conditions.

Overall, and despite the large influence of experimen-

tal conditions, more genetically variable groups (PLs 

and RILs; and TLs in some cases) showed greater varia-

tion in leaf reflectance when compared with a fully iso-

genic reference population under the same conditions. 

The time of measurement (day, time of day) and the 

number of leaves measured both exhibited significant 

effects across different wavelength ranges, which varied 

slightly between models and datasets and were magni-

fied by variation among genotypes, but were not neces-

sarily significant within genotypes. Perhaps surprisingly, 

the leaf developmental stage had no significant effects 

in our study, whereas between-individual variation and 

plot effects were larger, especially when including mul-

tiple genotypes, and distributed across the spectrum. 

Our analysis thus indicates that more genetically vari-

able plant populations also vary more in their leaf spec-

tra under field and glasshouse conditions, and shows the 

importance of standardization across several experimen-

tal variables, randomization and blocking, and including 

appropriate controls (ideally, using an inbred reference 

genotype) to support the interpretation of genetic varia-

tion from leaf spectra, especially across experiments.
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The online version contains supplementary material available at https:// doi. 
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Additional file 1. Figure S1. Example layout of measured plants in a 
Field AZ, b Field UT, c Glasshouse. Different colors indicatedifferent lines 
as described. d Photos of each environment. The inset of the middle 
figure shows a UT-WT plant inField UT. Photos by Meredith C. Schuman, 
pictured: Ewa A. Czyz. Figure S2. Examples of outlier detection at each 
step. a Ten scans from the Field AZ white reference (WR) measurement-
were identified as outliers in step 1 due to an unexpected leaf-like spectral 
shape. These two plants were removed from thedataset. b In step 2, the 
LOF method flagged two scans from the Glasshouse black reference 
measurement as outliers,which were subsequently excluded from reflec-
tance calculations. c In the final visual inspection (step 3), five plantswere 
marked as outliers in Field UT due to deviations in their VIS and NIR values 
and unusual readings from the waterabsorption band between NIR and 
SWIR1 to SWIR2. Figure S3. Percentage of explained variances of the first 
eight dimensions of PCA in a Field AZ, b Field UT, cGlasshouse. In all three 
experiments, the first four dimensions explain more than 95% of total 
variances. Distributionof samples along (d)-e: PC1 and PC2, and f: PC3 
and PC4, for each dataset. Shaded regions show 95% confidentintervals 
for each group, i.e. reference samples(UT-WT, EV) versus non-reference 
samples(PLs, RILs, TLs). Figure S4. Comparisons among reference geno-
types and full genotypic effects in Field UT, Glasshouse. a ANOVAacross 
reflectance of UT-WT, pRESC2NC (EV1), and pSOL3NC (EV2) samples in 
Glasshouse. Each colored shade ingrey, orange, or yellow is the range 
of reflectance of all samples from the corresponding genotype group 
(UT-WT, EV1,EV2). Each solid colored line is the coefficient of variation 
(CV) of all samples in the corresponding group. The pinkdotted line is the 
p-value of ANOVA on all samples in three groups, the pink dashed line is 
the p-value after adjustment.b TLs compared with EV in the mixed model 
in Field UT. Each dashed colored line indicates the p-value of thecorre-
sponding TL compared with EV in the mixed model, without adjustment 
for testing multiple wavelengths. The solidcolored lines show the adjusted 
p-values of irCHAL (green) and irLOX3 (vermilion) versus EV. All other 
comparisons ofEV with transgenics become 1 across all wavelengths after 
adjustment. c TLs compared with EV in the linear model inGlasshouse. 
Interpretations of colors and lines are the same as in (b). The solid colored 
lines show the adjusted p-valuesof irAOC (blue) and irRCA (orange) versus 
EV. Figure S5. Post-hoc pairwise comparison of time and batch effects 
in Field AZ. a P-values from post-hoc comparisons inthe linear model 
(M2) using all samples. Dashed lines represent p-values for comparisons 
between different times (yellow:am vs noon, blue: am vs pm, orange: 
noon vs pm), while solid lines represent adjusted p-values. b P-values 
frompost-hoc comparisons in the linear model using only UT-WT samples. 
Interpretations of colors and lines are the same asin (a). c The pink dashed 
line represents the p-values of the batch effect from the linear model (M2) 
using all samples,with the solid line showing the adjusted p-values. d The 
pink dashed line represents the p-values of the batch effectfrom the linear 
model (M3) using only UT-WT samples, with the solid line showing the 
adjusted p-value.

Acknowledgements

The authors acknowledge funding from the NOMIS Foundation and the Uni-
versity of Zurich, including the University Research Priority Program on Global 
Change and Biodiversity, and the Max Planck Society. We thank our division in 
the Department of Geography at the University of Zurich, the Remote Sensing 
Laboratories, for support and for the shared use of equipment. We thank the 
gardeners at the Max Planck Institute for Chemical Ecology, the local manag-
ers at Lytle Preserve, H. Madrigal, and WCCER, N. Carlson and R. Carlson, and 
the 2019 field crews for plant cultivation and plot management. We thank the 
Lytle Preserve and the WCCER for supporting these experiments, and APHIS 
for constructive regulatory oversight. We are grateful to B. Schmid for helpful 
discussions regarding statistical analyses.

Author contributions

CRediT taxonomy roles are listed with authors in alphabetical order. Con-
ceptualization: ITB, MCS, MES. Data curation: CL. Formal analysis: CL. Funding 
acquisition: MES. Investigation: EAC, MCS. Methodology: CL, EAC, MCS. Project 
administration: MCS. Resources: ITB, MES, RH. Supervision: MCS. Validation: 
MCS. Visualization: CL, MCS. Writing—original draft: CL, MCS. Writing—review 
and editing: CL, EAC, ITB, MCS, MES, RH.

Availability of data and materials

All plant lines are available from the Max Planck Institute for Chemical Ecology. 
The spectral measurement data underlying the results presented in this paper 
are available as a published dataset [71]. All processed spectral data, metadata 
and code are provided at the GitHub repository: https:// github. com/ liche 
ng1221/ How- leaves- refle ct- genet ic- varia tion.

Declarations

Competing interests

The authors declare that they have no competing interests.

Received: 6 March 2023   Accepted: 5 October 2023

References

 1. Jacquemoud S, Ustin S. Leaf optical properties. Cambridge: Cambridge 
University Press; 2019.

 2. Li D, Wang X, Zheng H, Zhou K, Yao X, Tian Y, Zhu Y, Cao W, Cheng T. Esti-
mation of area-and mass-based leaf nitrogen contents of wheat and rice 
crops from water-removed spectra using continuous wavelet analysis. 
Plant Methods. 2018;14(1):1–20.

 3. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. Biomass allo-
cation to leaves, stems and roots: meta-analyses of interspecific variation 
and environmental control. New Phytol. 2012;193(1):30–50.

 4. Jacquemoud S, Ustin SL. Leaf optical properties: a state of the art. In: 
8th International Symposium of Physical Measurements & Signatures in 
Remote Sensing, CNES Aussois France. 2001. pp. 223–32.

 5. Rouse JW, Haas RH, Schell JA, Deering DW, et al. Monitoring vegetation 
systems in the great plains with ERTS. NASA Spec Publ. 1974;351(1):309.

 6. Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC. Using 
the satellite-derived NDVI to assess ecological responses to environmen-
tal change. Trends Ecol Evol. 2005;20(9):503–10.

 7. Asner GP, Martin RE, Carranza-Jiménez L, Sinca F, Tupayachi R, Anderson 
CB, Martinez P. Functional and biological diversity of foliar spectra in 
tree canopies throughout the Andes to amazon region. New Phytol. 
2014;204(1):127–39.

 8. Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques 
for rapid identification of Arabidopsis mutants with altered leaf pigment 
status. Plant Cell Physiol. 2012;53(6):1154–70.

 9. Cavender-Bares J, Meireles JE, Couture JJ, Kaproth MA, Kingdon CC, Singh 
A, Serbin SP, Center A, Zuniga E, Pilz G, et al. Associations of leaf spectra 
with genetic and phylogenetic variation in oaks: prospects for remote 
detection of biodiversity. Remote Sens. 2016;8(3):221.

 10. Čepl J, Stejskal J, Lhotáková Z, Holá D, Koreckỳ J, Lstiburek M, Tomášková 
I, Kočová M, Rothová O, Palovská M, et al. Heritable variation in needle 
spectral reflectance of scots pine (Pinus sylvestris l.) peaks in red edge. 
Remote Sens Environ. 2018;219:89–98.

 11. Czyż EA, Guillén Escribà C, Wulf H, Tedder A, Schuman MC, Schneider FD, 
Schaepman ME. Intraspecific genetic variation of a Fagus sylvatica popu-
lation in a temperate forest derived from airborne imaging spectroscopy 
time series. Ecol Evol. 2020;10(14):7419–30.

 12. Czyż EA, Schmid B, Hueni A, Eppinga MB, Schuman MC, Schneider FD, 
Guillén-Escribà C, Schaepman ME. Genetic constraints on temporal 
variation of airborne reflectance spectra and their uncertainties over a 
temperate forest. Remote Sens Environ. 2023;284: 113338.

https://doi.org/10.1186/s13007-023-01089-9
https://doi.org/10.1186/s13007-023-01089-9
https://github.com/licheng1221/How-leaves-reflect-genetic-variation
https://github.com/licheng1221/How-leaves-reflect-genetic-variation


Page 27 of 28Li et al. Plant Methods          (2023) 19:108  

 13. Meireles JE, Cavender-Bares J, Townsend PA, Ustin S, Gamon JA, 
Schweiger AK, Schaepman ME, Asner GP, Martin RE, Singh A, et al. Leaf 
reflectance spectra capture the evolutionary history of seed plants. New 
Phytol. 2020;228(2):485–93.

 14. Ray R, Li D, Halitschke R, Baldwin IT. Using natural variation to achieve 
a whole-plant functional understanding of the responses mediated by 
Jasmonate signaling. Plant J. 2019;99(3):414–25.

 15. Suzuki MT, Rappe MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, 
Giovannoni SJ. Bacterial diversity among small-subunit rRNA gene clones 
and cellular isolates from the same seawater sample. Appl Environ Micro-
biol. 1997;63(3):983–9.

 16. Qin G, Gu H, Ma L, Peng Y, Deng XW, Chen Z, Qu L-J. Disruption of phy-
toene desaturase gene results in albino and dwarf phenotypes in Arabi-
dopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. 
Cell Res. 2007;17(5):471–82.

 17. Mitra S, Baldwin IT. Independently silencing two photosynthetic proteins 
in Nicotiana attenuata has different effects on herbivore resistance. Plant 
Physiol. 2008;148(2):1128–38.

 18. Sheen S. Biomass and chemical composition of tobacco plants under 
high density growth. Contributions Tob Nicotine Res. 1983;12(1):35–42.

 19. Ishizu Y, Kaneki K, Izawa K. Smoke production from cell wall materials of 
tobacco leaves. Contributions Tob Nicotine Res. 1991;15(1):1–10.

 20. Kaur H, Shaker K, Heinzel N, Ralph J, Gális I, Baldwin IT. Environmental 
stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient 
Nicotiana attenuata plants to compensate for their structural deficiencies. 
Plant Physiol. 2012;159(4):1545–70.

 21. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 
2003;54(1):519–46.

 22. Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre 
C, Pollet B, Legrand M. Silencing of hydroxycinnamoyl-coenzyme a 
shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid 
biosynthesis. Plant Cell. 2004;16(6):1446–65.

 23. Niggeweg R, Michael AJ, Martin C. Engineering plants with 
increased levels of the antioxidant chlorogenic acid. Nat Biotechnol. 
2004;22(6):746–54.

 24. Clé C, Hill LM, Niggeweg R, Martin CR, Guisez Y, Prinsen E, Jansen MA. 
Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; 
consequences for phenolic accumulation and UV-tolerance. Phytochem. 
2008;69(11):2149–56.

 25. Kessler D, Gase K, Baldwin IT. Field experiments with transformed plants 
reveal the sense of floral scents. Science. 2008;321(5893):1200–2.

 26. Dao T, Linthorst H, Verpoorte R. Chalcone synthase and its functions in 
plant resistance. Phytochem Rev. 2011;10(3):397–412.

 27. Lee G, Joo Y, Kim S-G, Baldwin IT. What happens in the pith stays in 
the pith: tissue-localized defense responses facilitate chemical niche 
differentiation between two spatially separated herbivores. Plant J. 
2017;92(3):414–25.

 28. Santhanam R, Oh Y, Kumar R, Weinhold A, Luu VT, Groten K, Baldwin IT. 
Specificity of root microbiomes in native-grown Nicotiana attenuata and 
plant responses to UVB increase Deinococcus colonization. Mol Ecol. 
2017;26(9):2543–62.

 29. Kakani V, Reddy K, Zhao D, Sailaja K. Field crop responses to ultraviolet-B 
radiation: a review. Agric For Meteorol. 2003;120(1–4):191–218.

 30. Creelman RA, Mullet JE. Jasmonic acid distribution and action in plants: 
regulation during development and response to biotic and abiotic stress. 
Proceed Natl Acad Sci. 1995;92(10):4114–9.

 31. Howe GA, Major IT, Koo AJ. Modularity in jasmonate signaling for multist-
ress resilience. Annu Rev Plant Biol. 2018;69:387–415.

 32. Halitschke R, Baldwin IT. Antisense lox expression increases herbivore 
performance by decreasing defense responses and inhibiting growth-
related transcriptional reorganization in Nicotiana attenuata. Plant J. 
2003;36(6):794–807.

 33. von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT. 
Tuning the herbivore-induced ethylene burst: the role of transcript 
accumulation and ethylene perception in Nicotiana attenuata. Plant J. 
2007;51(2):293–307.

 34. Fukasawa-Akada T, Kung S-D, Watson JC. Phenylalanine ammonia-lyase 
gene structure, expression, and evolution in nicotiana. Plant Mol Biol. 
1996;30(4):711–22.

 35. Onkokesung N, Gális I, von Dahl CC, Matsuoka K, Saluz H-P, Baldwin IT. 
Jasmonic acid and ethylene modulate local responses to wounding 

and simulated herbivory in Nicotiana attenuata leaves. Plant Physiol. 
2010;153(2):785–98.

 36. Figon F, Baldwin IT, Gaquerel E. Ethylene is a local modulator of Jas-
monate-dependent phenolamide accumulation during Manduca sexta 
herbivory in Nicotiana attenuata. Plant Cell Environ. 2021;44(3):964–81.

 37. Krügel T, Lim M, Gase K, Halitschke R, Baldwin IT. Agrobacterium-medi-
ated transformation of Nicotiana attenuata, a model ecological expres-
sion system. Chemoecology. 2002;12(4):177–83.

 38. Cavanagh C, Morell M, Mackay I, Powell W. From mutations to magic: 
resources for gene discovery, validation and delivery in crop plants. Curr 
Opin Plant Biol. 2008;11(2):215–21.

 39. Baldwin IT, Staszak-Kozinski L, Davidson R. Up in smoke: I. smoke-derived 
germination cues for postfire annual, Nicotiana attenuata torr. ex. watson. 
J Chem Ecol. 1994;20(9):2345–71.

 40. Allmann S, Halitschke R, Schuurink RC, Baldwin IT. Oxylipin channelling 
in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf 
volatile production. Plant Cell Environ. 2010;33(12):2028–40.

 41. Kallenbach M, Bonaventure G, Gilardoni PA, Wissgott A, Baldwin IT. 
Empoasca leafhoppers attack wild tobacco plants in a jasmonate-
dependent manner and identify jasmonate mutants in natural popula-
tions. Proceed Natl Acad Sci. 2012;109(24):1548–57.

 42. Bubner B, Gase K, Berger B, Link D, Baldwin IT. Occurrence of tetraploidy 
in Nicotiana attenuata plants after agrobacterium-mediated transforma-
tion is genotype specific but independent of polysomaty of explant 
tissue. Plant Cell Rep. 2006;25(7):668–75.

 43. He J, Fandino RA, Halitschke R, Luck K, Köllner TG, Murdock MH, Ray R, 
Gase K, Knaden M, Baldwin IT, et al. An unbiased approach elucidates var-
iation in (s)-(+)-linalool, a context-specific mediator of a tri-trophic inter-
action in wild tobacco. Proceed Natl Acad Sci. 2019;116(29):14651–60.

 44. Bai Y, Yang C, Halitschke R, Paetz C, Kessler D, Burkard K, Gaquerel E, 
Baldwin IT, Li D. Natural history-guided omics reveals plant defensive 
chemistry against leafhopper pests. Science. 2022;375(6580):2948.

 45. McGale E, Diezel C, Schuman MC, Baldwin IT. Cry1Ac production is costly 
for native plants attacked by non-Cry1Ac-targeted herbivores in the field. 
New Phytol. 2018;219(2):714–27.

 46. Zavala JA, Baldwin IT. Fitness benefits of trypsin proteinase inhibitor 
expression in Nicotiana attenuata are greater than their costs when 
plants are attacked. BMC Ecol. 2004;4(1):1–15.

 47. Meireles JE, Schweiger AK, Cavender-Bares JM. spectrolab: class and 
methods for hyperspectral data. r package version 0.0. 2. 2017.

 48. Andri S. et al. DescTools: Tools for descriptive statistics. 2023. R package 
version 0.99.48. https:// cran.r- proje ct. org/ packa ge= DescT ools.

 49. Breunig MM, Kriegel H-P, Ng RT, Sander J. Lof: identifying density-based 
local outliers. In: Proceedings of the 2000 ACM SIGMOD International 
Conference on Management of Data, 2000. pp. 93–104.

 50. Miller J, Steven M, Demetriades-Shah T. Reflection of layered bean leaves 
over different soil backgrounds: measured and simulated spectra. Int J 
Remote Sens. 1992;13(17):3273–86.

 51. Petibon F, Czyż EA, Ghielmetti G, Hueni A, Kneubühler M, Schaepman ME, 
Schuman MC. Uncertainties in measurements of leaf optical proper-
ties are small compared to the biological variation within and between 
individuals of european beech. Remote Sens Environ. 2021;264: 112601.

 52. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models 
using lme4. J Stat Softw. 2015;67(1):1–48. https:// doi. org/ 10. 18637/ jss. 
v067. i01.

 53. Pinheiro J, Bates D, R Core Team. Nlme: linear and nonlinear mixed effects 
models. 2023. R package version 3.1-162. https:// CRAN.R- proje ct. org/ 
packa ge= nlme

 54. Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New 
York: Springer; 2002.

 55. Lenth RV. Emmeans: estimated marginal means, Aka Least-Squares 
Means. 2023. R package version 1.8.4-1. https:// CRAN.R- proje ct. org/ packa 
ge= emmea ns.

 56. Makowski D, Ben-Shachar M, Patil I, Lüdecke D. Automated results report-
ing as a practical tool to improve reproducibility and methodological 
best practices adoption. CRAN; 2020.

 57. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, 
Grolemund G, Hayes A, Henry L, Hester J, et al. Welcome to the Tidyverse. 
J Open Sour Softw. 2019;4(43):1686.

 58. Field A. Discovering statistics using IBM SPSS statistics. 4th ed. London: 
Sage London; 2013.

https://cran.r-project.org/package=DescTools
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans


Page 28 of 28Li et al. Plant Methods          (2023) 19:108 

•

 

fast, convenient online submission

 
•

  

thorough peer review by experienced researchers in your field

• 

 

rapid publication on acceptance

• 

 

support for research data, including large and complex data types

•

  

gold Open Access which fosters wider collaboration and increased citations 

 

maximum visibility for your research: over 100M website views per year •

  
At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research   ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 59. Akaike H. Information theory and an extension of the maximum likeli-
hood principle. In: Parzen E, Tanabe K, Kitagawa G, editors. Selected 
papers of Hirotugu akaike. Berlin: Springer; 1998. p. 199–213.

 60. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple 
testing under dependency. Ann Stat. 2001;29:1165–88.

 61. Shuken SR, McNerney MW. Visualizing the costs and benefits of correct-
ing p-values for multiple hypothesis testing in omics data. bioRxiv. 2021. 
https:// doi. org/ 10. 1101/ 2021. 09. 09. 459558.

 62. Gase K, Baldwin IT. Transformational tools for next-generation plant 
ecology: manipulation of gene expression for the functional analysis of 
genes. Plant Ecol Divers. 2012;5(4):485–90.

 63. Zur Y, Gitelson A, Chivkunova O, Merzlyak M. The spectral contribution of 
carotenoids to light absorption and reflectance in green leaves; 2000.

 64. Hendry AP, Kinnison MT. Perspective: the pace of modern life: measuring 
rates of contemporary microevolution. Evolution. 1999;53(6):1637–53.

 65. Jablonski D. Micro-and macroevolution: scale and hierarchy in evolution-
ary biology and paleobiology. Paleobiology. 2000;26(S4):15–52.

 66. Palmer D, Darwin C. Evolution: the story of life. California: University of 
California Press; 2009.

 67. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal 
transduction and action in plant stress response, growth and devel-
opment: an update to the 2007 review in annals of botany. Ann Bot. 
2013;111(6):1021–58.

 68. Hilker T, Gitelson A, Coops NC, Hall FG, Black TA. Tracking plant physi-
ological properties from multi-angular tower-based remote sensing. 
Oecologia. 2011;165:865–76.

 69. Verrelst J, Romijn E, Kooistra L. Mapping vegetation density in a hetero-
geneous river floodplain ecosystem using pointable CHRIS/PROBA data. 
Remote Sens. 2012;4(9):2866–89.

 70. Hilker T, Coops NC, Hall FG, Black TA, Chen B, Krishnan P, Wulder MA, Sell-
ers PJ, Middleton EM, Huemmrich KF. A modeling approach for upscaling 
gross ecosystem production to the landscape scale using remote sensing 
data. J Geophys Res Biogeosci. 2008. https:// doi. org/ 10. 1029/ 2007J G0006 
66.

 71. Li C, Czyż EA, Halitschke R, Baldwin IT, Schaepman ME, Schuman MC. UZH 
SG Nicotiana attenuata ASD data. SPECCHIO. Keyword: UZH_SG_Nicoti-
ana_attenuata_ASD; 2023. http:// sc22. geo. uzh. ch: 8080/ SPECC HIO_ Web_ 
Inter face/ search. Accessed 21 Mar 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/2021.09.09.459558
https://doi.org/10.1029/2007JG000666
https://doi.org/10.1029/2007JG000666
http://sc22.geo.uzh.ch:8080/SPECCHIO_Web_Interface/search
http://sc22.geo.uzh.ch:8080/SPECCHIO_Web_Interface/search

	Evaluating potential of leaf reflectance spectra to monitor plant genetic variation
	Abstract 
	Introduction
	Material and methods
	Plant material
	Multiparent Advanced Generation Intercross (MAGIC)
	Transgenic lines (TLs)
	Reference genotypes

	Growth conditions and environments
	Jena glasshouse
	Arizona field plantation
	Utah field plantation
	Overview of the datasets

	Optical measurements and calculation of leaf reflectance
	Equipment
	Measurement procedures
	Raw data processing
	Calculation of leaf reflectance

	Analyses of calculated reflectance
	Principal components analysis
	Coefficient of variation, and bootstrapping
	Linear regression and linear mixed models
	P-value adjustment for multiple testing


	Results
	Model performance
	Total variance across the three experiments
	Total variance within each experiment
	Genotypic effects on spectral variation
	Other within-experiment effects on spectral variation
	Effects of measurement time
	Leaf number and leaf position


	Discussion
	Experimental conditions had the greatest influence on differences among leaf spectra
	Specific aspects distinguish leaf spectra of different genotype groups
	Limitations and outlook

	Conclusion
	Anchor 37
	Acknowledgements
	References


