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A live-cell image-based machine learning strategy
for reducing variability in PSC differentiation
systems
Xiaochun Yang 1, Daichao Chen 2, Qiushi Sun3, Yao Wang2, Yu Xia4, Jinyu Yang4, Chang Lin5, Xin Dang1, Zimu Cen1,

Dongdong Liang2, Rong Wei2, Ze Xu6, Guangyin Xi1, Gang Xue7, Can Ye2, Li-Peng Wang6, Peng Zou 5,7,

Shi-Qiang Wang6, Pablo Rivera-Fuentes 8, Salome Püntener8,9, Zhixing Chen7,10, Yi Liu3✉, Jue Zhang2,4✉ and

Yang Zhao 1,7✉

Abstract

The differentiation of pluripotent stem cells (PSCs) into diverse functional cell types provides a promising solution to

support drug discovery, disease modeling, and regenerative medicine. However, functional cell differentiation is

currently limited by the substantial line-to-line and batch-to-batch variabilities, which severely impede the progress of

scientific research and the manufacturing of cell products. For instance, PSC-to-cardiomyocyte (CM) differentiation is

vulnerable to inappropriate doses of CHIR99021 (CHIR) that are applied in the initial stage of mesoderm differentiation.

Here, by harnessing live-cell bright-field imaging and machine learning (ML), we realize real-time cell recognition in

the entire differentiation process, e.g., CMs, cardiac progenitor cells (CPCs), PSC clones, and even misdifferentiated cells.

This enables non-invasive prediction of differentiation efficiency, purification of ML-recognized CMs and CPCs for

reducing cell contamination, early assessment of the CHIR dose for correcting the misdifferentiation trajectory, and

evaluation of initial PSC colonies for controlling the start point of differentiation, all of which provide a more

invulnerable differentiation method with resistance to variability. Moreover, with the established ML models as a

readout for the chemical screen, we identify a CDK8 inhibitor that can further improve the cell resistance to the

overdose of CHIR. Together, this study indicates that artificial intelligence is able to guide and iteratively optimize PSC

differentiation to achieve consistently high efficiency across cell lines and batches, providing a better understanding

and rational modulation of the differentiation process for functional cell manufacturing in biomedical applications.

Introduction

Pluripotent stem cell (PSC)-derived differentiated

functional cells in theory provide an unlimited cell source

for regenerative medicine, in vitro modeling of biological

development and diseases, and drug screening and eva-

luation1–3. However, one of the major problems of cur-

rent PSC differentiation is the line-to-line and batch-to-

batch variabilities4–8 because cells are likely inclined to

misdifferentiation trajectory. The variability of the PSC

differentiation leads to repeated experiments, making the

derivation of functional cells time- and labor-intensive. In

addition, the evaluations of differentiation results usually

rely on low-throughput or destructive methods (e.g.,

immunofluorescence), hampering quality control during

differentiation and downstream applications. All of these

severely impede the progress of scientific research and

manufacturing of cell products. The line-to-line variability
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is mostly driven by the PSC genetic and epigenetic var-

iations which could change the pluripotency network or

the signaling response of developmental pathways, leading

to differentiation capacity bias for specific lineages9–12.

Other inevitable non-genetic variations in routine cell

culturing, like cell passage number13 and altered handling

of cells among laboratories or individuals14–18, also con-

tribute to the differentiation variability. Moreover, since

the PSC differentiation is a stepwise process including

multiple induction stages, small perturbations or incon-

sistency at early stages would accumulate and magnify6,

intensifying the differentiation vulnerability. Therefore,

monitoring and intervening in the overall differentiation

process non-invasively is necessary for consistently high-

efficiency PSC differentiation.

At present, the variability of the PSC differentiation

could be partially controlled by individual experience.

Based on the observation of cell images, the experimenter

empirically modulates the experiment scheme in time and

prejudges the differentiation outcome19–22. However,

these experiences on cell images are varying and difficult

to quantify, replicate and impart; moreover, rapid or

subtle changes in cell images are hard to be captured by

experimenters.

Currently, state-of-the-art microscopic technologies

could support long-term, time-lapse, high-throughput

image acquisition on live cells. Meanwhile, the fast-

evolving machine learning (ML) method is being

increasingly applied in cellular image analysis, which is

opening up possibilities to recognize specific cellular

constituents or cell lineages during differentiation in cell

culture23–31. During PSC differentiation, cell fate transi-

tions involve rapid changing of cell morphology and

arrangement32–36. Thus, we hypothesized that micro-

scopic images of unlabeled cells contained enough infor-

mation of the differentiation state which could be

captured by ML. This information could be used for

interventions in the differentiation process to correct the

cell trajectory in time and eliminate misdifferentiated cell

contamination. In this study, based on live-cell bright-

field images, we developed a strategy harnessing different

ML models, which can identify cell lineage non-invasively,

modulate the differentiation process in real-time, and

optimize the differentiation protocol, improving the

invulnerability in PSC-to-functional cell differentiation

(Fig. 1a).

Results

Image trajectory analysis for the PSC-to-cardiomyocyte

differentiation process

To explore the feasibility of modulating the PSC-based

differentiation process via bright-field images, we first

chose the differentiation process of cardiomyocyte (CM)

as an example case because CM is in urgent need for

cardiovascular disease study and regenerative medi-

cine1,37. The time-lapse bright-field image information

was first collected and analyzed throughout the human

PSC-to-CM differentiation process following a chemical-

defined PSC differentiation protocol (Fig. 1b; Supple-

mentary Fig. S1a–d)20. Briefly, the activation of Wnt sig-

naling (CHIR99012, CHIR) can specifically induce PSCs

to mesoderm (stage I, day 0–3), and the application of

Wnt signaling inhibitor (IWR1) induces the cells to car-

diac progenitor cells (CPC stage, stage II, day 4–6). Then

CPC converts to CM after the addition of insulin (CM

stage, stage III, day 7–~12). And in this process, CHIR

concentrations and durations were key determinants for

CM differentiation efficiency20,38.

We induced PSC-to-CM following this well-established

protocol20 and recorded the time-lapse bright-field ima-

ges (Fig. 1b–e; Supplementary Video S1). For increasing

the diversity of image information, we intentionally

introduced several variables (e.g., different human PSC

lines, initial cell confluency, differentiation medium, etc.),

and in particular titrated CHIR doses, namely CHIR

concentrations (ranging from 2 μM to 14 μM) and dura-

tions (ranging from 24 h to 48 h) for each batch, covering

underdose, optimal dose, and overdose conditions.

Throughout the ~15 days differentiation process (day –3

to ~12), cells in each well were imaged ~250 times,

forming time-lapse bright-field image streams. In total,

1152 image streams were collected including more than

7,200,000 snaps. At the end of the differentiation, the

successfully differentiated CMs were recognized by

immunostaining of cTnT, a CM-specific marker, and

fluorescent imaging. The total fluorescence intensity of

cTnT, termed the “Differentiation Efficiency Index”, was

used to quantify the efficiency. Image streams for wells

with different efficiency were collected, due to the

intrinsic viability in the differentiation process and

aforementioned variables. Consistent with previous stu-

dies20, we found that the optimal CHIR concentration

differs among cell lines (Fig. 1f), and even for a certain cell

line with a given condition, the differentiation efficiency

and cell morphology could vary among batches, as indi-

cated by cTnT immunostaining (Fig. 1g), although parallel

wells under the same CHIR dose within one batch

remained consistent.

We next investigated whether bright-field images could

informatively indicate different differentiation status. By

extracting 448-dimensional local features (SIFT39,

SURF40, and ORB41) from the whole-well bright-field

images in the PSC-to-CM differentiation process, we

found that the local image features distributed differently

among cells with high and low differentiation efficiencies,

and also among cells with different differentiation stages,

as shown by Principal Component Analysis (PCA) score

plots (Supplementary Fig. S2a, b). Linear discriminant
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Fig. 1 (See legend on next page.)

Yang et al. Cell Discovery            (2023) 9:53 Page 3 of 26



analysis (LDA)42 of local features indicated that the image

trajectory gradually diverged over time among different

CHIR doses (Fig. 1h; Supplementary Fig. S2c). These

findings support that the bright-field image streams

contained informative clues reflecting the PSC differ-

entiation stage, differentiation efficiency, and CHIR dose.

Deep learning-based CM recognition and efficiency

evaluation

We next characterized the local features of the various

cell lineages in the bright-field images in greater detail.

Upon intensively examining the live-cell bright-field

images for each well, we noticed that the successfully

differentiated cTnT+ CMs exhibited characteristic fea-

tures, including a compact, domed, 3D morphology.

Moreover, the successfully differentiated CMs were typi-

cally connected in sheets or cords (Fig. 2a). The mor-

phology of cells that did not differentiate into CMs was

heterogeneous without an obvious pattern of aggregation.

These findings support the feasibility of using bright-field

images to recognize CMs, potentially based on local fea-

tures per se.

Pursuing this, we used deep convolutional neural net-

works (CNNs) to recognize CMs from live-cell bright-

field images by predicting the cTnT fluorescent labels.

The pix2pix model43 was adopted for the bright-field-to-

fluorescence image transformation task (Fig. 2b; Supple-

mentary Fig. S3a–c). Through end-to-end training with

paired bright-field and true fluorescence images, the

model can capture the multi-scale features of CMs, which

enables it to generate fluorescence predictions for new

bright-field images.

We prepared a dataset of paired bright-field images and

true (i.e., obtained experimentally) fluorescence images

for each well, with various differentiation efficiencies and

different cell lines included to increase its diversity

(Supplementary Table S1). On the test set, the predicted

cTnT fluorescence intensities matched with the true ones

at the pixel level, suggesting that our model could accu-

rately recognize the CMs (Fig. 2c, d; Supplementary

Fig. S4a, b). As for the whole-well differentiation effi-

ciency, the Pearson correlation value between the pre-

dicted and the true Differentiation Efficiency Index

reached r= 0.93 (P < 0.0001; Fig. 2e, f); and the trained

model could also recognize CMs on a new dataset from

three additional cell lines, with a Pearson correlation value

r= 0.81 (P < 0.0001; Supplementary Fig. S4c, d). Together,

we achieved non-invasive recognition of PSC-derived

functional cells from bright-field images and evaluation of

differentiation efficiency.

Weakly supervised learning-based CM-committed CPC

recognition and efficiency prediction

The success of CM recognition demonstrated that the

successfully differentiated cells contained distinguishable

features, which encouraged us to study the image features

of cells in the CPC stage. By observing the bright-field

image stream, we found that CM-committed CPCs of

day 6 were a group of more stereoscopic spindle-like cells

with stronger contrast (Figs. 1e, 3a; Supplementary Videos

S1, S2). This suggested that it was possible to apply ML to

recognize CM-committed CPCs based on the day 6

bright-field images. Although some biomarkers for CM-

committed CPCs44–46 have been reported, using one or

two biomarkers was not exclusive enough for precise

labeling. Those CPCs which would yield cTnT+ CMs

subsequently could be directly tracked by image streams.

Considering that CPC proliferation and migration resul-

ted in a mismatch of the day 6 CPC regions and the day 12

cTnT+ regions, we explored using weakly supervised

learning for recognizing CM-committed CPC based solely

on image-level categorical labels47,48 (i.e., without the

pixel-level labels used to train the pix2pix model for CM

recognition detailed above).

(see figure on previous page)

Fig. 1 Framework for image analysis on the PSC-to-CM differentiation process. a Schematic overview of the PSC differentiation strategy based

on image-based ML for solving the variability in efficiency, using CM differentiation as an example. Upper panel, variation occurs at each step in the

PSC differentiation process. Lower panel, based on the bright-field image-based ML, our strategy is applicable at different stages to reduce the

variation, achieving high-efficiency CM induction. b Schematic overview of PSC-to-CM differentiation with small-molecule modulators of canonical

Wnt signaling. The green arrows (indicating the titration of CHIR durations and concentrations at stage I) and the colored dots represent the

checkpoints involving ML in our strategy. c Example time-lapse bright-field images and cTnT fluorescence result of cardiac differentiation for 10 days.

Cells were cultured in a 24-well plate. The enlargement of the image in the white frame is shown in d. Scale bar, 1 mm. d Location and morphology

of successfully and unsuccessfully differentiated cells in the whole differentiation process. 0 h, 24 h, and 72 h bright-field images were enhanced and

shown in inverted color for highlighting the edge of the cell colony (white arrows and blue arrows indicate the cell-containing area and cell-free area,

respectively). Scale bar, 1 mm. e Texture and morphological change of successfully differentiated cells from day 5 to day 12. The white arrow indicates

the day 6 CPC with texture. Scale bar, 250 μm. f Line-to-line variability of cardiac differentiation efficiency. CHIR duration = 24 h. g Batch-to-batch

variability of cardiac differentiation efficiency. iPS18-derived CM differentiation followed the same differentiation protocol but from different batches

for 12 days (CHIR concentration = 6 μM, duration = 24 h). Scale bar, 1 mm. h Change of image local features under different CHIR doses in cardiac

differentiation. The y-axis is the first linear discriminant (LD1) given by LDA. The dark lines and the light lines represent the mean and the standard

deviation value, respectively.
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We used a two-stage design in our weakly supervised

learning model for recognition (Fig. 3b; Supplementary

Fig. S5a, b). First, a CNN-based classification network

(specified as ResNeSt-10149) was trained with 8463

bright-field image patches from day 6, labeled as positive

(≥ 30% CM-committed CPC regions) or negative (Sup-

plementary Fig. S6a, b and Table S2; Materials and

methods). The CPC regions were manually annotated by

Fig. 2 CM recognition and differentiation efficiency evaluation by deep learning on bright-field images. a Morphological characteristics of

CMs and non-CMs on day 12 bright-field images and cTnT fluorescence results. Scale bar, 500 μm. b Schematic overview of deep learning-based

cTnT fluorescence prediction from live-cell bright-field images at CM stage (stage III). The pix2pix model was trained with pairs of bright-field and

fluorescence images. The trained model could predict the fluorescent labels for new bright-field images. For evaluation, the model’s prediction was

further compared with the true cTnT fluorescence image. c Typical predicted results of CM recognition on bright-field image patches (containing

cTnT+ CMs) from the test set. Each column from left to right represents: live-cell bright-field image patches; true cTnT fluorescence results; predicted

cTnT fluorescence results. Scale bar, 250 μm. d Typical predicted results of CM recognition on whole-well bright-field images. Each column from left

to right: true cTnT fluorescence result; predicted cTnT fluorescence result; the heatmap comparing the predicted with the true fluorescence pixel

intensities, with Pearson’s r values provided. Scale bar, 1 mm. e Comparison of the true and predicted Differentiation Efficiency Indexes (i.e., total

fluorescence intensity) for whole-well fluorescence images. True and predicted Differentiation Efficiency Indexes were normalized between 0 and

100%. n= 36 wells. f Correlation between the true and predicted Differentiation Efficiency Indexes, with Pearson’s r value. True and predicted

Differentiation Efficiency Indexes were normalized between 0 and 100%. n= 36 wells.
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tracking the location of cTnT+ cells in the image streams

(from day 12 back to day 6). Next, the bright-field images

from the test set were passed to the trained network, and

Gradient-weighted Class Activation Mapping (Grad-

CAM)50 was used to generate heatmaps that could high-

light the regions contributing most to the network’s

inference. The prediction of CPC regions was therefore

derived from the highlighted regions in the heatmaps.

We first evaluated the model performance on the test

set by comparing the predicted CPC regions with manu-

ally annotated CPC regions. The prediction of the CM-

committed CPC regions from day 6 bright-field images

was similar to the annotated regions, with an accuracy of

71.9 ± 12.0% (Fig. 3c–e; Supplementary Fig. S6c). As for

the performance in predicting final differentiation

efficiency in advance, the predicted percentage of CM-

committed CPC regions (day 6) displayed a linear corre-

lation with the true Differentiation Efficiency Index

computed from the cTnT fluorescence labels (day 12)

(Pearson’s r= 0.88, P < 0.0001) (Fig. 3f, g), regardless of

the cell proliferation and migration in a whole well. The

prediction result of CM-committed CPCs on a new

dataset from three additional cell lines also had a sig-

nificant linear correlation with the true Differentiation

Efficiency Index (Pearson’s r= 0.83, P < 0.0001) (Supple-

mentary Fig. S6d, e). Collectively, through weakly super-

vised learning, CM-committed CPCs were recognized

non-invasively and thus the cardiac differentiation effi-

ciency could be predicted at an early stage. These pro-

vided an opportunity for intervention in the progenitor

cell stage, such as early termination of experiment with

low efficiency or purification of experiment with relatively

high efficiency. We named these groups of CM-

committed CPCs identified from bright-field images as

image-recognized CPCs (IR-CPCs).

Region-selective purification and characterization of

image-recognized CPCs

Since CPCs could be recognized from bright-field

images by weakly supervised learning, we attempted to

purify those IR-CPCs for reducing cell contamination

without cell surface markers, which is different from

traditional purification methods44,45. We adopted a non-

cytotoxic photoactivatable probe, Dual-Activatable Cell

Tracker 1 (DACT-1)51, which can be activated relying on

both intracellular carboxylesterases and photoirradiation

(λ= 405 nm), and its fluorescent photoproduct could

retain inside the irradiated cells, to realize cell labeling in

assigned region (Fig. 3h; Supplementary Fig. S7a). After

that, on-demand cells could be isolated from other cells

by fluorescence-activated cell sorting (FACS).

Following the aforementioned purification workflow, IR-

CPC regions on day 6 were assigned and misdifferentiated

cells (non-CPCs) were irradiated. After being sorted by

FACS and cultured in the regular medium of the CM

stage, IR-CPCs yielded the cTnT+ CMs at 94.70 ± 3.70% in

comparison to 6.60 ± 4.22% of the non-CPCs and

63.00 ± 11.16% of unsorted day 6 cells (Fig. 3i, j). In

addition, while irradiating IR-CPCs instead of non-CPCs,

it could also achieve obviously higher purity compared

with unsorted cells but possibly cause cell injury (indicated

by lower beating frequency) due to the laser phototoxicity

(see figure on previous page)

Fig. 3 CM-committed CPC recognition and purification by weakly supervised learning on bright-field images. a Morphological characteristics

of CPCs (circled by white lines) and non-CPCs on day 6. Representative day 6 bright-field image, day 12 bright-field image, and cTnT fluorescence

results were shown. Scale bar, 200 μm. b Schematic of the weakly supervised learning model for CPC recognition from day 6 live-cell bright-field

images. The ResNeSt network was trained with bright-field patches labeled with “positive” or “negative”. For a new bright-field image, the trained

ResNeSt combined with Grad-CAM could generate a heatmap highlighting the regions important to the ResNeSt’s inference. The prediction of CPC

regions was obtained by binarizing the heatmap. For evaluation, the predicted CPC regions were compared with manually annotated CPC regions

(segmentation masks) on day 6 and the final cTnT fluorescence image at the CM stage. c Typical predicted results of CPC recognition on positive

bright-field patches from the test set. Each column from left to right represents: live-cell bright-field image patches on day 6; manually annotated

CPC regions; Grad-CAM heatmap for CPC localization; binary prediction of CPC regions; true cTnT fluorescence result of day 12. Scale bar, 250 μm.

d Typical predicted results of CPC recognition on whole-well bright-field images from the test set. Each row from top to bottom represents: manually

annotated CPC regions; binary prediction of CPC regions; true cTnT fluorescence result of day 12. Statistical analysis was performed on the first two

rows (in the yellow frame) shown in e and the last two rows (in the red frame) shown in f, g. Scale bar, 1 mm. e Performance of CPC recognition,

evaluated by comparing manually annotated CPC regions and binary prediction of CPC regions. Data are means ± SD. n= 35 wells. f Comparison of

the true Differentiation Efficiency Index (from day 12 cTnT fluorescence results) and the predicted percentage of CPC region (from day 6 bright-field

images). The true Differentiation Efficiency Index was normalized between 0 and 100%. n= 35 wells. g Correlation between the true Differentiation

Efficiency Index (from day 12 cTnT fluorescence results) and the predicted percentage of CPC regions (from day 6 bright-field images), with Pearson’s

r value. The true Differentiation Efficiency Index was normalized between 0 and 100%. n= 35 wells. h Experimental setup of DACT-1-based CPC

purification. Cells were preincubated by DACT-1 on day 6; cells were selectively photoactivated (405 nm laser) using ROI scanning mode of a

microscope guided by the predicted result; then the fluorescence-labeled cells (λmax= 560 nm) and unlabeled cells were digested into single cells

and separated by FACS to achieve purification. Scale bar, 100 μm. i Purification effect of day 6 IR-CPCs. After FACS, DACT-1-labeled non-CPCs,

unlabeled IR-CPCs, and cells of the control (CTL) group were subsequently cultured for 6 days in RPMI+ B27 medium. The purity of subsequently

differentiated CMs was identified by immunostaining of cTnT. All the cells were from the same batch and under the same differentiation condition.

Scale bar, 100 μm. j Quantitative analysis of the percentage of cTnT+ cells in i. Data are means ± SD. n= 5 images. *P < 0.05; ****P < 0.0001 by one-

way ANOVA followed by Dunnett’s multiple comparisons tests.
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(Supplementary Fig. S7b, c). Likewise, the same approach

was effective on image-recognized CMs (IR-CMs) pur-

ification on day 12 (Supplementary Fig. S7d, e). Thus,

based on CM or CPC recognition model, we presented an

on-demand cell sectioning and purification approach by

region-selective photoactivation, realizing the high purity

of terminally differentiated cells.

Immunofluorescence analysis of the IR-CPCs showed

co-expression of classical markers of CPC (NKX2.5,

GATA4, MEF2C, ISL1)52; notably, some cells without the

IR-CPC texture also expressed some of these markers

(Supplementary Fig. S8a, b). An RNA-seq analysis also

revealed that purified IR-CPCs had gene expression sig-

natures similar to those reported during the progenitor

stage of cardiac differentiation in the literature (NKX2–5,

GATA4, MEF2C, TBX5, TBX20, ISL1, HAND1,

HAND2)53 (Supplementary Fig. S9a–f). CMs showed an

8.98-fold higher expression of TNNI3, a CM marker gene,

compared with IR-CPCs (P < 0.05), and other CM marker

genes (TNNT2, TNNC1, MYH6, MYH7) had consistent

trends. In addition, non-CPCs expressed genes char-

acteristic of primary epicardial cells (EP) (WT1 and

TBX18), of fibroblasts (COL1A1, COL1A2, VIM, BMP1),

and of endothelial cells (EC) (PECAM1, CDH5, KDR)

(Supplementary Fig. S9c). IR-CPCs possessed the mole-

cular features of CPCs in heart development, indicating

the fidelity of image-based CPC recognition and

purification.

ML-based early assessment of CHIR doses

As abovementioned, the cell recognition and purifica-

tion in CM and CPC stages (stage III and II) have solved

the problem of misdifferentiated cell contamination, while

we expected those misdifferentiated cells could be cor-

rected to the right trajectory at an early stage (Stage I) of

differentiation based on bright-field images. The inducer

we used in stage I (CHIR) was known as a determinative

inducer cardiac differentiation5,20,38. However, the opti-

mum dose range of CHIR was very limited, cell line-

dependent, and always variable among batches30

(Figs. 1f, g, 4a). This variable cell response to CHIR might

result from the different signaling basis of cell lines9,

variation of albumin54, and different PSC cell-cycle pro-

files with varying culture confluency5, accounting for the

instability of cardiac differentiation across batches30.

Intriguingly, during titrating CHIR concentrations and

durations within one batch, we found a negative correla-

tion between CHIR concentration and duration of high-

efficiency wells (Spearman correlation value

ρ= –0.80 ± 0.14, n= 8 batches) (Fig. 4a). This provided a

rule for flexible adjustment of CHIR concentration or

duration to achieve high efficiency if inappropriate CHIR

doses could be assessed in time.

Therefore, we tested whether the CHIR doses for each

batch could be assessed based on the very early bright-

field images. Through detailed observations of the chan-

ges of images during 0–12 h CHIR treatment, we found

that the PSC colonies shrunk, becoming denser and more

obvious (Fig. 4b), which might contain potentially useful

features about the actual response to CHIR. We then

explored supervised ML to classify the wells into low,

optimal, and high CHIR concentration groups under a

selected CHIR duration, expecting ML could learn to

capture the relationship between image stream features

and the appropriateness of CHIR doses. We built a logistic

regression model upon handcrafted features of 0–12 h

image streams (Fig. 4c). The dataset for training and

testing the model consisted of image streams from dif-

ferent cell lines, batches, CHIR doses, etc (Supplementary

Table S3). Each image stream was assigned to a CHIR

concentration group (low, optimal, high) according to the

final percentage of cTnT+ cells (Materials and methods).

(see figure on previous page)

Fig. 4 Early assessment and adjustment of CHIR dose by supervised ML on 0–12 h bright-field image streams. a Titration of CHIR

concentration and duration for three batches. Each dot’s color represents the mean percentage of cTnT+ cells on day 12 (n= 3 wells for each

condition). Correlation analysis was conducted between CHIR concentrations and durations for high-efficiency wells (percentage of cTnT+ cells ≥

50%), with Spearman’s ρ value. b Typical bright-field image streams under different CHIR concentrations from 0 h to 12 h. A partially enlarged view is

provided below each image. Scale bar, 1 mm. c Schematic overview of the CHIR dose assessment and adjustment by supervised ML on 0–12 h live-

cell bright-field image streams. Upper panel: each whole-well image stream was represented by a 21-D feature. Middle panel: In the training stage,

the logistic regression model was trained with pairs of bright-field image streams and their CHIR concentration label; in the testing stage, the trained

model made predictions of CHIR concentration (low, optimal, high) for new bright-field images. Lower panel: misdifferentiated cells can be rescued

by further intervention. d LDA on 0–12 h image streams represented by 21-D features. LDA linearly projects the 21-D features into a 2-D plane

spanned by the most discriminant axes (denoted by LD1 and LD2). n= 384 wells. e Classification performance of the logistic regression model (using

all the features) on the test set. Precision, recall, F1 score, and AUC were macro-averaged over the three categories. n= 116 wells. f Comparison of

predicted Deviation Scores (upper panel) and true ΔCHIR Concentrations (lower panel) for each CHIR dose condition in a testing batch, with

Pearson’s r value. n= 12 CHIR doses. g Classification performance of cross-batch validation with Pearson’s r value (under a CHIR duration of 24 h). The

color of the dots represents different testing batches. n= 20 CHIR doses. h The effects of adjusting CHIR duration based on ML prediction in different

cell lines and batches. The percentage of cTnT+ cells for wells under a preset CHIR condition (8 μM, 48 h) and under an optimized condition (8 μM,

ML-selected duration) were shown. n= 2–6 wells. Statistical significance was determined by t-test, ***P < 0.001; ****P < 0.0001. i Effect of CHIR

concentration switching on differentiation efficiency for three batches. In the middle of the CHIR treatment, the initial CHIR concentrations (shown on

the x-axis) were switched to other concentrations (shown on the y-axis).
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Inspired by previous observations, we designed 21 fea-

tures (at three phases, each with seven features) (Fig. 4c;

Supplementary Fig. S10a), and these features were ade-

quate to distinguish the wells in different CHIR con-

centration groups as shown by the LDA score plot

(Fig. 4d).

The logistic regression model was trained and tested for

three selected CHIR durations (24 h, 36 h, 48 h) sepa-

rately. On the test set, the logistic regression model

reached an accuracy of 93.1%, 84.5%, and 78.4% when the

CHIR durations were selected, respectively, as 24 h, 36 h,

and 48 h (Fig. 4e). We also trained and tested the model

using the four most discriminative features (selected by

ANOVA), which were post-phase Optical Flow55, post-

phase and mid-phase Cell Brightness, and post-phase

Colony Circumference (Supplementary Fig. S10b). The

model still preserved good discriminative ability and the

feature redundancy was reduced as shown by PCA, LDA,

and the classification performance (Supplementary Fig.

S10c–f). These data indicated that supervised ML could

assess the CHIR doses only by relying on 0–12 h bright-

field images.

Early correction of the differentiation trajectory by

adjusting the CHIR dose

As our model could accurately assess the CHIR con-

centration in a very early stage (~12 h), we next investi-

gated whether the assessment from ML could guide the

adjustment of CHIR dose in time for high efficiency. We

first defined a “Deviation Score” as the model prediction

about the appropriateness of CHIR concentration under a

selected CHIR duration. For comparison, “ΔCHIR Con-

centration” was introduced to reflect the true deviation

from the optimal CHIR concentration derived from

experimental results (Materials and methods). The pre-

dicted Deviation Score and the true ΔCHIR Concentra-

tion shared a similar trend, with a Pearson correlation

value r= 0.91 (P < 0.0001; Fig. 4f). The result of cross-

batch validation also supported this conclusion, with a

Pearson correlation value r= 0.82 (P < 0.0001; Fig. 4g;

Supplementary Fig. S10g, h), which indicated that our

model was still valid on new batches.

Using the predicted Deviation Score as a reference, we

could optimally adjust the CHIR dose by either changing

the CHIR duration or concentration in practice. With the

model’s prediction (i.e., Deviation Scores) under different

selected CHIR durations (24 h, 36 h, or 48 h), the optimal

CHIR duration (which had the Deviation Score closest to 0)

could be obtained at ~12 h (Fig. 4f; Supplementary Fig.

S10a). The feasibility of adjusting CHIR duration for higher

efficiency had been verified in the experiment (Fig. 4a, h). In

addition, we could also switch the CHIR concentration

according to the model’s prediction. We verified that

switching CHIR concentration in the middle of CHIR

treatment could induce CMs with higher efficiency, balan-

cing the previous treatment of inappropriate CHIR con-

centrations (Fig. 4i; Supplementary Fig. S10i). Together, we

realized timely intervention on the condition of a determi-

native differentiation inducer by image-based ML, promis-

ingly stabilizing the differentiation with high efficiency.

Controlling the initial state of PSC colonies

We found that there still remained cells failing to dif-

ferentiate to CMs even under the optimal CHIR dose,

which motivated us to investigate the relation between

differentiating cell heterogeneity and CM induction cap-

ability within a well (Fig. 5a). Tracking image streams in

reverse order, back to the PSC stage, we found that cells

migrated from the periphery of the initial PSC colonies

beginning at 24 h (after differentiation was initiated), and

almost filled the cell-free area by 72 h (Fig. 5a; Supple-

mentary Videos S1, S3), eventually yielding CMs, whereas

cells located in the center of large PSC colonies more

frequently failed to fully differentiate. Quantitative image

analysis revealed that the proportion of cTnT+ areas (day

12) in cell-free regions (0 h) was significantly higher than

in cell-containing regions, confirming our observations

(Fig. 5b). The trend of spatially variable differentiation

within PSC colonies led us to hypothesize that colony

morphology could contribute to the differentiation pro-

cess. We therefore built a model to determine the optimal

PSC colony shape that led to the high differentiation

efficiency (Fig. 5c).

To this end, we induced differentiation of various PSC

colonies from different cell lines at a range of times after

passage (Supplementary Table S4) and quantified their

morphological profiles at 0 h (before CHIR treatment) by

343 features of the bright-field images. For each batch, the

final cTnT fluorescence images were collected and only

wells under the optimal CHIR condition were considered.

Random forest modeling revealed that Standard Devia-

tion, Minimum, and Min/Max Ratio of Centroid-Contour

Distances, as well as Colony Area, Circumference, Area/

Circumference Ratio, Circularity, and Convexity, were the

features most relevant to high-efficiency cell differentia-

tion (Fig. 5d, e). The relationships between each individual

feature and final efficiency further implied that initial

colonies with moderate area and with longer, irregular

peripheries tended to have higher differentiation effi-

ciency (Fig. 5f), which was consistent with our observa-

tions. Using this morphology-based random forest

regression model, we found that PSC differentiation effi-

ciency under the optimal CHIR condition could be pre-

dicted based on the PSC morphological profiles at 0 h

with a high correlation (Pearson’s r= 0.76, P < 0.0001)

(Fig. 5g), which enabled us to monitor PSC colonies after

passage in real-time by ML to identify the most conducive

starting point for differentiation.
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In addition, since the colony periphery was also affected

by passaging operations, we further extended the per-

iphery length and reduced the central area by

enzymatically digesting larger initial colonies into smaller

ones while passaging (Fig. 5h). The changes in passaging

operations to reduce colony size resulted in a PSC-to-CM

Fig. 5 (See legend on next page.)
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differentiation efficiency of 88.8% ± 10.5%, compared to

21.6% ± 2.7% for larger colonies that started with the same

confluence of initial PSCs (Fig. 5i). This non-invasive ML-

based assessment of colony morphology combined with

optimization of the passaging protocols together resulted

in flexible and reproducible control of differentiation

efficiency through modulation of the initial PSC

colony state.

Small molecule screening based on the CPC-recognition

model to improve the resistance to the overdose of CHIR

Since we had modulated the cardiac differentiation

process by ML, we further investigated whether the dif-

ferentiation protocol per se could be optimized. Given

that CHIR concentration fluctuation is known to account

for much of the instability of cardiac differentiation

(Figs. 1f, g, 4a)5,20,38, increasing the cell resistance to

inappropriate CHIR concentrations for differentiation is

another solution for improving the reproducibility of the

cardiac differentiation. The gene expression profiles under

different CHIR doses at stage I (PSCs to cardiac meso-

derm, day 0–3) were characterized by bulk RNA-seq.

Presomitic mesoderm master genes were upregulated in

CHIR overdose groups, consistent with previous

reports38,56,57, while cells treated with optimum CHIR

doses possessed a cardiac mesoderm gene expression

signature (Supplementary Fig. S11a–d). Thus, we

attempted to maintain cardiac lineage by counteracting

the differentiation tendency to presomitic mesoderm by

small molecule screening.

Considering that a CPC recognition model had been

constructed for predicting differentiation efficiency in

advance, we established a screening platform using day 6

bright-field images as an early output, instead of identi-

fying CMs (Fig. 6a; Supplementary Fig. S12a). PSCs were

exposed to each of ~3000 small molecules (from the

commercial library and in-house libraries) with CHIR of

high concentration (16 μM) during 0–48 h. The top 40

compounds were considered as initial candidates, which

could sufficiently promote the cardiac lineage commit-

ment with the predicted percentage of CM-committed

CPC regions ≥ 40% (Fig. 6b). Given that the effective

CHIR concentration for cardiac differentiation was

restricted to a narrow range, all the initial candidates were

subsequently tested under different CHIR concentrations

(CHIR duration = 48 h) for the ability to maintain cardiac

lineage.

After effect verification of the initial candidates, BI-1347

(a CDK8 selective inhibitor), was confirmed to have

robust and stable effects on broadening the range of

effective CHIR concentration (mean 6.4-fold in different

PSC lines), realizing reproducibly high efficiency of car-

diac differentiation of different batches or lines (Fig. 6c–g;

Supplementary Fig. S12b, c). BI-1347 functioned in a

dose-dependent manner after testing, with an optimal

concentration range from 0.05 to 0.5 μM (Supplementary

Fig. S12d, e). The qualities of CMs with or without BI-

1347 treatment were basically identical, as indicated by

their morphology, contractile properties, and expression

of CM-specific genes (Fig. 6h–l; Supplementary Fig.

S13a–i and Videos S4, S5). Two additional CDK8 selective

inhibitors (AS2863619, MSC2530818) exhibited similar

effects to BI-1347 (Fig. 6e).

As previously reported, CDK8 functioned as a tran-

scriptional repressor or activator58, and also interacted

with the Wnt pathway in cancer models59,60. Therefore,

we wondered whether the Wnt inhibitor had a similar

effect to BI-1347. After adding IWR1 (a Wnt inhibitor),

the range of effective CHIR concentration was not

markedly broadened compared with BI-1347 (Supple-

mentary Fig. S14a). This indicated that inhibiting CDK8

activity could safeguard cardiac lineage differentiation

(see figure on previous page)

Fig. 5 Controlling the initial state of PSC colonies hinted by time-lapse images. a Different differentiation tendencies between cells located at

the periphery and center (spatial heterogeneity) of the PSC colony indicated by the image streams. The 0–72 h bright-field images were enhanced

and shown in inverted color for a clearer colony edge. After CHIR treatment, PSC colonies start to contrast at 0 h; starting from ~24–48 h, cells located

at the periphery of the colony migrate into the cell-free region (circled in time-lapse images of the first row as an example) until the whole well was

filled at ~72 h. This group of migrating cells is likely to successfully differentiate, while the cells located at the center of a large colony tend to fail.

Scale bar, 1 mm. b Comparisons between the proportion of the cTnT+ area (day 12) in cell-free regions and in cell-containing regions (0 h). Data are

means ± SD. n= 5 wells. Statistical significance was determined by paired t-test, **P < 0.01. c Schematic diagram of the ML-based control of initial

PSC colony states. During the PSC stage, image features of PSC colonies were extracted and passed to a random forest regression model for

efficiency prediction in real-time, providing guidance for identifying the most conducive starting point for differentiation. d Importance weights of

the 343 features determined by the random forest model. The feature importance weights were computed on the training set (n= 1350 wells). CCD,

Centroid-Contour Distance. e PCA plot of the eight features with the most importance weights in d. The color represented the Differentiation

Efficiency Index, which was normalized between 0 and 100%. n= 1934 wells. f The relationships between the mean differentiation efficiency and the

eight features with the most importance weights shown in d. The range of each feature was divided into 20 bins, and the mean Differentiation

Efficiency Index in each bin was computed. n= 1934 wells. g Correlation between the true and the predicted Differentiation Efficiency Index, with

Pearson’s r value. n= 584 wells. h Bright-field images (0 h, before CHIR treatment) of PSC colonies with different sizes, controlled by digestion time

and operation during passaging. The number of initial PSCs was strictly identical among wells. Scale bar, 50 μm. i Effect of different PSC colony sizes

on differentiation efficiency using RPMI+ B27 protocol and RPMI+ S12 protocol. Data are means ± SD. n= 5. Statistical significance was determined

by t-test, ***P < 0.001; ****P < 0.0001.
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with higher reproducibility and CDK8 inhibitors were not

simply functioned via Wnt pathway. By observing the

bright-field images, BI-1347 might work via preventing

cell death confirmed by propidium iodide (PI) staining at

48 h (Supplementary Fig. S14b–d), which might not fully

account for the promotion of CM differentiation effi-

ciency using BI-1347. To explore the dramatic

enhancement of cardiomyocyte induction by CDK8

inhibitor, we applied bulk RNA-seq and found that under

the treatment of overdose CHIR, BI-1347 blocked the fate

of presomitic mesoderm38,56,57, and led to consistent cell

differentiation into cardiac mesoderm by resisting CHIR

overdose (Supplementary Fig. S14e–g). Together, these

results presented a promising capacity of our CPC

Fig. 6 (See legend on next page.)
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recognition model in offering a high-throughput screen-

ing platform with an early output, and further optimizing

the cardiac differentiation method by improving its

invulnerability.

Applying the image-based strategy to nephric and hepatic

differentiation

Our proof-of-concept studies in image-based ML-guided

cardiac differentiation encouraged us to transfer our strategy

to modulate other PSC differentiation processes, such as

PSC differentiation into nephric cells and hepatic cells,

which are also valuable for cell-based therapy or drug toxi-

city evaluation. In the early differentiation process of PSCs to

kidney organoids19, the optimal CHIR concentration was

essential to the high differentiation efficiency but fluctuated

among batches, depending on the cell line, the passage

number, and the culture conditions61,62 (Supplementary Fig.

S15a). However, cells under treatment of different CHIR

concentrations (low, optimal, high) exhibited distinct bright-

field image characteristics (loose, normal, and dense,

respectively) on day 4 (when CHIR was removed)19 (Sup-

plementary Fig. S15b). We then tested whether CHIR con-

centration could be assessed on day 4 by ML.

We prepared a dataset of day 4 bright-field images with

different cell lines (iPS-B1, iPS-F, iPS-M, H9, WIBR3) and

CHIR concentrations (ranging from 3 μM to 16 μM). For

assessing CHIR concentration, bright-field images on day

4 were labeled as low, optimal, or high according to their

characteristics on day 4 and SIX2 (a marker for nephron

progenitor cells, NPCs) immunofluorescent staining on

day 9 (Supplementary Fig. S15c). The t-SNE plot of SIFT

local features extracted from bright-field images indicated

clear separation among different CHIR concentration

groups (Supplementary Fig. S15d). Using these local fea-

tures, a trained logistic regression model could accurately

classify the bright-field images in the test set with an

accuracy of 99.11% (Supplementary Fig. S15e, f). Since the

cells displaying dense morphology should be terminated

early, and the cells displaying loose morphology could be

corrected by prolonging the CHIR treatment for high-

efficiency differentiation19, the early assessment of CHIR

concentration provided us with valuable guidance for

stabilizing a nephric differentiation system.

Low reproducibility in differentiation efficiency across

batches is also a critical challenge for hepatic differ-

entiation systems63–67. We therefore explored the appli-

cation of ML for non-invasively recognizing definitive

endoderm (DE) regions (72 h, stage I of hepatic differ-

entiation) in bright-field images for early assessment of

hepatic differentiation status and subsequent potential

image-based cell purification, as described above (Sup-

plementary Fig. S16a). Live-cell bright-field images and

their SOX17 (a DE marker gene) immunofluorescent

images were captured at 72 h, which involved varying

differentiation efficiency by modulating the dose of small

molecules (CHIR and IDE1) used in stage I of differ-

entiation in different cell lines (Supplementary Fig. S16b).

We then trained the weakly supervised learning model on

DE stage bright-field images with purely categorical labels

(i.e., “positive” or “negative”, according to the proportion

of SOX17+ cell region, see Materials and methods). After

training, the endoderm cell regions predicted by the

trained model matched well with the SOX17 fluorescence

labels (Supplementary Fig. S16c). The proportion of

(see figure on previous page)

Fig. 6 Small molecule screening for broadening the range of effective CHIR concentration based on the CPC recognition model.

a Schematic overview of the small molecule screening. A ~3000-compound library was screened for counteracting the differentiation tendency to

presomitic mesoderm under a high CHIR dose (16 μM, 0–48 h). The differentiation efficiencies were estimated by using the CPC recognition model

on day 6 bright-field images. b Preliminary small molecule screening result ordered by the predicted percentage of CPC regions on day 6. Cells of

positive CTL were treated with optimal CHIR, while cells of negative CTL (DMSO) or library screening groups were treated with overdose CHIR (16 μM,

48 h). c Effect of BI-1347 (2 μM, 48 h) during preliminary screening. The heatmap and the predicted CPC regions are generated by the CPC

recognition model. Scale bar, 500 μm. d Effect of BI-1347 on improving differentiation efficiency under high CHIR dose (20 μM, 48 h). Representative

bright-field images and fluorescence images of cTnT on day 12 were shown. Scale bar, 1 mm. e Effect of CDK8 inhibitors (0.5 μM, 48 h) on improving

the differentiation efficiency under titration of CHIR concentrations using iPS-B1 line. CHIR was added with BI-1347, AS2863619, or MSC2530818 for

0–48 h. The widths of effective CHIR concentration (percentage of cTnT+ cells ≥ 50%, indicates by a dashed line) were shown in the upper panel.

Data are means ± SD. n= 3. Statistical significance was determined by t-test to compare the BI-1347, AS2863619, and MSC2530818 groups with the

CTL group under each CHIR concentration. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, not significant. f Effect of BI-1347 on improving the

consistency of batch-to-batch differentiation efficiencies. Cells from different batches were treated with CHIR (6 μM, 48 h) or CHIR (12 μM, 48 h) plus

BI-1347 (0.5 μM, 48 h) on the iPS-B1 line. ***P < 0.001. g Effect of BI-1347 on improving the consistency of line-to-line differentiation efficiencies. Cells

from six different lines (iPS-B1, iPS-18, iPS-F, iPS-M, H9, WIBR3) were treated with CHIR (6 μM, 48 h) or CHIR (12 μM, 48 h) and BI-1347 (0.5 μM, 48 h).

****P < 0.0001. h Immunofluorescent result of CM with BI-1347 treatment (0.5 μM, 48 h) under high CHIR dose (16 μM, 48 h). Representative

fluorescent images of CM with BI-1347 treatment for cTnT, MEF2C, cTNI, NKX2.5, and α-ACTININ on day 12 were shown. Scale bar, 100 μm. i Gene

expression data for iPSC, iPSC-CM without BI-1347 treatment, and with BI-1347 (0.5 μM, 48 h)- treated iPSC-CM (day 12, both without metabolic

purification). Heatmap shows Z-scores of log2(FPKM+ 1) normalized over multiple samples. j Action potential in iPSC-CMs with (+BI-1347, 0.5 μmol/

L, 0–48 h) or without (–BI-1347) BI-1347. k I–V plots of ICa in iPSC-CMs with or without BI-1347. Data are expressed as means ± SEM. n= 15–16.

l Fluorescent images (upper) and time courses (lower) of spontaneous calcium transients in iPSC-CMs with or without BI-1347.
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predicted endoderm cell regions was also correlated with

the proportion of true SOX17+ cell regions (Pearson’s

r= 0.92, P < 0.0001) (Supplementary Fig. S16d). These

two extended applications further validated the general-

izability of our strategy.

Discussion

We here developed a general PSC differentiation strategy

to intelligently modulate and optimize the differentiation

process based on label-free image-based ML, thus greatly

reducing the vulnerability of differentiation (Fig. 1a).

Throughout the cardiac differentiation process, our strategy

integrated control of the initial PSC state, early assessment

and intervention in differentiation conditions (e.g., CHIR

dose), purification of the desired cells recognized by ML, and

protocol optimization by ML-assisted small molecule

screening, together providing a solution for consistently

high-quality differentiation from PSCs to functional cells.

Our robust strategy can boost cell manufacturing for bio-

medical applications and provides a new perspective for

understanding the biology of PSC differentiation.

Distinct from some applications of ML for biological

tasks25,29, the informative image features we observed and

applied for PSC quality control and CHIR dose assessment

have plausible biological explanations. Consistent with our

finding that cells located at the periphery or the center of

colonies have exhibited different differentiation tendencies,

there are previous reports of spatial heterogeneity of sig-

naling responses within an PSC colony68–70. Similar to our

observation of CM-committed cells migrating to the cell-

free space, the formation of the mesoderm is known to

require cell migration through the primitive streak during

embryogenesis71,72. Among the most discriminative image

features applied to CHIR assessment in cardiac differentia-

tion, Optical Flow, for tracking cell movements, can reflect

that cells undergo epithelial-mesenchymal transition for

mesoderm formation73. And Colony Circumference and

Cell Brightness can measure the colony size and colony

density, which have been reported to affect the CHIR

response of cells: the Wnt signaling was limited to the

periphery of high-density colonies which was mediated by E-

cadherin, while Wnt signaling was modestly biased to the

periphery in low-density colonies68. These image char-

acteristics in our strategy are informative for analyzing dif-

ferentiation processes in biological systems.

Our strategy can be generalized for use in other PSC

differentiation processes (e.g., the nephric differentiation

presented above). PSC heterogeneity and instability of

differentiation conditions (e.g., CHIR doses) are common

to the differentiation process of PSCs into other func-

tional cells, which impedes large-scale cell production.

Since the microscopic images of cells contain potentially

informative signals regarding cell lineage (e.g., morphol-

ogy and aggregation dynamics)32–36,74, our image-based

strategy should be applicable to PSC differentiation into

other cell types, for instance monitoring the rosette for-

mation in PSC-to-neuron differentiation process34,75.

More broadly, adopting our strategy may be useful for cell

biotechnologies beyond 2D PSC differentiation, such as

organoids differentiation76–79, somatic reprogramming to

PSC80, or direct cell lineage reprogramming81.

Notably, prior knowledge from researches about differ-

entiation provides valuable guidance for strategy develop-

ment. Observation of cell morphology and knowledge about

the determinative inducer can direct the design of imaging,

the condition of inducer treatment, and ML algorithms.

While choosing a time point for analyzing and intervening,

there is always a trade-off that must be faced: on the one

hand, during early differentiation, cell lineages are more

susceptible to fate manipulation but have fewer discernable

image features; on the other hand, during later differentia-

tion, cell fates are more fixed but their heterogeneity can be

observed more easily. Therefore, it is essential to tailor the

strategy design depending on the nature and the image

characteristics of a specific PSC differentiation.

Several issues seem likely to be encountered while

applying our strategy to other PSC differentiation pro-

cesses. First, acquiring manually labeled data for training

ML models is often a cumbersome process, so it is

desirable to explore other ML paradigms, including self-

supervised learning82 and few-shot learning83, which will

probably enable models to learn the cell heterogeneity

with fewer labeled data. Second, cell images are also

susceptible to many factors (e.g., cell line, cell passage

number, cell state) which inevitably result in a data dis-

tribution change, and may damage the predictive perfor-

mance of ML models. Several approaches, such as sample

weighting84 and risk extrapolation85, have been intro-

duced to improve a model’s out-of-distribution general-

ization ability, which could be further explored. Our

strategy possesses compatibility with other technologies

(e.g., phototoxic dyes86 or the local light-responsive heat

material87 in cell killing for in situ purification, automated

cell culture machines88,89), which promisingly can be

integrated into a self-adaptive and closed-loop system for

full-automatic processing of PSC differentiation in vitro.

Materials and methods

Human PSCs culture

All pluripotent and differentiation cells were maintained

at 37 °C in the cell incubator (LS-C0150, Thermo), with

5% CO2 and atmospheric (21%) O2. Human induced

pluripotent stem cell (iPSC) lines iPS-18 (Y00300,

TaKaRa), iPS-B1 (CA4025106, CELLapy), iPS-M

(RC01001-A, Nuwacell), iPS-F (RC01001-B, Nuwacell),

and human embryonic stem cell (ESC) lines WIBR3

(Whitehead Institute Center for Human Stem Cell

Research, Cambridge, MA)90 and H9 were routinely
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cultured in PGM1 medium (CELLapy) or mTeSR1 med-

ium (Stemcell Technologies) on growth factor-reduced

Matrigel-coated (Corning) plate. iPSCs and ESCs were

passaged every 3–5 days using Versene (Gibco) depending

on the cell density. 3–5 μM Y27632 (Selleck Chemicals)

dissolved in dimethyl sulfoxide (DMSO) was added for the

first 12–24 h after passage. The pluripotent cells were

seeded in 6-well plates.

Cardiac differentiation of PSCs

PSCs were split into E8 medium (Cauliscell Inc) at the

ratio of 1:10 or 1:12 for the last passage before beginning

differentiation. Cells differentiated in 24-well plates or 96-

well plates. When they reached ~80–90% confluence, the

medium was changed to RPMI+B27– medium, consisting

of RPMI 1640 (RPMI, Gibco), 2% B27 without insulin

(Gibco), and 1% Penicillin-Streptomycin (Life Technolo-

gies)20. At stage I (from PSC to mesoderm, day 0–3), PSCs

were initially treated with CHIR (Selleck Chemicals). CHIR

concentration and duration depended on the cell lines and

experiment design, ranging from 2–20 μM and 24–48 h,

respectively. After CHIR treatment, the medium was

replaced with RPMI+ B27– medium until 72 h (day 3). At

stage II (CPC stage, day 4–6), the RPMI+ B27– medium

was renewed and supplemented with 5 μM IWR1 (Selleck

Chemicals) for 48 h. CPCs could be induced on day 6. At

stage III (CM stage, day 7–~12), CPCs continued their dif-

ferentiation process to CMs in RPMI+B27 medium, con-

sisting of RPMI 1640 (RPMI, Gibco), 2% B27 with insulin

(Gibco), and 1% Penicillin-Streptomycin (Life Technolo-

gies). The medium was replaced with fresh RPMI+B27

medium every 3 days. Beating cells could be noted from day

8–9. S12 medium (RPMI+ S12) could also support efficient

CM differentiation, see reference for S12 medium details54.

For manipulating the initial PSC clone size, we changed

the enzyme digestion time, and forces and times of

pipetting during passaging before differentiation, while

the number of initial PSCs was strictly identical after

passage for each well.

As for switching the CHIR concentration in the middle

of CHIR treatment at stage I, the previous medium

remained unchanged if possible (i.e., directly adding CHIR

while switching to a high concentration and adding

RPMI+ B27– while switching to low concentration).

Purification of PSC-CMs

On differentiation day 10–12, CMs were washed with

DPBS (HyClone) to remove RPMI+B27 medium, and then

changed to Glc and Gln-free DMEM (no Pyr, no Lac, and no

fatty acids) (Gibco), supplemented with 4 mM L-lactic acid

(Selleck Chemicals) for 3–6 days. The medium was renewed

every 2–3 days to eliminate dead cells91. The metabolic

selection method for PSC-CMs was used in the sample

preparation for quantitative real-time PCR (RT-PCR).

Immunofluorescence staining

Cells were washed with PBS and fixed in 4% paraf-

ormaldehyde (DING GUO) for 15 min at room tem-

perature, permeabilized with 0.1% Triton X-100

(Amresco) for 15min at room temperature, blocked in 3%

Normal Donkey Serum (Jackson) and 0.1% Triton X-100

for 30min at room temperature, and incubated with

primary antibodies overnight at 4 °C in PBS plus 0.1%

Triton X-100 and 3% Normal Donkey Serum (Jackson).

Cells were washed three times with PBS on the next day

and then incubated with secondary antibodies in PBS with

1% bovine serum albumin (BSA) for 1 h at 37 °C in a dark

environment. Cells were washed again as above. Nuclei

were stained with Hoechst 33342 (Yeasen). An Axio vert

A1 Microscope (Zeiss) or Celldiscoverer 7 (Zeiss) was

used for imaging. Details of antibody are provided in

Supplementary Table S5.

Electrophysiological recording

Action potentials and calcium currents were recorded by

a Whole-cell patch clamp using an Axon 700B patch-clamp

amplifier (Axon Instruments, USA). Action potentials were

recorded in current-clamp mode. Pipette resistances were

2–3MΩ. The external solution contained (in mmol/L): 140

NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 10 glucose, and 10

Hepes (pH 7.4 adjusted with NaOH). The pipette solution

contained 120 KCl, l MgCl2, 3MgATP, 10 Hepes, and 10

EGTA (pH 7.2 adjusted with KOH).

Calcium currents were recorded in voltage-clamp mode.

Pipette resistances were 2–3 MΩ. The external solution

contained (in mmol/L): 135 NaCl, 5 CsCl, 1.8 CaCl2, 1

MgCl2, 1.2 NaH2PO4, 10 glucose, 10 Hepes, and 20 μM

TTX (pH 7.4 adjusted with NaOH). The pipette solution

contained 120 CsCl, l MgCl2, 5 MgATP, 20 TEACl, 10

Hepes, and 5 EGTA (pH 7.2 adjusted with CsOH).

Calcium imaging recording

PSC-CMs were incubated with 5 μM fluo-4 AM for

10min, then washed three times with external solution,

and imaged with Zeiss LSM-510 confocal microscope

equipped with 40× oil lens. The external solution con-

tained (in mmol/L): 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1

MgCl2, 10 glucose, and 10 Hepes (pH 7.4 adjusted with

NaOH). The fluo-4 fluorescence was excited by a 488 nm

laser, filtered by a 505 nm long-pass filter, and recorded in

line-scan mode at 3.84 ms/line.

Region-selective cell purification based on a

photoactivatable probe

DACT-1 was dissolved in DMSO to a concentration of

10 mM and aliquoted to store at –20 °C. Cells were

incubated with RPMI+ B27 medium containing 1 μM

DACT-1 for 30min at 37 °C. Photoactivation experiments

were performed on an inverted fluorescence microscope
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(Nikon-TiE) equipped with a motorized stage (Marzhau-

ser SCAN IM). Imaging was performed with a 20 × 0.75

NA dry objective, a spinning disk confocal unit (Yoko-

gawa CSU-X1), and a scientific Complementary Metal

Oxide Semiconductor (CMOS) camera (Hamamatsu

ORCA-Flash 4.0 v2). For DACT-1-based region-selective

photoactivation, DIC images of cells in 96-well plates

were inspected and then the snapshots of cells were taken

for selection. The region of interest (ROI) was selected

and drawn as polygons in MATLAB (R2018b, Math-

Works). Parallel horizontal trace lines with 20-μm spacing

were generated to intersect the polygons, and the stage

coordinates of the intersection points were calculated. A

405-nm laser line (Coherent OBIS 405 nm, 50mW) was

focused on the sample plane with the objective to form a

spot 20 μm in diameter. The output power of the laser

line was set to 10% (i.e., 5 mW) to reduce photodamage.

Then the motorized stage with the light spot was set to

move according to trace lines at 0.12 mm/s in order that

the 405-nm focal illumination could scan across the ROI

to photoactivate cells restrictedly. Photoactivation of each

ROI was typically completed within 1 min. The micro-

scope, camera, and lasers were controlled with Micro-

Manager (version 2.0.0). For customized hardware control

(e.g., stage movement), MATLAB was used to run the

Micro-Manager GUI and core. After irradiation, DACT-

1-labeled cells can be detected by confocal imaging using

a 561-nm laser line (Coherent OBIS 561 nm, 50mW).

After selective photoactivation, cells were dissociated

using 0.05% Trypsin-EDTA (Gibco) at 37 °C for 5–7min,

which depended on the days of differentiation, followed

by gentle shaking in a 37 °C incubator for 2 min. After

dispersion, the cells were filtered through a 40-μm cell

strainer (Biologix). Then the cells were centrifuged at

850 rpm for 3 min and resuspended in 0.5% BSA. The

DACT-1+ and DACT– cells were separated and collected

from BD FACSAria III Cell Sorter (Becton Dickinson).

The sorted cells were resuspended in RPMI+ B27 med-

ium with 10% FBS (Vistech) and 5 μM Y27632 and

transferred onto Matrigel-coated plates. The medium was

changed to RPMI+ B27 medium on the second day. Cells

were cultured in RPMI+ B27 medium for 6 days and then

were fixed for cTnT immunostaining.

Hoechst/PI staining

For the Hoechst/PI staining, cells were treated with

RPMI 1640+ B27– supplemented with 12 μM CHIR with

or without BI-1347 for 48 h, then were incubated with

RPMI 1640+ B27– supplemented with 5 μg/mL Hoechst

33342 (Yeasen), maintained at 37 °C for 5 min. 100× PI

stain Solution (Coolaber, SL7091) was diluted with PBS

and cells were incubated with diluted PI for 10min at

room temperature. Cells were immediately imaged using

Celldiscoverer 7.

RT-PCR

Total RNA was isolated using the EasyPure RNA Kit

(TransGen), and cDNA was synthesized using the

TransScript All-in-One First-Strand cDNA Synthesis

SuperMix for the qPCR kit (TransGen). Quantitative real-

time PCR was performed using ChamQ SYBR qPCR

Master Mix (Vazyme). The gene expression levels were

normalized using GAPDH as an internal reference. Pri-

mer sequences are listed in Supplementary Table S6.

RNA-seq

A total of 12 samples of IR-CPC, non-CPC, CM, and

iPSC (including three biological repetitions) were col-

lected and analyzed together, in which IR-CPCs were

purified through DACT-1 photoactivation method; non-

CPC were the cells under inappropriate CHIR conditions

on day 6. iPS-B1 cell line was used in sample collection.

Data were shown in Supplementary Fig. S9a–f.

A total of 10 samples including an iPSC sample and cells

under different CHIR doses (CHIR 2 μM 48 h, 6 μM 24 h,

6 μM 36 h, 10 μM 24 h, 8 μM 36 h, 6 μM 48 h, 12 μM 24 h,

12 μM 36 h, and 10 μM 48 h) were collected before

withdrawing CHIR. iPS-18 cell line was used in sample

collection. Data were shown in Supplementary Fig.

S11a–d.

A total of nine samples of iPSC-CM with BI-1347, iPSC-

CM without BI-1347, and iPSC (including three biological

repetitions) were collected and analyzed together. iPSC-

CM with BI-1347 (induced by CHIR 12 μM 48 h and BI-

1347 0.5 μM 48 h) and iPSC-CM without BI-1347

(induced by CHIR 8 μM 48 h) were collected after

12 days of cardiac differentiation. iPS-B1 cell line was used

in sample collection. Data were shown in Fig. 6i and

Supplementary Fig. S13a, b.

A total of 14 samples were collected and analyzed for

exploring the mechanism of BI-1347 (including two bio-

logical repetitions), including two iPSC samples and

6 sample pairs from 2 groups, in which CM was induced

in the presence or absence of BI-1347 (0.5 μM, 48 h)

under the overdose CHIR (16 μM, 48 h). Guided by this

experimental design, cells were collected at three time

points (24 h, 48 h, and 72 h). iPS-B1 cell line was used in

sample collection. Data were shown in Supplementary Fig.

S14e–g.

RNA was extracted using the EasyPure® RNA Kit

(TransGen), then sequenced on NovaSeq6000-PE150.

The reads were processed and mapped to the Homo

Sapiens genome GRCh38/hg38. The figures of PCA,

heatmaps, and GO enrichment were visualized by

Omicshare Tools (https://www.omicshare.com/). Heat-

maps represent log2(FPKM+ 1) normalized over samples.

The detection of the differentially expressed genes (DEG

calling) between samples was performed with DESeq92

when samples included multiple repetitions. Only P
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value < 0.05, fold change < 0.5 or > 2, and mean expres-

sion > 1 were regarded as DEGs and used in further

analysis. DEG calling was performed with expression

fold change in samples without repetition. Only fold

change < 0.5 or > 2, and mean expression > 1 were

regarded as DEGs. The front-rank DEGs were enriched

for GO analysis.

More details can be accessed through GEO accession:

GSE226159.

Image acquisition

The live-cell bright-field images within the whole CM

differentiation process were acquired using Celldiscoverer

7 (an imaging system equipped with an inverted research

microscope for long-term cell culture observations, made

by Carl Zeiss). The ORCA-Flash 4.0 V3 digital CMOS

camera with 2048 × 2048 pixels could achieve automatic

live-cell imaging. During differentiation, the petri dish was

maintained in an internal incubator inside the microscope

at 37 °C with 5% CO2.

The 96-well, 24-well, and 384-well plates (Falcon) were

used. After autofocus, bright-field images were taken

under a 5× objective and a 2× tube lens. A 2 × 2 binning

was applied to each acquisition to improve the signal-to-

noise ratio and reduce the storage space, thus generating

1024 × 1024-pixel images. The scaling resolution was

1.3 μm per pixel according to the previous light path

design.

Each well in the 96-well plate was imaged with 25 tiles

in a 5 × 5 pattern with an overlap of 5%–15% on adjacent

fields. After stitching, the tiles of each well generated an

image with 4860 × 4860 pixels, 6.3 mm × 6.3 mm in size.

To ensure the sharpness of the images, 3–5 Z-stacks of

images with equidistant intervals (3–6 μm) were used for

further in-focus image selection. For three typical

Z-stacks of images, a whole 96-well plate scanning takes

~1.2 h for 7200 (5 × 5 × 3 × 96) tiles in one round. For the

following analysis, only images of 9 tiles in a 3 × 3 pattern

located in the center of the well were used as “whole-well

images” to avoid the interference of images containing

well edges.

For the 24-well plate, similarly, 156 tiles were stitched

into a 20,284 × 20,284-pixel rectangle image for each well.

In particular, for some wells at the edge of the plate, only

136 tiles were taken because of the limitation of the

shooting range of the objective lens. An approximate

13.0 mm × 13.0 mm visual range was obtained for each

well. A total of 10,992 (136 × 3 × 4+ 156 × 3 × 20) images

were collected in one round.

For the 384-well plate (square well), 9 tiles in a 3 × 3

pattern with an overlap of 10% were taken. The scaling

resolution was 1.3 μm per pixel with the same objective

and camera. In total, 3456 (3 × 3 × 1 × 384) images were

collected for image acquisition in one round.

The cell images were automatically saved in CZI format

generated by ZEN software (Zeiss company supporting

picture acquisition software, version V2.0-V3.1 was used).

Images were automatically exported to uncompressed

TIFF format or PNG format for real-time image

processing.

Visualization of the local image features of the overall

differentiation process

The local image features of the overall CM differentiation

process were first analyzed by PCA and LDA42. The dataset

consisted of n= 19,968 images (for 96 wells at 208 time

points). The feature vector for each image was obtained

from SIFT39, SURF40, and ORB41 feature descriptors. SIFT,

SURF, and ORB was first used to extract keypoints from the

image and compute a feature vector (of 128-D, 64-D, and

32-D, respectively) for each keypoint; then for every image,

the mean and standard deviation of each dimension of all

the keypoints’ feature vector were computed, resulting in a

(128+ 64+ 32) × 2= 448-D vector. PCA was applied to

project the feature vectors to the 2-D plane spanned by the

first two principal components (denoted by PC1 and PC2).

LDA was applied to find a 2-D plane (spanned by the first

two linear discriminants, LD1 and LD2) which can best

separate wells with an underdose, optimal dose, and over-

dose of CHIR. Extraction of local features, PCA, and LDA

were implemented using the OpenCV93 and the scikit-learn

package94 in Python.

Evaluation of differentiation efficiency using cTnT

fluorescent labels

The PSC-to-CM differentiation efficiency of a well was

quantified by the average intensities of the final fluores-

cence images. Concretely, for aW ×W fluorescence image

I (with intensity values in [0, 1]), its “Differentiation

Efficiency Index” was defined by the total intensity values

greater than a threshold α, i.e.,

Differentiation Efficiency Index ¼
1

W 2

X

1 � i; j � W ;

Ii;j>α

Ii;j;

where 1/W2 is a normalizing factor. In all of our

experiments, α was chosen to be 0.5.

Deep learning for cTnT fluorescence prediction on bright-

field images at CM stage

The pix2pix model43 was utilized to predict cTnT

fluorescent labels from bright-field images. Pix2pix is a

classic model for supervised image-to-image translation

based on conditional adversarial networks. In the pix2pix

model, the generator G learns to predict the fluorescence

labels from the bright-field images, and the discriminator

D learns to distinguish between fake and real “bright-
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field-fluorescence” image pairs (Supplementary Fig. S3a).

Formally, let x and y be the bright-field image and the

corresponding fluorescence image, respectively, and let z

represent the randomness in generator G. Then the final

training objective is a L1 reconstruction loss (weighted by

λ) plus an adversarial term:

G� ¼ argmin
G

max
D

λLL1 Gð Þ þ LcGAN G;Dð Þ;

where

LL1 Gð Þ ¼ Ex;y;z y� G x; zð Þk k1
� �

;

LcGAN G;Dð Þ ¼ Ex;y logD x; yð Þ½ � þEx;z log 1� D x;G x; zð Þð Þð Þ½ �:

Following the original design43, the generator G is based

on the U-Net architecture95 (Supplementary Fig. S3b).

The transposed convolution operation was replaced with

nearest neighbor up-sampling followed by convolution

operation to avoid checkerboard artifacts96. Instance

normalization was used in the generator. The dis-

criminator D is a patch discriminator where each pixel in

the output score map has a receptive field of size 16 × 16

pixels (Supplementary Fig. S3c).

The dataset configuration for training and testing was

listed (Supplementary Table S1). All the images were

resized to 1536 × 1536 pixels. During training, in each

epoch, a total of 1260 patches (of size 256 × 256 pixels)

were randomly selected from the bright-field and fluor-

escence image pairs in the training set and passed to the

network with a mini-batch size of 16. The pix2pix model

was trained for 2000 epochs with the Adam optimizer97

with β1 = 0.5, β2 = 0.999. λ was chosen to be 100. The

learning rate was kept as 0.0002 in the first 1000 epochs

and linear decayed to 0 in the last 1000 epochs. The L1
loss, λLL1 Gð Þ (scaled by 1/5) and the GAN loss, log

(1−D(x, G(x, z))) of the generator during training were

shown (Supplementary Fig. S4a). To ensure the fidelity of

fluorescence prediction, GAN loss was disabled in the last

1000 epochs of training.

During testing, whole-well bright-field images were

directly passed to the generator network. We evaluated

the performance by comparing the predicted and the

ground-truth fluorescence intensity at the pixel level,

providing a heatmap and a Pearson correlation value r

(Fig. 2d); here fluorescence images were resized to

512 × 512 pixels, and the numbers in the bins of the

heatmap are frequency counts per 100. We also computed

the image-level correlation between the true and pre-

dicted fluorescence in terms of the Differentiation Effi-

ciency Index (Fig. 2e, f). The training and testing of the

pix2pix model were implemented using the PyTorch

framework98 and trained on a PC with an 11 GB NVIDIA

RTX 2080Ti GPU.

Weakly supervised learning for CPC recognition at the CPC

stage

The CPC regions in day 6 bright-field images were

manually annotated by tracking the location of cTnT+

cells in the image streams (from day 12 back to day 6) and

the expert experience about CPC image textures, repre-

sented by a CPC segmentation mask (Supplementary Fig.

S5a). The CPC mask contained cell regions labeled with

dark gray (cells successfully differentiate into CMs), light

gray (cells likely differentiate into CMs), and black (cells

fail to differentiate into CMs).

The recognition of CPC was based on weakly supervised

learning. In the training stage (Supplementary Fig. S5a),

the ResNeSt-10149 network was trained to classify the

bright-field image patches labeled with “positive” or

“negative”. Day 6 bright-field images (resized to

2816 × 2816 pixels) were cropped to local patches

(512 × 512 pixels) with a 50% overlap between adjacent

patches. These patches were labeled with positive (≥ 30%

dark gray regions in the mask) or negative (only black

regions in the mask); patches in other cases were dis-

carded. Finally, 8463 labeled patches (3175 positive and

5288 negative) were extracted from the bright-field ima-

ges. 20% of the training image patches were used for

validation. The ResNeSt-101 network was trained for 300

epochs, using the Adam optimizer97 with a mini-batch

size of 6 and a learning rate of 0.00003. The change of

training loss and validation loss, with ACC (accuracy) and

AUC (the area under the curve) on the training set, were

also shown (Supplementary Fig. S6a, b).

In the testing stage (Supplementary Fig. S5b), for new

bright-field images of day 6, we used the trained ResNeSt-

101 with the Grad-CAM50 approach to generate the

prediction of CPC regions. In the test set, the day 6 bright-

field images were cropped to patches (of size 512 × 512

pixels) with a 75% overlap between adjacent patches. The

trained network then made predictions on these patches.

For a patch predicted as positive, its heatmap was com-

puted from the class-activation maps weighted by gra-

dients. Concretely, let Ak (where k is the channel index) be

the feature map activations of the convolutional layer

right before the global average pooling operation in the

ResNeSt-101. The importance weight αk was derived from

the gradient of the score for class “positive” (before soft-

max, denoted by y+), with respect to the feature map Ak:

αk ¼
1

Z

X

i

X

j

∂yþ

∂Ak
ij

;

where Z is the number of pixels of the feature map. The

heatmap was then defined by ReLU
P

k αkA
k

� �

. For a

patch predicted as negative, its heatmap was simply set to

all-zero. These heatmaps were normalized to 0–255 and

binarized with a threshold of 10 to yield a binary
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prediction of CPC regions. The resulting patch-level

predictions (heatmaps and predicted CPC regions) were

finally reconstructed to whole-well (2816 × 2816 pixels)

predictions. The dataset configuration for training and

testing were listed (Supplementary Table S2).

The performance of weakly supervised localization of

CM-committed CPCs was evaluated by a pixel-level

comparison between the predicted CPC masks and the

annotated CPC masks (Fig. 3e), as well as an image-level

comparison between the predicted percentage of CPC

regions and the final Differentiation Efficiency Index

(computed from the day 12 cTnT fluorescent label) (Fig.

3f, g). For the pixel-level comparison, dark gray and light

gray regions in the CPC mask were regarded as the

ground-truth CPC regions and recolored with white. We

counted the “true negative”, “true positive”, “false nega-

tive”, and “false positive” pixels in the binary prediction of

CPC mask, denoted by “TN”, “TP”, “FN”, and “FP”,

respectively. Accuracy, F1 score, precision, recall, speci-

ficity, and intersection-over-union (IoU), were defined by

accuracy ¼
TNþ TP

TNþ FNþ TPþ FP
;

precision ¼
TP

TPþ FP
;

recall ¼
TP

TPþ FN
;

F1 score ¼
TP

TPþ ðFNþ FPÞ=2
;

specificity ¼
TN

TNþ FP
;

IoU ¼
TP

TPþ FPþ FN
:

Images fully covered by CPCs or without CPCs were

discarded to avoid meaningless values. For the image-level

comparison, Pearson correlation analysis was conducted

between the predicted percentage of CPC regions and the

true Differentiation Efficiency Index.

Manual annotation of the CPC masks, cropping of

bright-field images, and reconstruction of the whole-well

prediction were implemented in MATLAB (R2018b,

MathWorks). ResNeSt-101 and Grad-CAM were imple-

mented using the PyTorch framework98 and run on a PC

with an 8 GB NVIDIA Quadro P4000 GPU.

ML for CHIR dose assessment using 0–12 h bright-field

image streams

CHIR concentration and duration of high-efficiency

wells (cTnT+ cell percentage ≥ 50%) were negatively

correlated within one batch, with Spearman’s rank cor-

relation ρ= –0.80 ± 0.14 (n= 8 batches); titration results

of three typical batches were shown (Fig. 4a).

The dataset for CHIR dose assessment contained

0–12 h whole-well bright-field image streams (Supple-

mentary Table S3). The image streams consisted of 10

bright-field images (denoted by time points T1, T2, …,

T10) uniformly taken during 0–12 h. The images were

resized to 4860 × 4860 pixels. For each CHIR duration

(24 h, 36 h, or 48 h), CHIR concentrations with a mean

percentage of cTnT+ cells ≥ 20% were identified as

optimal concentrations range [c1, c2]. CHIR concentra-

tions c outside [c1, c2] were labeled as “low” (if c < c1) or

“high”

(if c > c2). The “ΔCHIR Concentration” of each con-

centration level c was defined by its relative difference to

[c1, c2], i.e.,

ΔCHIRConcentration cð Þ ¼

c� c1; c<c1

0; c1 � c � c2

c� c2; c>c2

8

>

<

>

:

;

which can measure the degree of deviation from the

optimal conditions.

These bright-field image streams were then represented

by 21-D handcrafted feature vectors. Since SIFT, SURF,

ORB feature descriptors could not distinguish the bright-

field images in the low-efficiency and high-efficiency

groups at stage I (Supplementary Fig. S2b), we used other

features including Fractal Dimension, cell colony statistics

(Area, Circumference, Area-Circumference Ratio,

Brightness, Local Entropy), and Optical Flow. Among

these features, Optical Flow (referred to as Type-II fea-

ture) was computed for every two consecutive time

stamps, while the others (referred to as Type-I features)

were computed for every time stamp. The feature

sequences of Area, Circumference, Area-Circumference

Ratio (A-C Ratio), and Optical Flow were normalized by

dividing the values of the first value in the sequence.

T1–T10 were divided into pre-phase, mid-phase, and

post-phase, and features in the same phase were averaged

out. Therefore, three numbers are computed for each of

the 7 features, resulting in a 21-dimensional feature

representation (Supplementary Fig. S10a). The computa-

tional details of each feature are listed below.

(1) Fractal Dimension. The Fractal Dimension

measures the roughness and self-similarity of an

image. The differential box-counting approach99

was used to obtain the fractal dimension (ranging

from 2–3), with box widths chosen to be
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2; 2k; 2k2; ¼ ; 2k15 where k ¼ 243ð Þ1=15.
(2) Local Entropy. For each pixel, we computed the

entropy of the intensity distribution of neighboring

pixels (with a Euclidean distance ≤ 10 pixels). Pixels

with a local entropy ≥ 3 were identified as covered

by cells. The Local Entropy of an image was defined

by the averaged local entropy of the cell-containing

regions.

(3) Area, Circumference, and A-C Ratio. They were

derived from the cell-containing regions, and

identified using the local-entropy criteria. The

A-C Ratio can reflect the fraction of cells located

at the periphery of colonies.

(4) Cell Brightness. Cell Brightness is the average

intensity value of cell-containing regions, which

may be related to the compactness of the cells.

(5) Optical Flow. Optical flow measures the cell

movements during differentiation, which reflects

the contraction velocities of cell colonies. Gunner

Farneback’s algorithm55 was used to estimate the

dense optical flow field for images at two

consecutive time points with a window size of

16. Flow vectors with a magnitude ≤ 4 are

discarded. The average magnitude of the optical

flow vectors was defined as the Optical Flow of

an image.

The high-dimensional feature vectors (21-D if using all

the features, or 4-D if using the selected features only)

were visualized by dimensionality reduction techniques:

LDA (Fig. 4d; Supplementary Fig. S10e) and PCA (Sup-

plementary Fig. S10c, d)42. LDA was applied to verify the

discriminative ability of the feature representation, and

PCA for visualizing the sample distribution. The shrink-

age parameter for LDA was set to 0.1 and 0 when visua-

lizing the 21-D and 4-D feature spaces, respectively.

The logistic regression model was utilized for the clas-

sification task. The training data were reweighted to

handle the class imbalance problem. When using all the

21 features, l1 regularization with coefficients of 1/4, 1/8,

and 1/8 (for CHIR duration = 24 h, 36 h, and 48 h,

respectively) was used to encourage sparse parameters;

when using only 4 selected features, the l2 regularization

with a coefficient of 0.1 was used. The final loss functions

were optimized using the liblinear solver. Accuracy, pre-

cision, recall, F1 score, and AUC were used to evaluate the

performance of logistic regression. Precision, recall,

F1 score, and AUC were macro-averaged over the three

categories.

The logistic regression model could also provide a

“Deviation Score” for each CHIR concentration level c by

averaging the predictions of wells with concentration c

(Fig. 4f). Let Nc be the number of wells with concentration

c, among which N low
c ;Noptimal

c ;Nhigh
c wells are predicted as

low, optimal, and high by logistic regression. Then, the

Deviation Score is defined by

Deviation Score cð Þ ¼ Nhigh
c � N low

c

� �

=N :

The Deviation Scores range from −1 to 1, which could

reflect the deviation of the CHIR concentration from the

optimal conditions. The predicted Deviation Scores

computed from the test set of CD01-1 were compared

with the true ΔCHIR concentrations for n= 20 CHIR

doses (Fig. 4f).

To test the model’s generalization ability to new batches,

a cross-batch validation was conducted under a CHIR

duration of 24 h (Fig. 4g; Supplementary Fig. S10g, h).

Feature selection was conducted to increase the general-

ization ability of the classification. In each train-test round,

one batch was left for testing while others were for feature

selection and training. The logistic regression model in

each round was regularized by elastic-net (with l1-ratio

chosen as 0.1 and weighted by 0.05) and optimized by the

SAGA solver. The cross-batch validation was evaluated by

the Pearson correlation value between the predicted

Deviation Scores and true ΔCHIR Concentrations. Feature

extraction, LDA, PCA, feature selection, and logistic

regression were implemented by the Python-based pack-

age scikit-image100, scikit-learn94, and OpenCV93.

ML for control of the initial PSC colony state

We prepared a dataset of n= 1934 whole-well bright-

field images of the initial PSC colonies at 0 h (before CHIR

treatment) (Supplementary Table S4). 343 features were

extracted from the bright-field images to quantify the

morphological profiles of the initial PSC colonies. The

features were detailed as below.

(1) Local Entropy, Cell Brightness, Cell Contrast, Total

Variation. Local Entropy is the averaged local

entropy of each pixel located in the cell-

containing regions, where the local entropy of a

pixel is computed from the intensity distribution of

its neighborhood with radius = 5 pixels. Cell

Brightness and Cell Contrast is the mean and the

standard deviation of the intensities in the cell-

containing regions. Total Variation is the L1 norm

of the gradient of the bright-field images.

(2) Hu Moment 1–7. They are the seven image

moments101 of the bright-field images which were

invariant to translation, scaling, and orthogonal

transformations.

(3) SIFT 1–256. They are a 256-D bag-of-keypoints

representation102 using SIFT feature descriptor.

Concretely, K-Means was first applied to obtain 256

clusters over all the keypoints’ SIFT feature vectors

in 385 bright-field images (which were excluded

from the dataset); then for each image in the

dataset, we counted the number of keypoints
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assigned to each cluster, yielding a 256-D feature

vector.

(4) ORB 1–64. Similar to SIFT 1–256, ORB 1–64 are a

64-D bag-of-keypoints representation using ORB

feature descriptor.

(5) Area, Circumference, Area/Circumference Ratio.

They are the total area, total circumference, and

their ratio of the cell-containing regions. The area

and the circumference are normalized, respectively,

by width × width and width of the whole-

well image.

(6) Solidity, Convexity, Circularity. For a connected

component R, solidity is defined by
Area Rð Þ

Area convex hull of Rð Þ;

convexity is defined by
Circumference convex hull of Rð Þ

Circumference Rð Þ ;

circularity is defined by 4π Area Rð Þ

Circumference Rð Þ½ �2
. For a

bright-field image, its Solidity, Convexity,

Circularity are, respectively, the average of the

solidity, convexity, and circularity of all the

connected components of its cell-containing

regions, weighted by the connected

component’s area.

(7) Max Centroid-Contour Distance (CCD), Min CCD,

Min/Max Ratio of CCD, Mean of CCD, Standard

Deviation of CCD. For a connected component, the

distribution of the distances between its centroid and

boundary points are computed. Statistics (minimum,

maximum, minimum/maximum ratio, mean, and

standard deviation) are computed from the

distribution. For a bright-field images, these features

are also weighted averaged over all of the connected

components of its cell-containing regions.

(8) Spacing. To measure the spacing between cell-

containing regions, cell-free regions were

skeletonized and the average distance between the

skeletons and the cell-containing regions were

computed as the spacing.

To analyze how the morphological profiles of the PSC

colonies contribute to the final differentiation efficiency

under optimal CHIR conditions, the day 12 cTnT

fluorescence images were captured and used to deter-

mine the optimal CHIR conditions for each batch. Since

differentiation potential varies among different cell lines

even under optimal CHIR conditions, the Differentia-

tion Efficiency Index for each well was normalized by

the maximum Differentiation Efficiency Index in its

cell line.

We built a random forest regression model to predict

the final Differentiation Efficiency Index from the 343

features of the initial PSC colonies. 1350 wells were used

for training and 584 wells were for testing. To determine

the feature importance (Fig. 5d), 1000 decision trees with

a maximum depth of 8 were used in the random forest

model. 15 features were considered at each split in the

decision tree. For efficiency prediction (Fig. 5g), 20 deci-

sion trees were used in the random forest model. Quan-

tification of the PSC colony states and the random forest

regression model were implemented by the Python-based

package scikit-image100, scikit-learn94, and OpenCV93.

Application of the image-based ML for small molecule

screening

Cells from iPS-B1 line were seeded on 384-well plates

and induced to CM following the previous protocol20.

Regarding the preparation of 0.2 mM small-molecule

libraries, the chemical libraries arrayed in 96-well plates

consisted of a Kinase Inhibitor Library with 203 com-

pounds (MedChem Express), an Epigenetics Inhibitor

Library with 135 compounds (Thermo), an Approved

Drug Library with 1700 compounds (Thermo), a Clinical

Compound Library with 250 compounds (Thermo), a

Metabolism Inhibitor Library with 132 compounds

(MedChem Express), and an in-house library with ~600

compounds (purchased from MedChem Express or Sell-

eck Chemicals). All the compounds were transferred in a

volume of 0.3 μL to 384-well plates, making a final

working concentration of 2 μM. All the compounds were

added with CHIR (16 μM) for 0–48 h.

Both negative control (CHIR 16 μM with DMSO) and

positive control (CHIR 6 μM with DMSO) were also

included in the 384-well plates. We collected the bright-

field images on day 6 and used the trained ResNeSt model

with Grad-CAM to predict the percentage of CPC regions

for wells added with different small molecules. The

bright-field images were cropped from the center part of

whole-well images and resized to 1792 × 1792 pixels in

accordance with the scale during the model training.

These images were divided into patches (of size 512 × 512

pixels) with a 50% overlap between adjacent patches. After

predicting, small molecules were ranked by predicted

percentage of CPC regions and the top 40 compounds

were regarded as initial candidates. These candidates were

further confirmed by assessing their effects on broadening

the effective CHIR doses in 96-well plates.

NPC differentiation and early assessment of CHIR doses

using day 4 bright-field images

The differentiation of NPCs followed a published pro-

tocol19. PSC and ESC were resuspended in PGM1 med-

ium (CELLAPY), and seeded in a 24-well Matrigel-coated

(Corning) plate with 10 μM Y27632 (Selleck Chemicals).

From day 0, the medium was changed to Advanced

RPMI-1640 (Gibco) with 1% Penicillin-Streptomycin (Life

Technologies) and 1% GlutaMAX supplement (Gibco).

The medium was added with 2–15 μM CHIR (Selleck

Chemicals) for 4 days (day 0–4), followed by 3 days

treatment of 10 ng/mL Activin A (day 5–7), and then
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2 days of 10 ng/mL FGF9 (day 8–9). On day 9, cells were

collected for immunofluorescent staining of SIX2.

We prepared a dataset of day 4 bright-field images of

nephron progenitor cells, labeled with “low”, “optimal”,

and “high” identified from the CHIR dose condition and

the final immunofluorescent results. The dataset was

randomly divided into a training set (n= 3398) and a test

set (n= 1457). We extracted local features for the bright-

field images using a 256-D “bag-of-keypoints” feature

vector derived from the SIFT feature descriptor102. T-SNE

was used to visualize the features, with perplexity chosen

to be 60 (Supplementary Fig. S15d).

Logistic regression was used to classify the bright-field

images in the “low”, “optimal”, and “high” CHIR dose

groups based on the local features. The training data were

reweighted to handle the class imbalance problem. The

logistic regression model was trained with l1-regulariza-

tion weighted by 1, and optimized by liblinear solver.

Accuracy, precision, recall, F1 score, and area-under-the-

curve (AUC) were used to evaluate the performance of

logistic regression. Precision, recall, F1 score, and AUC

were macro-averaged over the three categories (Supple-

mentary Fig. S15e).

Hepatic Differentiation and recognition of DE

The differentiation of DE referred to an established

protocol for hepatocyte-like cell induction based on

small molecule compound103. Briefly, iPS-B1, iPS-18,

and iPS-M were seeded in a 24-well plate and cultured

in PGM1 medium. While PSC reached the desired

confluence, the medium was changed to RPMI+ B27–

medium supplemented with CHIR and IDE1 (MedChem

Express). After 24 h, the medium was changed to

RPMI+ B27– medium containing IDE1 of the previous

concentration for 2 days. In order to get results with

different efficiencies, PSC confluence, CHIR con-

centration, and IDE1 concentration were fine-tuned

according to the experiment design in a few wells. The

medium was changed every day. On day 3 (DE stage),

cells were fixed for immunofluorescent staining of

SOX17. Live-cell bright-field images and SOX17 fluor-

escence images were captured.

We applied the weakly supervised learning model for

the recognition of DE cell regions. Since SOX17 localized

in the cell nucleus, the SOX17+ cell regions were obtained

by morphological closing of the binarized SOX17 fluor-

escence images. The training dataset included 8 whole-

well bright-field images (resized to 16,000 × 16,000 pixels),

which were cropped to patches (512 × 512 pixels), with an

overlap of 25% between adjacent patches. According to

the SOX17 fluorescence results, these patches were

labeled as “positive” (≥ 20% SOX17+ cell regions),

“negative” (without SOX17+ cell regions), or otherwise

excluded from the training set.

After trained for 300 epochs on these labeled patches,

the model was tested on 45 new bright-field images (of

size 5120 × 5120 pixels), which were cropped to patches

(512 × 512 pixels) with an overlap of 50% between adja-

cent patches. Grad-CAM heatmaps for each bright-field

images were reconstructed from patch-level results.

Statistical analyses

Data are expressed as means ± SD. P values < 0.05 were

considered significant for all statistical tests. Statistical

analyses of differences between experimental groups were

performed with GraphPad Prism 8/9, using two-tailed

Student’s t-tests or one-way ANOVA (followed by Dun-

nett’s multiple comparisons test). The two-tailed Pearson

or Spearman correlation analysis was performed by Prism

8/9 and Python’s scipy package104. The P values of the

one-way ANOVA F-test in the feature selection were

computed by Python’s scikit-learn package94. All of the

statistical tests performed are indicated in the figure

legends.
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