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Nickel and Photoredox Dual Catalyzed Asymmetric Carbosulfonylation of Alkenes
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ABSTRACT: An asymmetric three-component carbosulfonylation of alkenes is presented here. The reaction, involving the
simultaneous formation of a C—C and a C—S bond across the 7-system, uses a dual nickel/photoredox catalytic system to produce
both f-aryl and f-alkenyl sulfones in high yields and with excellent levels of stereocontrol (up to 99:1 er). This protocol exhibits a
broad substrate scope and excellent functional group tolerance and its synthetic potential has been demonstrated by successful
applications toward pharmacologically relevant molecules. A broad array of control experiments supports the involvement of a
secondary alkyl radical intermediate generated through radical addition of a sulfonyl radical to the double bond. Moreover,
stoichiometric and cross-over experiments further suggest an underlying Ni(0)/Ni(I)/Ni(IIl) pathway operative in these
transformations.

B INTRODUCTION

As abundant and readily available feedstocks, olefins have been
recently extolled as prominent platforms for the formation of
C—C and C—X bonds. Intermolecular difunctionalizations of
alkenes represent a powerful and versatile entry to molecular
complexity as they enable the stepwise or simultaneous

Chu et al,,” and our own group'® have showcased that styrenes,
vinyl amides, and allylic esters, respectively, are suitable
partners in these transformations (Figure 1a). Further, dual
photoredox/nickel catalytic approaches have also bore fruit
showcasing alkyl trifluoroborates and alkyl bromides as radical
precursors as nicely demonstrated by the Chu'' and Mao'?

formation of multiple bonds and o-bonds across the z-system,
with the potential to attain high levels of both regio- and
stereocontrol.’ Processes involving two-electron pathways
typically rely on noble transition-metal catalysts, which operate
with sensitive organometallic reagents under oftentimes harsh
conditions. These limitations have fostered the development of
strategies involving radical species, which have gained
significant traction in the past years.” In this context, nickel-
catalyzed processes have witnessed a meteoric growth owing to
the ability of this metal to undergo oxidative addition and
prevent f-hydride elimination.” Thus, numerous Ni-catalyzed
intermolecular difunctionalizations of alkenes have been
developed in recent years." However, asymmetric variants
have only recently started to emerge and are still scarce.” In
2019, the Morken group reported a seminal example of an
enantioselective nickel-catalyzed intermolecular dicarbofunc-
tionalization of vinyl boronic esters combining organozinc
reagents and alkyl iodides.” Subsequent transformations have
also been achieved via reductive, nickel-catalyzed, enantiose-
lective cross-electrophile couplings. Works from Diao et al.,*
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groups among others (Figure 1b). Interestingly, all the
abovementioned methods describe dicarbofunctionalization
processes. In sharp contrast, examples of the simultaneous
formation of C—C and C—X bonds across the 7-system are
much less abundant,***'* and more importantly, enantiose-
lective versions are yet to be reported. Early studies from our
own™ and the Rueping'® group have shown the potential
application of nickel catalysis in the arylsulfonylation of olefins
and dienes.

Here, a dual nickel/photoredox catalytic system has been
unraveled enabling the simultaneous formation a C—C and a
C—S bond across the z-system with excellent levels of both
regio- and absolute stereocontrol (Figure 1c). The reaction
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Figure 1. Asymmetric three-component dicarbofunctionalization of
olefins (a) via nickel catalysis and (b) via nickel and photoredox dual
catalysis. (c) This work: nickel and photoredox dual catalyzed
asymmetric carbosulfonylation of olefins. (d) Biologically relevant
pharmaceuticals containing chiral sulfones.

proceeds under mild conditions with a broad substrate scope.
This redox-neutral asymmetric carbosulfonylation of alkenes
represents a de novo entry to enantioenriched sulfones,> which
are considered privileged motifs in natural products and
pharmaceuticals, as 1llustrated by FDA-approved drugs such as
PDE4 inhibitor Apremilast'® and the renin inhibitor Remikiren
(Figure 1d)."”

B RESULTS AND DISCUSSION

N-Vinylbenzamide, 4-iodoanisole, and sodium benzenesulfi-
nate were chosen as model substrates to identify the optimal
reaction conditions (Table 1).'"® The reaction occurred
smoothly in the presence of chiral biimidazoline (BilM)-nickel
dibromide complex (L1NiBr,)®*"? with 4-CzIPN as an organic
photocatalyst under light irradiation in DMSO at 0 °C, giving
sulfone 1 in 79% yield in almost racemic form (58:42 er, Table
1, entry 1). In sharp contrast, no reaction was observed in
other commonly used solvents such as CH;CN or THF, which
we ascribed to the lack of solubility of sodium benzenesulfinate
in those media (Table 1, entries 2—3). To overcome this
problem, we explored the use of crown ethers aiming to
sequester the corresponding Na® cations and thereby increase
the solubility of the S-donor partner.

Various solvents were then tested in the presence of 15-
crown-5 with DME furnishing compound 1 in 60% yield and
90:10 er (Table 1, entries 4—6). Lowering the reaction
temperature to —20 °C or decreasing the reaction concen-

Table 1. Optimization of the Reaction Conditions”

o OMe
A OMe | «.NiBr, (10 mol%)
H * 4-CzIPN (1 mol%)
o I additive \"/ H
I solvent (0.05 M), 0°C, 18 h \/\N
* Ph”"“ONa LED Light
Entry Ligand Solvent Additive Yield er
(%)

1 L1 DMSO - 79 58:42

2 L1 CH3;CN - ND --

3 L1 THF - ND --

4 L1 CH:CN 15-crown-5 5SS 83:17

5 L1 THF 15-crown-$ S1 87:13

6 L1 DME 1S-crown-$ 60 90:10

7b L1 DME 15-crown-5§ SS 90:10

8¢ L1 DME 1S-crown-S§ 71 91:9

9c L2 DME 15-crown-§ 58 84:16
10¢ L3 DME 1S-crown-$ SS 81:19
11¢ L4 DME 15-crown-5§ 60 92:8
12¢ LS DME 15-crown-S§ 70 96:4
13¢ L6 DME 15-crown-§ 11 77:23
14¢ L7 DME 15-crown-$ 16 40:60
15¢ L8 DME 15-crown-5 40 35:65
16¢ L9 DME 15-crown-5§ 33 59:41
17¢ L10 DME 15-crown-5 21 33:67
1844 LS DME 15-crown-S 76 96:4
19¢ LS DME 15-crown-$ ND --

'?‘r A‘r Me  Me

RJ::/>_<\: ]"R ):O/>_<\Oj “sBu

L1, R = sBu, Ar = 4-Me-CgH, Q(
’/

L2, R = iPr, Ar = 4-Me-CgH,
L3, R = Et, Ar = 4-Me-CgH,

L7, R=M N
° iPr
L8, R=H

oy

R
N N
sBd” L9 'sBu
YOY

Ao
TN \\Z
N N

L1o0 Pr

“Reactions were carried out with vinyl amide (0.2 mmol), aryl iodide
(0.1 mmol), PhSO,Na (0.2 mmol), L-NiBr, (10 mol %), 4-CzIPN (1
mol %), additive (0.9 mmol), solvent [0.0S M], 34 W blue LED, 0 °C,
18 h. Isolated yields after column chromatography. Enantiomeric
ratios (er) were determined by HPLC with a chiral stationary phase.
b_20°C. “DME [0.025 M]. mel amide/aryl iodide/PhSO,Na = 2/
1/2, 390 nm 45 W Kessil LED, 48 h. “No nickel, no PC, or no light.
DME: dimethoxyethane. ND: not detected.

-

L4, R = sBu, Ar = 3-tBu-CgH3
L5, R = sBu, Ar = 3,5-1Buy-CgHs

tration by two-fold had no beneficial effect on the
enantioselectivity (Table 1, entries 7—8). Screening of different
chiral ligands showed that BilM templates (L1-L5) were
generally more effective than those based on oxazoline motifs
(L6-L10; Table 1, entries 9—17) with the sterically demanding
N-3,5-di-tBuC¢H;-sBuBiIM ligand (LS) offering the best
output both in terms of yield (70%) and stereocontrol (96:4
er) (Table 1, entry 12). Finally, adjusting the reaction
stoichiometry to two equivalents of both alkene and sulfinate
and 1 equivalent of iodoarene as well as the irradiation
conditions (from 456 to 390 nm for 48 h) slightly improved
the reaction outcome furnishing 1 in 76% yield with 96:4 er
(Table 1, entry 18). Control experiments further confirmed

https://doi.org/10.1021/jacs.3c00744
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Table 2. Scope of Aryl and Alkenyl Halides”
R o L5+NiBr, (10 mol%) Y-/‘\:iR1 Ar Ar
X i 4-CzIPN (1 mol%) [~ NN
/\N)Lpn * / TR+t P oNa QP g )OJ\ ,E 74 ]
H \\Y/ 15-Crown-5 (9 equiv.) Ph’s\/\N oh sBu” N N""ug,
DME (0.025 M), 0 °C, 48 h H L5 Ar = 3,5-Buy-CgHs
390 nm Kessil lamp
[ halid ]
a | Al |
OMe Me ®Bu Ph al

\\S//
©/ \/\NJ\©
1,76%, 96:4 er

CF3

9.

N7

@Wb

7,69%, 96:4 el
66%, 96:4 erb

o

13, 60%, 97:3 er

N

O

2,70%, 95:5 er

CN

e}
O

8, 64%, 97:3 er

OMe

14, 81%, 96:4 er

Q.
o

3,57%, 94:6 er

CO,Et

Q.
O

9,78%, 96:4 er
Me

A\ /O H

©/sz

15, 65%, 96:4 er

0
gelenane

\\S//
@/ \/\NJ\©
4,59%, 95:5 er

COMe

9,

\\S//
@/ \/\N)‘\©
10, 50%, 97:3 er

MeO,C CO,Me

16, 45%, 95:5 er

<F)
\\//

S
©/ \/\NJ\©
5,57%, 96:4 er

CHO

.
SRaRs

11, 51%, 97:3 er
MeO’ :
sLaas

17, 63%, 95:5 er

\\S//
©/ \/\NJ\©
6, 56%, 96:4 er

Bpin
N\

O
Saane

12, 68%, 95:5 er

@‘b

18, 58%, 95:5 er

00 T ©

DY
S

19, 61%, 96:4 er

Z
|

~ @
@”bQ

23, 40%, 94:6 er 24,55%, 93:7 er

25, 50%, 96:4 er?

26, 42%, 92:8 er?

27, 59%, 94:6 er?

Alkenyl halid i

28, 43%, 88:12 er® 29, 41%, 94:6 er”

“Reaction conditions: aryl or alkenyl halide (0.1 mmol), vinyl amide (0.2 mmol), sulfinate precursor (0.2 mmol), L5-NiBr, (10 mol %), 4-CzIPN
(1 mol %), 15-crown-S (0.9 mmol), DME [0.025 M], 390 nm 45 W Kessil LED 0 °C, 48 h. Isolated yields after column chromatography.

Enantiomeric ratios (er) were determined by HPLC with a chiral stationary phase.

The corresponding bromides were used as reaction partners.

that the nickel catalyst, the photocatalyst, and light were all
essential for a successful outcome (Table 1, entry 19).

With the optimized reaction conditions in hand, the scope of
aryl halides was investigated next (Table 2a). A variety of aryl
iodides bearing both electron-donating as well as electron-
withdrawing groups in the para and meta positions were
amenable to the reaction protocol, furnishing the difunction-
alized products 1—16 in moderate to good isolated yields (S0
to 81%) and excellent enantioselectivities (94:6 to 97:3 er).
Functional groups including halides, cyanides, ketones, esters,
aldehydes, boronic esters, and pyrroles were compatible with
the redox-neutral reaction conditions. Notably, the method
also worked efficiently for more challenging ortho-substituted
aryl iodides, as demonstrated by the reactions producing
compounds 17 (0-OMe) and 18 (o-F), which proceeded in 63
and 58% isolated yields and 95:5 er, respectively. Iodobenzene,
P-iodonaphthalene, and S-iodo-1-indanone were also suitable

12534

substrates, furnishing the corresponding carbosulfonylated
products 19—21 in good yields with excellent levels of
stereocontrol. Further, 4-bromotrifluorotoluene was also
subjected to the standard reaction conditions. To our delight,
the corresponding arylsulfonylated product 7 could be
obtained in comparable yield and er to those observed with
the iodide, thus highlighting the potential of this trans-
formation to accommodate aryl bromides as efficient reaction
partners. Interestingly, heteroaryl halides bearing 1,4-benzo-
dioxane, quinoline, thiophene, pyrimidine, and dibenzo[b,d]-
thiophene moieties were successfully applied in this synergistic
protocol, affording sulfones 22—26 with high enantioselectivity
(up to 96:4 er). It should be noted that our system also works
well with alkenyl bromides as enantioenriched f-alkenyl
sulfones 27—29 could also be isolated in synthetically useful
yields and enantiomeric ratios (Table 2b).

https://doi.org/10.1021/jacs.3c00744
J. Am. Chem. Soc. 2023, 145, 12532—12540
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Table 3. Scope of Alkenes and Sulfinates
o L5-NiBr (10 mol%) e '?f A;'\‘
| i 4-CzIPN (1 mol%) Z
ZANTR, # iR * RS ONa 2P F ,[ 7 ]
H 15-Crown-5 (9 equiv.) R3/S\/\N R, sBu” N N""ug,
DME (0.025 M), 0°C, 48 h H L5 Ar = 3,5-Buy-CeHs
390 nm Kessil lamp
{ Vinyl I
a
CN CN CN
OMe
Y o
00 Y [e] O\v/o H 0.0 < (¢} fe) e o
\\S// B S\/\N \\S// B \\SI/ H
g H Sag O
M
OMe OMe Me F
30, 85%, 97:3 er 31,77%,96:4 er 32, 69%, 96:4 er 33,67%, 94:6 er
CN CN CN
OMe
Y (o]
Q0 ¥ 9 Q0 ¥ 0 00 Y O QP 3
\\SI/ B \\S/I I \\S'/ B S\/\N
~ N ~Ny N N
H H H CN
Cl CF3 CN
34,92%, 96:4 er 35, 45%, 95:5 er 36, 79%, 95:5 er 37,63%, 97:3 er
CN CN CN CN
N H q ol O\\S// T 0 O\\S// H 7 ¢ Q\Sfp H f
~N N ~N ~
H H H H
38,72%, 95:5 er 39, 75%, 95:5 er 40, 60%, 96:4 er 41,63%, 97:3 er
[ vinyl carbamat |
1 yl car |
CN CN b Me
OMe
00 T O 00 Y O : o
DY Y2 00 T o \/, H
S Cl V] N
~N SN S\/\N Bu \SI\/\ Jl\ S\/\NJ\O?BU
Ho | H N7 ~otBu N
N
42,60%, 93:7 er 43,62%, 97:3 er 44, 45%, 95:5 er? 45, 40%, 94:6 er’
I Sulfinate partners I
c
CN CN CN % I
R—\
O\\/P H o
Y o A
O\\I/O H o Q\/P H Q O\‘S/P H MeO\n/\/S\/\N
S SN S~y o) H
H H H OMe
Me OMe cl OMe AcHN OMe 49, R = 4-CN, 42%, 95:5 er
. . 50, R = 4-OMe, 56%, 95:5 er
46, 83%, 96:4 47, 51%, 99:1 : ’ ’ ’
) e ° er 48, 42%, 95:5 er 51, R = 3-OMe, 57%, 95:5 er

“Reaction conditions: aryl iodide (0.1 mmol), alkene (0.2 mmol), sulfinate precursor (0.2 mmol), L5-NiBr, (10 mol %), 4-CzIPN (1 mol %), 15-
crown-S (0.9 mmol), DME [0.025 M], 390 nm 45 W Kessil LED, 0 °C, 48 h. Isolated yields after column chromatography. Enantiomeric ratios
(er) were determined by HPLC with a chiral stationary phase. 20 mol % of LS5-NiBr,.

Different alkene acceptors and sulfinate precursors were
evaluated next. A wide range of vinyl amides delivered the
corresponding chiral a-aryl sulfones in moderate to good yields
and with excellent enantioselectivities (Table 3). Enamides
bearing electron-donating (30—32) as well as electron-
withdrawing groups (33—40) at different positions of the
aromatic ring were smoothly difunctionalized to give the
desired products in 45—85% yields and 94:6—97:3 er values. In
addition, f-naphthalene carboxamide and S-chloro-N-vinyl-
nicotinamide were also suitable substrates for this asymmetric
transformation delivering compounds 41 and 42 in 62 and
60% vyield and 97:3 and 93:7 er, respectively. Notably, alkyl
amides were also compatible with the reaction conditions as
demonstrated by the isolation of compound 43 in 62% yield
(97:3 er). To our delight, vinyl carbamates were also suitable
partners in our system, delivering the corresponding adducts
44 and 4S5 in moderate yield and high enantioselectivities

(Table 3b). In contrast, 1,1-and 1,2-disubstituted internal
olefins were found to be unreactive under the standard
conditions (see Table S8 in the Supporting Information for
unsuccessful olefins). We were delighted to see that different
arylsulfinates bearing methyl, chloro, and amido groups were
compatible with our reaction conditions affording the
corresponding chiral a-aryl sulfones 46—48 in good yields
and high enantioselectivities (Table 3c, up to 99:1 er).
Moreover, alkyl sulfinates could also be incorporated in the
reaction protocol. Sodium 3-methoxy-3-oxopropane-1-sulfinate
reacted with 4-methoxy-N-vinylbenzamide and three different
aryl iodides (4-CN, 4-OMe and 3-OMe-benzene) showing the
versatility of the reaction. The corresponding arylsulfonylated
products 49—51 were successfully obtained in synthetically
useful yields with excellent levels of absolute stereocontrol
(Table 3c).

https://doi.org/10.1021/jacs.3c00744
J. Am. Chem. Soc. 2023, 145, 12532—12540
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Table 4. Late-Stage Modification of Complex Molecules”

i Late stage functionalization i

\\//O
k@ .
52, 80%, 95:5 er " N ©
probenecid derivative
Me

54, 62%, 96/4 dr
D-glucose derivative

55, 73%, 95/5 dr

Q.0

NG

57, 43%, 96/4 dr
cholesterol derivative

Sagqs

amino acid derivative

SAA

QP
Ph

S<
Iu
©)L N

O
H
53, 59%, 98:2 er

adamantanecarboxylic
acid derivative

L8 f
Y w

X-ray structure of 52

Q.0

N

o} IS‘Ph
u
i e

56, 83%, 96:4 er
Boc-B-Alanine-Gly dipeptide derivative

Me

Me

58, 40%, 96/4 dr
(+)-a-tocopherol derivative

“Reaction conditions: Aryl iodide (0.1 mmol), vinyl amide (0.2 mmol), sulfinate precursor (0.2 mmol), L§-NiBr, (10 mol %), 4-CzIPN (1 mol %),
15-crown-S (0.9 mmol), DME [0.025 M], 390 nm 45 W Kessil LED, 0 °C, 48 h. Isolated yields after column chromatography. Enantiomeric ratios

(er) were determined by HPLC with a chiral stationary phase.

To demonstrate the synthetic utility of this asymmetric
carbosulfonylation of alkenes, we set out to apply this protocol
to more structurally complex reaction partners featuring motifs
commonly found in natural products and pharmaceutically
active molecules (Table 4). Aryl iodides bearing a probenecid
motif, an inhibitor of renal excretion of most f-lactam
antibiotics,”® and an adamantane motif, which is usually
introduced into active drugs in order to increase their
lipophilicity and improve their pharmacological properties,21
were converted to the corresponding products 52 and 53,
respectively, in good yields and excellent enantioselectivities. It
should be noted that the absolute configuration of the
difunctionalized products was unambiguously confirmed by
X-ray diffraction analysis of (S)-52. More complex substrates
bearing additional stereocenters were also compatible with the
mild conditions and no loss of existing stereochemical
information was observed. Diacetone-p-glucose and L-phenyl-
alanine derivatives were tolerated, furnishing the correspond-
ing chiral sulfones in 62 and 73% yield with 96:4 and 95:5 dr,
respectively (54, 55). A Boc-f-alanine-Gly dipeptide derivative
was prepared following the standard procedure. The
difunctionalized product 56 could be isolated in excellent
yield (83%) and enantiomeric ratio (96:4). A cholesterol
derivative was also applied in the reaction delivering adduct 57
in 43% yield and 96:4 dr. Tocopherol derived iodide reacted
with N-vinylbenzamide and sodium benzenesulfinate to give
the desired product 58 in 40% yield and 96:4 dr.

To elucidate the mechanism of this dual nickel/photoredox-
catalyzed asymmetric carbosulfonylation, additional experi-
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ments were conducted, the results of which are summarized in
Figure 2."® When two equivalents of a radical scavenger, such
as TEMPO or BHT were added, no f-aryl sulfone was formed
while TEMPO adduct 59 was observed by HR-MS (Figure
2a). The reaction was also completely inhibited in the presence
of several hydrogen atom donors (HAD) such as Hantzsch
ester, triphenylsilane, or triphenylsilanethiol. Moreover, the
hydrosulfonylation adduct 60 was detected by HR-MS in the
presence of two equivalents of the latter HAD, as shown in
Figure 2b. When the reaction was carried out in the presence
of BrCCl;, the corresponding alkyl-CCl; adduct 61a as well as
elimination product 61b could be detected in the mixture
(Figure 2c, see also the SI). These results hint towards the
formation of a sulfonyl radical that, upon addition to the olefin,
delivers a new carbon-centered radical intermediate that can be
intercepted in the presence of the abovementioned additives. A
radical-clock experiment was designed involving diene 62. The
reaction with 4-iodoanisole and PhSO,Na proceeded with a
sequential radical addition/cyclization/aryl coupling process to
afford the S-exo cyclized product 63 in 15% yield (cis/trans
90:10, 48:52 er) along with non-coupling byproduct 64
(Figure 2d). This cis/trans ratio was consistent with the
involvement of a radical intermediate in this reaction.””'*
To shed light on the nature of the active nickel species in the
reaction, several experiments were also carried out. First, Ar-
Ni(II)-I complex 65 was prepared and used in a stoichiometric
fashion in the reaction of vinyl amide and sodium
benzenesulfonate. No conversion to the corresponding
difunctionalization product 9’ could be observed in the
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Figure 2. Mechanistic investigations. (a) Control experiments with radical inhibitors. (b) Control experiments with hydrogen donors. (c) Control
experiments with other radical precursors. (d) Radical-clock reaction. (e) Reaction with Ar-Ni(II)-I complex 65. (f) Stern—Volmer quenching
experiment. (g) Proposed catalytic cycle. Control experiments (a—c) were conducted under the standard conditions using 10 mol % of the

photocatalyst.

reaction mixture (Figure 2e), thus ruling out aryl-Ni(II)
species as productive intermediates in this trasformation.'* In
contrast, a cross-over reaction with 3-iodoanisol occurred
smoothly in the presence of a catalytic amount of complex 65,
giving 14’ in 45% yield. Further, using the dtbbpy ligand, the
corresponding racemic arylsulfonylated product 9’ could be
obtained in 62% yield. This result highlights that the lack of
reactivity observed for 65 in terms of aryl group transfer is not
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due to the use of a dtbbpy ligand itself. Overall, these
experiments suggest that, if formed, Ar-Ni(II) complex 65 can
generate low-valence nickel(I) species that can complete the
cycle.’” Stern—Volmer experiments were done with vinyl
amide, 4-iodoanisole, benzenesulfinic acid sodium salt, and Ni
complex (LS-NiBr,). The results showed that benzenesulfinic

acid as well as the nickel complex could quench the
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photocatalyst, thus supporting the abovementioned notion
(Figure 2f and see also the SI).

Based on the mechanistic investigations described above and
previous examples in the literature,*'**? a plausible
mechanism of the nickel/photoredox dual catalyzed asym-
metric carbosulfonylation of olefins is proposed. The reaction
involves two interconnected catalytic cycles, a photoredox and
a cross-coupling cycle (Figure 2g). The photoredox cycle starts
by photoexcitation of 4-CzIPN upon irradiation with light to
give the excited catalyst, which oxidizes sodium benzenesulfi-
nate by single-electron transfer (SET) to generate the sulfonyl
radical A (E;,, (PhO,S°/PhSO,Na) = —0.37 vs SCE)** and 4-
CzIPN*~ (E,,, (PC*/PC*") = +1.43 vs SCE).”

Radical addition of the sulfonyl radical A to the C=C bond
then produces a secondary alkyl radical B, which is rapidly
captured by Ni(0) complex F to afford (alkyl)Ni(I) species C.
Subsequent oxidative addition of the aryl iodide to
intermediate C gives (aryl)(alkyl)Ni(IlI) intermediate D.
The high-valence Ni(Ill) intermediate D undergoes facile
reductive elimination to furnish the carbosulfonylation product
and Ni(I)-X species E. Reduction of E by 4-CzIPN*~ through
SET regenerates the ground-state photocatalyst (E,,, (PC/
PC*™) = —1.24 vs SCE)> as well as Ni(0) species F (E,
(Ni(1)/Ni(0)) = —1.17 vs SCE)'*® to close both catalytic
cycles.

In conclusion, an enantioselective three-component carbo-
sulfonylation reaction of olefins with sodium arenesulfinates
and aryl (and alkenyl) halides combining photoredox and
nickel catalysis is reported here. The visible light-induced
synergistic platform allows the facile construction of a wide
spectrum of enantioenriched f-aryl and fB-alkenyl sulfones with
high efficiency and excellent enantioselectivity (up to 92%
yield and up to 99:1 er) from readily accessible starting
materials under mild conditions. Our protocol exhibits a high
functional group tolerance and was readily extended to diverse
complex molecules. Mechanistic investigations support the
involvement of a secondary alkyl radical generated through
radical addition of a sulfonyl radical to the double bond.
Moreover, control experiments suggest that a Ni(0)/Ni(I)/
Ni(Il) catalytic cycle might be operative in these trans-
formations.
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