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ABSTRACT: An electrochemically driven nickel-catalyzed enantio-
selective reductive cross-coupling of aryl aziridines with alkenyl
bromides has been developed, affording enantioenriched β-aryl
homoallylic amines with excellent E-selectivity. This electroreductive
strategy proceeds in the absence of heterogeneous metal reductants
and sacrificial anodes by employing constant current electrolysis in an
undivided cell with triethylamine as a terminal reductant. The
reaction features mild conditions, remarkable stereocontrol, broad
substrate scope, and excellent functional group compatibility, which
was illustrated by the late-stage functionalization of bioactive
molecules. Mechanistic studies indicate that this transformation
conforms with a stereoconvergent mechanism in which the aziridine
is activated through a nucleophilic halide ring-opening process.

■ INTRODUCTION

Nickel-catalyzed enantioselective cross-electrophile couplings
represent a powerful strategy for the construction of stereo-
genic carbon centers.1 Compared to traditional asymmetric
cross-coupling reactions,2 the direct coupling of two electro-
philes precludes the preparation of sensitive organometallic
species, thus enhancing both the operability and functional
group compatibility of the overall process. A super
stoichiometric amount of metal reductants such as manganese
or zinc is typically required to turn over the nickel catalyst,3,4

which not only can lead to unpredictable results depending on
stirring methods but also generates additional waste.
Significant efforts have been undertaken to circumvent these
challenges, including the use of organic reductants such as
tetrakis(dimethylamino)ethylene (TDAE) or bis(pinacolato)-
diboron (B2Pin2) among several others (Scheme 1A, top).5

Further, with the advent of photoredox/nickel dual catalysis,6

organic reducing reagents, including amines and Hantzsch
esters (HEH), have also been successfully employed in
asymmetric metallaphotoredox cross-electrophile couplings
(Scheme 1A, middle).7

In parallel to these developments, the past years have
witnessed the renaissance of electrochemistry as a sustainable
tool to replace chemical oxidants and reductants.8 The
combination of cathodic reduction and nickel catalysis has
proven to be an effective strategy for cross-couplings.9 Still,
considerable limitations need to be addressed for these
methodologies to attain their full potential. First and foremost,
the use of metal sacrificial anodes (e.g., aluminum, zinc, iron,
etc.) complicates the scalability of the processes. Second, the
control of stereochemistry still represents a significant

challenge10 and, despite a few examples,11 most nickel-
catalyzed electrochemically mediated processes deliver the
corresponding products in racemic form (Scheme 1A,
bottom). Notably, Reisman’s group has reported a Ni-
catalyzed enantioselective cross-coupling of benzylic chlorides
and alkenyl bromides using zinc as a sacrificial anode (Scheme
1B).11c

Intrigued by these limitations, we set out to develop a nickel-
catalyzed asymmetric reductive cross-coupling devoid of
sacrificial anodes that would explore electrophiles beyond the
well-studied C(sp2)−X and C(sp3)−X systems. Aziridines are
versatile building blocks12 that have been successfully
incorporated in Ni-catalyzed enantioselective cross-coupling
processes.13 An elegant study from Doyle and co-workers
reported the enantioselective reductive cross-coupling between
aryl aziridines and aryl iodides by employing manganese as a
stoichiometric reductant (Scheme 1C).13c Inspired by these
precedents, we present the first example of a nickel-catalyzed
asymmetric cross-electrophile coupling between aryl aziridines
and alkenyl bromides, merging a constant current electrolysis
process in a single cell with triethyl amine as a sustainable
electron donor (Scheme 1D). Both the regio- and
enantioselectivity of the reaction are controlled by a chiral
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bis(oxazoline) ligand. The obtained enantioenriched β-aryl
homoallylic amines are not only important structural motifs
found in pharmacologically and biologically active molecules14

but also useful synthetic intermediates to access a variety of
valuable N-containing secondary metabolites.

■ RESULTS AND DISCUSSION

We began our investigations into this nickel-catalyzed
asymmetric electroreductive cross-coupling with racemic 2-
phenyl-1-tosylaziridine and β-bromostyrene as model reac-
tants.15 After systematic evaluation of the reaction parameters
(see the Tables S-1−S-9, Supporting Information), we were
delighted to find that, in the presence of 10 mol % NiBr2·DME,
12 mol % chiral bis(oxazoline) L1, 25 mol % MgCl2, 5.0 equiv
of Et3N, and 1.0 equiv of nBu4NBF4 in dimethylacetamide
(DMA), the desired product (S,E)-N-(2,4-diphenylbut-3-en-1-
yl)-4-methylbenzenesulfonamide 1 could be obtained in 70%
isolated yield. Gratifyingly, the reaction proceeded with
excellent stereocontrol (96:4 er) by using a graphite anode
and a nickel foam cathode in an undivided cell under 10 mA
constant current electrolysis (Table 1, entry 1). The reaction
showed excellent stereoselectivity, since only E-product 1 was
obtained even when Z- or E/Z-mixed β-bromostyrenes were
used as starting materials (see Table S-11 in the Supporting
Information).3b,15,16 A screening of chiral indanyl-substituted

bis(oxazoline) ligands with different central linkers revealed
the cyclopropyl-substituted one (L1) as the best compromise
between reactivity and enantioselectivity (L2−L4). In contrast,
pyridine-oxazoline ligand L5 led to a low enantiomeric ratio,
whereas chiral bioxazoline and bisimidazoline ligands (L6−L9)
delivered the product in lower yields with moderate
enantioselectivity. A slightly decreased yield was observed
when the graphite anode was replaced with RVC foam or
carbon felt (Table 1, entries 2 and 3). The choice of cathode
material was essential: nickel or platinum plate cathodes
resulted in near-complete failure of the reaction (Table 1, entry
4). This result could be attributed to the electrode surface area
effect, as the large surface area of the Ni foam electrode might
enhance the rate of surface reaction, thus increasing the overall
efficiency of the system.17 Different nickel catalysts such as
NiCl2·DME and NiBr2·diglyme afforded the product with
lower yields but comparable er (Table 1, entries 5 and 6).
Other electrolytes such as nBu4NPF6 or NaBF4 also provided
good reactivity (Table 1, entries 7 and 8), while LiBF4

delivered 1 in lower yield (Table 1, entry 9). The reaction
proceeded smoothly when the current was adjusted to 5 or 15
mA, albeit with lower yields (Table 1, entries 10 and 11). The
yield decreased to 55% in the absence of MgCl2 (Table 1, entry
12), and MgBr2 had a weaker promoting effect compared with
MgCl2 (Table 1, entry 13). Reducing the number of

Scheme 1. Strategies for Nickel-Catalyzed Enantioselective Cross-Electrophile Couplings
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equivalents of Et3N or alkenyl bromide decreased the reaction
efficiency (Table 1, entries 14 and 15). To our delight, a slight
increase in yield was achieved when the reaction was
performed on a 0.2 mmol scale (Table 1, entry 16). Control
experiments indicated that the nickel source, the ligand, and
the electrical current were all necessary for this transformation
(Table 1, entry 17). It is worth noting that the use of
stoichiometric amounts of Mn or Zn powder significantly
reduced the yield and enantioselectivity of the process, likely as
a result of unproductive pathways involving organometallic
intermediates generated in the reaction media under these
conditions (Table 1, entries 18 and 19).

With the optimized conditions in hand, we sought to
examine the generality of this transformation (Scheme 2). The
absolute stereochemistry of compound 1 was unambiguously
confirmed by X-ray diffraction analysis, and the configuration
of all other products was assigned by analogy.15 A wide range
of 2-aryl-substituted N-tosyl-protected aziridines bearing
electron-donating groups (−Me, −

tBu, −OAc), halogens
(−F, −Cl, −Br), and electron-withdrawing groups (−CF3,
−COOMe, −CN) at the para-position of the phenyl ring
readily underwent the cross-coupling with β-bromostyrene to
form β-aryl E-configured homoallylic sulfonamides in moder-
ate to good yields with high enantioselectivities (2−10). 2-(o-
Tolyl)- and 2-(m-tolyl)-N-tosylaziridines were also well

Table 1. Optimization of the Reaction Conditionsa

entry deviation from standard conditions 1 yield (%)b erc

1 none 72 (70) 96:4

2 RVC (+) instead of graphite (+) 63 96:4

3 carbon felt (+) instead of graphite (+) 65 96:4

4 Ni (−) or Pt (−) instead of Ni foam (−) <5 n.d.f

5 NiCl2·DME instead of NiBr2·DME 53 95:5

6 NiBr2·diglyme instead of NiBr2·DME 50 96:4

7 nBu4NPF6 instead of nBu4NBF4 66 96:4

8 NaBF4 instead of nBu4NBF4 70 95:5

9 LiBF4 instead of nBu4NBF4 46 95:5

10 5 mA, 5 h instead of 10 mA, 2.5 h 55 96:4

11 15 mA, 1.67 h instead of 10 mA, 2.5 h 60 96:4

12 Without MgCl2 55 96:4

13 MgBr2 instead of MgCl2 61 96:4

14 3 equiv Et3N instead of 5 equiv Et3N 53 96:4

15 2 equiv β-bromostyrene was used 59 96:4

16d 0.2 mmol reaction scale 75 (73) 96:4

17 w/o electric current, Ni or L1 0 n.d.

18e 3 equiv Mn instead of current and Et3N 20 76:24

19e 3 equiv Zn instead of current and Et3N 25 80:20
aStandard reaction conditions: graphite anode, nickel foam cathode, 2-phenyl-1-tosylaziridine (0.1 mmol, 1.0 equiv), β-bromostyrene (0.3 mmol,
3.0 equiv), nBu4NBF4 (0.1 mmol, 1.0 equiv), Et3N (0.5 mmol, 5.0 equiv), MgCl2 (0.025 mmol, 25 mol %), NiBr2·DME (0.01 mmol, 10 mol %), L1
(0.012 mmol, 12 mol %), DMA (3.0 mL), constant current = 10 mA, undivided cell, N2, 2.5 h, 25 °C. bYields were determined by 1H NMR using
1,3,5-trimethoxybenzene as the internal standard; isolated yields after column chromatography are shown in brackets. cThe enantiomeric ratios (er)
were determined by chiral high-performance liquid chromatography (HPLC). dReaction time = 5 h. eReaction time = 24 h. fn.d. = not determined.
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Scheme 2. Substrate Scope

aReaction conditions: See Table 1, entry 16. Isolated yields after column chromatography. Enantiomeric ratios (er) were determined by chiral
HPLC. bDIPEA instead of Et3N. c20 mol % NiBr2·DME and 24 mol % L1. dAlkenyl bromide (5 equiv). eL9 was used as the ligand, and a 1:1
mixture of DMA/tetrahydrofuran (THF) was used as the solvent.
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tolerated, demonstrating that increased steric hindrance has
little effect on the reaction efficiency and enantioselectivity (11
and 12). Further, 2-naphthyl- and 5-indolyl-substituted
aziridines also proved to be competent coupling partners (13
and 14). In some cases, the use of N,N-diisopropylethylamine
(DIPEA) as the reductant improved both the yields and
enantioselectivities as in the case of products 5 and 13 (see
Table S12 in the Supporting Information for additional
information).
Different alkenyl bromide partners were explored next.

Styrenyl bromides bearing a variety of functional groups, such
as methyl (15), methoxy (16), (tert-butyldimethylsilyl)oxy
(17), acetoxy (18), trifluoromethoxy (19), fluoro (20), chloro
(21), trifluoromethyl (22), and pinacol boronate (23), turned
out to be compatible with the established protocol delivering
the corresponding products in good yields and high
enantiomeric ratios (60−94% yield, 95:5−97:3 er). ortho-
and meta-Fluorophenyl-substituted alkenyl bromides could
also participate in the reaction efficiently (24 and 25). Notably,
the tolerance to halogen and pinacol boronate functional
groups opens the possibility of subsequent derivatization of the
β-aryl homoallylic amines. Alkenyl bromides bearing naph-
thalene (26), pyridine (27), and pyrimidine (28) rings were
also successfully converted to the desired products with high
enantioselectivity, thus highlighting the potential of this
strategy in the synthesis of medicinal chemistry-relevant
compounds.
We were pleased to find that benzyloxycarbonyl (Cbz)-

protected aziridines also reacted smoothly with β-bromostyr-
ene under the standard reaction conditions, furnishing product
29 in 76% yield and 97:3 er. This result further emphasizes the
advantage of this electrochemical reduction protocol, as this
type of compound was inaccessible with previous Ni-catalyzed
aziridine asymmetric cross-electrophile couplings.13c In
addition to styrenyl bromides, β-alkyl substituted vinyl
bromides (30 and 31), bromovinyl silane (32), and conjugated
dienyl bromide (33) turned out to be suitable reaction
partners delivering the corresponding Cbz-protected products
with high to excellent enantioselectivities (up to 98:2 er).
Remarkably, 2-bromo-1H-indene, a cyclic di-substituted
alkenyl bromide, which is typically a challenging substrate in
asymmetric alkenylations,3b,e,11c was a viable partner delivering
34 under modified reaction conditions using L9 as the ligand
in a DMA/THF binary solvent system.
The synthetic potential of this asymmetric electroreductive

cross-coupling was further demonstrated through the late-stage
functionalization of structurally diverse natural products and
pharmaceutical agents. Specifically, aziridines derived from
estrone (35) and (+)-α-tocopherol (36) could be readily
incorporated into this protocol with excellent diastereocontrol.
In addition, alkenyl bromides resembling derivatives of
naproxen, fenofibrate, gemfibrozil, and D-alanine could all
furnish chiral homoallylic amines 37−40 (epi-35, epi-36, epi-
37, epi-40 were obtained by using ent-ligand-L1) in moderate
to good yields with high levels of diastereocontrol.
The practicality of this methodology could be demonstrated

in multigram-scale experiments (Scheme 3A). The constant
current electrolysis of 6 mmol of 2-phenyl-1-tosylaziridine with
β-bromostyrene produced the desired product 1 in 65%
isolated yield and 96:4 er. Moreover, our protocol can be
extended to other coupling partners (Scheme 3B). The
reductive cross-coupling of 2-phenyl-1-tosylaziridine with 1-
bromo-4-(tert-butyl)benzene was achieved under modified

reaction conditions (L9 as the ligand and 1 equiv of MgCl2
as the additive) furnishing β-aryl sulfonamide 41 in 40% yield
and 90:10 er. Further, the coupling of (1-chloroethyl)benzene
and (E)-1-(2-bromovinyl)-4-methoxybenzene under the stand-
ard reaction conditions delivered the desired product 42 in
54% yield and 97:3 er. Derivatization of the chiral homoallylic
amine products could also be successfully accomplished
(Scheme 3C). The palladium-catalyzed hydrogenation of 1
delivered the corresponding chiral β-branched alkylamine 43
with excellent stereofidelity. In the presence of I2 and
NaHCO3, enantioenriched iodosubstituted pyrrolidine (44),
containing three contiguous chiral centers, could be obtained
in near-quantitative yield by diastereoselective iodocyclization
of 1. A photoredox-catalyzed dehalogenation of 44 furnished
chiral 2,4-disubstituted pyrrolidine (45) by using Et3N as the

Scheme 3. Synthetic Applications
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halogen-atom transfer agent and methyl thioglycolate−H2O as
the hydrogen atom donor. Finally, deprotection of the N-
benzyloxycarbonyl group in 29 was successfully accomplished
by treatment with 6 M HCl under reflux to deliver chiral
homoallylic primary amine (46).
To acquire further insights into the mechanism of this

transformation, several control experiments were designed.15

Both R and S enantiomers of 2-phenyl-1-tosylaziridine
delivered the same enantioenriched product 1 under standard
reaction conditions. The major enantiomer of the product was
dictated by the stereochemistry of the ligand, demonstrating
the stereoconvergent nature of this transformation (Scheme
4A, entries 1−3). The activation pathway for aziridine was
investigated next.13 A competition experiment was designed
featuring β-bromostyrene (5.0 equiv), 2-phenyl-1-tosylazir-
idine (5.0 equiv), and 1 equiv of [dtbbpy]Ni0(COD). The
oxidative addition product of β-bromostyrene to Ni(0),
complex 47, was clearly detected by 1H NMR15 with no
detectable consumption of 2-phenyl-1-tosylaziridine, which
indicates that the activation of aziridines through oxidative
addition to Ni(0) is not a favorable process under the reaction
conditions (Scheme 4B). A direct single-electron reductive
activation was also considered. As shown in Scheme 4A, entry
4, the reaction of (R)-N-p-tolylsulfonyl-2-phenylaziridine in
the presence of 4,4′-di-tert-butyl-2,2′-bipyridine ligand fur-
nished the corresponding product 1 in racemic form, thus
hinting toward the intermediacy of a benzyl radical derived
from aziridine under the applied conditions. Further
investigations were carried out involving radical quenchers
(Scheme 4C, top). The reaction was completely suppressed by
adding 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 2.0
equiv), and the TEMPO-benzyl adduct 48 could be detected
by high-resolution mass spectrometry (HR-MS) in the
mixture. Adduct 48 could still be detected when the reaction
was performed in the absence of MgCl2 or NiBr2·DME.
However, when neither MgCl2 nor NiBr2·DME was present,
48 could not be found in the reaction mixture. These results
deem a direct single-electron reductive activation of aziridines
unlikely. Still, the participation of benzyl radicals in the
reaction could be justified by the formation and subsequent
reduction of β-halo-sulfonamides under the utilized conditions.
Reduction of the β-halo-sulfonamides could occur either
directly at the cathode or by in situ-generated low-valent nickel
species. The former possibility is supported by the fact that the
TEMPO adduct 48 can be formed in the absence of the nickel
catalyst. On the other hand, the reaction of β-halo-
sulfonamides with stoichiometric Ni(COD)2/L1 also delivered
the TEMPO adduct 48, thus indicating that Ni0L1 species can
also reduce the β-halo-sulfonamide to the benzyl radical
(Scheme 4C, bottom). Cyclic voltammetry (CV) studies are
also consistent with these results (Scheme 4D). The reductive
potential of NiI/Ni0 (E1/2 = −2.62 V vs Fc/Fc+ in DMA,
reductive peak observed at −2.98 V) is more negative than
those of β-chloro-sulfonamide 49 (E1/2 = −2.61 V vs Fc/Fc+ in
DMA, reductive peak observed at −2.74 V) and β-bromo-
sulfonamide 50 (E1/2 = −2.06 V vs Fc/Fc+ in DMA, reductive
peak observed at −2.22 V), indicating that the putative β-halo-
sulfonamide intermediates can indeed be reduced by Ni0L1
species. These species are also more easily reduced than 2-
phenyl-1-tosylaziridine (E1/2 = −2.70 V vs Fc/Fc+ in DMA,
reductive peak observed at −2.78 V) so that, once formed, one
would expect them to be preferentially reduced over the
corresponding starting material. In contrast to previous

reports,12f,18 the NiIBrL1 (E1/2 (NiII/NiI) = −1.23 V vs Fc/
Fc+ in DMA, reductive peak observed at −1.35 V) is not
competent for reducing the secondary halogens in the present
reaction system. In order to unravel whether Ni(I) can
undergo oxidative addition with alkenyl bromide, the cyclic
voltammetry of NiBr2-L1 was carried out in the presence of 1.0
equiv of β-bromostyrene (Scheme 4E). Some new reductive
peaks appeared, suggesting that the oxidative addition of
alkenyl bromide to Ni(I) is also a feasible process.
To gain additional insights into the participation of putative

halogenated intermediates, the reaction was analyzed by MS
(Scheme 4F). Interestingly, β-chloro-sulfonamide 49 can be
isolated in 8% yield after 2 h of electrolysis in the absence of
alkenyl bromide and in 18% yield when both NiBr2·DME and
alkenyl bromide are removed from the reaction mixture. In
sharp contrast, 49 was not detected in the absence of an
electric current. These results hint toward a potential activation
via nucleophilic halide ring-opening of the aziridine by in situ-
formed R3N−HX (X = Cl or Br), although neither MgCl2 nor
NiBr2·DME seem to be essential to this activation process.
Since the reaction can also proceed in the absence of the
MgCl2 additive, bromides are likely implicated in the
nucleophilic ring opening process of the phenyl aziridine
partners used in this transformation. As expected, we observed
the formation of β-bromo-sulfonamide in the absence of
MgCl2, but it is not detected under the standard conditions as
a result of its facile reduction compared to the corresponding
chloride under the utilized electrochemical conditions
(Scheme 4F). Last, we aimed to demonstrate whether or not
the proposed β-halo-sulfonamides can indeed behave as
productive intermediates. When β-chloro-sulfonamide (49)
and β-bromo-sulfonamide (50) were subjected to the standard
reaction conditions, the cross-coupled product 1 was obtained
in 53 and 68% yield, respectively. The enantiomeric ratio was
identical to that obtained with the aziridine precursor (Scheme
4G). Further, experiments combining different catalytic
amounts of 49 or 50 (0.1−0.3 equiv) with 4-(1-tosylaziridin-
2-yl)phenyl acetate (0.9−0.7 equiv) under the reaction
conditions generated products 1 and 4 in consistent high
yields with respect to the corresponding precursors (see
Section 7-6 in the Supporting Information).15 These results
indeed support the idea of β-halo-sulfonamides as productive
intermediates in the present transformation.
Based on the abovementioned investigations, two plausible

mechanisms for this nickel-catalyzed electrochemical reductive
cross-coupling can be proposed in Scheme 4H. The first one
involves a Ni0/NiII/NiIII/NiI catalytic sequence, wherein the
oxidative addition of alkenyl bromide to Ni(0) I generates
Ni(II) species II. In parallel, in situ-generated R3N−HX (X =
Cl or Br) can mediate the nucleophilic halide ring-opening of
the aryl aziridine delivering β-halo-sulfonamide intermediate
III. Single-electron transfer (SET, through cathodic reduction
or with Ni0L1) or halogen atom abstraction (HAA)19 can
furnish the corresponding benzyl radical IV, which can then
recombine with nickel-complex II to form Ni(III) species V.
Reductive elimination produces the observed cross-coupled
product, and the resulting Ni(I) species VI can be reduced to
regenerate the Ni(0) at the cathode. This process is supported
by the result that the operating potential of the cathode (−3.05
V vs Fc/Fc+) is more negative than that of NiI/Ni0 (E1/2 (NiI/
Ni0) = −2.62 V vs Fc/Fc+) so that the cathode is competent to
reduce Ni(I) species VI to Ni(0) I (see Section 7-8 in the
Supporting Information).15 Concomitant anodic oxidation of
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Scheme 4. Mechanistic Studies and Proposed Mechanism
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Et3N to its radical cation is key to bypass the need for a
sacrificial anode (Scheme 4H, black). The second pathway
involves a NiI/NiII/NiIII catalytic sequence.11e As shown in
Scheme 4E, the Ni(II)Br2 species can be reduced to Ni(I)Br
VI at the cathode, and the subsequent oxidative addition of
alkenyl bromide can directly deliver the key alkenyl-Ni(II)
complex II under the reducing reaction conditions (Scheme
4H, gray).

■ CONCLUSIONS

In summary, the first example of a nickel-catalyzed
enantioselective electrochemical reductive cross-coupling
between aryl aziridines and alkenyl bromides using triethyl-
amine as the terminal reductant is presented here. Active metal
electrodes are not required as sacrificial anodes, making this
method more atom-economical and scalable for synthetic
applications. The transformation exhibits a broad substrate
scope and excellent functional group tolerance, allowing
efficient access to chiral β-aryl homoallylic amines with high
enantioselectivities and excellent E-stereoselectivity. The
synthetic potential of this methodology has been demonstrated
by its successful application to pharmacologically relevant
substrates, scalability, and subsequent derivatization of the
products. Mechanistic studies indicate that this transformation
is consistent with a stereoconvergent mechanism in which β-
halo-sulfonamides generated through nucleophilic halide ring-
opening are likely intermediates along the reaction pathway.
We believe that the lessons obtained here from combining
electro-reduction with organic reductants will inspire the
development of enantioselective electrochemical reductive
cross-coupling reactions in the future.
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