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We study cosmological perturbations in the framework of Loop Quantum Cos-

mology, using a hybrid quantization approach and Mukhanov-Sasaki variables. The

formulation in terms of these gauge invariants allows one to clarify the independence

of the results on choices of gauge and facilitates the comparison with other approaches

proposed to deal with cosmological perturbations in the context of Loop Quantum

Theory. A kind of Born-Oppenheimer ansatz is employed to extract the dynamics

of the inhomogeneous perturbations, separating them from the degrees of freedom of

the Friedmann-Robertson-Walker geometry. With this ansatz, we derive an approx-

imate Schrödinger equation for the cosmological perturbations and study its range

of validity. We also prove that, with an alternate factor ordering, the dynamics de-

duced for the perturbations is similar to the one found in the so-called dressed metric

approach, apart from a possible scaling of the matter field in order to preserve its

unitary evolution in the regime of Quantum Field Theory in a curved background and

some quantization prescription issues. Finally, we obtain the effective equations that

are naturally associated with the Mukhanov-Sasaki variables, both with and without

introducing the Born-Oppenheimer ansatz, and with the different factor orderings

that we have studied.
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I. INTRODUCTION

Since the pioneer work by Lifshitz [1], the study of perturbations has played a prominent

role in cosmology [2–5]. In a rough approximation, our Universe seems to be homogeneous

and isotropic at sufficiently large scales, described by what is usually called a Friedmann-

Robertson-Walker (FRW) spacetime. This approximation is supported not only by a com-

bination of observations and basic assumptions, but also by some theoretical results [6], at

least for certain matter contents. This homogeneity and isotropy (in a suitable average) leads

to the question of how the structures superposed to it formed and developed. The theory of

cosmological perturbations [4] together with the paradigm of inflation [7] provide a remark-

ably successful explanation. This explanation is valid both for the formation of large scale

structures and for the fine details of the cosmic background radiation. The measurement

of the fluctuations of this primordial radiation, which originated in the small perturbations

that were present in the Early Universe, is a central core of what is nowadays called precision

cosmology, an era in which technology has allowed such a good observation of cosmological

phenomena in astronomy and astrophysics as to make possible for the first time the deter-

mination of a number of the most important cosmological parameters with several digits

of significance [8]. The last episode has been the observation of the BB-spectrum of the

cosmic radiation by BICEPS2 [9], which seems to confirm the predictions based on tensor

perturbations in inflationary cosmology.

Although perturbations in cosmology admit a classical formulation, and in fact it is

remarkable how well this classical treatment is capable of predicting the present observations,

the very nature of the perturbations is rather quantum mechanical. In the predictions of the

primordial power spectrum, Quantum Field Theory (QFT) in a curved background already

enters at a certain level in order to explain in a natural way the (at least almost) Gaussian

distribution of the primordial fluctuations in the Early Universe [5]. For this, essentially,

one describes the perturbations by quantum fields and assumes that they are initially in a

vacuum state with the maximal symmetry of a de Sitter spacetime (a Bunch-Davis state

[10]), which describes rather well the inflationary stage of the Universe. Techniques of QFT
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in curved spacetimes can then be employed to analyze and regularize the contributions

of these quantum fields on the fixed cosmological background. The ultimate hope of the

community of physicists working in the quantization of gravity, nonetheless, is that the

relics of the quantum fluctuations of the Early Universe may encode information about

the quantum nature of the spacetime geometry itself. In this way, rather than considering

QFT in fixed cosmological backgrounds as the last step in the progress of understanding the

primordial fluctuations of our Universe, and viewing the quantum fields of the perturbations

exclusively as test fields that propagate in a given geometry (which can be purely classical,

but may also be quantum mechanically corrected), one would hope for a quantum theory

which incorporates both the geometry and the perturbations, with interplay between them,

and which is potentially predictive. At the end of the day, the goal would be identifying

windows for the observation of traces of the Early Universe phenomena, in order to detect any

of those predictions and falsify the model, or even the theory of quantum gravity from which

it has been derived (provided that this derivation is not based in other extra assumptions

and is therefore essentially unique). In particular, of course, only when the homogeneous

background and the inhomogeneous perturbations are treated quantum mechanically on

a similar footing, it is possible to speak about a quantum structure for a geometry that

includes those background and perturbations.

In this context, a lot of attention has been devoted lately to develop a formalism for

cosmological perturbations in the framework of Loop Quantum Cosmology (LQC). LQC

[11, 12] is the study of cosmological systems with the methods of Loop Quantum Gravity

(LQG) [13], a nonperturbative and background independent program for the quantization

of general relativity that provides nowadays one of the most appealing candidates for a

quantum theory of the gravitational interaction. LQC has been applied successfully to

homogeneous scenarios in cosmology, not only isotropic FRW ones with various kinds of

matter content [14–18], but also anisotropic models of different Bianchi types [19]. One

of the most remarkable predictions is the resolution of the Big Bang singularity, which

is unavoidable in the classical Einstein theory (see, e.g., [20]), and which is replaced by a

turnover called Big Bounce at least in some specific families of states with a marked classical

behavior [14, 15, 21]. The limitation of homogeneity is a clear restriction in this quantum

treatment of the geometry and of the spacetime structure in cosmology; therefore, it is

natural to try and go beyond the assumption of homogeneity in the analysis of cosmological
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universes. Cosmological perturbations are an optimal arena for that, both because of the

level of understanding and development of their classical treatment and because of their

physical relevance.

Two main lines of attack have been followed in this analysis within LQC. One of the ap-

proaches provides a scheme to derive effective equations for the perturbations which capture

the effects of the quantum nature of the spacetime geometry [22–24]. The approach is based

on the need that the algebra of constraints closes in the quantum theory. This restricts the

possible quantum corrections to the constraints of general relativity. Together with assump-

tions about the corrections expected in LQG (coming from the use of holonomies and the

regularization of the inverse of the volume operator), a series of technical (and less obvious)

hypotheses (about validity of expansions, choice and range of canonical variables, locality,

etc.), and the introduction of a structure of Poisson brackets for the expectation values and

moments of the basic variables, this scheme allows one to study the modified field equations

for the perturbations. The other line of attack deals with the direct quantization of the

FRW geometry and the perturbations [25–30]. In principle, both types of approaches are

complementary, since some of the assumptions used in the derivation of effective equations

from the closure of the algebra would ultimately be possible to check only when one has at

his disposal a genuine quantum treatment. On the other hand, to extract physical predic-

tions from the genuine quantum description, one needs to understand the effective regimes

that are consistent with the fundamental symmetries and properties of the system.

The works confronting the quantum description of FRW universes with perturbations

try and combine a genuine loop quantization of the FRW geometry with a homogeneous

matter content together with a more conventional Fock quantization of the perturbations of

the geometry and matter fields [25, 26, 29, 30]. The idea is inspired in the hybrid approach

to LQC that was originally developed in the first inhomogeneous cosmologies quantized to

completion in the framework of the loop formulation, namely, the Gowdy models with linear

polarization of the gravitational waves [31]. Gowdy cosmologies are spacetimes with two

spatial Killing vectors and compact spatial sections, which can only be homeomorphic to a

three-torus, a three-sphere, or a three-handle [32]. In the case in which the inhomogeneous

degrees of freedom of the metric describe only one of the two possible polarizations of the

gravitational waves (more explicitly, waves with linear polarization), these cosmologies have

been quantized within an exact treatment of the geometry without the need of a perturbative
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truncation, even in the presence of matter scalar fields [33]. The Fock quantization of the

inhomogeneous modes of the metric and matter fields was picked out in Refs. [34, 35] by

demanding criteria of invariance under the spatial isometries of the model and the unitary

implementability of the dynamics. Actually, these criteria proved to select a unique canonical

pair to describe the inhomogeneous fields among all the pairs that are related by a scaling

of the field configuration by a function of the homogeneous (background) geometry [34].

Besides, the same criteria select a unique class of unitarily equivalent Fock representations

for the commutation relations of the privileged canonical pair [35].

In a similar manner, these criteria can be applied as well to choose a unique Fock quanti-

zation of the inhomogeneities in more general scenarios than the Gowdy cosmologies [36–39].

For instance, following the hybrid approach, these uniqueness criteria guided the quantiza-

tion of perturbations around FRW spacetimes in Refs. [25, 26] (specialized to the case

of spherical and of compact flat spatial topologies). That hybrid quantization rested, es-

sentially, on two assumptions. First, as we have mentioned, it rested on the hypothesis

that the most relevant effects of the loop quantum geometry are those that affect the zero

modes which describe the degrees of freedom of the FRW geometry, so that one can adopt

a hierarchy in the quantization where the other geometry degrees of freedom admit a more

conventional, quantum Fock formulation. Second, it rested on the truncation of the system

at quadratic perturbative order in the action, considering the inhomogeneities in the matter

field and the metric as linear perturbations, and splitting them from the homogeneous, zero

modes of the system. A recent discussion about how this truncation allows for a consistent

symplectic description can be found in Ref. [24]. This is rather straightforward if one starts

with the gravitational action written in Hamiltonian form. It suffices to substitute in that

action the expressions of the gravitational and matter variables in terms of zero modes and

inhomogeneous perturbations, and truncate the result at quadratic order. By construction,

one obtains a symplectic structure for the system containing perturbations, as well as the

constraints to which this system is subject, arising from those of the gravitational theory at

the order of truncation adopted in the action.

Though mathematically this truncation is clearly consistent, there has been some confu-

sion about it and its physical interpretation. For instance, it has been claimed [29, 30] that

one has to renounce to a symplectic description of the perturbed FRW universes. The price

to be paid then is that the perturbations must be viewed just as test fields of a dressed FRW
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geometry (which incorporates LQC effects), and hence one has to abandon a genuine quan-

tum description of the geometry including perturbations, developing instead an extension

of QFT in curved backgrounds to the dressed metric scenario. In doing so, one also ought

to renounce to the possibility of defining quantum metric operators beyond the homoge-

neous and isotropic truncation of the studied cosmologies. The confusion seems to originate

from the fact that a perturbative truncation of a given order in the action [25, 26, 40, 41]

does not correspond to the same order of perturbative truncation in all the metric (and

matter) degrees of freedom of the system, owing to the nonlinearity of the equations of

general relativity (a recent discussion about this fact is addressed also in Ref. [24]). Again,

the experience gained with the analysis of the Gowdy cosmologies is extremely valuable to

clarify the situation. In the (almost) gauge fixed model for the case of three-torus spatial

topology, the inhomogeneous degrees of freedom can be described by a metric field with no

zero mode that satisfies a linear second-order equation of Klein-Gordon type (on an aux-

iliary space identifiable as the circle [42]) with no sources. We can expand this field in a

perturbative series. The linearity of the field equation implies that the solution for the n-th

power contribution to the field in this perturbative expansion is itself, by its own, an exact

solution. In other words, different perturbative orders decouple in the field equation. With

any of these solutions (modulo a momentum and a Hamiltonian global constraints and to-

gether with a solution for the zero modes of the model) one can construct an exact solution

for the spacetime metric. The formulas can be found in the Appendix of Ref. [42]. It is

straightforward to check that the metric gets contributions of perturbative orders different

from those of the considered field solution. For instance, if one considers a solution of linear

perturbative order in the expansion of the inhomogeneous field, the metric gets perturbative

corrections of all orders. Even if one focuses the attention on metric components (something

that is meaningful in the gauge fixed system) and considers logarithms of the diagonal ones,

it is easy to see that these metric quantities get contributions beyond the linear perturba-

tive approximation. Obviously, nevertheless, nothing is inconsistent in the description and

treatment of the system, and in particular in its consideration as a constrained symplectic

one. One of the goals of the present work is to show how one can construct a formalism for

cosmological perturbations around FRW that can be considered similar to that proposed in

Refs. [29, 30] but without abandoning the view that the quantum theory describes a con-

strained manifold supplied with a symplectic structure, as it is the standard case in gravity.
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In such a formalism, hence, one can face questions about the genuine quantum nature of the

perturbed geometry and the associated spacetime structure.

In the previous analysis of cosmological perturbations using the hybrid approach to LQC,

variables adapted to gauge fixed reductions of the system were employed [25, 26]. This has

several drawbacks. First, it leads to the wrong impression that the results are intrinsically

gauge dependent. Although it was proven in Refs. [25, 26, 39] that, in the regime in

which the inhomogeneities admit a description by means of a QFT in a curved background

(which includes LQC modifications with respect to general relativity), this QFT is unitarily

equivalent to one based on annihilation and creation-like variables constructed from gauge

invariants, the discussion of the formalism is obscured by the use of variables which are not

invariant in fact. The introduction of gauge invariants makes easier to discern the extent to

which the approach restricts the classical and quantum freedom in the gauge transformations

of the perturbed system. In particular, in the flat case, one would like to describe the

perturbations in terms of Mukhanov-Sasaki (MS) variables [43]. On the one hand, these

variables are perturbative gauge invariants and allow an almost straightforward discussion

of the primordial power spectrum, because their spectrum is related in a simple way to that

of the co-moving curvature perturbations. Besides, they satisfy a Klein-Gordon equation

in an auxiliary static spacetime with a time dependent quadratic potential. Remarkably, it

is precisely for this kind of equations that our criteria of spatial symmetry invariance and

unitary dynamics can be directly applied to pick out a unique Fock quantization. On the

other hand, the use of MS variables permits the comparison of the hybrid approach with

other proposals for the treatment of cosmological perturbations in LQC, and specifically

with the dressed metric proposal, since the latter has been expressed in terms of these gauge

invariants [29, 30]. Finally, the formulation in terms of MS variables can be regarded as a

previous step towards the introduction of a canonical transformation in the system aimed

at describing the inhomogeneous perturbations by these variables, the linear perturbative

(gauge) constraints, and their corresponding momenta. Completing this transformation into

a canonical one in the entire system, including zero modes, one can obtain a quantum theory

in the hybrid approach where the gauge dependence is fully understood [44]. In this manner,

the formulation in terms of MS variables sheds light on some recent discussion about the

role of gauge fixation in the separation of zero modes from inhomogeneous perturbations in

the hybrid approach. Actually, this separation makes use of the mode expansion associated
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with the Laplace-Beltrami operator of the spatial sections, for whose construction one needs

just an auxiliary spatial metric already available in the FRW system.

In the rest of this work, therefore, we will present the hybrid quantization in terms of

MS variables of perturbed flat FRW universes with compact spatial sections in the presence

of a matter scalar field. The basic results and formulas of previous studies of this system

in the literature will be summarized in Sec. 2, where we will also introduce the change of

variables for the inhomogeneous modes that leads to the MS invariants. This change will be

completed into a canonical transformation for the perturbed FRW model in Sec. 3. In that

section, we will also derive the expression of the quadratic contribution of the inhomogeneous

perturbations to (the zero mode of) the Hamiltonian constraint in terms of the introduced

MS variables, showing that it reproduces the so-called MS Hamiltonian for a proper scaling of

the inhomogeneities. We will quantize this constrained system in Sec. 4, following the hybrid

approach. In Sec. 5, we will adopt a kind of Born-Oppenheimer (BO) ansatz for the quantum

states. With that ansatz, and neglecting nondiagonal terms in the homogeneous (FRW)

quantum geometry, we will be capable to pass from (the zero mode of) the Hamiltonian

constraint to a Schrödinger equation in the internal time provided by the homogeneous part

of the matter field. We will also compare this Schrödinger equation with that put forward

in Refs. [29, 30] by “deparametrizing” the system and employing the dressed metric QFT

approach. Next, in Sec. 6, we will introduce a different factor ordering for the quantization

of our constrained and symplectic system. We will show that this factor ordering, again after

using a BO ansatz and ignoring nondiagonal elements in the homogeneous geometry, leads to

a quantum equation for the propagation of the inhomogeneous perturbations which is similar

to that of Agulló, Ashtekar, and Nelson. Essentially, the differences refer to the choice of

scaling for the inhomogeneous field that is quantized à la Fock, and to possible ambiguities

in the operator representations selected in the quantization. Since, in the light of this result

(and leaving aside the scaling of the inhomogeneous modes), the main discrepancy between

our hybrid construction and the construction of Refs. [29, 30] may be interpreted as an

alternate choice in factor ordering, it will be then easy to identify the difference between the

corresponding quantum propagation equations for the inhomogeneous perturbations. In Sec.

7, we will compute and compare the effective equations for the MS invariants that follow

from our hybrid approach using the quantum prescriptions of Ref. [26], on the one hand,

and with the alternate factor ordering that can be related to the dressed metric approach,
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on the other hand. Finally, we will conclude in Sec. 8.

II. PERTURBED FRW UNIVERSES: THE SYSTEM

In this section, we will provide a summary of the classical description of our cosmological

system. This classical model will be the starting point for our quantum analysis, in which

we will combine mathematical tools of LQC and Fock quantization techniques. Most of

the details and formulas can be found in Ref. [26]. Thus, we are interested in studying

inhomogeneous perturbations of FRW spacetimes with compact flat spatial sections and a

matter content given by a minimally coupled scalar field. We will focus our attention on the

case in which this field Φ is subject to a potential that consists only of a mass term. The

extension of our analysis to other potentials is almost straightforward. On the other hand,

we will consider exclusively scalar perturbations of the geometry. This is fully consistent,

since these perturbations decouple (at our truncation perturbative order) from other kinds

of perturbations (namely, vectors and tensor perturbations [3]). In fact, the study of the

physical degrees of freedom included in the tensor perturbations can be carried out in a

completely similar way, and is actually simpler from a technical point of view.

We adopt a 3+1 decomposition of the metric in Arnowitt-Deser-Misner (ADM) form (see,

e.g., [45]), expressing it in terms of the three-metric hij induced on the sections of constant

time t, a lapse function N , and a shift vector N i (or covector Ni). Spatial indices i, j run

from 1 to 3. In an FRW spacetime, these metric functions are completely characterized

by a homogeneous lapse N0(t), the logarithm of the scale factor of the spatial metric α(t),

and a static auxiliary three-metric 0hij . In the considered case of compact flat universes,

we can take 0hij as the standard flat metric on the three-torus T 3, with period equal to

l0 in each of the orthonormal directions, for which we choose angular coordinates θi such

that 2πθi/l0 ∈ S1. Using the auxiliary metric 0hij (or rather the line element 0hijdθidθj),

we can define a volume element on the spatial sections, construct the Hilbert space of

functions on those sections that are square integrable with respect to that volume element,

and introduce in that space the Laplace-Beltrami operator compatible with the metric 0hij.

The eigenmodes of this operator provide a basis on the considered Hilbert space of functions.

Hence, any function in it can be expanded in those modes. In particular, we can expand our

inhomogeneous perturbations, transforming the problem of studying the spatial dependence
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into a spectral analysis in terms of such modes.

In the compact flat case considered here, we can adopt a basis of real Fourier modes,

formed by the sine and cosine functions

Q̃~n,+(~θ) =
√
2 cos

(
2π

l0
~n · ~θ

)
, Q̃~n,−(~θ) =

√
2 sin

(
2π

l0
~n · ~θ

)
, (1)

where ~n = (n1, n2, n3) ∈ Z3 is any tuple whose first nonvanishing component is a strictly

positive integer (in order to avoid repetition of modes). Besides, we have used the notation ~n·
~θ =

∑
i niθi. These modes have a norm equal to the square root of the auxiliary volume l30 of

the three-torus, and their Laplace-Beltrami eigenvalue is −ω2
n = −4π2~n ·~n/l20. Furthermore,

since our inhomogeneous perturbations have no zero mode contributions, the value ~n = 0 is

excluded in the expansion of the inhomogeneities.

Employing this Fourier expansion, the ADM metric can be written as

hij(t, ~θ) = σ2e2α(t) 0hij(~θ)


1 + 2

∑

~n,ǫ

a~n,ǫ(t)Q̃~n,ǫ(~θ)




+ 6σ2e2α(t)
∑

~n,ǫ

b~n,ǫ(t)

[
1

ω2
n

(Q̃~n,ǫ)|ij(~θ) +
1

3
0hij(~θ)Q̃~n,ǫ(~θ)

]
, (2)

N(t, ~θ) = σN0(t)


1 +

∑

~n,ǫ

g~n,ǫ(t)Q̃~n,ǫ(~θ)


 , (3)

Ni(t, ~θ) = σ2eα(t)
∑

~n,ǫ

1

ω2
n

k~n,ǫ(t)(Q̃~n,ǫ)|i(~θ), (4)

and the scalar field as

Φ(t, ~θ) =
1

σ
√
l30


ϕ(t) +

∑

~n,ǫ

f~n,ǫ(t)Q̃~n,ǫ(~θ)


 . (5)

Here, σ2 = 4πG/(3l30), G is the Newton constant, the vertical bar stands for the covariant

derivative with respect to the auxiliary metric 0hij , and ǫ = +,− (for cosine and sine modes,

respectively). As we have already commented, in all the sums over the tuples ~n the zero

mode is eliminated. This mode is accounted for by considering the homogeneous metric and

field variables, where we include its contribution. The variable ϕ is the homogeneous part

of the field. The time dependent Fourier coefficients in these expansions parametrize the

inhomogeneities.
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Substituting these formulas in the Hamiltonian form of the gravitational action coupled

to the scalar field, and truncating the result at quadratic order in the inhomogeneous per-

turbations, one obtains (in addition to the Legendre term containing the information about

the symplectic structure of the system) a total Hamiltonian H which is a linear combination

of constraints, with the form [26, 40]

H = N0

[
H|0 +

∑

~n,ǫ

H~n,ǫ
|2

]
+
∑

~n,ǫ

N0g~n,ǫH
~n,ǫ
|1 +

∑

~n,ǫ

k~n,ǫH
~n,ǫ
_1 , (6)

where H~n,ǫ
|1 and H~n,ǫ

_1 are linear in the inhomogeneous perturbations (we will refer to them

as the linear perturbative constraints) and arise from the perturbation, respectively, of

the Hamiltonian and the momentum constraints that generate, also respectively, time

reparametrizations and spatial diffeomorphisms in general relativity. On the other hand,

H~n,ǫ
|2 is quadratic in the perturbations, and provides the contribution of the inhomogeneities

to the zero mode of the Hamiltonian constraint, which in the unperturbed case is just

H|0 =
e−3α

2

(
− π2

α + π2
ϕ + e6αm̄2ϕ2). (7)

The constant m̄ is related to the mass m of the scalar field by m̄ = mσ, and we have called

generically πq the momentum conjugate to the variable q.

Following the analysis of Ref. [26], we introduce now a convenient gauge fixing for the

system, though later on we will reformulate our description in terms of gauge invariants.

The gauge fixation simplifies the discussion considerably. The adoption of gauge invariants

should remove any dependence on the choice of gauge. Actually, gauge invariants are defined

as variables which commute with the linear perturbative constraints. One can then search

for a set of variables for the inhomogeneous perturbations consisting of the gauge invariants,

the mentioned constraints, and suitable momenta for them that might be used as variables

whose value can be fixed to remove the gauge freedom. By completing this change of variables

for the perturbations into a canonical transformation for the entire system, including zero

modes, one would reach a description that is genuinely independent of the (perturbative)

gauge, in which the physical degrees of freedom are straightforward to identify. We assume

that gauge fixing and the adoption of gauge invariants to describe the perturbations are

processes that commute; we will provide a detailed discussion of the system with the outlined

strategy without gauge fixing in a future work [44]. As we will see, the procedure presented

here is most convenient to cope with the calculations and compare the hybrid approach
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with other quantization approaches for cosmological perturbations, like that in LQC of

Refs. [29, 30].

We thus adopt a longitudinal gauge, picked out by the pairs of conditions b~n,ǫ = 0 and

πa~n,ǫ
− παa~n,ǫ − 3πϕf~n,ǫ = 0 [26], which remove the gauge freedom associated with the linear

perturbative constraints. In this gauge, the shift vector vanishes, and the spatial metric is

conformal to the flat one. The reduced system obtained with these conditions is subject

only to one constraint, namely, the zero mode of the Hamiltonian constraint, and admits

a symplectic structure, induced from that of the original system at our order of quadratic

truncation in the action, which makes the following a canonical set of phase space variables

f̄~n,ǫ = eαf~n,ǫ, (8a)

πf̄~n,ǫ
= e−α(πf~n,ǫ

− 3πϕa~n,ǫ − παf~n,ǫ), (8b)

ᾱ = α +
1

2

∑

~n,ǫ

(
a2~n,ǫ + f 2

~n,ǫ

)
, (8c)

πᾱ = πα +
∑

~n,ǫ

(
παf

2
~n,ǫ + 3πϕa~n,ǫf~n,ǫ − f~n,ǫπf~n,ǫ

)
, (8d)

ϕ̄ = ϕ+ 3
∑

~n,ǫ

a~n,ǫf~n,ǫ, (8e)

πϕ̄ = πϕ, (8f)

where

a~n,ǫ = 3
πϕπf~n,ǫ

+
(
e6αm̄2ϕ− 3παπϕ

)
f~n,ǫ

9π2
ϕ + ω2

ne
4α

. (9)

Note that the new barred variables for the homogeneous degrees of freedom get quadratic

contributions from the inhomogeneities in order to maintain the system symplectic. Thus,

if one expresses the metric in terms of these variables, the zero mode part of the metric

will get a quadratic perturbative contribution, which nonetheless is not independent of the

linear perturbations in the inhomogeneous modes.

The only remaining constraint, as we have said, is H = N0[H|0 +
∑

~n,ǫH
~n,ǫ
|2 ], where H|0

is given by Eq. (7) but now evaluated in the new barred variables, and the quadratic
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contribution of the inhomogeneous modes is

H~n,ǫ
|2 =

e−α

2

[
En

π̄π̄π
2
f̄~n,ǫ

+ 2En
f̄π̄f̄~n,ǫπf̄~n,ǫ

+ En
f̄ f̄ f̄

2
~n,ǫ

]
, (10a)

En
π̄π̄ = 1− 3

ω2
n

e−4ᾱπ2
ϕ̄, (10b)

En
f̄π̄ = − 3

ω2
n

e−6ᾱπϕ̄
(
e6ᾱm̄2ϕ̄− 2πᾱπϕ̄

)
, (10c)

En
f̄ f̄ = ω2

n + m̄2e2ᾱ − 1

2
e−4ᾱ

(
π2
ᾱ + 15π2

ϕ̄ + 3e6ᾱm̄2ϕ̄2
)
− 3

ω2
n

e−8ᾱ
(
e6ᾱm̄2ϕ̄− 2πᾱπϕ̄

)2
. (10d)

To conclude this section, let us relate the canonical variables (f̄~n,ǫ, πf̄~n,ǫ
) for the inhomo-

geneous modes with the MS gauge invariants. In any gauge, the mode coefficients of the MS

configuration field variable are [5, 26]

v~n,ǫ = eα
[
f~n,ǫ +

πϕ
πα

(a~n,ǫ + b~n,ǫ)

]
. (11)

Particularizing this expression to our longitudinal gauge, and introducing a conjugate mo-

mentum, we obtain the mode pairs

v~n,ǫ = Anf̄~n,ǫ +Bnπf̄~n,ǫ
, (12a)

πv~n,ǫ
= Cnf̄~n,ǫ +Dnπf̄~n,ǫ

, (12b)

where

An = 1 +
3

ω2
n

e−4ᾱπϕ̄
πᾱ

(
e6ᾱm̄2ϕ̄− 2πᾱπϕ̄

)
, (13a)

Bn =
3

ω2
n

e−2ᾱ
π2
ϕ̄

πᾱ
, (13b)

Cn = −3e−2ᾱ
π2
ϕ̄

πᾱ
− 3

ω2
n

e−6ᾱ 1

πᾱ

[
e12ᾱm̄4ϕ̄2 + 2π2

ϕ̄

(
2π2

ᾱ − 3π2
ϕ̄

)]
+

3

ω2
n

m̄2ϕ̄
πϕ̄
π2
ᾱ

(
4π2

ᾱ − 3π2
ϕ̄

)
,

(13c)

Dn = 1− 3

ω2
n

e−4ᾱπϕ̄
πᾱ

[
e6ᾱm̄2ϕ̄− πϕ̄

πᾱ

(
2π2

ᾱ − 3π2
ϕ̄)

]
. (13d)

At this stage, a comment is in order. The expression of the MS momentum given here

extends that given in Ref. [26], in the sense that both coincide only when the classical

constraint H is imposed, or, at the considered perturbative order, modulo the constraint

H|0 in the expression of the coefficients Cn andDn as functions of the homogeneous variables.

The above relation between the MS pairs (v~n,ǫ, πv~n,ǫ
) and the variables (f̄~n,ǫ, πf̄~n,ǫ

) is a

canonical transformation for fixed homogeneous variables. Actually, it is possible to prove
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that this transformation (with fixed homogeneous sector) can be implemented as a unitary

one in the Fock representation selected by the choice of annihilation and creation-like vari-

ables that one would naturally construct from (f̄~n,ǫ, πf̄~n,ǫ
) by disregarding the mass term of

the scalar field. In the next section, we will extend this transformation to a canonical one

not just on the inhomogeneities, but in the entire phase space of the reduced system.

III. FORMULATION IN TERMS OF MUKHANOV-SASAKI VARIABLES

The relation between the canonical pairs (f̄~n,ǫ, πf̄~n,ǫ
) for the matter field Fourier coeffi-

cients and the MS pairs (v~n,ǫ, πv~n,ǫ
) is canonical for fixed homogeneous variables, as we have

commented, because it is easy to check that AnDn −BnCn = 1 for all the possible values of

n. Using this property, it is straightforward to obtain the inverse, given by

f̄~n,ǫ = Dnv~n,ǫ −Bnπv~n,ǫ
, (14a)

πf̄~n,ǫ
= −Cnv~n,ǫ + Anπv~n,ǫ

. (14b)

We will now complete this relation into a canonical transformation in the reduced phase

space of the system, treated at quadratic perturbative order in the action.

Let us call {q̄A} = {ᾱ, ϕ̄}, i.e., the barred homogeneous configuration variables, and π̄qA

their canonical momenta. A simple calculation, using integration by parts, shows that, up

to time integrals of total derivatives and neglecting cubic and higher contributions of the

perturbations in the action, the Legendre term that contains the information about the

symplectic structure can be rewritten:
∫
dt
[∑

A

˙̄qAπ̄qA +
∑

~n,ǫ

˙̄f~n,ǫπf̄~n,ǫ

]
=

∫
dt
[∑

A

˙̃qAπ̃qA +
∑

~n,ǫ

v̇~n,ǫπv~n,ǫ

]
, (15)

where

q̃A = q̄A +
1

2

∑

~n,ǫ

f̄~n,ǫ

(
∂π̄qA

πf̄~n,ǫ

)
− 1

2

∑

~n,ǫ

(
∂π̄qA

f̄~n,ǫ
)
πf̄~n,ǫ

,

π̃qA = π̄qA − 1

2

∑

~n,ǫ

f̄~n,ǫ

(
∂q̄Aπf̄~n,ǫ

)
+

1

2

∑

~n,ǫ

(
∂q̄A f̄~n,ǫ

)
πf̄~n,ǫ

. (16)

In these expressions, the partial derivatives are taken regarding (f̄~n,ǫ, πf̄~n,ǫ
) as functions of

the MS pairs, of q̄A, and of π̄qA, as given by relations (14).
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From this result, it immediately follows that, at the perturbative order of our truncation,

the set formed by the new homogeneous variables (q̃A, π̃qA) = (α̃, ϕ̃, πα̃, πϕ̃) and the MS pairs

(v~n,ǫ, πv~n,ǫ
) is a canonical set in the phase space of the system. In other words, Eqs. (14) and

(16) are a canonical transformation in this phase space, at the relevant perturbative order.

In order to reformulate the system in terms of these new canonical variables, in which the

inhomogeneities are described by gauge invariants, we still have to obtain the new expression

of the only constraint remaining in the model, namely, the zero mode of the Hamiltonian

constraint. For this, we first write the quadratic perturbative contribution H~n,ǫ
|2 as a function

of the new variables, keeping just quadratic terms in the inhomogeneous modes. This can

be easily done by: i) substituting in Eq. (10) the expression of the old variables (f̄~n,ǫ, πf̄~n,ǫ
)

in terms of the MS pairs [using Eq. (14)], and ii) replacing in the resulting expression

the old homogeneous variables with the new ones, since their difference is quadratic in the

inhomogeneities and is not significant at the considered perturbative order for H~n,ǫ
|2 . In

addition, we rewrite the other contribution to the constraint, H|0, as a function of the new

variables at the analyzed order in the inhomogeneous perturbations. Recalling that originally

H|0 was evaluated at the old homogeneous variables, and realizing that the difference of these

variables with their new counterparts is quadratic in the MS modes, it is straightforward to

conclude (e.g., by a series expansion of H|0) that, at the mentioned truncation order, the

desired contribution is provided by the evaluation of the homogeneous constraint H|0 at the

new homogeneous variables (q̃A, π̃qA) plus a quadratic term in the perturbations given by

the variation of H|0 around those homogeneous variables multiplied by the variation of such

variables produced by our change of canonical set. Combining these results, we get

H = N0

[
H|0(q̃A, π̃qA) + H̃|2(q̃A, π̃qA, v~n,ǫ, πv~n,ǫ

)
]
, (17a)

H̃|2 =
∑

~n,ǫ

H̃~n,ǫ
|2 =

∑

A

{
[q̄A − q̃A]∂q̄AH|0(q̃A, π̃qA) + [π̄qA − π̃qA ]∂π̄qA

H|0(q̃A, π̃qA)
}

+
∑

~n,ǫ

H~n,ǫ
|2 (q̃A, π̃qA, f̄~n,ǫ[q̃A, π̃qA, v~n,ǫ, πv~n,ǫ

], πf̄~n,ǫ
[q̃A, π̃qA, v~n,ǫ, πv~n,ǫ

]), (17b)

with (f̄~n,ǫ, πf̄~n,ǫ
) in the last formula given by Eq. (14) evaluated at q̄A = q̃A and π̄qA = π̃qA.

Alternatively, the expression for H̃|2 can be obtained by considering our change of vari-

ables for the inhomogeneous modes as a time dependent canonical transformation for given

homogeneous variables, whose time dependence is ruled in turn by the homogeneous con-

tribution to the constraint H|0. One can then apply the usual formulas for the change of
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Hamiltonian under canonical transformations which depend on time. The result is indeed

the same that we have displayed above. This provides independent confirmation of the

calculations and additional confidence in the consistency of our discussion.

A lengthy but direct computation leads then to the following formula for the quadratic

contributions of the MS variables:

H̃~n,ǫ
|2 =

e−α̃

2

{
π2
v~n,ǫ

+

[
ω2
n + e−4α̃

(
19π2

ϕ̃ − 18
π4
ϕ̃

π2
α̃

)
+ m̄2e2α̃

(
1− 2ϕ̃2 − 12ϕ̃

πϕ̃
πα̃

)]
v2~n,ǫ

}
.

(18)

In arriving at this simple expression, we have used that H|0 vanishes up to perturbative

corrections. We notice that this quadratic Hamiltonian for the inhomogeneities contains no

crossed term between the MS configuration variables and their momenta. Moreover, if one

introduces unscaled MS variables V~n,ǫ = e−α̃v~n,ǫ like those employed in the description of

Refs. [29, 30], with momenta given by πV~n,ǫ
= eα̃πv~n,ǫ

+ e−α̃πα̃v~n,ǫ, and computes the cor-

responding Hamiltonian (either by considering this scaling as a time dependent canonical

transformation of the inhomogeneous modes, or by completing it into a canonical transfor-

mation in the entire phase space of the system), one would obtain the same result as in Eqs.

(2.5), (A3), and (A4) of the mentioned work [30] (taking into account the choice of lapse

and homogeneous variables used there, and with the sum over discrete modes transformed

into an integral for the case of noncompact flat topology). Thus, as expected, Eq. (18) is

just the counterpart of the MS Hamiltonian for the scaled inhomogeneous variables.

IV. QUANTIZATION

In this section, we discuss the quantization of the symplectic manifold which describes

our cosmological system, and of the Hamiltonian constraint to which it is subject. Physical

states would be obtained as solutions to this constraint, imposed à la Dirac. In order to

carry out this quantization, we combine loop and Fock techniques, according to our hybrid

approach. The strategy is similar to that explained in Ref. [26]; therefore, we only point

out the essential steps. We first introduce a loop quantization of our homogeneous variables

(q̃A, π̃qA). For this, we adapt the parametrization of this homogeneous sector of the phase

space to the standard one in LQC, in which the degrees of freedom of the geometry are

described by an su(2) connection and a densitized triad [13]. In FRW cosmologies, these

are respectively determined by two dynamical variables, c and p, which are canonical in
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the sense that their Poisson bracket is equal to 8πGγ/3, where γ is the Immirzi parameter

[46]. Their relation with the variable α̃ and its momentum in homogeneous and isotropic

settings in the absence of inhomogeneous perturbations —which we extend to our situation

as a definition of the variables that are to be quantized with the methods of LQC— is

|p| = l20σ
2e2α̃, pc = −γl30σ2πα̃. (19)

The sign of p determines the orientation of the triad, but we obviate it here because it will

not play a relevant role in our quantization. In terms of this triad variable, we also introduce

the homogeneous volume V = |p|3/2, and the proportional variable

v = sgn (p)
|p|3/2

2πGγ
√
∆
, (20)

where sgn denotes the sign function and ∆ is the minimum nonzero eigenvalue allowed for

the area operator in LQG [47].

In addition, for the homogeneous variables related to the matter scalar field, we adopt

the following scaling by a constant, in order to facilitate the comparison with the LQC

literature:

φ =
ϕ̃

l
3/2
0 σ

, πφ = l
3/2
0 σπϕ̃. (21)

For the homogeneous degrees of freedom in the geometry, we introduce a quantization

based on the so-called improved dynamics of LQC [15] and on the quantization prescription

of Ref. [16] (usually called MMO prescription, after the initials of the authors Martín-

Benito–Mena Marugán–Olmedo). This quantization is easy to specify in the v-representation

in which the operator counterpart of the variable v acts by multiplication. Defining as

kinematical Hilbert space for the homogeneous sector of the geometry the Hilbert space

Hgrav
kin obtained by completing the span of all the eigenstates of v (i.e., the set {|v〉, v ∈ R})

with the discrete norm 〈v1|v2〉 = δv1,v2, we introduce on it the operators with action

v̂|v〉 = v|v〉, N̂µ̄|v〉 = |v + 1〉. (22)

For simplicity, we fix the reduced Planck constant ~ equal to the unit in all our discussion.

The displacement operator N̂µ̄ provides the quantum representation of the nontrivial holon-

omy components along edges with fiducial length (with respect to the reference metric 0hij)

equal to l0µ̄, with µ̄ =
√

∆/p, so that the physical area enclosed in a square formed by
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edges of this kind is precisely the gap area ∆. It is easy to check that b = µ̄c is canonically

conjugate to the variable v under Poisson brackets, with {b, v} = 2. The displacement op-

erator can be regarded as a representation of the holonomy component exp (−ib/2) in the

improved dynamics formalism. On the other hand, for the homogeneous sector of the matter

field, we adopt a standard representation with kinematical Hilbert space Hmatt
kin given by the

space L2(R, dφ) of square integrable functions on the homogeneous field configuration with

the Lebesgue metric, on which φ acts by multiplication and πφ as −i times the derivative

with respect to φ.

The contribution of the homogeneous degrees of freedom to the zero mode of the Hamil-

tonian constraint is represented by the operator [16, 17, 26]:

Ĥ|0 =
σ

2

[̂
1

V

]1/2
Ĉ0
[̂
1

V

]1/2
. (23)

The inverse-volume operator [̂1/V ] is the cube of the regularized operator

[̂
1

V

]1/3
=

̂[
1√
|p|

]
=

3

2(2πγG
√
∆)1/3

ŝgn(v)|v̂|1/3
(
N̂−µ̄|v̂|1/3N̂µ̄ − N̂µ̄|v̂|1/3N̂−µ̄

)
, (24)

which in fact commutes with the volume operator itself. Note that N̂−µ̄ is the inverse of N̂µ̄.

On the other hand,

Ĉ0 = π̂2
φ − Ĥ(2)

0 , (25)

where

Ĥ(2)
0 =

3

4πGγ2
Ω̂2

0 − 2V̂ 2W (φ̂); W (φ̂) =
1

2
m2φ̂2, (26a)

Ω̂0 =
1

4i
√
∆
V̂ 1/2

[
ŝgn(v)

(
N̂2µ̄ − N̂−2µ̄

)
+
(
N̂2µ̄ − N̂−2µ̄

)
ŝgn(v)

]
V̂ 1/2. (26b)

We have called W (φ) the potential of the scalar field, so that the discussion can be extended

to situations beyond the mass contribution analyzed in detail here. On the other hand, the

operator Ω̂0 represents in this quantization the classical quantity Ω0 = pc once the latter

has been approximated in terms of holonomies by 2πGγv sin b. Its square, Ω̂2
0, annihilates

the zero-volume state |v = 0〉 and leaves invariant its orthogonal complement. Since the

inverse-volume operator also annihilates that state, in the pure FRW sector of the system

and as far as one is searching for solutions to the constraint, the analysis can be restricted

to the mentioned orthogonal complement of |v = 0〉. Moreover, once this state is removed,
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one can establish a bijection between solutions to the constraint Ĥ|0 and solutions to Ĉ0,
which is much simpler to impose [16]. Actually, the same procedure can be followed as well

when the quadratic contributions of the inhomogeneities are introduced in the (zero mode

of) the Hamiltonian constraint, because the action of this constraint again annihilates the

zero-volume state, which decouples from its complement [26].

On the other hand, the action of Ω̂2
0, and a fortiori that of Ĉ0, superselects the kinematical

Hilbert space of the homogeneous geometry sector. In fact, this action leaves invariant the

subspaces H±
ε (which are separable, in contrast with the original Hgrav

kin ) formed by states

with support on the semilattices L±
ε = {v = ±(ε + 4n)|n ∈ N}, where ε ∈ (0, 4]. Notice

that, in each of these superselection sectors, the triad orientation does not change and the

homogeneous volume v has a strictly positive minimum (or negative maximum)1. In the

following, we will restrict the discussion, e.g., to semilattices with positive sign of v.

Let us consider now the representation of the quadratic contribution of the inhomo-

geneities to the zero mode of the Hamiltonian constraint. We first notice that, at the

adopted truncation order and taking into account Eqs. (25) and (26a), we can substitute

the value of π2
φ in the expression of H̃|2 with H(2)

0 = −2V 2W (φ)+3Ω2
0/(4πGγ

2), represented

quantum mechanically by Ĥ(2)
0 . This substitution will prove very convenient if one wants to

use φ as an internal time in the system. The difference in the zero mode of the Hamiltonian

constraint caused by this substitution is just of quartic order in the perturbations (because

π2
φ = H(2)

0 up to quadratic order terms). Hence, it can indeed be neglected. In fact, since π2
φ

is positive, we can go further and substitute H(2)
0 with its positive part, because it is only

when this quantity is positive that the relation π2
φ = H(2)

0 can be satisfied. We will call this

positive part H2
0, and Ĥ2

0 its operator representation, determined as the projection of Ĥ(2)
0 in

the positive part of its spectrum. We assume that this operator Ĥ2
0 can be defined (generally

in a non-unique way) as self-adjoint in Hgrav
kin for every value of φ, as has been argued in the

literature [12]2. After this procedure, H̃|2 becomes a linear function of the momentum πφ,

1 These properties are not shared by the prescription put forward in Refs. [14, 15], whose superselection

sectors are entire lattices.
2 An alternate prescription, which we will find specially interesting for the factor ordering discussed in Sec.

VI, is to identify instead Ĥ0 with the (self-adjoint) operator that dictates the evolution in φ of the positive

frequency solutions of the homogeneous model obtained by group averaging [30, 48].
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of the generic form

H̃|2 ≡
σ

2V

∑

~n,ǫ

C~n,ǫ
2 ; C~n,ǫ

2 = −Θ~n,ǫ
e −Θ~n,ǫ

o πφ. (27)

In our case, we obtain

1

V 2/3
Θ~n,ǫ

e = −
{

4πG

3V 4/3
H2

0

(
19− 24πGγ2

H2
0

Ω2
0

)
+ V 2/3

[
W ′′(φ)− 16πG

3
W (φ)

]}
ṽ2~n,ǫ

− ω̃2
nṽ

2
~n,ǫ − π2

ṽ~n,ǫ
, (28a)

1

V 2/3
Θ~n,ǫ

o = −16πGγV 2/3W
′(φ)

Ω0
ṽ2~n,ǫ, (28b)

where the prime denotes the derivative with respect to φ in the potential W , we have defined

ω̃n = l0ωn, and we have rescaled the MS variables by a constant number, namely:

ṽ~n,ǫ =
v~n,ǫ√
l0
, πṽ~n,ǫ

=
√
l0πv~n,ǫ

. (29)

For the factors in this contribution that depend on the homogeneous variables, and which

are affected in principle by some quantization ambiguities, we will introduce a symmetric

factor ordering that tries to respect, as far as possible, the assignations of representation

made in the FRW part of the system. Specifically, we adopt the prescriptions explained in

Ref. [26]: i) for products f(φ)πφ, where f is an arbitrary function, we adopt a symmetric

factor ordering of the form {f(φ̂)π̂φ+ π̂φf(φ̂)}/2; ii) for factors of the homogeneous volume,

we adopt an algebraic symmetrization, so that terms like V rg(cp), where g is any function

and r a real number, is promoted to the operator V̂ r/2ĝV̂ r/2; besides, this algebraic symmetric

factor ordering is also taken for powers of the inverse volume; iii) for even powers of the

phase space variable Ω0 = cp, we represent this quantity by the same powers of the operator

Ω̂0, as in FRW; and, finally, iv) for odd powers of Ω0 = cp, let us say Ω2k+1
0 with k equal

to an integer, we choose the representation |Ω̂0|kΛ̂0|Ω̂0|k, where |Ω̂0| is the positive operator

provided by the square root of Ω̂2
0 and

Λ̂0 =
1

8i
√
∆
V̂ 1/2

[
ŝgn(v)

(
N̂4µ̄ − N̂−4µ̄

)
+
(
N̂4µ̄ − N̂−4µ̄

)
ŝgn(v)

]
V̂ 1/2. (30)

Note that this operator is defined in a similar way as Ω̂0, but with holonomies of double

fiducial length. As a result, the displacements in v that its action may cause are always

multiples of four units, so that it leaves invariant the superselection semilattices L±
ε of the

homogeneous geometry. Had we just replaced Λ̂0 with Ω̂0, without doubling the fiducial

length of the holonomy edges, the displacements might have been of only two units, and
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hence the superselections sectors of FRW would not have been respected. Actually, our

strategy parallels the usual choice made in the LQC description of FRW universes when one

represents the Hubble parameter [17].

Following the hybrid approach, we adopt a Fock representation for the inhomogeneous

modes, in a quantization that is selected by the criteria of: i) vacuum invariance under

the spatial isometries, and ii) unitary implementability of the dynamical evolution in the

regime in which one recovers a QFT in a curved background (in any finite time interval)

[36, 37]. As we have mentioned, these criteria pick out the canonical pairs of variables

that we have chosen for the descriptMarolfion of the inhomogeneous perturbations [36] —

obviously up to a constant scaling of all the configuration variables and the opposite scaling

of their momenta. Any other choice of canonical pairs among those related with ours by a

scaling of the scalar field using a function of the homogeneous variables (which might even be

explicitly time dependent) would simply not allow for a unitary dynamics in the mentioned

QFT regime, regardless of the complex structure chosen to construct the Fock representation

(this is the case, for instance, of the canonical pairs chosen in Refs. [29, 30]). Although

one may always renounce to unitarity, this would imply that the Heisenberg description of

the inhomogeneities would be inequivalent to a Schrödinger description. On the contrary,

with our criteria we do not only remove the ambiguity in splitting the dependence of the

field modes on the homogeneous and inhomogeneous variables, but we assure a unitary

implementability of the evolution and a standard quantum mechanical interpretation in

the sector where a QFT in a (generally effective) background is recovered. Besides, with

our choice of canonical pairs for the inhomogeneous modes, our invariance and unitarity

criteria select a family of Fock representations that are all unitarily equivalent [37]. This

family contains the representation in which the annihilation and creation-like variables for

the modes are those naturally associated with harmonic oscillators of frequency ω̃n, namely,

aṽ~n,ǫ
=

1√
2ω̃n

(ω̃nṽ~n,ǫ + iπṽ~n,ǫ
) (31)

and their complex conjugates as creation-like variables.

Any representation invariant under the spatial isometries and in the class of (unitary)

equivalence of the one determined by the above annihilation and creation-like variables is

acceptable. Although they are all (unitarily) equivalent as far as the representation of func-

tions of the field in the Weyl algebra is concerned (i.e., exponentials of linear combinations
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of the field and its momentum and, given the continuity of the representation, those linear

combinations themselves), the definition of other field operators may depend on the particu-

lar representation taken in the selected class, as it is the case of quadratic operators like the

one corresponding to the contribution of the inhomogeneities in the zero mode of the Hamil-

tonian constraint. Conditions on physically relevant operators, like e.g. this Hamiltonian,

may remove the still existing freedom in the choice of Fock representation, at least par-

tially. Natural conditions are that the considered operators are well defined and essentially

self-adjoint. Other properties concerning their regularization may be important, although

our viewpoint is that the regularization schemes should arise directly from the quantization

of the system, and not as techniques imported from QFT in curved backgrounds, as it is

usually conceived that such techniques should find their justification in a more fundamental

quantum theory of spacetime, and LQC is assumed to be a framework of that kind, at least

to some extent.

Let us then suppose that (either by imposing additional conditions on physical operators

or by mere choice) we take a Fock quantization in the above class of representations that are

invariant under the spatial isometries, and in this way, in particular, we promote to operators

the variables ṽ2~n,ǫ and π2
ṽ~n,ǫ

appearing in Eq. (28). Let us also call F the corresponding

Fock space. A basis for the space is formed by the occupancy-number states, |N 〉, in

which a finite number of modes presents a kind of particle excitation as interpreted in

terms of the natural annihilation and creation operators of the representation [26]. The

total kinematical Hilbert space of our quantization is simply the product of those of the

homogeneous and inhomogeneous variables, Htot
kin = Hgrav

kin ⊗ Hmatt
kin ⊗ F . Clearly, the zero

mode of the Hamiltonian constraint has a nontrivial action on this space, since it does

not respect its product structure, because the part that is quadratic in the perturbations

mixes the homogeneous and the inhomogeneous sectors. According to our discussion, this

constraint can be written in the form Ĉ = Ĉ0 +
∑

~n,ǫ Ĉ~n,ǫ
2 , where the operators representing

C~n,ǫ
2 ,

Ĉ~n,ǫ
2 = −Θ̂~n,ǫ

e −
(
Θ̂~n,ǫ

o π̂φ
)
S
, (32)

are constructed with the prescriptions that we have explained above. The symbol ( )S

denotes symmetrization in the product of operators. This takes care of the product of π̂φ

with functions of φ: here, specifically, with the factor W ′(φ) in Eq. (28b), if the potential of
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the field has a nonvanishing derivative. For later convenience, we also introduce the notation

Ĉ2 =
∑

~n,ǫ

Ĉ~n,ǫ
2 = −Θ̂e −

(
Θ̂oπ̂φ

)
S
, (33a)

Θ̂e =
∑

~n,ǫ

Θ̂~n,ǫ
e , Θ̂o =

∑

~n,ǫ

Θ̂~n,ǫ
o . (33b)

V. BORN-OPPENHEIMER ANSATZ

In this section, we will analyze the behavior of the possible physical states of the system

whose dependence on the homogeneous degrees of freedom of the FRW geometry, on the

one hand, and on the inhomogeneous modes, on the other hand, can be separated. This

separation will be possible, essentially, because the two mentioned kinds of degrees of freedom

will present different rates of variation with respect to the homogeneous part φ of the matter

scalar field, regarded as an internal time for the system (at least in some intervals of the

evolution). In this sense, we will say that we introduce an ansatz of BO type for the states.

Specifically, we consider states with wave functions Ψ of the form

Ψ = χ(V, φ)ψ(N , φ), (34)

where the dependence on the MS variables has been included in terms of the label N of the

basis of occupation-number states for the inhomogeneous modes. We note the dependence

on φ of the two factors in the wave function.

Moreover, we assume that the part of the state that contains the dependence on the

FRW geometry is determined by a state χ0(V ) of the homogeneous gravitational degrees

of freedom at a fixed value φ0 of φ, evolved with Ĥ0 to other values of the homogeneous

variable of the scalar field. More precisely, we only consider states χ0(V ) on which Ĥ(2)
0

acts as its positive part; then Ĥ0 can be defined as in the previous section and, at least

when its variation with respect to φ is negligible, interpreted as the Hamiltonian for positive

frequency states in the loop quantization of FRW after the deparametrization of the system,

adopting φ as internal time3. In summary,

χ(V, φ) = P
[
exp

(
i

∫ φ

φ0

dφ̃ Ĥ0(φ̃)

)]
χ0(V ). (35)

3 A similar procedure can be adopted for group averaging strategies, regarding the corresponding positive

frequency Hamiltonian Ĥ0 as a specific quantization prescription for FRW, affecting also the representation

of the homogeneous contribution to the constraint.
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The state χ0 is normalized to the unit in the inner product of the kinematical Hilbert

space for the FRW geometry, Hgrav
kin . The symbol P denotes time ordering with respect

to φ, ordering that is needed in the definition of the exponentiated integral because Ĥ0

generically depends on φ through the matter field potential. Notice that, provided that Ĥ0

is self-adjoint for each value of φ as we have argued, the evolution that it generates is unitary.

In addition, and although not strictly necessary for most of our following discussion, we will

suppose that the state χ0 of the FRW geometry is so peaked that the corresponding state χ

remains peaked for all considered values of φ, and that its peak can be described with the

equations of effective LQC for homogeneous and isotropic universes deduced for states with

a considerable semiclassical behavior at very large volumes [21].

Let us then plug this ansatz in the constraint equation4 ĈΨ = 0. If we disregard possible

nondiagonal elements in the homogeneous geometry variables (i.e, possible quantum transi-

tions from χ to another state mediated by the action of the constraint), and consider only

the diagonal part, that can be extracted by taking the inner product with the state χ in

Hgrav
kin , we arrive at the result

− ∂2φψ − i
(
2〈Ĥ0〉χ − 〈Θ̂o〉χ

)
∂φψ =

[
〈Θ̂e +

(
Θ̂oĤ0

)
S
〉χ + i〈dφĤ0 −

1

2
dφΘ̂o〉χ

]
ψ. (36)

Here, 〈 〉χ is the expectation value on χ, with respect to the inner product in Hgrav
kin , and dφ

stands for what in the Heisenberg picture is the total derivative of an operator with respect

to φ; namely, for any operator Ô, we have5

dφÔ = ∂φÔ − i[Ĥ0, Ô]. (37)

Notice that, in the case of Ĥ0, the last term does not contribute because the commutator

vanishes.

We see that this constraint equation would lead to a Schrödinger equation for the evo-

lution of the inhomogeneities in φ provided that the following conditions are satisfied. a)

〈Θ̂o〉χ has to be negligible as compared to 〈Ĥ0〉χ in the term proportional to the derivative

of ψ. In our perturbative approximation, this is always the case, if we insist on regarding

4 Since solutions are not expected to belong to the kinematical Hilbert space, one should rather impose the

constraint in the form (ψ|Ĉ† = 0 on some kind of generalized states (ψ|, where the dagger denotes the

adjoint. With this caveat, we continue our discussion without introducing adjoints, something that would

complicate the notation even more.
5 We choose the sign of the evolution generator in accordance with our positive frequency convention.
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the approximation as an asymptotic expansion (in the limit where a certain perturbative

parameter vanishes), in which H0 is of the order of the unity. In practice, nonetheless,

the approximation is acceptable if it is true that the quadratic contribution of the inhomo-

geneities given by Θ̂o remains small when compared to the generator of the φ-evolution in

the FRW case —additional comments can be found in Sec. VI. b) It may be possible to

neglect the second derivative of ψ in the equation. This may be checked by self-consistency,

because if one assumes that this happens, together with condition a), one can obtain the

value of ∂φψ from Eq. (36). Deriving this value with respect to φ, one can see whether the

second derivative of the wave function of the perturbations is indeed negligible compared

to the first derivative. We will return to this issue later in this section. In addition to

all this, if the evolution of the inhomogeneities in φ is to be ruled by a real Hamiltonian

(something necessary if we want it to become self-adjoint in the Fock space), one needs: c)

The total φ-derivative of (2Ĥ0− Θ̂o) must be negligible compared to the contribution of the

MS Hamiltonian.

If the three conditions were satisfied, we would get the Schrödinger equation

− i∂φψ =
〈Θ̂e +

(
Θ̂oĤ0

)
S
〉χ

2〈Ĥ0〉χ
ψ. (38)

Note that 〈Ĥ0〉χ is just a function of φ, and hence we can divide by it, if it is different from

zero. The term in the right-hand side acting on ψ can be interpreted in this approximation

as the Hamiltonian that generates the dynamics of the perturbations in the internal time

φ. This Hamiltonian is just the MS Hamiltonian, with its dependence on the homogeneous

geometry variables evaluated at the expectation values corresponding to the quantum state

χ, and divided by the expectation value of Ĥ0. This last factor (as we will show below) can

be seen as providing the change of time to φ in the peak trajectory of χ.

Apart from differences in the Fock quantization and in the prescriptions used to define the

quantum operators that appear in it, this Schrödinger equation resembles remarkably the

evolution equation put forward for the perturbations in the dressed metric approach. The

main discrepancy, in practice, is the range of validity deduced for it in the hybrid approach,

summarized in conditions a)-c).

Returning to our previous discussion, suppose that we only admit the validity of condition

a), something which, as we have explained, can always be justified on the basis of the
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perturbative hierarchy. We would then get

− i∂φψ =
1

2〈Ĥ0〉χ

[
〈Θ̂e +

(
Θ̂oĤ0

)
S
〉χ + i〈dφĤ0 −

1

2
dφΘ̂o〉χ

]
ψ +

1

2〈Ĥ0〉χ
∂2φψ, (39)

and, deriving this expression with respect to φ and eliminating terms which are negligible

perturbatively,

[
3〈dφĤ0〉χ
2〈Ĥ0〉χ

− 2i〈Ĥ0〉χ
]
∂2φψ = −〈dφĤ0〉χ

〈Ĥ0〉χ

[
2〈Θ̂e +

(
Θ̂oĤ0

)
S
〉χ +

i

2
〈3dφĤ0 − 2dφΘ̂o〉χ

]
ψ

+

[
〈dφΘ̂e + dφ

(
Θ̂oĤ0

)
S
〉χ + i〈d2

φĤ0 −
1

2
d2
φΘ̂o〉χ

]
ψ + ∂3φψ. (40)

With this equation, it is possible to see whether it is consistent to assume that each new

derivative of ψ with respect to φ is negligible compared to the previous one, and hence if

condition b) is indeed satisfied.

It is easy to convince oneself, from the above analysis, that the validity of conditions b)

and c) depends on how negligible the total derivatives of the operators Ĥ0, Θ̂e, and Θ̂o [and

also (Θ̂oĤ0)S] with respect to φ are. More precisely, a careful consideration of conditions b)

and c), once the validity of condition a) has been accepted, indicates that one needs that

the derivatives of the involved operators to be negligible compared to the MS Hamiltonian,

in expectation values on χ. Actually, one can relax condition c) and keep the contribution

of 〈dφĤ0〉χ in Eq. (39), which may later be absorbed by a φ-dependent change of norm in

χ. In that case, one can show that, rather than the mentioned derivative contribution, it is

its square and 〈d2
φĤ0〉χ what has to be negligible compared with the expectation value of

the MS Hamiltonian.

Nonetheless, before deciding to go on and carry out a detailed analysis of the circum-

stances under which the considered derivatives can be ignored in our equations, let us recall

that these total derivatives contain two types of terms [see Eq. (37)]. One of them is a

derivative with respect to the explicit dependence on φ of these operators. This dependence

comes exclusively from the potential of the matter scalar field. If the derivatives of this

potential are sufficiently small in the possible range of variation of φ, all terms of this kind

might be negligible at the desired order. For instance, if the potential is a mass term, phe-

nomenologically the possible values for the mass are considerably small, and the derivatives

of the potential might be treated as perturbative terms, e.g. by expressing the mass value

as a certain power of the amplitude parameter of the inhomogeneous perturbations. But
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there is still a second type of terms in the analyzed derivatives, namely, the commutator of

the operator with Ĥ0. This commutator gives a nonvanishing contribution in the deriva-

tives of the theta-operators appearing in the MS Hamiltonian. Since the dependence on

the homogeneous variables of these theta-operators and of Ĥ0 is only through the FRW

geometry variables and φ, the commutator in question gets nontrivial values only because

of the contributions of the homogeneous geometry. Hence, the commutator can get relevant

terms from the operator dependence of Ĥ0 on Ω̂2
0 and of the theta-operators on V̂ , and

viceversa. Recall that the commutator of Ω̂2
0 and V̂ gives a term proportional to sin (2b) in

the effective regime of LQC for FRW geometries6, a term which can be of order of the unit

in some stages of the evolution. Actually, the Big Bounce would correspond to values of sin b

equal to one, and would be preceded and followed by regions where the sine of 2b would be

close to the unit value. It is precisely in those regions where different authors, studying the

closure of the modified algebra of constraints in LQG and its consequences for cosmological

perturbations, have claimed that the spacetime structure suffers from a change of signature

[23, 24, 49]. Independently of the possibility of this process of signature change, we see

that there exist reasons to admit that these contributions to the commutators, and hence to

the equations of the cosmological perturbations, may not be always negligible. Therefore,

conditions b)-c) should be checked to confirm that they hold before one can approximate

the evolution equation (39) in our hybrid quantization by its Schrödinger version (38).

VI. ALTERNATE FACTOR ORDERING

In the preceding section, we have seen that, once the BO ansatz is introduced in the

hybrid quantization, some terms in the constraint equation that must be neglected in order

to arrive at a Schrödinger equation come from total derivatives of operators with respect

to the internal time φ. A second thought about these terms reveals that they arise in fact

from factor ordering ambiguities in the quantization procedure. In other words, they can be

absorbed by adopting a different factor ordering. Actually, the part of the total derivatives

that is given by a commutator with the homogeneous Hamiltonian Ĥ0 is clearly a quantum

6 This term is also proportional to the homogeneous volume, but this additional factor may be compensated

by a decrease in powers of this variable caused by the derivative with respect to V taken in one of the

operators that formed the commutator.
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correction (which can be removed if one changes the order of the operators in the expression).

But something similar happens also with the partial derivatives of the operators with respect

to φ in the expectation values over the homogeneous geometry: in the quantization that

we discussed in the previous sections, these partial derivatives can be identified with the

commutators of the considered operators with the momentum of the homogeneous part of

the scalar field, π̂φ. In the light of these comments, it seems natural to search for a different

factor ordering in this quantization from which one can derive an evolution equation for

the perturbations similar to that of the dressed metric approach [29, 30]. Recall, in this

sense, that except for a different scaling of the inhomogeneous modes in the matter field and

the associated MS variables, the quadratic contribution to the constraint Θe + Θoπφ is just

the MS Hamiltonian for the inhomogeneities which generates their evolution in the time T

with dt = 2V dT in the classical theory, with t being the proper time [see Eq. (27) and the

definition of the homogeneous part of the lapse function in Eq. (3)].

As we have seen, the zero mode of the Hamiltonian constraint [up to a factor σ/(2V )] is

given classically by C = π2
φ −H2

0 −Θe −Θoπφ (where we have used an obvious notation for

the classical phase space functions appearing in the constraint). It is straightforward to see

that, at the considered truncation order, quadratic in the inhomogeneous modes, we have

C =

[
πφ +H0 +

1

2
(Θe +Θoπφ)H−1

0

] [
πφ −H0 −

1

2
H−1

0 (Θe +Θoπφ)

]
. (41)

If we regard our perturbative approximation as an asymptotic expansion, the terms of the

form H−1
0 (Θe +Θoπφ) can still be treated perturbatively as quadratic corrections. In prac-

tice, nonetheless, the results of the analysis will be meaningful if these terms are in fact

small. This means that the product of the inverse of H0 by our original MS contributions

must be small. This may involve complications in the sector of small values of H0 (quantum

mechanically, in the region of the spectrum of the operator Ĥ0 close to its kernel). We note

that this sector has small values of the momentum of the homogeneous scalar field when the

inhomogeneities are also small. This may be problematic for the numerical accuracy of the

approximation with the alternate factor ordering that we are trying to adopt now.

It is also worth commenting that this situation is different from what we found in Sec.

V. There, we needed condition a) in order to deduce Eq. (39), but that condition required

only that (in expectation values) the MS contribution Θo be negligible compared to the

homogeneous Hamiltonian H0. As one can check in Eq. (28b), Θo is proportional to the
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derivative of the potential of the scalar field, which can be considerably small. In the studied

case of a massive field, this derivative is m2φ. If one then takes into account that, in effective

LQC for FRW universes, the absolute value of the homogeneous field is bounded from above

for this potential by a number of the order of 1/m (see Ref. [50]), one concludes that, in the

allowed range of variation, the derivative of the potential is at most of the order of the mass.

In total, Θo is a quadratic contribution in the inhomogeneous perturbations multiplied, in

addition, by a factor of order m, leading to a really small quantity and justifying the validity

of the commented condition a).

We can now quantize the constraint with the ordering of Eq. (41), adopting for each

factor, e.g., the prescriptions of previous sections. This factor ordering, though not sym-

metric, is specially appropriate if we are only interested in perturbative solutions of positive

frequency with respect to the variable φ. For this type of positive φ-frequency solutions,

which must remain meaningful in the asymptotic limit of vanishing perturbations, the first

factor (on the left) in the constraint equation cannot annihilate the quantum state. Its cor-

responding positive φ-frequency solutions would be annihilated by π̂φ —and hence belong

to the kernel of Ĥ0— in the limit of a purely homogeneous truncation of the system. Re-

markably, it is in the neighborhood of this kernel where we pointed out the possibility that

there existed practical problems with the perturbative approximation in the factor ordering

considered here. With this caveat, the perturbative solutions Ψ of positive φ-frequency are

determined as solutions of the equation

[
π̂φ − Ĥ0 −

1

2
Ĥ−1/2

0

(
Θ̂e +

(
Θ̂oπ̂φ

)
S

)
Ĥ−1/2

0

]
Ψ = 0. (42)

Note that we have adopted an algebraic symmetric factor ordering for the product of the

operator Ĥ−1
0 with the MS Hamiltonian, rather than other symmetrizations, so that we do

not have to change the prescription for the representation of this MS Hamiltonian.

If we now introduce the BO ansatz (34) and (35), and ignore nondiagonal elements in

the homogeneous geometry, considering only the diagonal part by taking the inner product

in Hgrav
kin with χ, we arrive at the following evolution equation for the perturbations:

− i∂φψ =
1

2

〈
Ĥ−1/2

0

(
Θ̂e +

(
Θ̂oĤ0

)
S

)
Ĥ−1/2

0 − i

2
Ĥ−1/2

0 dφ

(
Θ̂oĤ−1

0

)
Ĥ1/2

0

〉
χ
ψ. (43)

This Schrödinger equation is similar to the evolution equation for the perturbations of the

dressed metric approach. The differences with respect to the discussion in Refs. [29, 30]
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affect only the scaling of the inhomogeneous modes and the prescriptions for the quantization

of the Hamiltonian in the right-hand side. In particular, the contribution of the derivative

dφ(Θ̂oĤ−1
0 ) can be removed with a different choice of operator representation for the product

of Θo, H−1
0 , and the momentum πφ. In fact, according to our comments, this contribution

will be a quantum correction to a term that is not only quadratic in the perturbations, but

in addition is proportional to the derivative of the matter field potential. Thus, for practical

purposes, one would be allowed to neglect it.

Another result that is straightforward to obtain from our discussion is the difference,

owing to choices of factor ordering, between the quantum constraint Ĉd which leads to an

evolution equation of the dressed metric type and the quantum constraint Ĉ of the preceding

section. Using the same algebraic symmetrization for the products of Ĥ−1
0 with the MS

contributions in the two factors of the constraint Ĉd, ignoring quantization prescriptions for

the MS Hamiltonian and Ĥ0, and recalling that π̂φ = −i∂φ, we get

Ĉ − Ĉd =
[
π̂φ, Ĥ0+

1

2
Ĥ−1/2

0

(
Θ̂e+

(
Θ̂oπ̂φ

)
S

)
Ĥ−1/2

0

]
− 1

2

[
Ĥ−1/2

0 ,
[
Ĥ1/2

0 , Θ̂e+
(
Θ̂oπ̂φ

)
S

]]
. (44)

This expression shows that the difference between the two constraints is equal to commuta-

tors between operators, and hence amounts to a choice of factor ordering. In this sense, we

can say that the dressed metric approach may be related to a symplectic description of the

perturbed FRW universes as a constrained system. Obviously, if one further truncates the

formalism to remove all corrections to the zero modes quadratic in the perturbations, the

symplectic canonical structure is lost, and the constraint no longer persists, since it modifies

the dynamics of those modes precisely with quadratic perturbative contributions [24].

VII. EFFECTIVE EQUATIONS FOR THE MUKHANOV-SASAKI VARIABLES

In this section, we will provide the effective equations for the MS variables in the quan-

tization schemes that we have been discussing, extrapolating the experience gained in ho-

mogeneous models and assuming a direct relation between the annihilation and creation

operators for the inhomogeneities and their classical counterpart. Let us start with the hy-

brid approach in the description of the perturbations obtained with the BO ansatz. In this

case, the evolution of the perturbations is ruled by Eq. (36) [and Eq. (37)], which can be

interpreted as the result of a constraint Ĉper that arises from the original constraint operator
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Ĉ and is imposed on the sector of the model composed by the homogeneous degrees of free-

dom of the scalar field and the inhomogeneous modes, namely, on Hmatt
kin ⊗ F . Taking into

account the densitization of the constraint [set in Eqs. (23) and (27)] and the definition of

the homogeneous part of the lapse function, it is not difficult to realize that Ĉper/2 generates

evolution in a time T̄ that, at leading perturbative order, is related with the proper one

by dt = V dT̄ (the factor of 1/2 in the constraint is introduced here for later convenience).

Assuming the validity of our condition a) of Sec. V, this constraint on the wave function ψ

of the perturbations takes the form

Ĉper = π̂2
φ +Dχ(φ)π̂φ + Eχ(φ)−

〈
Θ̂e +

(
Θ̂oĤ0

)
S
− i

2
dφΘ̂o

〉
χ
. (45)

Here, Dχ and Eχ are two functions of φ which depend on the state χ of the homogeneous

geometry, and which we do not specify because they will not be important for our calcula-

tions.

According to our assumptions, the effective equations for the MS variables may then be

computed using as evolution generator in the time T̄ the effective constraint Cper/2 obtained

by replacing π̂φ and the annihilation and creation operators for the inhomogeneities with

their classical analogues, and taking standard Poisson brackets in the sector of homogeneous

scalar field variables and inhomogeneous modes. Recalling expressions (28), we see that all

the dependence of the evolution generator on πṽ~n,ǫ
is given by a term 〈[̂1/V ] −2/3〉χπ2

ṽ~n,ǫ
/2

coming from 〈Θ̂e〉χ. It is then most convenient to make a change of time from T̄ to a time

ηχ defined as

dηχ = 〈[̂1/V ]−2/3〉χdT̄ . (46)

Then, we straightforwardly get that dηχ ṽ~n,ǫ = πṽ~n,ǫ
, where dηχ denotes the derivative with

respect to ηχ.

Note that, with our definition, the time derivative dηχ/dT̄ is strictly nonnegative (the

operator [̂1/V ] is strictly positive in the orthogonal complement of the zero-volume state,

where we have carried out our quantization), ensuring that the change of time is well defined.

This time derivative is a function of only φ which, when evaluated on solutions to the effective

equations, provides a time function. It is worth emphasizing that we could not have defined a

change of time parameter had this time derivative been an operator. Hence, the expectation

value on χ is essential in order to introduce the above change of time. We also point out

that the change is state dependent, and hence the properties of the evolution in the times T̄
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and ηχ can be quite different when considered in the physical Hilbert space of the system.

Finally, we notice the relation dηχ = 〈[̂1/V ]−2/3〉χdt/V , and recalling that V 1/3 = l0σe
α̃ is

the scale factor (up to a multiplicative constant), we conclude that the new time can be

interpreted in fact as a conformal time.

In order to get the effective MS equations, we still need to find the time derivative of the

momentum variables πṽ~n,ǫ
, each of them obtained as the Poisson bracket of the variable with

Cper/2 and divided by 〈[̂1/V ]−2/3〉χ. Defining

〈
ϑ̂e,(ṽ)

〉
χ
ṽ2~n,ǫ = − 1

〈[̂1/V ] −2/3〉χ
〈Θ̂~n,ǫ

e 〉χ − ω̃2
nṽ

2
~n,ǫ − π2

ṽ~n,ǫ
, (47a)

〈
ϑ̂o,(ṽ)

〉
χ
ṽ2~n,ǫ = − 1

〈[̂1/V ] −2/3〉χ

〈(
Θ̂~n,ǫ

o Ĥ0

)
S
− i

2
dφΘ̂

~n,ǫ
o

〉
χ
, (47b)

with the annihilation and creation-like variables in the above theta-operators treated as

classical, we obtain

d2ηχ ṽ~n,ǫ = −ṽ~n,ǫ
[
ω̃2
n +

〈
ϑ̂e,(ṽ) + ϑ̂o,(ṽ)

〉
χ

]
. (48)

A number of comments are in order. First note that, from our definitions, the last factor

in the square brackets of this MS equation is a function of only φ, and hence of time when

the scalar field is evaluated on the solutions to the effective equations. This factor contains

quantum modifications with respect to the standard MS equation. Even so, the derived

equations are still of harmonic oscillator type with time dependent frequencies. Besides, no

dissipation term appears and the equations are hyperbolic in the ultraviolet regime, where

ω̃2
n dominates in the square brackets.

Using Eqs. (28) and (47), and with our quantization prescriptions, we explicitly have

that

〈
ϑ̂e,(ṽ)

〉
χ
=

4πG

3
〈
[̂1/V ] −2/3

〉
χ

〈
[̂1/V ] 1/3

(
19Ĥ2

0 − 24πGγ2Ĥ2
0Ω̂

−2
0 Ĥ2

0

)
[̂1/V ] 1/3

〉
χ

+

〈
[̂1/V ] −2/3V̂ 2/3

〉
χ〈

[̂1/V ]−2/3
〉
χ

(
W ′′ − 16πG

3
W

)
, (49a)

〈
ϑ̂o,(ṽ)

〉
χ
=

16πGγ
〈
[̂1/V ]−2/3

〉
χ

〈
[̂1/V ] −1/3V̂ 1/3|Ω̂0|−1Λ̂0|Ω̂0|−1V̂ 1/3 [̂1/V ] −1/3

(
Ĥ0W

′ − i

2
W ′′

)〉
χ
,

(49b)

where W is the matter field potential: m2φ2/2 in our case. We have included the contribu-

tion of
〈
ϑ̂o,(ṽ)

〉
χ
, although it contains only derivatives of the potential and, in view of our
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discussion in previous sections, we expect it to be negligible in practice.

It is reassuring that one would have arrived at the same result starting from the quantum

constraint Ĉ on the total kinematical Hilbert space of the system without introducing the

BO approximation, by extrapolating the conjectures of LQC about the effective dynamics

and with certain subtleties about the evaluation of the different terms of the homogeneous

variables on effective solutions. Based on this extrapolation, one may accept that the evolu-

tion in the time T̄ is generated by the effective constraint that one obtains by replacing in Ĉ
the annihilation and creation operators for the MS inhomogeneous modes again with their

classical correspondents, the operators V̂ and π̂φ (and φ̂) with their classical analogues as

well, except for the mentioned caveats that we will comment on below, and the operators Ω̂2
0

and Λ̂0 with the effective quantities V 2 sin2 b/∆ and sgn (v)V sin (2b)/(2
√
∆), respectively,

where b =
√
∆|V |−1/3c. Recall that b is (up to a constant multiplicative factor) canonically

conjugate to V under Poisson brackets. As for the operator [̂1/V ], we also recall that it

commutes with the volume operator, and hence can be expressed as a function of the latter

using its spectral decomposition (see, e.g., [51]). One can then find the equations of motion

satisfied by the MS variables in a way similar to what we did in the BO scenario. The

subtleties appear when one considers the different factors in these equations which depend

on the homogeneous variables. In principle, those factors must be evaluated on an effec-

tive solution: precisely the solution on which the quantum state that admits the effective

description is highly peaked. If the state is so peaked in a trajectory that, as far as the

factors of the homogeneous variables are concerned, their evaluation in expectation values

of the basic operators is essentially equal to the expectation values of those factors treated

as operators, the way chosen to make the evaluation among these possibilities is irrelevant.

If, on the other hand, there exist differences depending on how this evaluation is performed

(something that would be the case if one considered generic functions on the homogeneous

sector of the phase space), it is clear that, in order to recover the same results as in the BO

ansatz, the prescription for the evaluation has to become that given in Eqs. (49). The same

line of reasoning applies to the definition of the conformal time ηχ on the effective solution.

With these remarks, the extrapolation of the effective dynamics found in LQC for homo-

geneous and isotropic systems seems to be valid in the present description of cosmological

perturbations.

Finally, let us consider the effective equations that would follow from the description of
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Schrödinger type derived with the alternate factor ordering presented in Sec. VI. Recall that,

apart from some issues related with the scaling of the inhomogeneities and the details of the

quantization prescription, this description provides evolution equations for the perturbations

similar to those obtained with the dressed metric approach. The generator of the evolution

in the time φ is, according to Eq. (43):

1

2

〈
Ĥ−1/2

0

(
Θ̂e +

(
Θ̂oĤ0

)
S

)
Ĥ−1/2

0 − i

2
H−1/2

0 dφ

(
Θ̂oĤ−1

0

)
Ĥ1/2

0 〉χ. (50)

As in the above discussion of the effective equations in the hybrid approach, it is conve-

nient to introduce a change of time, which will be determined by a function of φ (and hence

of the original time) dependent on the state χ considered for the homogeneous geometry.

We call this time ηdχ, and define it through the relation

dηdχ =
〈
Ĥ−1/2

0 [̂1/V ] −2/3Ĥ−1/2
0

〉
χ
dφ. (51)

We notice that the function of φ that determines the derivative dηdχ/dφ is strictly positive.

As an aside, note that the homogeneous scalar field φ and the time T̄ that we introduced

above are related on effective solutions by the evolution equation dφ/dT̄ = πφ. In the

effective description, we may use this relation to change times, replacing the momentum

πφ by its value on the considered solution, which at dominant order in the perturbations

coincides with the expectation value of Ĥ0 on χ. In this sense, one would obtain

dηdχ =
〈
Ĥ−1/2

0 [̂1/V ]−2/3Ĥ−1/2
0

〉
χ

〈
Ĥ0

〉
χ
dT̄ . (52)

Comparing this relation with Eq. (46), we see that ηdχ can be interpreted again as a conformal

time, and that its definition corresponds to a different recipe for the evaluation of the

homogeneous scale factor.

Employing the generator (50) for the evolution in the time φ (under Poisson brackets and,

again, with the annihilation and creation-like variables regarded as classical), the introduced

change of time to the conformal one ηdχ, and a calculation similar to that explained above for

the BO ansatz in the hybrid approach, one easily concludes that the effective MS equation

adopts now the form

d2ηdχ ṽ~n,ǫ = −ṽ~n,ǫ
[
ω̃2
n +

〈
ϑ̂de,(ṽ) + ϑ̂do,(ṽ)

〉
χ

]
, (53)
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where
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ṽ2~n,ǫ = − 1
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nṽ

2
~n,ǫ, (54a)

〈
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ṽ2~n,ǫ = − 1
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0 [̂1/V ] −2/3Ĥ−1/2
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×
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0

(
Θ̂~n,ǫ
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S
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0 − i

2
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(
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o Ĥ−1
0
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0

〉
χ
, (54b)

with the convention that the variables of the inhomogeneous modes are treated classically.

The parallelism with Eqs. (47) and (48) is evident. Except for a contribution that (ap-

propriately rewritten) is proportional to 〈Ĥ−1/2
0 Θ̂~n,ǫ

o dφĤ−1/2
0 〉χ and which may be attributed

to a specific choice of factor ordering —moreover, which is negligible if the derivative of

the potential is ignorable—, the difference between the two effective MS equations can be

described by saying that, in the ratios of expectation values, the state χ is replaced in the

present case with the state Ĥ−1/2
0 χ. If the state is so highly peaked that the expectation

value of products of operators coincides with the product of the corresponding expectation

values, then no discrepancy is expected if the same prescriptions are adopted to quantize the

quadratic contributions of the inhomogeneities (together with H0 and the inverse-volume

operator) as before.

VIII. CONCLUSIONS

We have discussed the hybrid quantization approach to the treatment of cosmological

perturbations around flat homogeneous and isotropic universes containing a minimally cou-

pled scalar matter field in the framework of LQC and employing MS gauge invariants. The

use of MS variables clarifies the independence of the results with respect to (perturbative)

gauge transformations. Moreover, it can be considered as a first step towards a formulation

of the perturbations entirely in terms of gauge invariants, linear perturbative constraints,

and appropriate momenta. Such a description, when completed into a canonical transforma-

tion in the whole phase space of the system, would allow one to reach a quantization with

no gauge fixing. In this quantization, one might analyze directly the closure of the entire

algebra of constraints, hence providing links with the so-called effective approach to the de-

scription of cosmological perturbations. In addition, the use of MS variables facilitates the

comparison of the procedures and results of the hybrid approach with those corresponding
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to the dressed metric approach.

The hybrid approach is based on two approximations. On the one hand, the validity of the

hybrid hierarchy, in which the effects of the loop quantum geometry on the inhomogeneous

modes are neglected against their influence on the homogeneous degrees of freedom. On

the other hand, the validity of a perturbative truncation of the action at quadratic order,

with perturbations describing inhomogeneities. This truncation permits that the system

remains as a constrained, symplectic one, as it is typical in gravitational systems. In turn,

this permits the quantum treatment of the spacetime structures, including the metric, since

it makes possible a genuine quantization of the perturbed metric, rather than describing the

perturbations as test fields over a metric that is quantum corrected. In this latter situation,

found in the dressed metric approach, one is bound to a QFT on a quantum/effective curved

background, instead of facing a genuine quantum theory of a cosmological system (even if

this system is constructed with some approximations).

With the above hybrid and truncation schemes, we have reformulated the cosmological

model described previously in Ref. [26] in terms of MS variables, determining canonical

momenta for them in the inhomogeneous sector of the system and completing this change

of inhomogeneous variables into a canonical transformation in the whole of the phase space,

including homogeneous degrees of freedom. We have also calculated the corresponding MS

Hamiltonian, providing the quadratic contribution in inhomogeneities to the zero mode of

the Hamiltonian constraint of the entire system. This constraint can be easily found using

the introduced canonical transformation, starting from the total Hamiltonian constraint

and respecting our quadratic truncation. Alternatively, it can be computed by regarding

our change of inhomogeneous variables as a background dependent one, and finding the new

Hamiltonian for the inhomogeneous perturbations with the standard formulas for canonical

transformations that are explicitly time dependent. Both methods lead to the same result.

We then revisited the hybrid quantization of the system, where only the zero mode of

the Hamiltonian constraint remains to be imposed à la Dirac. Furthermore, we focused our

attention on states in which the dependence on the homogeneous degrees of freedom can be

separated from that on the inhomogeneous perturbations, treating the homogeneous part of

the scalar field as an internal time, inspired by the BO ansatz of atomic physics. With this

ansatz, and neglecting transitions in the quantum state of the homogeneous geometry sector

mediated by the constraint, we have arrived at a kind of constraint equation on (the part of)
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the wave function of the perturbations. This equation is a second-order one in the intrinsic

time. Under certain hypotheses, which can be checked in each specific case under consid-

eration, this evolution equation can be approximated by one of Schrödinger type, which

resembles the evolution equation obtained in the dressed metric approach. In particular,

in practical situations, the expectation value of the momentum of the homogeneous scalar

field should not be numerically of the same order as the quadratic perturbations; otherwise

the perturbation scheme, although consistent in an abstract asymptotic limit, should not be

expected to lead to a good approximation.

In addition to all this, we have also proceeded to quantize the system with an alternate

factor ordering, still within the lines of the hybrid approach, and hence maintaining the

description of the model as a constrained symplectic manifold. This alternate procedure

has been motivated by the fact that the terms that one needs to neglect in the usual choice

of quantum representation of the constraint in the hybrid approach, in order to obtain a

Schrödinger equation for the perturbations similar to that of the dressed metric formalism,

can be realized as ambiguities in factor ordering. Then, we have proven that there exists a

factor ordering that leads to similar results as a deparametrization of the system in terms

of the internal time φ. Introducing again a BO ansatz and neglecting as well quantum

transitions in the sector of the FRW geometry, we have obtained an evolution equation for

the inhomogeneities that is the parallel of the equation deduced in Refs. [29, 30], except

in what concerns a different scaling of the MS variables (necessary if one wants a unitary

dynamics in the regime of QFT in curved backgrounds) and some issues about the quan-

tization prescriptions for the homogeneous degrees of freedom. In this specific sense, one

can say that a formulation like that of the dressed metric approach can be derived from

the hybrid approach with a particular choice of factor ordering and of prescriptions in the

construction of the quantum representation. As we have pointed out, starting from the

hybrid approach, one has at one’s disposal a symplectic manifold description, a constrained

dynamics arising from the constraints of general relativity, and a concept of quantum metric.

If one insists on keeping only linear perturbations to all the metric degrees of freedom (a

truncation which differs from that at quadratic order in the action), one has to renounce to

the canonical symplectic structure, the constraint is not longer satisfied in the total system,

and the perturbations evolve indeed as test fields, missing a genuine quantum spacetime

structure.
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We have also discussed the effective equations for the MS variables associated with our

hybrid quantization, included the case with the proposed alternate factor ordering, assuming

a direct replacement of the annihilation and creation operators of the inhomogeneities with

their classical counterparts. We have seen that the BO ansatz sheds light on the evaluation

of the homogeneous geometry factors of the effective MS equation in the hybrid approach,

identifying these factors with expectation values of operators in the corresponding quantum

state. When this state is sufficiently peaked, the expectation values may well reproduce

the values on the peak trajectory, but the derivation is valid in more general cases. In ad-

dition, we have seen that the effective MS equations of the hybrid approach do not suffer

fundamental changes when one switches to the alternate factor ordering related with the

dressed metric approach. The effective MS equation is of second order in an adequately

defined conformal time, whose definition changes slightly with the adopted factor ordering

and depends on the particular quantum state considered for the homogeneous geometry.

This second-order equation is hyperbolic in the ultraviolet sector, no dissipative term ap-

pears, and it is only the effective time dependent potential that is altered with the alternate

factor ordering. This effective MS equation supplies the information needed to compute the

modified power spectrum of primordial perturbations in the cosmic background radiation.

A similar analysis can be carried out in the case of tensor perturbations, whose treatment is

even easier owing to the simpler potential in the corresponding MS Hamiltonian. Finally, it

is worth commenting that, although the effective MS equations that we have derived remain

hyperbolic for modes of asymptotically large frequency, the actual Lorentzian or Euclidean

character of the geometry in an effective description should be studied carefully from the

consideration of the quantum metric, where the homogeneous degrees of freedom have been

corrected with quadratic terms in the inhomogeneous perturbations in order to keep our

truncation of the action at quadratic perturbative order. Although, in principle, the effects

of these corrections —and of possible changes of lapse associated with redefinitions of the

constraints at the considered perturbative order— should not affect the global character of

the spacetime metric in a way independent of the perturbations, further investigation seems

necessary to have a better understanding of this issue. This study will be the subject of

future research.
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