
1 Title: 

2 Towards the implementation of periodic thermal transmittance in Spanish building energy regulation

3

4 Highlights:

5  2,413 wall typologies are compared as per ISO 13786 and ISO 6946 calculation procedure. 

6  Thermal mass and thermal capacity should be larger than 150 kg/m2 and 150 kJ/m2K to minimize energy demand 
7 in the two zones studied.

8  If the time shift is larger than 15 h, periodic thermal transmittance should not be limited in warm climates.

9

10 Abstract:

11 The recent development of the calculation methodology for dynamic thermal properties of buildings has opened new 
12 possibilities for reducing their energy demand; however, building codes still rely on the traditional static approach. This 
13 research aims at filling in this gap by exploring how periodic thermal properties can be implemented in the Spanish 
14 regulatory framework. For this purpose, 2,413 wall typologies were analysed in the two extreme climate zones as per the 
15 Spanish regulation pertaining to energy efficiency. Results show that the static U-value itself is not sufficient to optimize the 
16 energy demand of buildings, as for a single value of U variations of 4,000 kWh in the energy demand are expected. Regarding 
17 periodic variables, decrement factor and time shift were the most effective to minimize the energy demand, along with 
18 flexible limitations for the periodic thermal transmittance and the time shift. In warm climates, the former can be 
19 disregarded if the latter is greater than 15 hours. The findings from this study disscuss the applicability of the static thermal 
20 transmittance and propose a methodology to select and limit periodic variables for the two most extreme climates in Spain.

21
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Nomenclature

Symbols

c: Specific thermal capacity

: Thickness of each layer of the wall𝑑𝑖

: Decrement factor𝑓

: External surface resistances𝑅𝑠,𝑒𝑥𝑡

: Internal surface resistances𝑅𝑠,𝑖𝑛𝑡

U: Thermal transmittance

: Internal thermal admittance𝑌11

: Periodic thermal transmittance𝑌12

: External thermal admittance 𝑌22

: Heat transfer matrixes are built for each layer of the wall𝑍

Zs1: Thermal resistance of internal air layers

Zs2: Thermal resistance of external air layers

Greek letters

 Thermal conductivity of each layer of the wall𝜆𝑖:

Ratio of thickness and density𝜉: 

: Density𝜌

: Time shift periodic thermal admittanceφ
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: Time shift internal sideφ11

: Time shift external sideφ22

Abbreviations

CED: Cooling energy demand

CTE-DB-HE: Basic Document - Energy Conservation of the Spanish Building Code

EPS: Expanded polystyrene

EPW: Energy Plus weather

EU: European Union

GHG: Greenhouse gas

HED: Heating energy demand

IPCC: Intergovernmental Panel on Climate Change

MW: Mineral wool

nZEB: Nearly zero energy buildings

PUR: Polyurethane rigid foam

SCS: Summer climate severity

TED: Total energy demand 

WCS: Winter climate severity

XPS: Extruded polystyrene

25

26

27 1. Introduction

28 1.1. Climate change and energy efficiency in the building industry

29 The Intergovernmental Panel on Climate Change (IPCC) has been working for the last decades in foreseeing the possible 
30 combinations of future scenarios of climate change throughout the 21st century and their consequences for the life in the 
31 planet [1,2]. Most of them would lead to serious environmental problems, mainly due to greenhouse gas (GHG) emissions, 
32 whose main cause is the depletion of non-renewable sources. Energy consumption is steadily growing due to the rapid 
33 economic growth in developing countries and the progressive improvement of life quality in developed countries [3]. This 
34 increase has been reflected in many sectors of the economy, amongst which the building sector stands out because of the 
35 poor energy performance of the extant building stock [4–7]. As for the European Union, buildings were responsible for 36% 
36 of GHG emissions [8,9] and for 40% of the total energy consumption [10,11].

37 Consequently, the European Union has devised a strategy to reach what it is called a low carbon economy by 2050 [12]; 
38 for this objective, the reduction of GHG emissions remains essential in various sectors, including the building industry, for 
39 which the European Union (EU) expects to cut GHG emissions by 90%. Moreover, the Directive 2018/844 [13] has 
40 compelled European countries to devise strategies for improving the energy efficiency of existing buildings before 2050. It 
41 has been proved that inefficient building envelopes are the main responsible for excessive heat gains or losses [14–17], and 
42 for that reason the building industry has progressively adopted thicker insulation, solar control devices, and improved air 
43 tightness to improve its efficiency. However, dynamic thermal properties are usually underestimated in the design of 
44 envelopes [18]. 

45 At present time, the EU does not have a common legal framework regarding energy efficiency for buildings. As for Spain, 
46 the basic document on Energy Efficiency, which abides by the Basic Document - Energy Conservation of the Spanish Building 
47 Code (CTE-DB-HE in its Spanish acronym) [19], limits the U value and other parameters to guarantee minimum energy 
48 efficiency standards for both new and existing structures. This Code is expected to be updated in 2020 to implement the 
49 concept of nearly zero energy buildings (nZEB), following in such way the mandate from the Directive 2010/31/UE, which 
50 make the nZEB standard mandatory for public buildings before 2019 and for all buildings before 2021. Nevertheless, several 
51 authors have expresses their concern about the applicability of such standards to buildings in warm climates in Southern 
52 Europe [20], amongst which Spain stands out as a compelling case-study because of the great variety of climates, which 
53 make difficult to stablish common design criteria for the whole country [21]. As an example of this, previous research has 
54 proved that building located in the same climate zone in Sothern regions of Spain may need corrections of around 6% in 
55 their limit U-value due to local variations of climate [22]  
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56 1.2. Background and motivation

57 It is expected that the modification of the CTE-DB-HE will consider that all buildings meeting with this regulation are 
58 nZEB. As for the thermal properties of the envelope, there are limitations for the stationary thermal transmittance 
59 depending on the climate zone of the building. However, previous research has proved that stationary properties of walls 
60 do not consider the effect of thermal inertia on the building performance [23]. Thermal mass, along with the stationary 
61 thermal transmittance exert an influence on building energy performance [24] and also depends on the location: this 
62 influence is more evident in warm climates [25]. 

63 Consequently, the ISO 13786 standard [26] offers an opportunity to overcome these limitations by including a novel 
64 calculation procedure that assess building envelopes under a dynamic regime, considering, among other variables, thermal 
65 inertia, decrement factor and time shift. Input data for these calculations are similar to those required for stationary thermal 
66 transmittance per the ISO 6946 [27] (implemented in the calculation procedure of the CTE-DB-HE); these are, basically, the 
67 thermophysical properties and the thickness of each layer. The control of periodic properties may allow the building energy 
68 performance to be optimized. In this sense, low values of the periodic thermal transmittance reduce the impact of the 
69 external thermal load [28]. 

70 For this reason, some countries are gradually updating their legislation and introducing dynamic thermal properties as 
71 mandatory, being Italy a paradigmatic case within the European context. The Italian Decree Interministeriale 26 giugno 
72 2015 [29] establishes limit values for both thermal mass (greater than 230 kg/m²) and periodic thermal transmittance 
73 (lower than 0.12 W/(m²K)). On top of that, the Decree Ministeriale 26/6/2009 [30] establishes a qualitative classification 
74 of the envelope depending on the time shift and the decrement factor. As a result of that, Italian researchers are leading the 
75 way in clarifying how these properties may affect the energy performance of buildings.

76 Previous research has been focused both on the importance of periodic parameters and the existing limitations in the 
77 Italian regulation: (i) Aste et al. [31] analysed 6 façade typologies in a case study located in Milan, showing that the periodic 
78 thermal transmittance and the thermal admittance would guarantee a reduction of the building energy demand. Besides, 
79 for the same thermal transmittance, these authors proved that thermal inertia might be irrelevant depending on other 
80 aspects, such as the design of the wall. Other studies also support these claims,  highlighting the potential of energy saving 
81 of façades with external insulation and high internal mass [32,33]; (ii) Di Perna et al. [34] analysed a school building in the 
82 city of Loreto ;using a simulation model, 3 wall typologies with different thermal mass were analysed and results showed 
83 that a high internal inertia would foster thermal comfort in summer; (iii) a similar study was conducted by Rossi and Rocco 
84 [28], who analysed 8 different wall typologies in Catania and Milan (4 with heavy and 4 with light construction) to assess 
85 the suitability of limit values for the periodic variables established in the Italian regulation. The results revealed the existing 
86 limitations in the Italian regulation by establishing only limit values in the periodic thermal transmittance; and (iv) Stazi et 
87 al. [35] analysed the performance of periodic properties in a case study in Agugliano using 4 envelope typologies. The results 
88 showed that the control of the decrement factor and of the internal thermal inertia would ensure a lower energy 
89 consumption in the building.

90 As these as theoretical calculations, other important aspect to consider is the on-site testing of the thermal properties 
91 of the building envelope to assess whether they match the specifications of the project. A variety of methods are available 
92 to measure the stationary thermal transmittance, such as the heat flow meter method [36], the thermometric method [37] 
93 or quantitative methods through infrared thermography [38]. However, many studies have faced severe limitations when 
94 analysing in-situ periodic thermal properties. (i) Gagliano et al. [39] experimentally assessed the periodic thermal 
95 properties of a historical building in Catania by using temperature sensors, a heat flux, and pyranometers; (ii) Baldinelli et 
96 al. [40] attempted to reproduce the theoretical sinusoidal conditions per ISO 13786 by using a hot box, being results 
97 satisfactory with an acceptable margin of error. (iii) Aversa et al. [41] used infrared thermography to assess the dynamic 
98 thermal performance of walls; measurements were compared with simulations conducted in COMSOL per ISO 13786. (iv) 
99 Pernigotto et al [42] compared theoretical calculation and laboratory measurements of periodic thermal properties for a 

100 single-layered timber wall and remarkable differences were obtained: -12% to 20% for the periodic thermal transmittance 
101 and 2-4% for the time shift; other study found that theoretical and simulated data also differs for walls composed by hollow 
102 bricks [41]. Results showed that differences between the theoretical and on-site or tested values were too large, thus new 
103 studies are deemed necessary.

104 Paradoxically, Spain lags behind Italy in the development of such studies, although both countries have very similar 
105 climates. This remains particularly important in a context where a better understanding of periodic thermal properties 
106 would bring resilient buildings under climate change scenarios [43]; what is more, it would allow for an easy 
107 implementation of the nZEB standard in warm climates [44] and economically viable refurbishment of existing buildings 
108 [45]. Other issues within the Spanish context also support this claim: the country is heavily dependent on non-renewable 
109 energy resources [46] and cases of energy poverty are progressively increasing [47]. More efficient buildings would bring 
110 better quality of life, and thus economic savings for the Spanish healthcare system [48]. For that reason, the Spanish 
111 Government is allocating a great amount of funds to foster the improvement of the existing building stock [49].

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

https://www.sciencedirect.com/science/article/pii/S0378778817308174#bib0010


112 Given this context, this study aims at filling this research gap and proposing a strategy to implement periodic thermal 
113 properties in the Spanish regulatory framework. For this purpose, a case study is designed and located in two different 
114 climate zones per CTE-DB-HE. The analysis was focused on the façades, as they constitute the majority of the external 
115 envelope. By using different combination of elements, 2,413 different wall typologies were analysed, a considerably larger 
116 number when compared with similar research. The results of the present study will help in understanding the potential and 
117 the limitations of periodic thermal properties in a new regulatory framework, as well as generate a methodology that allows 
118 for the implementation of periodic thermal properties in other climatic and geographical contexts.

119 Thus, this study aims at building knowledge in the regulation of periodic thermal properties of building envelopes by 
120 analysing a considerable large number of walls, covering the most used constructive systems. Likewise, another novel 
121 aspect of the investigation is the analysis of the influence of the periodic thermal properties of the buildings in two extreme 
122 climates of Spain. The results of this research could allow the design of energy-efficient buildings close to the to zero energy 
123 standard in southern European regions.

124 The article is structured into three main sections. Firstly, the methodology is described by analysing the following 
125 aspects: (i) the theory and the calculation method of the ISO 13786; (ii) definition of the case study and the wall typologies; 
126 and (iii) analysis of the climate zones. Secondly, the results obtained are analysed and discussed. Finally, the main 
127 conclusions and the implications for future policies are presented.

128

129 2. Methodology

130 2.1. Calculation procedure for periodic thermal properties. 

131 The calculation procedure for the static thermal transmittance is well known and widely adopted in different countries 
132 [50,51]; U values are calculated per ISO 6946 standard under a constant difference of temperature [27] (Eq. 1).

𝑈 =
1

𝑅𝑠,𝑒𝑥𝑡 +
𝑛

∑
𝑖 = 1

𝑑𝑖

𝜆𝑖
+ 𝑅

𝑠,𝑖𝑛𝑡

(1)

133 Where  [W/(m·K)] and  [m] are the thermal conductivity and thickness of each layer of the wall, and  and  𝜆𝑖 𝑑𝑖 𝑅𝑠,𝑒𝑥𝑡 𝑅𝑠,𝑖𝑛𝑡
134 [(m2·K)/W] are the external and internal surface resistances, respectively.

135 In contrast, the ISO 13786 calculates the thermal properties under a dynamic regime [26]; the procedure is based on 
136 the key study by Carslaw and Jaeger [52], who analysed how the variation of temperature could be adjusted to a sinusoidal 
137 function. This variation is dependent on time (T), so different periods of variation might be considered. As for building 
138 energy demand, the usual period is 24 h, which corresponds to the oscillation of external temperatures for one day [26].

139 For each material, three basic properties are needed as input data: thermal conductivity ( ), density ( ), and specific 𝜆 𝜌
140 thermal capacity (c). Thermal bridges are not considered due to their low effect on dynamic thermal properties [26].  Then, 
141 heat transfer matrixes are built for each layer of the wall ( ); for a single layer the matrix is as follows (Eq. 2)𝑍

𝑍 = (𝑍11 𝑍12
𝑍21 𝑍22)

𝑍11 = 𝑍22 = cosh(𝜉)cos(𝜉) + 𝑗 ∙ senh(𝜉)sen(𝜉)

𝑍12 =‒
𝛿

2𝜆{senh(𝜉)cos(𝜉) + cosh(𝜉)sen(𝜉) + 𝑗 ∙ [cosh(𝜉)sen(𝜉) ‒ senh(𝜉)cos(𝜉)]}

𝑍21 =‒
𝜆
𝛿{senh(𝜉)cos(𝜉) ‒ cosh(𝜉)sen(𝜉) + 𝑗 ∙ [cosh(𝜉)sen(𝜉) + senh(𝜉)cos(𝜉)]}

(2)

142 For each element of this matrix   [m] is the depth of periodic penetration of a thermal wave into the layer (Eq. 3) and  𝛿 𝜉
143 [dimensionless] is the ratio of  and  (Eq. 4)𝑑 𝛿

𝛿 =
𝜆𝑇

𝜋𝜌𝑐 (3)

𝜉 =
𝑑
𝛿 (4)

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

https://www.sciencedirect.com/science/article/pii/S0378778817308174#bib0010
https://www.sciencedirect.com/science/article/pii/S0378778817308174#bib0010
https://www.sciencedirect.com/science/article/pii/S0378778817308174#bib0010


144 For each layer with uniform thermal properties a Z matrix is built. In case of multilayer walls, one Z matrix should be 
145 built for each layer; then, the transfer equation for the wall is created by multiplying the matrices of the different layers ( ) 𝑍𝑖
146 from the exterior ( ) to the interior ( ); the thermal resistance of external (Zs2) and internal air layers (Zs1) is added 𝑖 = 𝑁 𝑖 = 1
147 in the required order to build the transfer matrix of the wall (Zee) (eq. 5)  

 𝑍 = (𝑍11 𝑍12
𝑍21 𝑍22) = ∏1

𝑖 = 𝑁𝑍𝑖 → 𝑍𝑒𝑒 = 𝑍𝑠2 ∙ 𝑍 ∙ 𝑍𝑠1 (5)

148 Once the matrix equation is solved, the seven main variables that characterize the periodic thermal properties can be 
149 calculated (Table 1)

150 Table 1. Variables that define the periodic thermal properties.

Variable Equation

Periodic thermal transmittance 𝑌12 = ‒
1

𝑍12
(6)

Time shift periodic thermal admittance φ =
𝑇

2𝜋arg (𝑍12) (7)

Decrement factor f =
|𝑌12|

𝑈
(8)

Internal thermal admittance 𝑌11 = ‒
𝑍11

𝑍12
(9)

Time shift internal side φ11 =
𝑇

2𝜋arg (𝑌11) (10)

External thermal admittance 𝑌22 = ‒
𝑍22

𝑍12
(11)

Time shift external side φ22 =
𝑇

2𝜋arg (𝑌22) (12)

151

152 2.2. Simulation model

153 This study aimed at analysing the possibility of establishing limit values in the periodic thermal parameters of façades 
154 and for this purpose, a wide sample of wall typologies was analysed. A simplified prototype, which reproduces common 
155 characteristics of residential building in Spain [24,28], was modelled. (Figure. 1). The case study corresponded to an 
156 intermediate floor, so that elements that transfer heat are reduced to a minimum. Only external walls and windows are 
157 considered to transfer heat, as upper and lower slabs are adiabatic. 

158 The independent variables of the study were the different types of facades, which are defined by the 4 variables that 
159 characterize single material of them (Table. 2).  A total of 2,413 different wall typologies were generated taking as a base 
160 different documents, such as the Constructive Elements Catalogue of the CTE-DB-HE [53] and other research studies and 
161 standards [54,55]. These walls are representative of the constructive standards adopted for both new and existing buildings 
162 and can be grouped into two categories: First, light and heavy construction, depending on the types of bricks: solid or 
163 perforated ceramic bricks, ceramic blocks and standard or light concrete blocks; second, insulation thickness, ranging from 
164 1 to 15 cm and comprising commonly used materials in the construction industry in Spain, such as expanded polystyrene 
165 (EPS), mineral wool (MW), polyurethane rigid foam (PUR), extruded polystyrene (XPS), and cork [56]. The thermophysical 
166 properties of the materials were obtained from the CTE-DB-HE and from ISO 10456 [57]. Prior to the energy analysis, these 
167 2,413 walls were characterized by their static and periodic thermal variables (Table. 3): static properties were calculated 
168 per ISO 6946, and dynamic per ISO 13786.

169 The rest of variables were considered as control variables and, therefore, constant. Four double glazed windows, with 
170 a 6 mm air layer between two panes of glass with a thickness of 4 mm and a dimension of 2.10x2.50 m were considered for 
171 all simulations. Set point temperatures for heating and cooling were 20ºC and 25ºC respectively. Internal loads were 
172 considered as follows: 0.08 people/m² engaged in sedentary metabolic activities, 3 W/m² for lighting and 1.5 W/m² for 
173 equipment. No artificial ventilation system was considered, and the infiltration rate was fixed at 0.5 ACH. 
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174

175
176 Figure 1. Case study analysed: (a) 3D sketch; and (b) floor.

177

178 Table 2. An example of some of the wall typologies analysed according to the Constructive Elements Catalogue of the CTE-
179 DB-HE.

Code Component Thickness 

[m]

Thermal conductivity 
[W/(mK)]

Specific heat 

capacity [J/(kgK)]

Density 

[kg/m3]

Sketch

Solid brick 0.115 0.850 1,000.00 2,300.00

Cement mortar 0.015 1.000 1,000.00 1,700.00

EPS insulation 0.090 0.029 1,450.00 40.00

Hollow brick 0.070 0.320 1,000.00 770.00

F01.01

Gypsum plaster 0.015 0.570 1,000.00 1,000.00

Perforated brick 0.240 0.350 1,000.00 780.00

Cement mortar 0.015 1.000 1,000.00 1,700.00

MW insulation 0.040 0.031 1,030.00 190.00

F01.07

Laminated 
plasterboard

0.015 0.250 1,000.00 800.00

Cement mortar 0.020 0.800 1,000.00 1,500.00

Concrete block 0.140 0.450 1,000.00 790.00

Cement mortar 0.015 1.000 1,000.00 1,700.00

Cork insulation 0.040 0.049 1.560.00 150.00

Hollow brick 0.070 0.320 1,000.00 770.00

F03.09

Gypsum plaster 0.015 0.570 1,000.00 1,000.00

Aluminium 0.001 230.00 880.00 2,700.00

MW insulation 0.03 0.034 1,030.00 90.00

F11.01

Aluminium 0.001 230.00 880.00 2,700.00
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180

181 Table 3. Description of the value ranges associated with the different thermal variables of walls.

Variable Unit Minimum value Average value Maximum value

Thermal transmittance W/(m²K) 0.16 0.48 2.84

Thermal mass kg/m² 4.40 307.92 717.90

Thermal capacity kJ/(m²K) 6.98 310.42 718.62

Periodic thermal transmittance W/(m²K) 0.01 0.20 2.78

Time shift periodic thermal transmittance h 0.18 9.87 20.93

Decrement factor - 0.03 0.37 1.00

Internal thermal admittance W/(m²K) 0.42 3.45 5.37

Time shift internal side h 0.32 2.26 4.66

External thermal admittance W/(m²K) 0.43 4.17 8.40

Time shift external side h 0.57 3.28 5.28

182

183 2.3. Climate zones 

184 The Spanish regulatory framework CTE-DB-HE uses two indexes to deal with the great variety of climates within its 
185 territory: summer (SCS) and winter (WCS) climate severity:

𝑆𝐶𝑆 = 2.990 ∙ 10 ‒ 3 ∙ 𝐷𝐷𝑆 ‒ 1.1597 ∙ 10 ‒ 7 ∙ 𝐷𝐷2
𝑆 ‒ 1.713 ∙ 10 ‒ 1 (13)

𝑊𝐶𝑆 = 3.546 ∙ 10 ‒ 4 ∙ 𝐷𝐷𝑊 ‒ 4.043 ∙ 10 ‒ 1 ∙
𝑛
𝑁 + 8.394 ∙ 10 ‒ 8 ∙ 𝐷𝐷 2

𝑊 ‒ 7.325 ∙ 10 ‒ 2 ∙ (𝑛
𝑁)

2

‒ 1.137 ∙ 10 ‒ 1
(14)

186 Where  [ºC] is the sum of summer degree-days for a base temperature of 20 ºC during the cooling season;  𝐷𝐷𝑆
𝑛
𝑁

187 [dimensionless] is the quotient between the number of sun hours and the theoretical maximum number of sun hours during 
188 the heating season; and  [ºC] is the sum of winter degree-days for base temperature of 20 during the heating season.𝐷𝐷𝑊

189 Regions in Spain are classified according to SCS and WCS, for SCS a number between 1 and 4 is assigned, the larger the 
190 number the larger the expected cooling energy demand; for WCS, a letter between A and E is assigned, being E the one that 
191 corresponds to the larger expected heating demand (Table 4). In this study two cities that represents the two extremes of 
192 this classification were chosen, Sevilla, which is classified as B4, and Avila, which is classified as E1 (Table 5); mild winters 
193 and hot summers are expected in the former, while the opposite is expected in the latter. It should be noted that not all 
194 combinations of SCS and WCS are possible: E4, E3, E2, D4, B1, A1 are not found in the Spanish territory. This classification 
195 also determines the limit of the static U value for external walls (Table 5). Despite being very operational for professional 
196 practice, this classification has several drawbacks, as pointed out by Attia et. Al [21] when trying to establish a common 
197 framework to implement the nZEB standard in the construction industry. That is why a deeper analysis, which considers 
198 other variables, is deemed necessary.
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201 Table 4. Climate classification of  and .𝑆𝐶𝑆 𝑊𝐶𝑆

Classification of 𝑆𝐶𝑆 Classification of 𝑊𝐶𝑆

Class Value Class Value

1 𝑆𝐶𝑆 ≤ 0.50 A 0 ≤ 𝑊𝐶𝑆 ≤ 0.23

2 0.50 < 𝑆𝐶𝑆 ≤ 0.83B 0.23 < 𝑊𝐶𝑆 ≤ 0.50

3 0.83 < 𝑆𝐶𝑆 ≤ 1.38C 0.50 < 𝑊𝐶𝑆 ≤ 0.93

4 𝑆𝐶𝑆 > 1.38 D 0.93 < 𝑊𝐶𝑆 ≤ 1.51

E 𝑊𝐶𝑆 > 1.51

202

203 Table 5. Cities selected for the study.

City Longitude Latitude Altitude Climate zone U-value limit 

[W/(m²K)]

Avila -4.696222 40.654347 1,131 E1 0.55

Seville -5.98333 37.383333 11 B4 1.00

204 The prototypes were modelled in the software Design Builder, which includes a visual modelling tool coupled to a 
205 simulation module based on the Energy Plus engine. Despite several plugins involving modelling, data automation and 
206 parametric analysis have been recently developed, in this case Design Builder was used as a stand-alone Graphical User 
207 Interface based on a simulation engine [58]; individual templates for all construction materials where combined using the 
208 construction model data tab to generate the 2,413 walls considered. Then, simulations were carried out using the tools 
209 available in this software, which allow to automatize a large number of processes at once. The Energy Plus weather (EPW) 
210 files of the two cities were generated with the software METEONORM [59], which creates a EPW file for any location through 
211 interpolation by using the nearest weather stations. The period 2000-2009 was considered for the external temperatures 
212 and 1991-2010 for solar radiation. In total, 4,826 simulations were carried out one by one, that is, 2,413 for each of the two 
213 locations.

214 3. Results and discussion

215 Results are presented, firstly, in relation with the static variables and, secondly, in relation with the dynamic parameters. 
216 As expected, the cooling, heating and total energy demand bear some relation with the three parameters that define the 
217 static approach: Thermal transmittance, thermal mass and thermal capacity. This holds true, with some remarks, for both 
218 zones: B4 (Figure 2) and E1 (Figure 3).

219 In warmer climates (zone B4) heating demand seems to be independent from these three parameters, but that is not 
220 the case for cooling demand, where higher thermal transmittance means higher cooling demand; heavyweight construction 
221 have a positive impact during the cooling season, albeit to a moderate degree. Combining the two of them, the total energy 
222 demand is heavily influenced by the cooling demand, which is, roughly, 4 to 6 times larger than the expected heating 
223 demand. Quite the opposite, in zone E1, the cooling demand seems not to be influenced by the variation of these 3 variables, 
224 except for the case of lightweight construction, where it may double or triple. This might explain the unusual distribution 
225 of the cloud points for the thermal transmittance, with two different branches; indeed, for a single value of thermal 
226 transmittance, different values of cooling demand might be obtained. A similar phenomenon is observed for the heating 
227 demand: According to the traditional approach, in cold climates, higher U values would automatically mean higher heating 
228 demand, but that does not always hold true in this case, probably because thermal mass and thermal capacity are exerting 
229 some sort of influence in the final demand. The values for the total energy demand are similar to the zone B4, but keeping 
230 in mind that, in this case, heating demand is dominant.

231 In general, U value seems to be the parameter that can predict with more accuracy the cooling, heating and total energy 
232 demand, with correlation coefficients higher that 0.75, except for the cooling demand in the zone E1 (Table 6). These 
233 demands might not be explained by thermal mass and thermal capacity alone, as their correlation coefficients are 
234 remarkably lower; however, as pointed out previously, they might be helpful to explain in detail unusual relations between 
235 U and the energy demand. As U value seems to be an accurate predictor of the energy demand, additional analyses were 

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



236 conducted (Figure 4). For both zones, it seems evident that limiting the thermal transmittance has a positive effect on 
237 reducing the energy demand, but the effect on the minimum energy demand is not so evident, especially for the lower tier 
238 of U values. 

239

240
241 Figure 2. Scatterplot: Energy demand and the static thermal variables in the zone B4.

242

243

244
245 Figure 3. Scatterplot: Energy demand and the static thermal variables in the zone E1.
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246

247 Table 6. Correlation coefficient between the static thermal variables and the energy demand. 

B4 E1Variable

HED CED TED HED CED TED

Thermal transmittance 0.81 0.75 0.82 0.88 0.47 0.92

Thermal mass 0.23 0.49 0.47 0.17 0.52 0.31

Thermal capacity 0.23 0.49 0.47 0.17 0.53 0.32

248 HED: Heating energy demand; CED: Cooling energy demand; TED: Total energy demand.

249
250 Figure 4. Box-plots of the total energy demand according to the value ranges of thermal transmittance of the walls analysed: 
251 (a) zone B4, and (b) zone E1. 

252

253 In view of these data, it seems evident that standards based solely on U values do not automatically guarantee lower 
254 energy demands. It is commonly assumed that, under a constant temperature difference between the interior and the 
255 exterior, lower U values would limit the heat transfer. However, thermal oscillations during a 24-hour cycle mean that these 
256 assumptions are not always true; indeed, thermal mass and thermal capacity may explain why lower U values give higher 
257 energy demands. This calls for a deeper analysis where dynamic variables should be discussed.

258 At first, the energy demand was expressed as a function of each one of the seven variables that define the dynamic 
259 thermal properties (Figures 5 and 6). The relation for the periodic thermal transmittance seems linear with two branches, 
260 in the same fashion as the U value; such relation is not present for the rest of the variables for both zones, which seems to 
261 be quite dispersed. The correlation coefficients confirm that periodic thermal transmittance can accurately predict, until 
262 some extent, the total energy demand (Table 7), whereas other parameters alone cannot be used to foresee it. 

263 This difference between variables was also reflected in the correlation coefficients (Table 7). Among correlation 
264 coefficients of the periodic thermal transmittance, the time shift, and the decrement factor , the greatest correlation was 
265 found for the cooling energy demand. The use of criteria associated with these variables allows therefore the energy demand 
266 to be limited. For this reason, the distributions of the total energy demand were analysed by using different groups in each 
267 variable. 

268 A deeper analysis shows a correlation between the periodic thermal transmittance and the total energy demand, which 
269 also holds true for the time shift and the decrement factor (Figure 7). The relation for the thermal transmittance shows a 
270 similar pattern of that from the static U value. Regarding time shift, the lowest demands are achieved if the shift is larger 
271 than 15 h. The decrement factor behaves similarly in both zones: The demand is minimum for the lowest values (around 0), 
272 then stays constant for intermediate values (between 0.20 and 0.70) and reaches its peak for highest values (over 0.70); 
273 however, these data should be handled with caution because there is a disparity between maximum and minimum values. 

274 This issue is discussed separately. If the objective is to minimize the energy demand of the building, special attention 
275 should be paid to the time shift periodic thermal transmittance, the decrement factor and the time shift for the internal side 
276 of the wall (Table 8). The first one presented the lowest maximum values and the smallest amplitude for both zones; for 
277 example, in zone B4, a time shift between 20 and 21 h delivers a maximum energy demand of 10,267.39 kWh, which is 
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278 11.44% lower than the lowest demand obtained by limiting the decrement factor, and 26.97% lower than that one obtained 
279 by limiting the time shift in the internal side. Similar reductions can be observed in zone E1. The rest of the variables did 
280 not show any particular tendency.

281
282 Figure 5. Scatterplot: Energy demand and periodic thermal variables in the zone B4.
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283
284 Figure 6. Scatterplot: Energy demand and periodic thermal variables in the zone E1.
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286
287 Figure 7. Box-plots of the total energy demand according to the periodic values (periodic thermal transmittance, decrement 
288 factor, and time shift periodic thermal transmittance) of the walls analysed: (a) zone B4, and (b) zone E1.
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291
292 Figure 8. Box-plots of the total energy demand according to the periodic values (admittances and time shift side) of the walls 
293 analysed: (a) zone B4, and (b) zone E1.
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296 Table 7. Correlation coefficient between the periodic thermal variables and the energy demand. 

B4 E1Variable

HED CED TED HED CED TED

Periodic thermal transmittance 0.59 0.90 0.91 0.61 0.84 0.80

Time shift periodic thermal transmittance 0.42 0.69 0.69 0.39 0.65 0.54

Decrement factor 0.30 0.65 0.63 0.26 0.68 0.44

Internal thermal admittance 0.12 0.30 0.28 0.06 0.34 0.16

Time shift internal side 0.09 0.18 0.14 0.11 0.26 0.02

External thermal admittance 0.19 0.37 0.36 0.10 0.42 0.22

Time shift external side 0.19 0.13 0.08 0.22 0.25 0.12

297 HED: Heating energy demand; CED: Cooling energy demand; TED: Total energy demand.

298

299 Table 8. Influence of the range of values of the most restrictive periodic variables in the total energy demand.

Total energy demand [kWh]

B4 E1

Variable Range

Maximum Minimum Maximum Minimum

Time shift periodic thermal transmittance (18.20, 18.40] 11,594.30 10,489.54 9,585.73 8,588.58

(18.40, 18.60] 11,489.31 10,607.64 9,453.26 8,681.65

(18.60, 18.80] 11,461.59 10,377.27 9,431.53 8,482.15

(18.80, 19.00] 11,370.57 11,244.81 9,312.88 9,147.4

(19.00, 19.20] 11,344.55 10,273.84 9,292.29 8,390.91

(19.20, 19.40] 11,234.62 11,185.03 9,185.01 9,107.56

(19.40, 19.60] 11,197.62 11,155.24 9,164.45 9,088.19

(19.60, 19.80] 11,125.42 10,194.65 9,069.15 8,389.16

(19.80, 20.00] 11,095.74 11,095.74 9,050.54 9,050.54

(20.00, 21.00] 10,267.39 10,091.12 8,380.77 8,297.76

Decrement factor [0.03, 0.04) 11,594.30 10,091.12 9,585.73 8,297.76

[0.04, 0.05) 12,466.20 10,273.84 10,695.41 8,390.91

[0.05, 0.06) 13,067.57 10,607.33 11,462.62 8,711.58

[0.06, 0.07) 13,865.80 10,750.46 12,541.56 8,729.58

[0.07, 0.08) 14,476.23 10,788.38 13,369.81 8,813.44

[0.08, 0.09) 14,633.55 10,902.87 13,535.47 8,886.01
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[0.09, 0.10) 14,892.63 11,012.92 13,727.71 8,999.08

[0.10, 0.11) 15,405.68 10,146.23 14,471.78 8,229.39

[0.11, 0.12) 16,023.22 10,251.17 15,021.80 8,340.35

[0.12, 0.13) 15,064.02 10,483.68 13,994.47 8,599.35

Time shift internal side (4.00, 4.05] 16,561.77 12,138.37 12,416.07 10,026.11

(4.05, 4.10] 16,466.19 11,683.00 12,426.14 9,486.06

(4.10, 4.15] 16,096.83 12,493.36 12,042.12 10,221.97

(4.15, 4.20] 15,492.24 12,909.18 12,043.48 10,281.68

(4.20, 4.25] 16,013.12 12,394.28 11,954.1 10,284.16

(4.25, 4.30] 15,400.20 12,314.45 11,483.82 10,133.84

(4.30, 4.35] 15,644.41 12,200.07 11,666.62 10,088.91

(4.35, 4.40] 15,335.34 12,158.00 11,423.38 9,929.84

(4.40, 4.45] 15,070.11 12,018.38 11,215.88 9,750.65

(4.45, 4.50] 14,838.13 11,884.90 11,038.88 9,591.54

(4.50, 4.55] 14,632.04 11,752.25 10,860.63 9,448.75

(4.55, 4.60] 14,542.86 11,519.55 10,878.45  9,202.76

(4.60, 4.65] 14,367.23 11,317.43 10,732.36  8,999.78

(4.65, 4.70] 14,058.21 14,058.21 10,474.42 10,474.42

300

301 All together, these data suggest that the periodic thermal transmittance, along with the time shift, deserve special 
302 consideration in order to limit the energy demand of buildings located in zones B4 and E1. The next question that arises is, 
303 precisely, how these two are related and how future regulations should include them. For this purpose, additional analysis 
304 was conducted.

305 Periodic thermal transmittance and time shift can be combined in order to limit the energy demand of buildings (Figure 
306 9). For lower values of time shift (), between 0 and 2 hours, the maximum energy demand depends on the periodic thermal 
307 transmittance, and this dependence can be approximated, somehow, by and arctan function, with a maximum over 17.500 
308 kWh; however, it is remarkable that the maximum is not dependant on the transmittance for larger values of : the larger 
309 the time shift, the sooner the energy demand is decoupled from the periodic thermal transmittance; what is more, large 
310 values of  mean that the maximum energy demand can be drastically reduced, and that periodic thermal transmittance can 
311 be disregarded. 

312 On top of that, the periodic thermal transmittance and the time shift periodic transmittance also seem to be related 
313 (Figure 10). In general, time shift seems to be strongly dependent on small variations of periodic thermal transmittance for 
314 lower values of the latter: When U values are lower than 0.40 W/(m²K), wall configurations have a time shift between 0 and 
315 20 h. For larger values of U, this relation is still significant, but it can be approximated to an exponential decay function in 
316 the form of y=e(x). This is even more evident when time shift and periodic thermal transmittance are assessed together to 
317 predict the total energy demand in both zones (Figure 11); a negative quasi-linear relationship is found for both of them, 
318 and total energy demand reaches a minimum for a combination of low thermal transmittance and large time shift. 
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323
324 Figure 9. Effect of the application of limitations on the periodic thermal transmittance and its time shift in the zone B4. The 
325 lines of the maximum and minimum values of the total energy demand are represented. The shade area corresponds to the 
326 range of existing values of energy demand. The axis x represents the upper limit considered in the limitation of the periodic 
327 thermal transmittance (e.g., the value of 0.75 corresponds to all values of periodic thermal transmittance between 0 and 
328 0.75). 
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329
330 Figure 10. Periodic thermal transmittance and time shift periodic thermal transmittance for various ranges of U-value in 
331 the zone B4. 
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333
334

335 Figure 11. Total energy demand as a function of periodic thermal trannsmittance and time shift for zones B1 and E4 

336

337 4. Conclusion

338 This study aimed at clarifying how the recently developed theoretical framework on the periodic thermal properties of 
339 building enclosures can find application in the Spanish regulatory framework. For that purpose, simulations have been 
340 conducted, using a theoretical prototype located in the coldest and hottest climate zones of Spain. The main results of the 
341 study, along with additional considerations, are as follows.

342 The traditional approach, considering that the energy demand is directly influenced by the U-value of walls, has proven 
343 to be inaccurate. Despite it provides with a rather simplistic but effective way to understand the energy performance of 
344 buildings, the recent advance in computational capacity has allowed studies like the present one to unveil the complex 
345 interplay between several variables. In such way, in the event of an update in the Spanish Building Code, two scenarios can 
346 be foreseen. 

347 In a conservative scenario, the Code would still rely on the static approach. In such a case, 3 parameters should be 
348 included in the regulation: thermal transmittance, thermal mass and thermal capacity. At least for the 2 climate zones 
349 considered in this study, it is concluded that lower U values can minimize the energy demand to a certain extent, but 
350 additional limitations for both thermal mass and thermal capacity can greatly help in reducing it even more. As a 
351 consequence, the actual limits for the U value (0.55 and 1 W/m2K) should be considered in future revisions of the code, but 
352 always together with limitations for the other 2 parameters. In concrete terms, walls with a thermal mass larger than 150 
353 kg/m2 and a thermal capacity larger than 150 kJ/m2K should prove especially effective in reducing the cooling demand. 
354 Therefore, it is suggested that this lower limit should be implemented in future revisions of the code.

355 In the best-case scenario, periodic thermal properties would be adopted in the regulatory framework and the approach 
356 would be totally different. Seven variables come into play, and extreme caution should be exercised before drawing general 
357 conclusions. Therefore, this study concludes that periodic thermal transmittance and time shift should be regulated in zone 
358 B4 under three conditions. First, periodic thermal transmittance should be limited to 0.50 W/m2K for lightweight 
359 construction with a time shift lower than 4 hours; second, in case of walls with a time shift between 4h and 15h, two 
360 subcategories can be stablished: If thermal transmittance is below 0.25 W/m2K, substantial energy savings can be expected, 
361 if it is greater than this value, any thermal transmittance would be valid; third, for heavyweight construction with time shifts 
362 larger than 15 h, thermal transmittance should not be considered in the design of walls. Besides, this study has also proposed 
363 that the relation between certain variables should be modelled as mathematical functions, which may find application in 
364 the elaboration of future technical standards. Needless to say, these considerations are valid only for this climate zone, and 
365 similar analyses should be conducted for other zones to establish such limits. Besides, these results could be extrapolated 
366 to other Southern European regions with similar climates [60], amongst which Portugal stands out as a particular case-
367 study, as it has a similar regulation to Spain [61].

368 Likewise, the findings of this study help solving drawbacks that have been pointed out by other authors, such as Attia 
369 et al. [21], who highlighted the differences between climate zones in the same country when drafting a common legislative 
370 framework for nZEB ‘s. This study clarifies that, despite the methodology of analysis may be the same, different parameters 
371 should be regulated for each climate. As an example, the Italian regulation limits the periodic thermal transmittance (0.10 
372 W/(m²K)) and the surface mass of walls (230 kg/m²) [29]; the limitations proposed by this research are different, as the 
373 climates are different.

374 This study also faced several limitations. It only deals with two of the fourteen climate zones as per the Spanish 
375 legislation. Further research is required to clarify if the conclusions from this study apply to other zones and, as shown in 
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376 here, that would require a substantial amount of work. In such way, another contribution from this study is the standardized 
377 methodology to clarify how periodic thermal properties could be introduced in future building regulations. At first, all seven 
378 variables should be considered, but statistical analysis is necessary to identify those ones crucial for each climate. Besides, 
379 the prototype considered in this study is rather a simplification of a real building, so in the future complex structures with 
380 different usage profiles and more than on thermal zone should be investigated. 

381 In conclusion, this study provides with information on how a relatively new concept, such as the periodic thermal 
382 properties, might be implemented in the Spanish legislation. What is more, the discussion hereby presented is focused on 
383 minimising the energy demand of buildings, thus may find application in the development of new technologies such as the 
384 nZEB buildings; a multicriteria analysis that considers the complex interplay between the seven variables is deemed crucial 
385 to successfully adapt these buildings to a variety of climates. This will be of great help to designers, building engineers, 
386 public administrations and stakeholders in order to maximize the economic investment for these low-energy buildings.

387
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