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Highlights

• An atomistic-based FEM is used in conjunction with a micromechanics approach

• Analytical and numerical micromechanics approaches are compared

• The elastic moduli of equivalent fibers are provided for numerous SWCNTs and MWCNTs

• Efficiency parameters have been fitted by polynomial expressions

Abstract

In this work, a bottom-up multiscale modeling approach is developed to estimate the effective elastic moduli of
Carbon NanoTube (CNT)-reinforced polymer composites. The homogenization process comprises two successive
steps, including an atomistic-based computational model and a micromechanics approach at the nano- and micro-
scales, respectively. Firstly, the atomistic-based finite element model defines a cylindrical Representative Volume
Element (RVE) that accounts for a carbon nanotube, the immediately surrounding matrix, and the CNT/polymer
interface. The carbon-carbon bonds of the CNT are modeled using Timoshenko beams, whilst three-dimensional
solid elements are used for the surrounding matrix. Through the application of four loading conditions, the RVEs
are homogenized into transversely isotropic equivalent fibers by equating the associated strain energies. Secondly,
the equivalent fibers are employed in a micromechanics approach to estimate the macroscopic response of non-
dilute composites. This is performed using both the analytical Mori-Tanaka model and a computational RVE
model with a hexagonal packing geometry. A wide spectrum of single- and multi-walled carbon nanotubes are
studied, as well as two different polymeric matrices. Furthermore, the so-called efficiency parameters, imperative
for the application of the simplified extended rule of mixtures, are characterized by polynomial expressions for
practical filler contents. Finally, detailed parametric analyses are also provided to give insight into the sensitivity of
the macroscopic response of CNT-reinforced polymer composites to microstructural features such as filler volume
fraction, chirality or aspect ratio.

Keywords: Atomistic-based continuum, Carbon nanotube, Micromechanics, Mori-Tanaka method, Multiscale
modeling

1. Introduction

Carbon NanoTubes (CNTs) have attracted widespread attention from the scientific community since its discov-
ery in the ’90s [1]. Due to their exceptional mechanical and physical properties, as well as their high aspect ratio
and low mass density [2–5], very low filler dosages provide outstanding improvements in the overall response of
CNT-based composites. Moreover, CNTs also exhibit remarkable electrical and self-sensing properties [6], which
open a vast spectrum of applications for the development of multi-functional and smart composites [7–9]. Hence,
accurate quantification of the material properties of CNT-reinforced composites is of pivotal importance for their
design and optimization. Notwithstanding many efforts have been made from experimentation, today, the synthe-
sis of CNT nanocomposites demands the use of complex processing methods and sophisticated testing equipment,
what results in exorbitant costs [10]. Conversely, computational modeling offers a flexible and efficient alternative
for predicting the properties of CNT/polymer composites and assisting their design [11, 12].
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The mechanical and physical properties of CNTs primarily depend upon the tube chirality, which determines
their atomic structure. Accordingly, CNT structures are categorized into three types according to their chirality:
armchair, zig-zag or chiral [13]. Further, depending on the number of concentric tubes, CNTs are classified into
Single-Walled CNTs (SWCNTs) or Multi-Walled CNTs (MWCNTs). On the other hand, when embedded into
polymer matrices, the stiffening efficiency of CNTs highly depends upon the load-transfer mechanism between
fillers and matrix at interfaces. The atomic interaction between CNTs and polymer chains takes place through
weakly non-bonded van der Waals (vdW) and electrostatic forces [14]. Hence, an appropriate simulation tech-
nique must thoroughly capture the atomic structure of the CNTs, as well as the load transfer mechanisms at the
CNT/polymer interfaces [15]. In this regard, the homogenization process is, in essence, a multi-scale problem
where the atomic information must be scaled up to the macro-scale.

With regard to the modeling of CNT-reinforced composites at the atomic level, the most common approaches
are [16]: (i) quantum-mechanical models, including Molecular Dynamics (MD) simulations, first-principle quantum-
mechanical methods, and Monte Carlo simulations; (ii) Continuum modeling; and (iii) atomistic-based continuum
modeling. In recent years, MD simulations have been extensively used to predict the physical properties of bulk
systems [17]. It is worth noting the work by Frankland et al. [18] who conducted MD simulations to calculate the
longitudinal and transverse Young’s moduli of polymer nanocomposites loaded with both long and short CNTs.
Similarly, Griebel and Hamaekers [19] estimated the elastic moduli of SWCNT/Polyethylene composites. MD
simulations were also used by Crujicic et al. [20] to investigate the effect of chemical functionalization on the me-
chanical properties of MWCNT-vinyl ester epoxy composites. Although MD simulations can provide an important
insight into many engineering problems, only systems with a limited number of atoms can be simulated, because
more realistic systems entail unaffordable computational demands. With regard to continuum mechanics-based
models, the major hypothesis in these theories is that CNTs can be modeled as continuum structures, including
beams, shells or solids, with continuous distributions of mass and stiffness. Nonetheless, the validity of these
approaches is questionable since the concepts of conventional continuum mechanics are no longer valid at the
nanoscale [21]. Finally, atomistic-based continuum techniques combine the advantages of both continuum me-
chanics and atomistic modeling. Through appropriate relations between the interatomic potentials and the stiffness
of certain continuum structures such as truss rods or link elements, it is possible to describe the atomistic structure
within a continuum framework and, therefore, with moderate computational costs [22, 23].

In general, composites doped with nano-inclusions should be studied within a multiscale framework. That is,
inclusions are first defined at the atomic level, then these properties condition the microstructure and, eventually,
the latter determines the macroscopic behavior. It is therefore necessary to connect the above-mentioned atomistic
frameworks with a micromechanics approach, along with an appropriate upscaling rule. To this aim, a common
practice is to define equivalent representative micro-inclusions that account for the details of the atomic structure
[18, 19, 24–26]. In this line, a noteworthy contribution was done by Yang et al. [27] who developed a multiscale
model consisting of MD simulations and a modified multi-inclusion micromechanics approach. In that way, those
authors investigated the CNT size effect and weakened bonding effect at interfaces on the macroscopic stiffness of
CNT/polymer composites. Wernik and Meguid [24] proposed a multiscale approach based on the combination of
an atomistic-based continuum model, the Mori-Tanaka model and an hybrid Monte Carlo Finite Element model.

These multiscale approaches require complex calculations and a deep understanding of the mechanics of the
problem, what hinders their practical application. For this reason, it would be desirable to count on simplified
homogenization approaches, accurate enough for preliminary design purposes. In line with this idea, an increasing
number of recent publications in the realm of CNT nanocomposites have been conducted by the Extended Rule of
Mixtures (EROM) [28–32]. The EROM is based upon a modification of the classical Voigt and Reuss bounds by
the so-termed efficiency parameters [33]. The accuracy of this model is determined by these parameters, which
must be fitted from experiments or more complex multi-scale simulations. Unfortunately, phenomenological or
regressive definitions of the efficiency parameters as functions of the filler content for certain composites are still
lacking in the literature, a fact that limits the applicability of the EROM.

In this paper, a multiscale homogenization approach is developed for the study of CNT-reinforced polymer
composites. In particular, the present approach combines an atomistic-based continuum model with two different
micromechanics approaches, including the analytical Mori-Tanaka model and a Finite Element (FE) RVE model
with periodic hexagonal arrangement of fibers. Firstly, the atomistic-based model defines an FE cylindrical RVE
that accounts for the atomic structure of a CNT, the surrounding polymer matrix, and the CNT/polymer inter-
face. Through the application of four loading conditions, the cylindrical RVEs are homogenized into transversely
isotropic representative fibers with equivalent strain energies. Secondly, the equivalent fibers are utilized as micro-
inclusions in a micromechanics approach in order to estimate the macroscopic response of non-dilute composites.
A wide spectrum of single- and multi-walled CNTs are studied, as well as two different polymeric matrices. The
results are compared against previously published results in the open literature to demonstrate the validity of the
developed approach. Furthermore, the numerical results are aimed at addressing the above-mentioned gap in the
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literature on analytical expressions for the efficiency parameters to be used in the simplified EROM. Specifically,
very simple polynomial expressions are fitted for a wide range of filler contents and CNT chiralities. Finally,
detailed parametric analyses are also provided to give insight into the sensitivity of the macroscopic response of
CNT/polymer composites to the CNT volume fraction, chirality, and aspect ratio.

The paper is organized as follows: Section 2 introduces the proposed multiscale micromechanical framework.
Within this section, Subsection 2.1 overviews the atomistic-based continuum technique to analyze CNT-reinforced
polymers at the nano-scale, and Subsection 2.2 overviews the upscaling techniques from micro to macro scales.
Section 3 presents the numerical results and discussion and, finally, Section 4 concludes this paper. Throughout
the text, a boldface letter stands for a fourth-order tensor, A ≡ Ai jkl, while a colon between two tensors represents
the inner product, A : B ≡ Ai jklBklmn.

2. Multiscale model of CNT-reinforced composites

In this section, a bottom-up multiscale model is developed in three consecutive steps. Firstly, the CNT/polymer
interaction is studied at the nano-scale by an FE atomistic-based RVE. The RVE consists of a carbon nanotube,
the immediately surrounding polymer matrix, and the CNT/polymer interphase. Secondly, the RVE is converted
into a homogenized continuous representative fiber. Finally, considering the equivalent fibers as micro-inclusions
and the polymer as the matrix phase, the macroscopic properties of the nanocomposite are computed using a
micromechanics framework. Fig. 1 schematically illustrates the steps involved in the multiscale model. Each step
is described in the following sections.

Figure 1: Schematic diagram of the analysis procedure to scale-up the elastic properties of CNT nano-reinforced polymer
composites to the macroscale.

2.1. FE atomistic-based modeling

The first RVE is defined at the nano-scale and accounts for the interaction between CNTs and the surrounding
polymer matrix, as sketched in Fig. 1(a). The modeling of CNTs follows the lattice approach developed by Li
and Chou [34]. This approach assumes that the carbon atoms and their interaction within the nanotube can be
represented as a frame-like structure. Thus, the bonds among neighboring atoms can be assumed to behave like
structural beam elements in a FE framework. The methodology is based on a linkage between the chemistry of the
bonds and the structural mechanics of the beam elements. This is done by linking interatomic potential energies to
the strain energies of an equivalent beam element representing the carbon-carbon (C-C) bond. Hence, the potential
energy of the system, consisting of the force field existing among atomic nuclei, can be represented as [35]:

U =
∑

Ur +
∑

Uθ +
∑

Uϕ +
∑

Uω︸                                        ︷︷                                        ︸
bonded

+
∑

UvdW +
∑

Uel︸                  ︷︷                  ︸
non-bonded

(1)

where Ur is the potential energy associated with bond stretching, Uθ with bond angle bending, Uϕ with bond
dihedral angle torsion and Uω with out-of-plane bending. UvdW and Uel are the potential energies of non-bonded
interactions, representing the vdW forces and the electromagnetic interactions, respectively. Assuming linear
elastic behavior, a direct relation between the sectional stiffness of the beam element and the force constant in
molecular mechanics can be established [34]:
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EA
L
= kr,

EI
L
= kθ,

GJ
L
= kτ (2)

with:

A =
πd2

4
, I =

πd4

64
, G =

πd4

32
(3)

where d is the beam element (bond) diameter, E is the Young’s modulus, A is the transversal area of the beam
element, L is the beam element length, I is the second moment of area, G is the shear modulus and J is the polar
second moment of area. The C-C bond length is considered to be L ≈ 0.141 nm [34]. kr, kθ and kτ stand for the
bond force constants for stretching, bending and torsion, respectively. Assuming a circular cross section, it is
possible to obtain:

d = 4

√
kθ
kr
, E =

krL
A
, G =

ksL
J
, ν =

E
2G
− 1 (4)

where ν is the Poisson’s ratio. In the literature, different values of the force constants are available. In this paper,
the selected parameters are Ks = 973.33 nN nm−1, Kθ = 1.390 nN nm rad−2 and Kτ = 0.2788 nN nm rad−2 [36]. The
constants are tuned after calculation of the commonly accepted value of the Young’s modulus of graphene sheets
(≈1.02 TPa-1.06 TPa) [37].

2.1.1. Isolated CNTs
All the simulations are performed using the commercial FE software ANSYS [38]. The CNT is represented

as a frame of beam elements. For this purpose, the 3D 2-node BEAM188 element is used. This element is based on
the Timoshenko beam theory, including shear deformation effects. The cross section is assumed to be rigid and
circular, with a linear shape function along the length of the element.

A SWCNT can be considered as a rolled-up graphene sheet. The interaction among nodes is then given only
by the covalent bond between neighboring atoms, here represented as a a beam element between two nodes. Fig. 2
(a) shows the FE mesh of a SWCNT.

(a) (b)

vdW 

interactions

Figure 2: SWCNT (a) and MWCNT with four layers (b).

On the other hand, MWCNTs consist of several rolled-up graphene sheets forming concentric tubes, each of
them connected through vdW interactions. Fig. 2(b) shows the FE mesh of a MWCNT. This interaction is often
represented in terms of the Lennard-Jones (LJ) potential [39], whose expression reads:

U(r) = 4ϵ
[(
σ

r

)12
−

(
σ

r

)6
]

(5)

where r is the distance between atoms. ϵ and σ are constant parameters which for the case of carbon atoms are
ϵ = 0.0556 kcal/mol and σ = 0.34 nm. The LJ potential implies that the vdW forces are nonlinear respect to the
distance. To simplify the FE analysis, two assumptions are proposed:

• The analysis is given in the small deformation (linear) range. Hence, the vdW forces are represented using
a linear actuator (LINK11 element in the ANSYS library).
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• The potential (and the force arising from it) is omitted after a certain distance. After performing several
simulations, the numerical results have shown that a cutoff value of 1.0σ provides good predictions on
Young’s moduli. That is, LINK11 elements are defined between nodes that are located at a distance < 1.0σ.

The spring stiffness is taken as kw =0.051 89 TPa, value taken from Fan et al. [40] and adapted to be propor-
tional to the Young’s modulus used in this paper. Also, the RVEs are defined with a filler length of 10 nm.

2.1.2. Polymer matrix modeling
Once the CNT is modeled, the immediately surrounding polymer matrix must be also included along with the

interactions at the interface. To this aim, the matrix material is modeled using 3D SOLID185 elements as shown
in Fig. 3 (a). The thickness of the surrounding polymer matrix has been selected to be equal to 1 nm. The CNT
interacts with the polymer through vdW forces. Therefore, the interphase is modeled in the same fashion as for
MWCNTs in Section 2.1.1, as shown in Fig. 3 (b).

(a)

(b) C-C bond

BEAM188

CNT/Polymer 

Interface

vdW interactions

LINK11

Surrounding 

polymer

SOLID185

Figure 3: Perspective view of the FE mesh (a) and schematic representation of the modeling of CNT/polymer vdW interactions
(b).

2.1.3. Representative equivalent fiber
After developing the atomistic-based continuum structure, it is possible to homogenize the RVE into a rep-

resentative fiber. The resulting fiber, which has the same cylindrical geometry as the RVE, is assumed linearly
elastic, homogeneous and continuous. Due to the particular atomic structure of CNTs, equivalent fibers are typi-
cally assumed transversely isotropic and, therefore, certain loads and boundary conditions have to be applied so
that five independent material parameters are obtained: the longitudinal Young modulus E11, the Poisson ratio ν12,
the shear modulus G12 and the bulk modulus K23. To obtain these parameters, four loading conditions are applied
[10]: uniaxial tension (to obtain E11 and ν12), torsion (G12) and hydrostatic pressure (K23). The displacements and
fixations are applied to the nodes at both ends of the CNT, except in the hydrostatic case where the displacement
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is applied in the radial direction of the entire surface of the cylinder without the caps. The boundary conditions
are shown in Fig. 4.

x

x
x

xx

(a) Uniaxial tension.

x

x
x

xx

(b) Torsion.

x

x
x

xx

(c) Hydrostatic pressure.

Figure 4: Boundary conditions applied to CNTs.

Afterwards, the mechanical properties of the equivalent fiber can be determined by equating its total strain en-
ergy to that of the atomistic-based continuum structure. In the lattice approach, the Young’s modulus is calculated
in a classical way:

E11 =
σ11

ϵ11
=

F11Lc

At∆Lc
(6)

where Lc is the length of the CNT and ∆Lc is the tube stretching. At is the transversal area of the CNT, which is
determined by:

At =
π

4

[
(do + t)2 − (di − t)2

]
(7)

with do and di being the outer and inner tube diameter measured from the tube center, respectively, as shown in
Fig. 5.

d i

Outer tube

Inner tube t

do

t
Rc

Req

(a)

(b)

Rc

Req

Figure 5: Geometric properties of equivalent fibers for SWCNTs (a) and MWCNTs (b).

In addition, we assume that G23 = G13 = G12. The rest of the other effective mechanical properties are defined
as follows:
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E22 =

(4K23)−1 + (4G23)−1 +
ν2

12

E11

−1

(8)

ν23 =
E22

2G23
− 1, ν21 =

E22ν12

E11
(9)

Once the elastic moduli of the equivalent fibers are determined, the macroscopic properties of the nanocom-
posite can be estimated by means of a micromechanics approach. Here, the equivalent fibers account for the
CNT/polymer interfacial interaction at the nanoscale, what provides a bridge to the continuum model. It is impor-
tant to relate the CNT volume fraction fr to the volume fraction of equivalent fibers feq. According to Fig. 5, both
concentrations can be linked as feq = k f fr, with k f being a transformation parameter defined as the ratio between
the volume of the equivalent fiber Veq and the volume of CNT, VCNT. Defining Req and RCNT as the radii of the
equivalent fiber and the CNT (see Fig. 5), the parameter k f can be expressed as:

k f =
Veq

VCNT
=

(
Req

RCNT

)2

(10)

In accordance with the notation of Hill [41], the tensor of elastic moduli of equivalent fibers, C f , can be
written as C f = (2kr, lr, nr, 2mr, 2pr), where kr, lr, mr, nr and pr are the so-termed Hill’s elastic moduli; kr is the
plane-strain bulk modulus normal to the fiber direction, nr is the uniaxial tension modulus in the fiber direction, lr
is the associated cross modulus, mr and pr are the shear moduli in planes normal and parallel to the fiber direction,
respectively. Hence, the constitutive tensor for the equivalent fibers (with x3 being the axis of material symmetry)
can be written in matrix notation as follows [41]:

C f =



kr + mr kr − mr lr 0 0 0
kr − mr kr + mr lr 0 0 0

lr lr nr 0 0 0
0 0 0 pr 0 0
0 0 0 0 pr 0
0 0 0 0 0 mr


(11)

where the Hill’s constants of the effective fiber can be related to the engineering constants as follows [42]:

kr =
E22

2 (−2ν12ν21 − ν23 + 1)
, lr =

ν12E22

−2ν12ν21 − ν23 + 1
, (12)

nr =
E11 (1 − ν23)

−2ν12ν21 − ν23 + 1
, mr = G23, pr = G12 (13)

2.2. Micromechanics modeling

With the effective properties of the representative fibers, the macroscopic properties of the composites can
be computed using micromechanics approaches. In this case, the equivalent fibers and the remaining matrix
(i.e. the matrix outside the equivalent fibers) are considered as reinforcing and matrix phases, respectively. In this
section, three different approaches are considered, namely the Mori-Tanaka mean-field homogenization approach,
the EROM and a computational RVE model.

2.2.1. Mori-Tanaka model
The Mori-Tanaka (MT) model [43] allows the study of multiphase composites with microstructural consider-

ations, such as the geometry of the inclusions, within an analytical framework. The MT model extends the theory
of Eshelby [44], restricted to one single inclusion embedded in a semi-infinite elastic, homogeneous and isotropic
medium, to the case of multiple inhomogeneities. The Eshelby’s equivalent inclusion method [44] showed that
the strain concentration tensor for the limit case of a single anisotropic ellipsoidal inhomogeneity in an infinite
matrix, Adil, reads:

Adil =
[
I + S : C−1

m :
(
C f − Cm

)]−1
(14)

where I is the fourth-order identity tensor, Cm is the constitutive tensor of the matrix, and S is the Eshelby’s tensor,
well documented in Mura [45]. Then, at non-dilute volumetric fiber concentrations, the effective elastic tensor by
the MT model can be written according to Benveniste’s revision [46] as:

C = Cm + feq

〈(
C f − Cm

)
: A

〉
(15)
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with the mechanical strain concentration tensor A:

A = Adil :
[
(1 − feq)I + feq

〈
Adil

〉]−1
(16)

where terms in angle brackets ⟨·⟩ represent orientational average. Hence, the MT model also allows the analysis
of different fillers arrangements, such as fully aligned or misoriented filler configurations. In order to describe the
orientation of the fillers, a local coordinate system K′ ≡

{
0; x′1x′2x′3

}
is set up for each fiber as indicated in Fig. 6.

In order to describe the relative orientation of any inclusion and, thus, the orientation of the basis vectors, two
Euler angles, θ and ψ, are required. Hence, a tensor P′ in the local coordinate system K′ can be expressed in the
global coordinate system through the direction cosines gi j as follows:

Pi jlk = gipg jqgkrglsP′pqrs (17)

The probability of a fiber lying in an infinitesimal range of angles [θ, θ + dθ] and [ψ, ψ + dψ], is defined as
Ω(θ, ψ) sin(θ)dθdψ, with Ω(θ, ψ) being the so-termed Orientation Distribution Function (ODF). The integration
of any ODF weighted function F(θ, ψ) over all possible orientations in the Euler space, also referred to as the
orientational average of F, ⟨F⟩, is defined through:

⟨F⟩ =
∫ 2π

0

∫ π/2

0
F(θ, ψ)Ω(θ, ψ) sin(θ)dθdψ (18)

Let us note that the ODF must fulfill the normalization condition, that is:∫ 2π

0

∫ π/2

0
Ω(θ, ψ) sin(θ)dθdψ = 1 (19)

Hence, in the case of randomly filler arrangements, the ODF is constant and of value Ω(θ, ψ) = 1/2π.

θ

ψ
x
1

x
2

x
3

x
3

x
2

x
1

,

,,

Figure 6: Euler angles defining the relation between the orientation of an ellipsoidal inclusion in the local coordinate system,
K′ ≡

{
0; x′1 x′2 x′3

}
and the global coordinate system, K≡ {0; x1 x2 x3}.

2.2.2. Extended Rule of Mixtures (EROM)
The classical Rule of Mixtures (ROM) corresponds to the theoretical Reuss-Voigt bounds. In essence, this

approach is a volume weighted mean of the elastic moduli of the different constituents of the composite. In spite
of the fact that the ROM does not account for the particular geometry of the inclusions, nor any particle interaction
or interface effects, it remains of practical interest for structural engineers due to its simplicity. In order to enhance
the accuracy of the estimates, an Extended Rule of Mixtures (EROM) may be utilized for fully aligned infinite
long CNT-reinforced composites as follows [33]:

E11 = η1 frECNT
11 + (1 − fr)Em (20a)

η2

E22
=

fr
ECNT

22

+
1 − fr

Em (20b)

η3

G12
=

fr
GCNT

12

+
1 − fr

Gm (20c)
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where ECNT
11 , ECNT

22 and GCNT
12 stand for the Young’s moduli and shear modulus of the isolated CNTs, respectively.

Em and Gm denote the corresponding properties of the isotropic matrix. In this model, the level of accuracy
crucially depends on the so-termed CNT efficiency parameters, η j ( j = 1, 2, 3). The efficiency parameters have
to be fitted by results obtained from experimentation or more sophisticated homogenization approaches. In this
regard, some values of η j are provided in the literature for certain composites and filler contents. However,
analytical expressions for the efficiency parameters as functions of the CNT volume fraction are still not widely
available in the literature.

Finally, the EROM can be also used to estimate the Young’s modulus of composites doped with randomly
oriented fillers using the expression proposed by Van Es [47]:

Erandom = 0.184E11 + 0.816E22 (21)

2.2.3. Computational RVE model
The macroscopic properties of polymer composites doped with perfectly aligned fibers can be estimated by

computational homogenization in a 3D RVE model with hexagonal filler arrangement. The model is developed
in the FE software ANSYS [38], using the three-dimensional structural solid element SOLID185. As illustrated
in Fig. 7, the RVE consists of a rectangular prismatic FE Unit Cell (FE-UC) of volume V = a1 × a2 ×

√
3a2,

with one fiber at the center and a quarter of a fiber at each corner. The microstructure of composite is assumed to
be periodically arranged and, therefore, periodic boundary conditions are implemented using coupling constraint
equations (for further details see e.g. [48]). In this manner, once a deformation state is applied, each UC in
the composite has the same deformation mode and there is no separation nor overlap between neighboring UCs.
Given the fact that the equivalent fibers are transversely isotropic, the analysis of such UCs also yields transversely
isotropic stiffness tensors. Therefore, the stress- strain relation can be represented in Voigt notation as:

(a) (b)

Equivalent 
fiber

Matrix

Req

a2

 3a2

a1

y

z

x

Figure 7: Periodic UC for hexagonal packing unidirectional fiber composites (a) and 3D view of FE mesh (b).



σ1
σ2
σ3
σ4
σ5
σ6


=



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 1

2 (C22 −C23) 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66





ε1
ε2
ε3
ε4
ε5
ε6


(22)

where over bars indicate average over the volume of the RVE. When a certain strain field, εo
i j, is applied to the

periodic RVE, it is possible to calculate the average stress σi j and strain fields εi j = ε
o
i j in the UC. Hence, through

the application of six unit strain fields, ε j = ε
o
j in Voigt form, the macroscopic elastic matrix of the composite can

be computed, one column at a time, as:
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Ci j = σi =
1
V

∫
V
σi(x, y, z)dV, with ε j = 1, i, j = 1 . . . 6 (23)

The volume fraction of the equivalent fibers, feq, can be related to the geometric dimensions of the UC in
Fig. 7, as follows:

feq =
π

2
√

3

(
Req

a2

)2

(24)

The explicit modeling of random filler arrangements would require the definition of new RVEs with extremely
fine mesh densities and considerable computational costs. For this reason, the direct orientational average of the
previously computed constitutive tensor for fully aligned filler arrangements is used instead as follows:

⟨C⟩ = 1
2π

∫ 2π

0

∫ π/2

0
C(θ, ψ) sin(θ)dθdψ (25)

with C(θ, ψ) being the stiffness tensor in Eq. (22) defined in a rotated coordinate system with Euler angles, θ and
ψ. Let us note that a similar approach was proposed by Schjødt-Thomsen and Pyrz [49] as an alternative to the
conventional MT method.

3. Results and discussion

The numerical results are organized into three parts. First, the estimates of the elastic moduli of isolated SWC-
NTs and MWCNTs are validated with results retrieved from the literature. Afterwards, the efficiency parameters
are fitted by polynomial expressions using the micromechanics approaches presented in Section 2.2 on the basis
of the developed representative equivalent fibers. Finally, parametric analyses are performed to investigate the
sensitivity of the macroscopic response of CNT-reinforced polymer composites.

3.1. Validation of the CNT simulations

The developed approach is benchmarked against previously published results from the literature. The goal is
not only to prove that the results are reliable and that fall within acceptable ranges, but also to seek and identify
possible limitations of the numerical model. In particular, the estimates on Young’s moduli of SWCNTs and
MWCNTs are used for comparison.

3.1.1. Isolated SWCNTs
All the benchmark results used for validation were obtained from numerical simulations, except those reported

by Shen and Li [10] who derived closed-form solutions for the Young’s modulus of SWCNTs. Tables 1 and 2
present the results for armchair (n, n) and zig-zag (n, 0) SWCNTs, respectively.

Table 1: Comparison of Young’s moduli, E, for different isolated armchair SWCNTs.

Reference Method Chirality E [TPa]

[10] Analytic (5,5) 1.2121
[50] FEM (5,5) 0.9200
[51] FEM (5,5) 0.9400

Present FEM (5,5) 1.0700

[10] Analytic (10,10) 1.2291
[12] FEM (10,10) 0.9200
[52] FEM (10,10) 0.8810
[51] FEM (10,10) 0.9430

Present FEM (10,10) 1.0710

[53] MD (12,12) 0.9000
[10] Analytic (12,12) 1.2309
[51] FEM (12,12) 0.9430

Present FEM (12,12) 1.0710

Overall, it is observed that the present results are found in close agreement with other results from the literature.
Nonetheless, it is noted that slight differences arise among the different approaches. Different factors can give an
explanation for these discrepancies, namely:
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Table 2: Comparison of the Young’s moduli, E,for different isolated zig-zag SWCNTs.

Reference Method Chirality E [TPa]

[10] Analytic (9,0) 1.1932
[12] FEM (9,0) 0.9120
[51] FEM (9,0) 0.9405

Present FEM (9,0) 1.0740

[10] Analytic (10,0) 1.2291
[12] FEM (10,0) 0.9120
[51] FEM (10,0) 0.9410

Present FEM (10,0) 1.0700

[10] Analytic (20,0) 1.2335
[12] FEM (20,0) 0.9120
[51] FEM (20,0) 0.9410

Present FEM (20,0) 1.0580

• Different type of intramolecular model are available to describe the covalent bonds. The harmonic model is
used in this paper, while the Morse potential [54] was used by Meo and Rossi [50]. Harmonic models are the
simplest representation and they behave reasonably well under small strain condition near the equilibrium
position [55].

• Different FE software. ABAQUS was used by Doh and Lee [51].

• In the present work, it is assumed that the potential energy sum is a contribution of bond stretching, bending
and torsion. Except for Rossi and Meo [12], all the other authors omitted the contribution of torsion.
Apparently, the energy associated with torsion should not play an important role in the tensile behavior of a
SWCNT without defects [56, 57].

In any case, the differences are rather small so the results are considered acceptable.

3.1.2. Isolated MWCNTs
A further validation of the estimates on the elastic moduli of MWCNTs implicitly means the validation of the

interaction model among concentric CNTs. Several configurations of MWCNTs can be made, including different
numbers of layers and chiralities. For illustrative purposes, Double-Walled CNTs (DWCNTs) are simulated and
the results are compared with results retrieved from the literature. Two different types of analysis are performed.
First, the same type of concentric layers (zig-zag/zig-zag or armchair/armchair) are compared with the results
from Li and Chou [58], as shown in Fig. 8. Second, the results of mixed chiralities i.e. with the inner diameter
being armchair and the outer diameter being zig-zag (dzig > darm) or viceversa (dzig < darm), are compared with
the results from Doh and Lee [51] and shown in Fig. 9.
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(a) Armchair-armchair.
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(b) Zigzag-zigzag.

Figure 8: Comparison of the predicted Young’s moduli of DWCNTs with a single configuration, for varying outer diameter.
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Figure 9: Comparison of the predicted elastic moduli of DWCNTs with two configurations, for varying outer diameter.

It is noted that the simulation results differ from the observed in the literature. In the first analysis (Fig. 8), Li
and Chou [58] modeled the complete nonlinear behavior of the LJ potential, hence needing a nonlinear solution
procedure. In the present simulations, the spring elements that represent the vdW interactions have a constant
stiffness [40]. In this case, only a linear solution is required, greatly simplifying the analysis. Despite the observed
discrepancies, the difference is rather small (< 0.1 TPa for do > 1.5 nm in both configurations).

For the second analysis (Fig. 9), the present results show higher variance than the results from Doh and Lee
[51]. Those authors mentioned that the nonlinear trends observed in Fig. 9 could be due to the difference in the
axial stiffness between inner SWCNT and outer SWCNT. Unfortunately, Doh and Lee [51] did not provide enough
information about the modeling of the vdW forces nor the type of FE used. Nevertheless, it is remarkable that a
simple linear spring model can capture this nonlinear trend, as observed in both figures.

3.2. Fitting of the EROM efficiency parameters

Two different polymers are selected as matrix phases, namely Poly (methyl methacrylate), known as PMMA,
and Poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene)vinylene]}, known as PmPV. Both polymers
are isotropic with Poisson’s ratio νm = 0.34 and Young’s moduli Em of 2.5 GPa for PMMA [32] and 2.1 GPa for
PmPV [29]. As mentioned above, the goal of this first set of analyses is to compute the efficiency parameters as a
function of the filler volume fraction, for both PmPV and PMMA matrices doped with SWCNTs and MWCNTs,
assuming CNTs as infinitely long fibers.

3.2.1. Polymer doped with SWCNTs
A key aspect in the determination of the effective properties of CNT/polymer equivalent fibers is the defini-

tion of the CNT wall thickness t. As reported by Wang and Zhang [59], there exist considerable discrepancies
in the literature on the definition of this critical parameter, with thickness values ranging from 0.062 to 0.69 nm.
Specifically, numerous works assume a thickness value of 0.34 nm (see the references in Section 3.1.1). Neverthe-
less, the Vodenitcharova-Zhang criterion [60] indicates that the effective thickness of SWCNTs should be below
the atomic diameter (0.142 nm). Therefore, the value of 0.34 nm is thoroughly invalid. Fig. 10 investigates the
influence of t on the macroscopic longitudinal Young’s modulus E∥ of (5,5) SWCNT/PmPV composites. First,
Fig. 10 (a) plots E∥ versus the filler volume fraction fr for different tube wall thicknesses, namely t = 0.067 nm,
0.1 nm, 0.142 nm, 0.2 nm and 0.34 nm. As expected, it is observed that lower thickness values lead to stiffer fillers
and, consequently, to stiffer composites. Further, Fig. 10 (b) shows the relationship between t and E∥ of PmPV
loaded with fr = 1% (5,5) SWCNTs. For illustrative purposes, the limit values of 0.34 nm and the atomic diameter
0.142 nm are remarked. It is observed that the Young’s modulus is highly sensitive to t with drastic reductions
caused by increasing tube wall thicknesses. In particular, a tube wall thickness of 0.34 nm approximately yields
half of the Young’s modulus obtained with the limit thickness of 0.142 nm indicated by the Vodenitcharova-Zhang
criterion. Also, the sensitivity of E∥ to t increases for increasing filler volume fractions as shown in Fig. 10 (a).
Hence, a tube wall thickness of 0.1 nm is selected for all subsequent calculations.
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Figure 10: Longitudinal Young’s modulus E∥ of (5,5) SWCNT/PmPV versus filler volume fraction fr for varying CNT wall
thicknesses t (a), and t versus E∥ of (5,5) SWCNT/PmPV with a filler volume fraction fr = 1%.

Once the tube wall thickness is fixed to t = 0.1 nm, the elastic moduli of different isolated zig-zag and armchair
SWCNTs are computed and their resulting five Hill’s elastic moduli are shown in Table 3. In addition, Table 4
collects the effective Hill’s moduli of the effective fibers for SWCNT/PmPV and SWCNT/PMMA composites,
computed as described in Section 2.1.3. Hence, the microscopic elastic properties of the composites can be scaled
up by means of the MT model and the numerical FE-UC. Fig. 11 shows the Young’s moduli (the longitudinal E∥
and the transverse E⊥) and the shear modulus G12 of (10,10) SWCNT/PmPV composites versus the filler volume
fraction. It is important to note that, in practice, CNT concentrations dot not usually exceed 5-10% [4]. The
reason lies in the fact that obtaining uniform filler dispersions at high concentrations is an intricate task due to the
tendency of CNTs to agglomerate in bundles. Owing to the high specific surface of CNTs, large vdW interactions
take place among nanotubes, favoring the appearance of filler agglomerates [61]. It has been extensively reported
in the literature that agglomerates behave as defects in the microstructure, leading to substantial decreases in the
stiffening efficiency of CNTs [61–63]. For illustrative purposes, a wider range of variation of the CNT volume
fraction from 0 to 0.2 has been defined in these analyses. Nevertheless, it must be kept in mind that estimates for
filler volume fractions above 0.1 may become uncertain and the effects of agglomeration should be incorporated.
In Fig. 11, the estimates provided by the ROM (η1 = η2 = η3 = 1) and the filler properties from Table 3 are
also included with blue dashed lines. It is noted that very close agreements are found between MT and FE-UC
solutions, with small differences in the shear modulus G12 at high filler contents. This similarity is expected since
the MT model considers far-field interaction between inclusions, an assumption that is especially well-suited for
low filler contents, as it is the case for CNT-reinforced composites. Conversely, large differences are found for the
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ROM estimates since no explicit particle interaction is considered.

Table 3: Hill’s elastic moduli of (n,m) SWCNTs (t = 0.10 nm).

n m kr [GPa] lr [GPa] mr = pr [GPa] nr [GPa]

5 5 1212.28 896.21 1285.15 4282.01
9 9 676.00 496.12 1304.26 3998.59

10 10 608.59 446.39 1305.93 3963.30
12 12 507.36 371.87 1308.12 3910.38
15 15 406.03 297.44 1309.91 3857.53
20 20 304.60 223.07 1311.32 3804.84

5 0 2103.26 1966.41 1647.97 6284.23
9 0 1186.03 925.32 1442.01 4528.06

10 0 1068.36 820.88 1428.58 4391.91
12 0 891.25 671.31 1411.85 4210.24
15 0 713.57 528.83 1398.77 4051.90
20 0 535.49 391.92 1388.97 3913.36

Table 4: Hill’s elastic moduli of (n,m) SWCNT-reinforced PmPV and PMMA composites (t = 0.10 nm).

SWCNT PmPV PMMA k f
n m kr [GPa] lr [GPa] mr = pr [GPa] nr [GPa] kr [GPa] lr [GPa] mr = pr [GPa] nr [GPa]

5 5 5.475 3.780 11.929 294.784 6.517 4.499 12.016 295.642 2.791
9 9 6.140 4.429 31.964 291.222 7.307 5.271 32.069 292.162 2.458

10 10 6.318 4.520 37.291 286.139 7.519 5.379 37.401 287.079 2.392
12 12 6.683 4.882 47.596 274.890 7.951 5.808 47.714 275.878 2.277
15 15 7.246 5.438 63.842 261.103 8.618 6.465 63.970 262.164 2.136
20 20 8.204 6.226 86.879 237.715 9.751 7.400 87.021 238.868 1.957

5 0 5.119 3.319 3.204 358.065 6.094 3.952 3.279 358.857 3.091
9 0 5.469 3.613 14.183 360.167 6.510 4.300 14.275 360.986 2.796

10 0 5.562 3.708 18.158 362.358 6.621 4.413 18.253 363.187 2.737
12 0 5.755 3.887 24.028 344.642 6.850 4.627 24.130 345.492 2.629
15 0 6.056 3.973 34.025 326.742 7.208 4.730 34.135 327.576 2.492
20 0 6.580 4.633 49.155 297.620 7.829 5.512 49.276 298.556 2.308

Then, it is possible to estimate the efficiency parameters of the EROM by means of Eqs. (20) in order to fit
the MT or the FE-UC estimates, which do take into consideration the CNT-polymer interactions. Fig. 12 shows
the resulting efficiency parameters on the basis of the MT results previously reported in Fig. 11. It is observed
that the efficiency parameter η1 remains approximately constant and below one. On the contrary, η2 and η3 are
constantly above one and increasing with the filler volume fraction. At this point, different regression models were
contemplated in order to provide analytical expressions for the efficiency parameters. However, it was found that
the consideration of a constant value for η1, along with linear regression models for η2 and η3 (shown in Fig. 12),
provides very close fittings with coefficients of determination above 95%. Therefore, the efficiency parameters
can be defined as functions of the filler volume fraction fr as follows:

η1( fr) = a0,1, fr ∈ [0.01, 0.2] (26a)
η2( fr) = a0,2 + a1,2 fr, fr ∈ [0.01, 0.2] (26b)
η3( fr) = a0,3 + a1,3 fr, fr ∈ [0.01, 0.2] (26c)

In this way, the best-fitting parameters ai, j in Eq. (26) are obtained for all the considered SWCNT-reinforced
PmPV and PMMA composites and are presented in Table 5.
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Figure 11: Young’s moduli E (a) and shear modulus G12 (b) versus filler volume fraction fr for fully aligned (10,10) SWCNT-
reinforced PmPV.
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Figure 12: Efficiency parameters η j ( j = 1, 2, 3) versus filler volume fraction for (10,10) SWCNT-reinforced PmPV (t =
0.1 nm).

Table 5: Best-fitting parameters for the linear regression of the efficiency parameters η j ( j = 1, 2, 3) for SWCNT/PmPV and
SWCNT/PMMA composites ((t = 0.1 nm, fr ∈ [0.01, 0.2]).

n m

PmPV PMMA

η1 η2 η3 η2 η1 η3

a0,1 a0,2 a1,2 a0,3 a1,3 a0,1 a0,2 a1,2 a0,3 a1,3

5 5 0.224 1.049 4.391 0.912 5.263 0.224 1.049 4.257 0.918 5.035
9 9 0.194 1.057 3.940 0.930 4.612 0.194 1.055 3.902 0.932 4.538

10 10 0.185 1.059 3.799 0.935 4.403 0.185 1.057 3.770 0.936 4.342
12 12 0.169 1.062 3.538 0.944 4.021 0.169 1.060 3.521 0.945 3.979
15 15 0.150 1.066 3.215 0.955 3.557 0.150 1.063 3.208 0.955 3.529
20 20 0.125 1.070 2.811 0.967 2.992 0.125 1.067 2.812 0.967 2.975

5 0 0.246 1.078 3.122 0.960 3.338 0.247 1.082 2.772 0.970 2.848
9 0 0.262 1.049 4.525 0.906 5.492 0.262 1.049 4.408 0.912 5.289

10 0 0.261 1.049 4.505 0.906 5.472 0.261 1.049 4.416 0.911 5.314
12 0 0.242 1.052 4.324 0.914 5.199 0.242 1.051 4.263 0.917 5.086
15 0 0.220 1.056 4.046 0.925 4.777 0.220 1.055 4.009 0.927 4.705
20 0 0.187 1.062 3.619 0.941 4.145 0.187 1.060 3.602 0.942 4.102

Figures 13 (a) and (b) show the Young’s moduli of fully aligned and randomly oriented (10,10) SWCNT-
reinforced PmPV and PMMA composites, respectively. The estimates of the present multi-scale approach are
depicted for both the FE-UC and MT micromechanics approaches. It is first observed that composites doped
with fully aligned fillers exhibit high degrees of anisotropy, while randomly oriented filler arrangements lead to
elastically isotropic composites. Also, less stiff composites are obtained in the latter case, with the overall Young’s
modulus comprised between the longitudinal and transverse elastic moduli of the fully aligned counterpart. With
regard to the different micromechanics approaches, very similar results are found in the case of fully aligned
filler configurations. In the case of randomly oriented filler arrangements, the estimates of the MT and the FE-
UC approaches have been computed by Eqs. (15) and (25), respectively, considering a constant ODF of value
Ω(θ, ψ) = 1/2π. It is noted that the latter approach yields slightly lower estimates than the MT approach at
high filler contents. These discrepancies have the same explanation as those discussed by Schjødt-Thomsen and
Pyrz [49]. Those authors demonstrated that the direct orientational average of the MT results provides less stiff
estimates than the conventional MT model for composites loaded with randomly oriented fillers. Furthermore,
the proposed approach by Schjødt-Thomsen and Pyrz was shown to be superior for composites doped with high
filler volume fractions, providing estimates comprised within the Hashin-Shtrikman-Walpole bounds for randomly
oriented filler arrangements, unlike the conventional MT model.

Finally, the estimates of the EROM are plotted considering the efficiency parameters defined in Eq. (26) and
the fitting parameters ai, j from Table 5. Very close agreements with both the MT and FE-UC approaches are found

16



for fully aligned filler arrangements. Although larger discrepancies are found at high filler contents when CNTs
are randomly oriented (Eq. (21)), the largest differences are below 30 GPa. It is concluded that the accuracy of the
proposed simplified approach is sufficiently acceptable.
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Figure 13: Young’s moduli E of (10,10) SWCNT-reinforced PmPV (a) and PMMA (b) composites versus filler volume fraction
fr for fully aligned and randomly oriented configurations (t = 0.1 nm).

3.2.2. Polymer doped with MWCNTs
In a similar way to the previous analyses, the macroscopic behavior of composites doped with MWCNTs is

investigated in this section. In particular, twelve DWCNTs (armchair/armchair and zig-zag/zig-zag), as well as two
Four-Walled CNTs (FWCNTs) are studied. With regard to the tube wall thickness, in this set of analyses a value
of t = 0.1 nm is also assumed. Firstly, the elastic moduli of the isolated MWCNTs are computed by the present
atomistic-based continuum modeling and collected in Table 6. For notational convenience, the studied CNTs are
denoted with an identification number (Id.) from 1 to 14. Afterwards, the elastic moduli of the corresponding
equivalent fibers are computed and shown in Table 7. Figures. 14 (a) and (b) show the Young’s moduli, E∥ and
E⊥, and the shear modulus G12, respectively, of (7,7)-(14,14) MWCNT/PmPV composites versus the filler volume
fraction. It is interesting to note that, in this case, the estimates of the ROM and the MT and FE-UC approaches
are closer than in the previous case study of Fig. 4. Conversely, larger discrepancies are found for the macroscopic
shear modulus G12. It is also observed that, in this particular case, the studied MWCNT exhibit a lesser degree of
anisotropy.
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Table 6: Hill’s elastic moduli of MWCNTs (t = 0.10 nm).

Chilarity Id. kr [GPa] lr [GPa] mr = pr [GPa] nr [GPa]

(5,5)-(10,10) 1 1984.203 900.530 732.703 2210.538
(6,6)-(12,12) 2 2443.688 1195.038 593.757 2040.452
(7,7)-(14,14) 3 2443.688 899.951 524.279 1598.251
(8,8)-(16,16) 4 2443.688 898.447 471.743 1463.653
(9,9)-(18,18) 5 2443.688 897.436 428.663 1354.868

(10,10)-(20,20) 6 2443.688 896.730 392.725 1265.117
(5,0)-(10,0) 7 9200.112 1777.782 1486.743 3969.229
(6,0)-(12,0) 8 6920.968 1491.827 1324.120 3329.875
(7,0)-(14,0) 9 3471.225 1134.352 1032.984 2825.563
(8,0)-(16,0) 10 2500.854 942.275 837.074 2414.911
(9,0)-(18,0) 11 2565.389 1082.967 727.181 2187.179
(10,0)-(20,0) 12 3262.808 1295.913 653.616 2055.039

(5,5)-(10,10)-(15,15)-(20,20) 13 3258.650 860.642 591.929 1700.097
(5,0)-(10,0)-(15,0)-(20,0) 14 23637.980 1726.684 1709.083 3544.465

Table 7: Hill’s elastic moduli of MWCNT/PmPV and MWCNT/PMMA composites (t = 0.10 nm).

Id. PmPV PMMA k f
kr [GPa] lr [GPa] mr = pr [GPa] nr [GPa] kr [GPa] lr [GPa] mr = pr [GPa] nr [GPa]

1 6.320 4.475 41.256 385.529 7.521 5.325 41.366 386.456 2.392
2 6.684 5.212 50.443 359.593 7.953 6.200 50.560 360.673 2.277
3 6.684 4.890 58.760 346.227 7.953 5.818 58.886 347.204 2.179
4 6.684 4.890 70.050 346.227 7.953 5.911 70.183 337.835 2.179
5 6.684 5.075 78.209 325.601 7.953 6.038 78.349 326.606 2.021
6 6.684 5.073 88.931 317.470 7.953 6.036 89.076 318.463 1.957
7 5.563 3.743 22.231 526.263 6.622 4.455 22.326 527.101 2.737
8 5.755 3.961 29.820 497.565 6.851 4.715 29.920 498.434 2.629
9 5.955 4.098 35.776 469.717 7.088 4.878 35.882 470.595 2.535
10 6.160 4.322 39.825 438.951 7.331 5.144 39.936 439.860 2.451
11 6.369 4.582 46.188 409.900 7.580 5.453 46.305 410.851 2.376
12 6.582 4.549 52.168 392.686 7.832 5.413 52.289 393.600 2.308
13 8.230 5.955 124.004 536.733 9.787 7.082 124.145 537.811 1.957
14 6.584 4.754 93.891 800.605 7.835 5.658 94.011 801.574 2.308
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Figure 14: Young’s moduli E (a) and shear modulus G12 (b) versus filler volume fraction fr for fully aligned (7,7)-(14,14)
MWCNT-reinforced PmPV (t = 0.10 nm).

With regard to the fitting of the efficiency parameters, the procedure is identical to the previous set of analyses.
Linear regression models for the definition of η j ( j = 1, 2, 3) as functions of the CNT content were found suitable
for filler volume fractions ranging from 0 to 0.2, with determination coefficients above 95%. Table 8 collects the
best-fitting parameters ai, j for all the studied MWCNT-reinforced composites. It is worth noting that the efficiency
parameters η1, which modulate the stiffening capability of CNTs along the longitudinal direction in Eq. (20a),
exhibit considerably higher values than those for SWCNTs. This fact gives an explanation to the lesser differences
between the ROM and the MT and FE-UC approaches. The study of the efficiency parameters is particularly
interesting because it gives some insight into the load transfer capability of the CNT/polymer interphases. For
instance, values of η1 close to 1 indicates the presence of interphases with elastic properties similar to the matrix
material. On the other hand, small values of η1 evidence the existence of soft interphases.
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Table 8: Best-fitting parameters for the linear regression of the efficiency parameters η j (i = 1, 2, 3) for MWCNT/PmPV and
MWCNT/PMMA composites (t = 0.1 nm, fr ∈ [0.01, 0.2]).

Id.

PmPV PMMA

η1 η2 η3 η2 η1 η3

a0,1 a0,2 a1,2 a0,3 a1,3 a0,1 a0,2 a1,2 a0,3 a1,3

1 0.506 1.063 3.801 0.934 4.435 0.506 1.061 3.775 0.936 4.380
2 0.554 1.067 3.528 0.944 4.036 0.554 1.064 3.511 0.945 3.996
3 0.587 1.071 3.257 0.952 3.702 0.588 1.068 3.247 0.952 3.671
4 0.657 1.071 3.276 0.951 3.730 0.614 1.071 3.028 0.958 3.406
5 0.632 1.076 2.839 0.963 3.194 0.632 1.073 2.838 0.963 3.174
6 0.654 1.078 2.676 0.967 2.996 0.654 1.075 2.677 0.967 2.980
7 0.394 1.051 4.586 0.902 5.635 0.394 1.051 4.510 0.906 5.500
8 0.431 1.055 4.380 0.911 5.321 0.431 1.054 4.329 0.913 5.227
9 0.481 1.059 4.159 0.920 4.983 0.481 1.058 4.121 0.922 4.910
10 0.517 1.062 3.948 0.928 4.663 0.517 1.060 3.918 0.930 4.603
11 0.557 1.064 3.772 0.935 4.399 0.557 1.062 3.750 0.936 4.350
12 0.582 1.067 3.611 0.941 4.160 0.582 1.065 3.594 0.942 4.119
13 0.706 1.084 2.775 0.966 3.021 0.706 1.081 2.777 0.966 3.009
14 0.537 1.074 3.638 0.939 4.256 0.537 1.072 3.630 0.939 4.233
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Figure 15: Young’s moduli of (7,7)-(14,14) MWCNT-reinforced PmPV (a) and PMMA (b) composites versus filler volume
fraction fr for fully aligned and randomly oriented configurations (t = 0.10 nm).
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Finally, the Young’s moduli of fully aligned and randomly oriented (7,7)-(14,14) MWCNT-reinforced PmPV
and PMMA composites are shown in Fig. 15 (a) and (b), respectively. In this case, close results are also found
between the different approaches and, therefore, the proposed simplified EROM is considered acceptable for the
modeling of MWCNT-reinforced composites.

3.3. Sensitivity analyses

In this last section, numerical results are presented to investigate the sensitivity of the macroscopic elastic
properties of CNT-reinforced polymer composites on the CNT chirality, volume fraction and aspect ratio. Fig. 16
plots the longitudinal elastic moduli versus the filler volume fraction for infinitely long SWCNT-reinforced PmPV
composites. Both armchair and zig-zag CNT structures are studied, as well as fully aligned and randomly ori-
ented filler arrangements. In this case, only the multiscale approach consisting of the atomistic-based continuum
modeling and the MT approach are used. The elastic properties of the equivalent fibers are taken from Table 4. In
the case of fully aligned configurations, the longitudinal E∥ and transverse E⊥ elastic moduli are represented with
solid and dashed lines, respectively. In a similar way to previously reported results in the literature (e.g. [64]), it
is observed that zig-zag CNTs exhibit stiffer responses than the armchair ones, especially for small tube diame-
ters. In order to strengthen this analysis, Fig. 17 shows the longitudinal E∥ as a function of the CNT diameter for
composites with a filler volume fraction of fr = 0.05. For illustrative purposes, the results for (10,10) and (10,0)
SWCNTs are remarked. Three observations can be made. First, the Young’s modulus monotonically decreases
with the increase of CNT diameter and for every CNT configuration. Second, for every tube diameter the zig-zag
CNTs yield slightly higher Young’s moduli. Third, the differences between the two curves become smaller with
increasing diameters.

Fig. 18 shows the variation of E∥ with the increase of the CNT aspect ratio for the previously considered
SWCNTs. Within the Mori-Tanaka framework, the geometry of the inclusions is taken into consideration in
the definition of the Eshelby’s tensor S. Let us recall that the main assumption in the Eshelby’s theory is that
inhomogeneities can be defined as ellipsoids. Hence, the aspect ratio of the CNTs can be taken into consideration
by equating the CNT length and diameter to the semi-major and semi-minor axes of the ellipsoids, respectively.
For further information about the specific definition of the Eshelby’s tensor S, readers are invited to consult the
reference [45]. Let us simply indicate that, in the case of isotropic materials doped with transversely isotropic
ellipsoidal inclusions, S depends on the geometry of the inclusions and the Poisson’s ratio of the matrix. It
is observed in Fig. 18 that E∥ dramatically increases with increasing CNT aspect ratios. It can be also seen that
further increases in the CNT aspect ratio beyond 103 result in relatively small increases in the effective longitudinal
Young’s modulus. This is typically the case for CNT-reinforced composites and, therefore, these results justify
the common assumption of CNTs as infinitely long fillers. It is also interesting to note that, in the case of zig-zag
CNTs, the influence of the CNT aspect ratio on the overall elastic modulus is higher than in the case of armchair
CNTs, especially for CNTs with small tube diameters.
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Figure 16: Variation of the elastic moduli with the CNT volume fraction for SWCNT-reinforced PmPV for armchair (n, n)
(a,b) and zig-zag (n, 0) (c,d) CNT types (t = 0.10 nm).

22



0.6 0.8 1 1.2 1.4 1.6 1.8 2
25

30

35

40

45

50

55

60

(10,0) SWCNT

(10,10) SWCNT

CNT diameter [nm]

E
‖[

G
Pa

]

armchair
zig-zag

Figure 17: Variation of the longitudinal Young’s modulus E∥ with the CNT diameter for SWCNT-reinforced PmPV for armchair
(n, n) and zig-zag (n, 0) CNT types (t = 0.10 nm, fr = 5%).
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Figure 18: Variation of E∥ with the CNT aspect ratio for SWCNT-reinforced PmPV for armchair (n, n) (a,b) and zig-zag (n, 0)
(c,d) CNT types (t = 0.10 nm, fr = 5%).

With regard to MWCNT-reinforced composites, Fig. 19 (a) and (b) plot the longitudinal elastic moduli versus
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filler volume fraction for infinitely long MWCNT-reinforced PmPV with fully aligned and randomly oriented
filler configurations, respectively. Identification numbers 1 to 14 correspond to the chiralities previously shown in
Table 6. It is observed that (5,0)-(10,0)-(15,0)-(20,0) MWCNTs (Id. 14) yield the highest Young’s moduli, whilst
(10,10)-(20,20) MWCNTs (Id. 6) yield the lowest values. Finally, Fig. 20 furnishes the relationship between the
elastic moduli of MWCT/PmPV composites and the CNT aspect ratio.
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Figure 19: Variation of the elastic moduli with the CNT volume fraction for PmPV doped with fully aligned MWCNTs (a) and
randomly oriented MWCNTs (b) (t = 0.10 nm).

24



101 102 103 104
0

20

40

60

80

100

120

CNT aspect ratio

E
‖[

G
Pa

]

(a) fully aligned MWCNTs

1 2 3 4 5 6
7 8 9 10 11 12
13 14

101 102 103 104
0

5

10

15

20

25

CNT aspect ratio

E
[G

Pa
]

(b) randomly oriented MWCNTs

Figure 20: Variation of E∥ with the CNT aspect ratio for PmPV doped with fully aligned MWCNTs (a) and randomly oriented
MWCNTs (b) (t = 0.10 nm, fr = 5%).

4. Conclusions

In this paper, a multiscale approach has been proposed for studying the elastic properties of CNT-reinforced
polymer composites. Specifically, the present methodology consists of a three step bottom-up approach, including
an atomistic-based continuum model, the definition of equivalent representative fibers, and a micromechanics ap-
proach. Firstly, the atomistic-based model comprises an FE cylindrical RVE that incorporates the atomic structure
of a CNT, the immediately surrounding matrix, and the CNT/polymer interface. Afterwards, the cylindrical RVEs
are homogenized into equivalent representative fibers that, finally, are used as inclusions within a micromechanics
framework to compute the macroscopic properties of CNT/polymer composites. Two different micromechan-
ics approaches have been used, namely the analytical Mori-Tanaka model and an FE RVE model with periodic
hexagonal arrangement of fibers. On this basis, a broad range of SWCNTs and MWCNTs have been studied, as
well as two different matrices. Furthermore, analytical expressions for the efficiency parameters defined in the
simplified EROM have been provided. In particular, the best-fitting parameters of linear regression models have
been reported for SWCNT- and MWCNT-reinforced composites and filler volume fractions up to 20 percent. Fi-
nally, detailed parametric analyses have been also presented to give insight into the sensitivity of the macroscopic
properties of CNT/polymer composites to the CNT volume fraction, chirality, and aspect ratio. Overall, the main
contributions of this work can be summarized as follows:

25



• The numerical results have evidenced the key contribution of the tube wall thickness of CNTs. On the basis
of the Vodenitcharova-Zhang criterion, a tube wall thickness of 0.1 nm has been selected.

• Linear regression models have been proposed for the efficiency parameters in the EROM. The expressions
comprise both SWCNT and MWCNTs, as well as PMMA and PmPV matrices for filler volume fractions
up to 20 percent. Acceptable agreements have been shown between the present multiscale approach and the
fitted simplified EROM.

• The sensitivity analyses have illustrated the variation of the macroscopic properties of CNT-reinforced com-
posites with the CNT chirality, volume fraction, and aspect ratio. In the case of SWCNTs, it has been shown
that zig-zag structures lead to slightly stiffer composites compared to armchair CNTs. It has been also shown
that CNT aspect ratios above 1000 only yield limited increases in the macroscopic Young’s modulus of the
composites.

This work is envisaged to provide a valuable tool for the computational analysis of CNT-reinforced composites.
The use of simplified analytical expressions, such as the EROM, is particularly helpful for preliminary analyses
with very limited computational demands. On the basis of MD simulations or, as in this case, atomistic-based
FEMs, it is possible to tailor simplified expressions for practical filler contents that assist preliminary design and
optimization phases.
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