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SUMMARY 7 

The enzymatic hydrolysis of milk proteins yield final products with improved properties and 8 

reduced allergenicity. The degree of hydrolysis (DH) influences both technological (e.g., solubility, 9 

water binding capacity) and biological (e.g., Angiotensin-converting enzyme (ACE) inhibition, 10 

antioxidation) properties of the resulting hydrolysate. Phenomenological models are unable to 11 

reproduce the complexity of enzymatic reactions in dairy systems. However, empirical approaches 12 

offer high predictability and can be easily transposed to different substrates and enzymes. In this 13 

work, the DH of goat milk protein by subtilisin and trypsin was modelled by feedforward artificial 14 

neural networks (ANN). To this end, we produced a set of protein hydrolysates, employing various 15 

reaction temperatures and enzyme/substrate ratios, based on an experimental design 16 

The time evolution of the DH was monitored and processed to generate the ANN models. Extensive 17 

hydrolysis is desirable because a high DH enhances some bioactivities in the final hydrolysate, such 18 

as antioxidant or antihypertensive. The optimisation of both ANN models led to a maximal DH  of 19 

23.47% at 56.4ºC and enzyme-substrate ratio of 5% for subtilisin, while hydrolysis with trypsin 20 

reached a maximum of 21.3% at 35ºC and an enzyme-substrate ratio of 4%. 21 

 22 

Keywords: enzymatic hydrolysis; goat milk hydrolysates; artificial neural networks; proteases; 23 

optimization   24 

                                                 
* Corresponding author: Tel.: +34 958 240532; Fax: +34 958 248992; Email: rperezga@ugr.es 



2 

 

1. INTRODUCTION 25 

Enzymatic hydrolysis of proteins is an important process in the food industry that improves the 26 

functional properties of proteins, reduces  potential allergenicity and releases peptides displaying a 27 

number of biological activities (Tavano, 2013).  Food protein hydrolysates present improved 28 

properties such as solubility, emulsifying capacity, foaming ability, water or oil holding capacities, 29 

related to crude proteins (García-Moreno et al., 2016; Muro Urista et al., 2011).  Moreover, these 30 

can be incorporated into nutraceutical formulations where they exert certain biological reactions, 31 

including antimicrobial, antioxidant and antihypertensive activities (Capriotti et al., 2016). Among a 32 

wide range of substrates, cow milk protein hydrolysates have been the subject of extensive research, 33 

while goat milk protein hydrolysates have only recently been shown to exhibit functional and 34 

bioactive properties (Bernacka, 2011; El-Salam and El-Shibiny, 2013). Serine endopeptidases, such 35 

as subtilisin and tripsin, are usually employed in the hydrolysis of food proteins. Particularly, while 36 

subtilisin is able to attack a wide range of peptide bonds, trypsin preferentially cleaves at arginine 37 

and lysine residues. Both enzymes have been used for producing peptides displaying biological 38 

activities such as antioxidant (Pihlanto, 2006), antihypertensive (López-Fandiño et al., 2006) or 39 

antimicrobial (Gobbetti et al., 2004).  Moreover, these enzymes yield protein hydrolysates with 40 

improved technological properties such as solubility, emulsifying and foaming capacity (Severin 41 

and Xia, 2006; Van der Ven et al., 2001). 42 

Many functional and biological properties of protein hydrolysates are related to their degree of 43 

hydrolysis (DH). For example, emulsifying and foaming capacities present a maximum at a specific 44 

degree of hydrolysis, and, if this is exceeded, these properties are reduced (de Castro et al., 2015). 45 

An extensive DH exerts a positive effect on antihypertensive activity because most of the active 46 

peptides have chain lengths shorter than 12 amino acids (Li et al., 2004; Phelan and Kerins, 2011). 47 

Similarly, extensive hydrolysis of milk proteins can reduce allergenicity significantly for use in 48 

infant formulas (Duan et al., 2014; Dupont et al., 2015) . 49 

It can be concluded the extent of the hydrolysis reaction is a key parameter which should be 50 

controlled and predicted accurately to obtain hydrolysates with specific characteristics. Mechanistic 51 

approaches fail to describe the complexity of various proteins present in milk and different reactions 52 

that occurs during milk hydrolysis (e.g., product inhibition, enzyme thermal denaturation)(Ba and 53 

Boyaci, 2007). In this context, methods based on direct analysis of experimental data using 54 

response surfaces or artificial neural networks, are a suitable alternative to those based on 55 

phenomenological hypotheses. These empirical methods are applicable to all types of enzymatic 56 

reactions and do not require kinetic assumptions (Baş et al., 2007).  57 
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In particular, response surface methodology is widely used for modelling and optimisation 58 

purposes, for which the response of interest is influenced by several variables. However, this 59 

method is limited in most cases by the use of polynomial equations. Instead, ANNs can be used to 60 

ensure better data fit and estimation capabilities (Ba and Boyaci, 2007; Fatiha et al., 2013) . 61 

ANN is composed of individual processing elements (i.e., neurons) that transform weighted input 62 

variables into an output by means of an activation function. ANNs comprise one or more hidden 63 

layers of neurons.  A key element of this approach is the training algorithm, which allows to update 64 

the weights and biases of the neurons to obtain outputs closer to the targets. This training consists of 65 

minimizing the average squared error (MSE) between the calculated values and the experimental 66 

data. 67 

The ANNs have been successfully employed for modelling enzymatic reactions. For example, 68 

Bryjak et al. (2000) applied ANNs to model starch hydrolysis by glucoamylase, while Bas et al. 69 

(2007) studied the reaction rates of maltose hydrolysis by amyloglucosidase. As for the protein 70 

hydrolysis, Abakarov et al. (2011) satisfactorily modelled the kinetics of enzymatic hydrolysis of 71 

squid protein with subtilisin using the reaction time and the substrate concentration as input 72 

variables. Bucinski et al. (2008) and Li et al. (2016) evaluated the variation of DH during the 73 

hydrolysis of bovine hemoglobin and pea proteins, respectively. Li et al. (2006) developed a 74 

predictive model for the production of antioxidant peptides from fish proteins taking into account a 75 

number of input variables such as pH, temperature, hydrolysis time, muscle/water ratio and 76 

enzyme/substrate ratio. Regarding milk proteins, Pinto et al. (2007) proposed a hybrid neural-77 

kinetic model for predicting the molecular mass distribution of whey protein hydrolysates. 78 

The aim of this study was to develop two ANN models for the enzymatic hydrolysis of goat milk 79 

proteins, employing either subtilisin or trypsin as catalysts. For each model, the DH was modelled 80 

as a function of temperature, enzyme-substrate ratio and the reaction time. Firstly, the architecture 81 

of the neural network (i.e., number of neurons in the hidden layer) and the training algorithm were 82 

chosen to maximise the degree of fitness (i.e., mean squared error) of the model. Both ANN models 83 

were then optimised for the maximal DH, which is desirable because it improves ACE inhibitory 84 

and antioxidant activities of the resulting hydrolysates. 85 

2. MATERIALS AND METHODS 86 

2.1. Materials 87 
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Commercial UHT goat milk (33 g protein/L) was purchased from local store. The enzymes used for 88 

the assays were subtilisin (EC 3.4.21.62) and trypsin (EC 3.4.21.4), both supplied by Novozymes 89 

(Denmark). 90 

2.2. Enzymatic reaction and determination of the degree of hydrolysis 91 

Before hydrolysis, the milk was skimmed by centrifugation at 4 ºC and 5000 g for 20 min in a 92 

Sigma 6k15 centrifuge (Sigma Laborzentrifugen, Germany). Skimmed goat milk (200 mL) was 93 

then hydrolysed in a stirred tank reactor for 5 hours. Initially, the pH of the milk was set at pH 8 94 

with 1M NaOH. After reaching the desired temperature, the enzyme was added at different enzyme-95 

substrate ratio. In alkaline medium, the cleavage of peptide bonds releases protons which cause the 96 

pH to drop. An automatic titrator was employed (718 Stat Titrino, Metrohm, Switzerland) to keep 97 

the pH constant during the reaction by adding NaOH (1M). The degree of hydrolysis (DH), defined 98 

as the percentage of available peptide bonds which are cleaved during the reaction, can be related to 99 

the amount of base consumed by Eq. 1(Adler Nissen, 1986): 100 

 · ·B P TOTDH n m h      (1) 101 

where DH is the degree of hydrolysis, nB (mol) is the amount of NaOH consumed to keep the pH 102 

constant,  is the average degree of dissociation of -NH2 groups released during hydrolysis, mP = 103 

6.6 g is the mass of protein in the substrate and hTOT = 0.0082 eq/g is the average number of 104 

equivalents of peptide bonds per gram of casein protein.  105 

2.3. Experimental design 106 

A total of 60 hydrolysates were produced, broken down into two factorial designs of 30 experiments 107 

where subtilisin or trypsin were employed as catalysts. Each hydrolysate was produced at a given 108 

combination of reaction temperature (T) and enzyme-substrate ratio (ES), which were the input 109 

variables of the factorial designs. The reaction temperature was varied at six levels according to the 110 

thermal stability of the enzyme assayed. Subtilisin exhibits wide thermal stability, presenting 111 

optimal activity around 50-55ºC. As for trypsin, it presents maximal activity around 40ºC (Adler 112 

Nissen, 1986). Therefore, subtilisin was tested at 45, 50, 55, 60, 65 and 70 ºC, while trypsin was at 113 

30, 35, 40, 45, 50 and 55 ºC. The levels assayed for the enzyme to substrate ratio were 1, 2, 3, 4 and 114 

5 % for both enzymes. As for the time of reaction (t), the DH value was recorded every 60 seconds 115 

over the course of the reaction (5 hours). This yields an amount of 300 experimental data (T, ES, t, 116 

DH) for each hydrolysis curve.  117 

 118 
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 119 

 2.3. Structure and training of the artificial neuronal network 120 

Two artificial neural network (ANN) models were developed in this work (i.e. subtilisin and 121 

trypsin), where DH was related to the reaction temperature (T), the enzyme-substrate ratio (ES) and 122 

the time of reaction (t) as input variables. Both ANN models were constructed by means of the 123 

Neural Network Toolbox, implemented in Matlab 7.0 (Mathworks, USA).  124 

Both artificial neural networks comprised an input layer, a single hidden layer and an output layer. 125 

The input layer comprised three neurons, corresponding to the 3 input variables (T, ES, t). This 126 

layer is connected to the hidden layer, whose number of neurons was varied from 1 to 10 neurons. 127 

Each neuron k of the hidden layer received a weighted signal from the input layer sk, expressed as 128 

follows: 129 

3

1

·k ik i k

i

s w X b


        (2) 130 

where wik were the weight factors and bk was the bias for the neuron k. Each neuron of the hidden 131 

layer processes the signal sk by means of a transfer function. The sigmoid function (implemented in 132 

Matlab as logsig) was selected as transfer function in the hidden layer, which returns a value 133 

ranging between 0 and 1 according to Eq. 3: 134 

 
1

 logsig ( )
1 exp

k

k

s
s


 

     (3) 135 

The k responses exiting the hidden layer are combined into a single weighted signal t, which is 136 

received by an output neuron, which returns the predicted value of DH. The saturated symmetric 137 

lineal function was chosen as transfer function for the output layer. This function truncates the 138 

weighted signal t within the interval [0,1], avoiding either negative DH values or above 1.  139 

Three training algorithms were tested in this work: gradient descent with momentum 140 

backpropagation (traingdm), resilient backpropagation (trainrp) and Levenberg-Marquardt 141 

backpropagation (trainlm). These algorithms update the weight and bias values in order to minimize 142 

the mean squared error (MSE) between observed and predicted DH.  143 

For a fixed number of hidden neurons in the hidden layer and training algorithm (traingdm, trainrp 144 

and trainlm), 30 runs were carried, ensuring an appropriate population of predicted data. At the 145 

beginning of each run, the dataset was normalized and then randomly divided into three subsets: 146 
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training, validation and test. The biggest subset (70 % of the total amount of experimental data) was 147 

used for training the network using the algorithm selected. During the training, the error obtained 148 

from the validation set (15% of the data) was employed for early stopping (i.e. interruption of the 149 

iteration process when over-fitting in the training dataset is detected). In back-propagation methods, 150 

over-fitting occurs when an improvement in the fit of the training data is accompanied by larger 151 

generalization errors.  The number of iterations per training run was limited to 10000. As an early 152 

stopping criterion, the training process stopped when the MSE increased for 10 iterations. At this 153 

point, the algorithm returned the weights and biases corresponding to the minimal MSE recorded so 154 

far. Finally, the remaining data (15%) are employed to compute the test error, which assesses the 155 

predictive capability of the network. This error is also useful to know if a good division of the data 156 

set (i.e. training, validation and evaluation subset) has been done. 157 

2.4. ANN model for DH and optimization procedure 158 

The objective of the ANN procedure was to obtain a predictive model of DH for each of the 159 

enzymes employed. Each model allowed the calculation of DH as a function of the experimental 160 

conditions of temperature, enzyme-substrate ratio and time of reaction, as expressed by Eq. 4:  161 

3

1 1

N

k ki i k

k i

DH logsig w X b 
 

 
     

 
   (4) 162 

X (T, eS, t) denotes the vector of input variables (i.e, the experimental conditions for each 163 

hydrolysis assay); wki and bk are the weight factors and bias of the input layer, respectively; ω and 164 

β are the weights and bias of the hidden layer and the transfer function logsig was defined by Eq. 3.   165 

The training procedure allowed the estimation of the set of parameters wk, bk, ω and β yielding the 166 

minimal squared error between predicted and observed DH (i.e., the best fit between the 167 

experimental DH and the predictive model).   168 

The goal of the optimisation  problem was to find the set of experimental conditions X (T, eS, t), 169 

within their experimental range, which maximises  DH calculated by Eq. 4. To this end, the 170 

Generalized Reduced Gradient (GRG), implemented in the Solver tool of the MS Excel, was chosen 171 

for the optimization of both models. GRG is a non-linear optimisation algorithm, which basically 172 

evaluates the gradient or slope of the objective function (i.e. predicted DH) as the input values (i.e. 173 

experimental conditions Xi in Eq. 4) change and determines that it has reached an optimum solution 174 

when the partial derivatives equal zero. Since GRP is a local method, the multistart method was 175 

chosen to find a globally optimal solution of the problem. This option consists in operating the GRP 176 
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algorithm from a set of starting points, reaching different local optimums which are then compared 177 

to select a global optimum. 178 

3. RESULTS AND DISCUSSION 179 

3.1. Architecture and training algorithm of the ANN   180 

The time evolution of the DH was modeled by two artificial neural networks, depending on the 181 

enzyme employed for the hydrolysis. Each ANN comprised an input layer of three neurons 182 

corresponding to each one of the experimental factors (T, ES, t), connected to a hidden layer with a 183 

variable number of neurons between 1 and 10. The hidden layer is connected to an output layer with 184 

a single neuron, which returns the predicted value for the degree of hydrolysis. An average of 30 185 

simulations was performed by a combination of three training algorithms (i.e. trainrp, traingdp, 186 

trainlm) and a fixed number of neurons in the hidden layer (i.e. 1 to 10). Every training procedure 187 

was executed 30 times, starting from different initial values of weights and biases.  For each trial, 188 

the mean squared errors of the training, validation and test subsets were recorded. Average training 189 

and validation errors were in all cases very similar to test error values. Indeed, the differences 190 

between these errors were below 1 and 2 % for subtilisin and trypsin networks, respectively.  Fig. 1 191 

presents the test error of the networks obtained for the hydrolysis with subtilisin (a) and trypsin (b) 192 

as a function of the training algorithm and the number of neurons in the hidden layer. For both 193 

ANN models, the Levenberg-Marquardt algorithm showed the best performance, followed by 194 

trainrp and traingdm. Indeed, test errors decreased with an increasing number of neurons in the 195 

hidden layer for the trainlm algorithm, resulting in final MSE values of and 5·10-4 and 10-3 at 10 196 

neurons for the subtilisin and tripsin network, respectively. Contrarily, the traingdp algorithm 197 

presented overfitting above 6 neurons for both ANN models. According to these results, the 198 

Levengberg-Marquardt training algorithm was chosen to model the degree of hydrolysis for both 199 

enzymes.  200 

The predictability of both ANN models and the trainlm algorithm was assessed by the slope and 201 

intercept of the linear fit between predicted and observed values of DH (Fig. 2).  Ideally, the slope 202 

and the intercept should be 1 and 0, respectively. In the case of the subtilisin ANN, the network 203 

with 2 neurons in the hidden layer led to an average slope (i.e. mean value from 30 trials) above 204 

0.950, which increased up to 0.996 at 8 neurons. This value remained steady in 9 and 10 neurons. 205 

The intercept value for the subtilisin ANN was 6·10-3 at 2 neurons and decreased down to 4·10-4 at 206 

10 neurons. Similarly, the average slope and intercept values for the trypsin ANN increased and 207 
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decreased, respectively, with the number of neurons in the hidden layer. This model reached a 208 

maximal slope of 0.984 and a minimal intercept of 2·10-3 at 10 neurons. 209 

In line of the above, two ANN models were proposed to fit the experimental data employing the 210 

Levengberg-Marquardt training algorithm. The number of neurons in the hidden layer was fixed at 211 

8 and 10 for the subtilisin and trypsin ANN, respectively. Under these conditions, the predictability 212 

of both models (i.e. MSE and slope values) was acceptable while their complexity and time of 213 

computation were limited. This algorithm has been successfully employed to model enzymatic 214 

processes. For example, Pinto et al. (2007) modeled the molecular weight distribution of whey 215 

protein hydrolysates. Feed-forward ANNs trained by the Levensberg-Marquardt algorithm was used 216 

to model the time evolution of DH in the hydrolysis of blood protein (Gálvez et al., 2016) and horse 217 

mackerel protein (Morales-Medina et al., 2016) with subtilisin. Abakarov et al. (2011) used gradient 218 

descent algorithm to predict the hydrolysis of squid protein using substilisin. Similarly,  Buciński et 219 

al. (2008) use it for hydrolysis of pea protein employing trypsin.   220 

3.2. ANN models for the hydrolysis with subtilisin and trypsin 221 

In all the cases, the time evolution of DH followed the characteristic curve described for enzymatic 222 

hydrolysis. As an example, Figures 3a and 3b represent the observed values of DH (point markers) 223 

against the time of reaction and enzyme-substrate ratio for subtilisin and trypsin at 50ºC. It can be 224 

observed that DH presented a sharp linear increase at the beginning of the hydrolysis, followed by 225 

slight reduction to achieve steady state. As the proteolysis progresses, the remaining number of 226 

peptide bonds available for enzyme attack decreases and so the reaction rate.  (Adler Nissen, 1986; 227 

Valencia et al., 2014).  Depending on its thermal stability, extensive times of reaction at high 228 

temperatures may provoke thermal inactivation of the enzyme. The denaturation of the quaternary 229 

structure of the enzyme results in a decrease of its enzymatic activity.  Finally, some authors such as 230 

Valencia et al. (2014) relate the decrease of the reaction rate to the occurrence of product inhibition. 231 

In this case, the peptides released during hydrolysis may inhibit the reaction progress by forming 232 

stable complexes with substrate or enzyme.  233 

The hydrolysis curves depicted in Figure 3 show that increasing enzyme-substrate ratios improved 234 

the final values of DH for the subtilisin reaction. This trend was not clear for the trypsin reactions, 235 

where hydrolysis curves at ES 4% and 5% were very close or even overlapped with each other. 236 

  As example, at 50 °C, the final DH values observed for substilisin and trypsin were in the range of 237 

18-24%, and 16-23%, respectively. The solid lines in Figure 3 represent the predicted DH 238 

calculated from the ANN models presented above.  Figure 3 illustrates the high degree of fitting 239 
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between the observed values of DH and those calculated by ANN modelling. The determination 240 

coefficients of the linear fit between experimental and calculated values of DH were r2=0.996 and 241 

r2=0.994 for subtilisin and trypsin, respectively.  242 

 243 

 244 

3.3. Optimization of  the degree of hydrolysis 245 

The application of the Levengsberg-Marquardt algorithm allowed estimating the weights and biases 246 

of both ANN models (Eq. 2) for a fixed number of neurons in the hidden layer. This set of 247 

parameters allowed computing DH as a function of the reaction conditions (i.e. T, ES and t). 248 

Furthermore, these model were optimized by an evolutionary algorithm to determine the optimal 249 

parameters for maximal DH. Extensive hydrolysis seems to enhance a number of biological 250 

activities such as the ACE-inhibitory and the antioxidant activities. Some of the most potent ACE 251 

inhibitors identified in milk protein hydrolysates correspond to di and tripeptides (Hernández-252 

Ledesma et al., 2014). Similarly, several short peptides (500-1800 Da)  have been identified as 253 

potent antioxidants (Ahmed et al., 2015; Moreno-Montoro et al., 2017; Samaranayaka and Li-Chan, 254 

2011).  Peptide size is also a crucial factor for bioavailability of bioactive peptides. According to the 255 

literature, there are no evidence that peptides bigger than tripeptides can move across the tissues of 256 

gastrointestinal tract intact and enter into blood stream in required concentrations (Miner-Williams 257 

et al., 2014). The contour plots shown in Figures 4a and 4b represent the calculated values of the 258 

final DH (5 h) against the reaction temperature and the enzyme-substrate ratio.  Both contour plots 259 

confirm the positive effect of increasing enzyme-substrate ratio on DH. This trend was clear for the 260 

hydrolysis with subtilisin, regardless the reaction temperature. Increasing ES ratios favoured the 261 

prote olysis with subtilisin, obtaining maximum DH of 22 – 23% with 5% ES ratio.  Optimisation 262 

of the ANN model confirmed that maximum DH (23.47%) can be achieved for goat milk proteins 263 

using substilisin at 56.4 °C with 5% ES ratio. The optimal reaction temperature is within the range 264 

of maximal activity reported for subtilisin (Adler Nissen, 1986; Ma et al., 2015). According to the 265 

contour plot, the final values of DH at 5% ES ratio kept above 22% within the experimental range 266 

from 45 to 70ºC. This suggests that this enzyme was not significantly affected by thermal 267 

deactivation, and therefore its proteolytic activity remained unaltered. This is in line with previous 268 

studies which highlight the high resistance of subtilisin against thermal denaturation (Adler-Nissen, 269 

1986; Nagodawithana and Reed, 2013). Subtilisin-like serine proteases contain a variable number (2 270 

to 7) of Ca2+-binding sites. Binding of the calcium ions has been reported to greatly stabilise the 271 

protein structure against thermal unfolding (Foophow et al., 2010).  272 
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In contrast, the contour plots for the hydrolysis with trypsin (Figure 4b) indicated that the final DH 273 

was influenced by the reaction temperature. This may resulted from inactivation of trypsin at higher 274 

temperature. The optimal conditions for maximal DH (21.3%) were 35ºC and ES 4%. Higher levels 275 

of enzyme-substrate ratio did not improve the extent of the hydrolysis, suggesting the saturation of 276 

the peptide bonds available. Trypsin exhibits narrow specificity towards arginine and lysine 277 

residues (Olsen et al., 2004) , while subtilisin is a wide-spectrum protease. This fact could explain 278 

the saturation of available peptide bonds at ES ratios above 4%.  The optimal temperature condition 279 

calculated for trypsin was 35ºC, similar to the maximum of 37ºC reported in scientific literature 280 

(Adler-Nissen, 1986; Morales-Medina et al., 2016).  281 

For validation purposes, the optimal operating conditions for maximal DH were reproduced 282 

experimentally for both enzymes. To this end, the predicted optimum conditions for both substilisin 283 

(56.4 ºC and ES 5%) and trypsin (35 ºC and ES 4%) were experimentally evaluated and illustrated 284 

in the Figure 5. Some of the observed values of DH were represented by point markers, while the 285 

curves predicted from the ANN model were depicted as solid lines. Both curves fitted satisfactorily 286 

the observed data. This was confirmed by the coefficients of determination R2 for both models, 287 

which were 0.9883 and 0.9929 for subtilisin and trypsin, respectively. Moreover, the average 288 

deviation between observed and predicted values was 1.9 ± 1.7 % for the hydrolysis with subtilisin 289 

and 1.7± 1.6% for trypsin. The verification hydrolysis with subtilisin led to a maximal DH of 290 

23.26% at experimental conditions 56.4ºC, 5% ES ratio and 5 h of reaction, which was similar to 291 

the optimum DH (23.47%, 56.4ºC, 5% ES ratio, 5 h) predicted by the proposed ANN model with 8 292 

neurons in the hidden layer. However, maximum DH obtained for trypsin mediated hydrolysis 293 

under experimental conditions (35ºC, 4% ES ratio and 5 h of reaction) was 22.17%, which is 294 

slightly higher than the predicted value (21.3%) with optimum conditions (35 ºC, ES 4% and 5 h) 295 

using the ANN model with 10 neurons.  296 

4. CONCLUSIONS 297 

ANN modelling was successfully employed to predict the degree of hydrolysis of skimmed goat 298 

milk proteins with subtilisin and trypsin as a function of the operating conditions, namely the 299 

reaction temperature, the enzyme-substrate ratio and the time of hydrolysis. The predictability of 300 

both ANN models was improved by testing three training algorithm and a variable number of 301 

neurons (i.e. 1 to 10) in the hidden layer. In this regard, two ANN models with 8 and 10 neurons in 302 

the hidden layer were selected for subtilisin and trypsin hydrolysis, respectively. As for the training 303 

algorithm, the Levengsberg-Marquardt led to the minimal test errors (MSE) for both subtilisin and 304 
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trypsin with determination coefficients of 0.996 and 0.984, respectively. Furthermore, these models 305 

were optimized by an evolutionary algorithm to obtain the combination of operating conditions 306 

leading to the maximal DH.  Maximum DH (23.47%) was calculated for substilisin at 56.4 ºC, ES 307 

5% and 5 h of reaction, while the máximum DH obtained for trypsin was 21.3% at 35 ºC, ES 4% 308 

and 5 h reaction. There was a significant correlation between DH predicted using ANN models and 309 

DH obtained under experimental conditions.  310 

ANN arises as an alternative to obtain predictive models for protein hydrolysis, especially when a 311 

large volume of data is available. The strength of these models, inspired in human brain, lies on its 312 

ability to learn from experimental data by training algorithms. By this approach, the model 313 

parameters are updated iteratively, until minimizing the error between predicted and actual data. In 314 

the field of biochemical processes, this approach allows obtaining predictive models without 315 

needing to have extensive knowledge of the underlying mechanism. This is especially useful in 316 

enzymatic reactions where several phenomena (i.e. substrate solubilisation, substrate or product 317 

inhibition, thermal inactivation of the enzyme) may occur simultaneously.  318 

Acknowledgments 319 

This work was funded by the project P07-TEP-02579 from the Consejería de Economía, 320 

Innovación, Ciencia y Empleo of Junta de Andalucía, Spain. 321 

  322 



12 

 

REFERENCES 323 

Abakarov, A., Teixeira, A., Simpson, R., Pinto, M., Almonacid, S., 2011. Modeling of Squid 324 

Protein Hydrolysis: Artificial Neural Network Approach. Journal of Food Process Engineering 325 

34, 2026–2046. doi:10.1111/j.1745-4530.2009.00567.x 326 

Adamson, N.J., Reynolds, E.C., 1996. Characterization of casein phosphopeptides prepared using 327 

alcalase: Determination of enzyme specificity. Enzyme and Microbial Technology 19, 202–328 

207. doi:10.1016/0141-0229(95)00232-4 329 

Adler Nissen, 1986. Enzymic hydrolysis of food proteins. Elsevier Applied Science Publishers 330 

LTD, London. 331 

Ahmed, A.S., El-Bassiony, T., Elmalt, L.M., Ibrahim, H.R., 2015. Identification of potent 332 

antioxidant bioactive peptides from goat milk proteins. Food Research International 74, 80–88. 333 

doi:10.1016/j.foodres.2015.04.032 334 

Ba, D., Boyaci, I.H., 2007. Modeling and optimization II: Comparison of estimation capabilities of 335 

response surface methodology with artificial neural networks in a biochemical reaction. 336 

Journal of Food Engineering 78, 846–854. doi:10.1016/j.jfoodeng.2005.11.025 337 

Baş, D., Dudak, F.C., Boyacı, İ.H., 2007. Modeling and optimization III: Reaction rate estimation 338 

using artificial neural network (ANN) without a kinetic model. Journal of Food Engineering 339 

79, 622–628. doi:10.1016/j.jfoodeng.2006.02.021 340 

Bernacka, H., 2011. Health-promoting properties of goat milk. Medycyna Weterynaryjna 67. 341 

Bryjak, J., Murlikiewicz, K., Zbiciński, I., Stawczyk, J., 2000. Application of artificial neural 342 

networks to modelling of starch hydrolysis by glucoamylase. Bioprocess Engineering 23. 343 

doi:10.1007/s004499900170 344 

Buciński, A., Karamać, M., Amarowicz, R., Pegg, R.B., 2008. Modeling the tryptic hydrolysis of 345 

pea proteins using an artificial neural network. LWT - Food Science and Technology 41, 942–346 

945. doi:10.1016/j.lwt.2007.06.021 347 

Capriotti, A.L., Cavaliere, C., Piovesana, S., Samperi, R., Laganà, A., 2016. Recent trends in the 348 

analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical 349 

Chemistry 408. doi:10.1007/s00216-016-9303-8 350 

de Castro, R.J.S., Bagagli, M.P., Sato, H.H., 2015. Improving the functional properties of milk 351 

proteins: Focus on the specificities of proteolytic enzymes. Current Opinion in Food Science 1, 352 

64–69. doi:10.1016/j.cofs.2014.12.004 353 



13 

 

Duan, C.-C., Yang, L.-J., Li, A.-L., Zhao, R., Huo, G.-C., 2014. Effects of enzymatic hydrolysis on 354 

the allergenicity of whey protein concentrates. Iranian Journal of Allergy, Asthma and 355 

Immunology 13. 356 

Dupont, C., Hol, J., Nieuwenhuis, E.E.S., De Jongste, J.C., Samsom, J.N., Van Leer, E.H.G., Elink 357 

Schuurman, B.E.E., De Ruiter, L.F., Neijens, H.J., Versteegh, F.G.A., Groeneweg, M., Van 358 

Veen, L.N., Vaessen-Verberne, A.A., Smit, M.J.M., Vriesman, A.W., Roosen, Y.M., Den 359 

Exter, G.L., 2015. An extensively hydrolysed casein-based formula for infants with cows’ milk 360 

protein allergy: Tolerance/hypo-allergenicity and growth catch-up. British Journal of Nutrition 361 

113. doi:10.1017/S000711451500015X 362 

El-Salam, M.H.A., El-Shibiny, S., 2013. Bioactive Peptides of Buffalo, Camel, Goat, Sheep, Mare, 363 

and Yak Milks and Milk Products. Food Reviews International 29, 1–23. 364 

doi:10.1080/87559129.2012.692137 365 

Fatiha, B., Sameh, B., Youcef, S., Zeineddine, D., Nacer, R., 2013. Comparison of artificial neural 366 

network (ANN) and response surface methodology (RSM) in optimization of the 367 

immobilization conditions for lipase from Candida rugosa on amberjet® 4200-Cl. Preparative 368 

Biochemistry and Biotechnology 43. doi:10.1080/10826068.2012.693899 369 

Foophow, T., Foophow, T., Tanaka, S., Koga, Y., Takano, K., Kanaya, S., 2010. Subtilisin-like 370 

serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-371 

terminal propeptides. Protein Engineering, Design and Selection 23, 347–355. 372 

doi:10.1093/protein/gzp092 373 

Gálvez, R.P., Carpio, F.J.E., Guadix, E.M., Guadix, A., 2016. Artificial neural networks to model 374 

the production of blood protein hydrolysates for plant fertilisation. Journal of the Science of 375 

Food and Agriculture 96. doi:10.1002/jsfa.7083 376 

García-Moreno, P.J., Pérez-Gálvez, R., Espejo-Carpio, F.J., Ruiz-Quesada, C., Pérez-Morilla, A.I., 377 

Martínez-Agustín, O., Guadix, A., Guadix, E.M., 2016. Functional, bioactive and antigenicity 378 

properties of blue whiting protein hydrolysates: Effect of enzymatic treatment and degree of 379 

hydrolysis. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.7731 380 

Geerlings, A., Villar, I.C., Zarco, F.H., Sánchez, M., Vera, R., Gomez, A.Z., Boza, J., Duarte, J., 381 

2006. Identification and characterization of novel angiotensin-converting enzyme inhibitors 382 

obtained from goat milk. Journal of Dairy Science 89. 383 

Gobbetti, M., Minervini, F., Rizzello, C.G., 2004. Angiotensin I-converting-enzyme-inhibitory and 384 

antimicrobial bioactive peptides. International Journal of Dairy Technology 57. 385 



14 

 

doi:10.1111/j.1471-0307.2004.00139.x 386 

Hernández-Ledesma, B., García-Nebot, M.J., Fernández-Tomé, S., Amigo, L., Recio, I., 2014. 387 

Dairy protein hydrolysates: Peptides for health benefits. International Dairy Journal 38, 82–388 

100. doi:10.1016/j.idairyj.2013.11.004 389 

Li, G.-H., Le, G.-W., Shi, Y.-H., Shrestha, S., 2004. Angiotensin I–converting enzyme inhibitory 390 

peptides derived from food proteins and their physiological and pharmacological effects. 391 

Nutrition Research 24, 469–486. doi:10.1016/j.nutres.2003.10.014 392 

Li, L., Wang, J., Zhao, M., Cui, C., Jiang, Y., 2006. Artificial neural network for production of 393 

antioxidant peptides derived from bighead carp muscles with alcalase. Food Technology and 394 

Biotechnology 44, 441–448. 395 

Li, S., Hu, Y., Hong, Y., Xu, L., Zhou, M., Fu, C., Wang, C., Xu, N., Li, D., 2016. Analysis of the 396 

Hydrolytic Capacities of Aspergillus oryzae Proteases on Soybean Protein Using Artificial 397 

Neural Networks. Journal of Food Processing and Preservation 40, 918–924. 398 

doi:10.1111/jfpp.12670 399 

López-Fandiño, R., Otte, J., van Camp, J., 2006. Physiological, chemical and technological aspects 400 

of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. 401 

International Dairy Journal 16. doi:10.1016/j.idairyj.2006.06.004 402 

Ma, Y., Sun, X., Wang, L., 2015. Study on optimal conditions of alcalase enzymatic hydrolysis of 403 

soybean protein isolate. Advance Journal of Food Science and Technology 9, 154–158. 404 

Miner-Williams, W.M., Stevens, B.R., Moughan, P.J., 2014. Are intact peptides absorbed from the 405 

healthy gut in the adult human? Nutrition Research Reviews 27, 308–329. 406 

doi:10.1017/S0954422414000225 407 

Morales-Medina, R., Pérez-Gálvez, R., Guadix, A., Guadix, E.M., 2016. Artificial neuronal 408 

network modeling of the enzymatic hydrolysis of horse mackerel protein using protease 409 

mixtures. Biochemical Engineering Journal 105. doi:10.1016/j.bej.2015.10.009 410 

Moreno-Montoro, M., Olalla-Herrera, M., Rufián-Henares, J.Á., Martínez, R.G., Miralles, B., 411 

Bergillos, T., Navarro-Alarcón, M., Jauregi, P., 2017. Antioxidant, ACE-inhibitory and 412 

antimicrobial activity of fermented goat milk: Activity and physicochemical property 413 

relationship of the peptide components. Food and Function 8, 2783–2791. 414 

doi:10.1039/c7fo00666g 415 

Muro Urista, C., Álvarez Fernández, R., Riera Rodriguez, F., Arana Cuenca, A., Téllez Jurado, A., 416 

2011. Review: Production and functionality of active peptides from milk. Food Science and 417 



15 

 

Technology International 17. doi:10.1177/1082013211398801 418 

Nagodawithana, T., Reed, G., 2013. Enzymes in Food Processing. Elsevier. 419 

Olsen, J. V, Ong, S.-E., Mann, M., 2004. Trypsin cleaves exclusively C-terminal to arginine and 420 

lysine residues. Molecular & cellular proteomics : MCP 3, 608–14. doi:10.1074/mcp.T400003-421 

MCP200 422 

Phelan, M., Kerins, D., 2011. The potential role of milk-derived peptides in cardiovascular disease. 423 

Food and Function 2. doi:10.1039/c1fo10017c 424 

Pihlanto, A., 2006. Antioxidative peptides derived from milk proteins. International Dairy Journal 425 

16, 1306–1314. doi:10.1016/j.idairyj.2006.06.005 426 

Pinto, G.A., Giordano, R.L.C., Giordano, R.C., 2007. Neural Network Inference of Molar Mass 427 

Distributions of Peptides during Tailor-Made Enzymatic Hydrolysis of Cheese Whey: Effects 428 

of pH and Temperature. Applied Biochemistry and Biotechnology 143, 142–152. 429 

doi:10.1007/s12010-007-0039-y 430 

Samaranayaka, A.G.P., Li-Chan, E.C.Y., 2011. Food-derived peptidic antioxidants: A review of 431 

their production, assessment, and potential applications. Journal of Functional Foods 3, 229–432 

254. doi:10.1016/j.jff.2011.05.006 433 

Severin, S., Xia, W.S., 2006. Enzymatic hydrolysis of whey proteins by two different proteases and 434 

their effect on the functional properties of resulting protein hydrolysates. Journal of Food 435 

Biochemistry 30. doi:10.1111/j.1745-4514.2005.00048.x 436 

Tavano, O.L., 2013. Protein hydrolysis using proteases: An important tool for food biotechnology. 437 

Journal of Molecular Catalysis B: Enzymatic 90, 1–11. doi:10.1016/j.molcatb.2013.01.011 438 

Van der Ven, C., Gruppen, H., De Bont, D.B.A., Voragen, A.G.J., 2001. Emulsion properties of 439 

casein and whey protein hydrolysates and the relation with other hydrolysate characteristics. 440 

Journal of Agricultural and Food Chemistry 49, 5005–5012. doi:10.1021/jf010144c 441 

 442 

 443 

 444 

  445 



16 

 

(a) 446 

 447 

(b) 448 

 449 

 450 

Figure 1. Test error as a function of the number of neurons in the hidden layer for (a) subtilisin and 451 

(b) trypsin. Test errors reported as average of 30 trials trained by gradient descent with momentum 452 

(solid line), resilient backpropagation (dotted line) and Levensberg-Marquardt algorithm (dashed 453 

line).  454 
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(a) 

 

(b) 

 

Figure 2. Slope (dashed line) and intercept (solid line) of the linear fit of experimental against 

calculated DH as a function of the number of neurons in the hidden layer for (a) subtilisin and (b) 

trypsin. Slope and intercept reported as average of 30 trials trained by the Levengsberg-Marquardt 

algorithm. 
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 (a)  

 

(b) 

 

Figure 3. Experimental (marker points) and predicted (solid lines) values of DH against time of 

reaction and enzyme-substrate ratio for (a) subtilisin at 50ºC and (b) trypsin at 50ºC. 
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(a)  

 

(b)  

 

 

Figure 4. Contour plots of final DH (5 h) against enzyme-substrate ratio and reaction temperature 

for (a) subtilisin ANN model with 8 neurons in the hidden layer and (b) trypsin ANN model with 10 

neurons in the hidden layer. 
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Figure 5. Validation experiment: experimental (marker points) and predicted (solid lines) values of 

DH against time of hydrolysis under optimal conditions for maximising DH (ES 5% , T=56.4ºC and 

ES 4%, T = 35ºC for subtilisin and trypsin, respectively). 

 


