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Abstract: The analysis of gene expression quantification data is a powerful and widely used approach
in cancer research. This work provides new insights into the transcriptomic changes that occur in
healthy uterine tissue compared to those in cancerous tissues and explores the differences associated
with uterine cancer localizations and histological subtypes. To achieve this, RNA-Seq data from the
TCGA database were preprocessed and analyzed using the KnowSeq package. Firstly, a kNN model
was applied to classify uterine cervix cancer, uterine corpus cancer, and healthy uterine samples.
Through variable selection, a three-gene signature was identified (VWCE, CLDN15, ADCYAP1R1),
achieving consistent 100% test accuracy across 20 repetitions of a 5-fold cross-validation. A sup-
plementary similar analysis using miRNA-Seq data from the same samples identified an optimal
two-gene miRNA-coding signature potentially regulating the three-gene signature previously men-
tioned, which attained optimal classification performance with an 82% F1-macro score. Subsequently,
a kNN model was implemented for the classification of cervical cancer samples into their two main
histological subtypes (adenocarcinoma and squamous cell carcinoma). A uni-gene signature (ICA1L)
was identified, achieving 100% test accuracy through 20 repetitions of a 5-fold cross-validation and
externally validated through the CGCI program. Finally, an examination of six cervical adenosqua-
mous carcinoma (mixed) samples revealed a pattern where the gene expression value in the mixed
class aligned closer to the histological subtype with lower expression, prompting a reconsideration
of the diagnosis for these mixed samples. In summary, this study provides valuable insights into
the molecular mechanisms of uterine cervix and corpus cancers. The newly identified gene signa-
tures demonstrate robust predictive capabilities, guiding future research in cancer diagnosis and
treatment methodologies.

Keywords: uterine corpus cancer; cervical cancer; cervical adenocarcinoma; cervical squamous cell
carcinoma; KnowSeq; RNA-Seq; MicroRNAs; differentially expressed genes; gene signature

1. Introduction

Gynecological cancers present a significant global health concern, with an estimated
annual incidence surpassing 3.6 million and a mortality rate exceeding 1.3 million. They
contribute to nearly 40% of all cancer incidence and over 30% of cancer-related deaths
in women worldwide [1]. Uterine cervix and uterine corpus (body) cancers rank as the
top two gynecological malignancies globally. Despite their proximity within the female
reproductive system, these cancers exhibit substantial differences in etiology, risk factors,
and disease characteristics. Additionally, the impact of each uterine cancer varies depending
on the socioeconomic conditions and lifestyle factors of each country [2]. In developing
countries, cervical cancer constitutes the most prevalent gynecological malignancy [3]. The
decrease in incidence and mortality observed in developed countries over the past few
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decades is largely attributed to highly effective prevention measures (screening tests and
HPV vaccination programs), which, unfortunately, remain relatively limited in accessibility
in developing nations [2]. Conversely, in developed countries, uterine corpus cancer
stands as the most prevalent gynecological malignancy, surpassing cervical cancer [4,5].
This prevalence is notably associated with a specific risk factor for the disease: obesity, a
condition more commonly observed in middle- and high-income countries [2].

Each uterine cancer type comprises various histological subtypes, each associated
with distinct prognoses, responses to treatment, and risk factors. The primary histological
subtypes of cervical cancer include squamous cell carcinoma (70–75%) [6], which devel-
ops from cells in the ectocervix [7], and adenocarcinoma (10–25%) [6], originating in the
glandular cells of the endocervix [7]. In comparison to cervical squamous cell carcinoma,
cervical adenocarcinoma exhibits greater aggressiveness, a higher rate of metastasis, infe-
rior prognosis, and reduced rates of survival [8]. Cervical adenosquamous carcinoma is an
infrequent subtype (with an incidence rate of less than 6/100,000 [9]) that is characterized
by the presence of both squamous cell and glandular differentiation [10]. Few reports, often
inconsistent, have documented the survival outcomes and prognostic factors in patients
with this histological subtype [10].

Uterine corpus cancer is divided into two primary subtypes. Adenocarcinoma, which
makes up the majority of uterine cancers, develops from cells in the endometrium or
uterine lining and is commonly referred to as endometrial cancer. The second subtype
is sarcoma (2–4%), which develops in the supporting tissues of the uterine glands or
in the myometrium, the uterine muscle [11]. While endometrial cancer is frequently
curable, uterine sarcoma is often more aggressive and harder to treat [12]. Uterine corpus
carcinosarcomas are infrequent (<0.005%) mixed tumors that histologically comprise both
epithelial and mesenchymal structures. Among the three histological subtypes, this is the
one with the worst prognosis, as it is prone to metastasis and recurrence [13].

The heterogeneity within cancer underscores the need to deepen our understanding
of the molecular pathogenesis of each cancer type, including histological subtypes. This
exploration is essential for identifying new therapeutic targets and improving methods for
precise diagnosis and personalized management strategies.

Differential expression analysis using high-throughput techniques on biological sam-
ples enables the characterization of normal cell physiology and the alterations occurring
during cancer progression. This study utilizes this analytical framework to identify novel
gene signatures for the classification of uterine cancers, thus contributing to their molecular
characterization. To achieve this, RNA-Seq data and miRNA-Seq data from uterine can-
cer samples were obtained from the TCGA database, and a supervised machine learning
approach, supported by the bioinformatics package KnowSeq [14], was implemented.

Firstly, a three-gene signature was established to differentiate between healthy uter-
ine, cervical cancerous, and uterine corpus cancerous samples. Subsequently, a miRNA
signature was determined for the same classification task, offering additional insights into
molecular differences. Following tissue classification, the study addressed the distinction
between primary histological subtypes of cervical cancer (adenocarcinoma and squamous
cell carcinoma) and investigated the characterization of mixed tumors compared to the
main histological subtypes.

This work extends the paper published at the IWBBIO 2023 conference [15] by re-
newing the experiments with updated datasets, conducting parallel miRNA-Seq analysis,
and improving robust validation. The novelty of the results obtained from this study
is summarized as follows: In the k-Nearest Neighbors (kNN) classification of healthy
uterine, cervical cancerous, and uterine corpus cancerous samples, the original three-gene
signature was refined by substituting the third gene, SERTM1, with ADCYAP1R1. This
adjustment significantly improved the F1 value, increasing from 96.73% to a perfect 100%
when utilizing the complete signature (VWCE, CLDN15, and ADCYAP1R1). Additionally,
the miRNA-Seq analysis revealed a two-gene miRNA-coding signature (hsa-mir-21 and
hsa-mir-10b), achieving an F1-macro score of 82% in the same classification task. Concerning
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the kNN classification of primary histological subtypes of cervical cancers, the initial paper
identified the gene ICA1L as one of the top DEGs between these subtypes. In this study,
we evaluated its performance as a biomarker, establishing a single-gene signature. The
results were optimal, and external validation for this gene signature was feasible using
CGCI program samples. Finally, the examination of six cervical adenosquamous carcinoma
(mixed) samples in relation to the two main histological subtypes of cervical cancer pro-
vided novel insights that can potentially influence the reconsideration of diagnosis for these
mixed samples.

2. Materials and Methods
2.1. Classification of Healthy, Cervical Cancer, and Uterine Corpus Cancer Samples
2.1.1. Data Collection and Preprocessing

The Genomic Data Commons (GDC) portal (https://portal.gdc.cancer.gov/, version
1.0, accessed on 25 December 2023) was used for downloading the data from The Cancer
Genome Atlas (TCGA, https://www.cancer.gov/ccg/research/genome-120sequencing/
tcga, accessed on 25 December 2023). Specifically, corpus uteri and cervix uteri were selected
as primary sites as part of CESC, UCEC, and SARC TCGA projects. From that, all STAR-
Counts files included as Gene Expression Quantification data types were downloaded. The
associated sample sheet and clinical table were also retrieved and are accessible in the
work’s GitHub repository.

Upon retrieval of the data from the GDC, preprocessing steps were undertaken to
prepare for subsequent analyses. Initially, undersampling was applied to the cancerous
classes to address the imbalance in the original dataset (refer to Table 1). Subsequently,
utilizing the KnowSeq package [14,16] (version 3.18), the data underwent the following
procedures: the transformation of count data into gene expression values for each sample
through conditional quantile normalization [17], the identification and removal of outliers
(i.e., samples exhibiting expression distributions markedly different from the rest), and
the application of surrogate variable analysis (SVA) to mitigate batch effects [18]. Table 1
provides an overview of the number of samples of each class downloaded from the GDC,
as well as the number remaining after undersampling and after outlier removal.

Table 1. Downloaded, randomly selected (through undersampling), and filtered samples of each class.

Class Description Project Downloaded Rand. Selected Quality Samples

CERVIX_TUMOR Cervix cancer TCGA-CESC 304 300 295

CORPUS_TUMOR Uterine corpus cancer TCGA-UCEC/SARC 552 300 284

HEALTHY Non-cancerous cervix
or uterine corpus

TCGA-
CESC/UCEC/SARC 25 25 21

2.1.2. Identification of the Best Feature Selection Method

To select the most appropriate feature selection method for our classification task,
the three methods available in KnowSeq were evaluated: MRMR (maximum relevance,
minimum redundancy) [19], RF (random forest as a feature selector) [14], and DA (disease
association, which ranks genes based on their biological association with the disease of
interest, in this case, uterine disease) [14]. For this purpose, the high-quality samples were
randomly split into a training set and a test set, using an 80–20% scheme (see Table 2).

Table 2. Number of samples of each class in training and test sets.

Class Training Samples Test Samples

CERVIX_TUMOR 233 62

CORPUS_TUMOR 230 54

HEALTHY 17 4

https://portal.gdc.cancer.gov/
https://www.cancer.gov/ccg/research/genome- 120sequencing/tcga
https://www.cancer.gov/ccg/research/genome- 120sequencing/tcga
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The training set was subjected to the KnowSeq DEGsExtraction function based on the
limma library [20], which performed an analysis to extract DEGs in the three classes of
interest. This function was configured with a significance level of 0.001, determined using
the t-statistic test moderated by an empirical Bayes method [21], and adjusted using the
Benjamini–Hochberg method (BH) [22] to control the false discovery rate. Note that since
this is a multiclass problem, the t-statistic was applied pairwise to sample classes, avoiding
the classical biclass pipeline, which limma implements by default. Parameters were set to a
value of 2 for both lfc (minimum log2 fold change) and cov (minimum coverage). Cov is
a parameter in KnowSeq that represents the pairs of distinct sample conditions between
which a particular gene can differentiate [23]. To be considered a DEG, a gene must meet
all three criteria (p-value, coverage, and logFC). The resulting DEGs expression matrix
was subjected to KnowSeq FeatureSelection function, which was set to three distinct mode
options (mrmr, rf, or da) to prioritize genes based on their significance in predicting the
sample class. Afterward, for each ranking, the KnowSeq knn_train function was executed
on the training sample set. This function normalized the data, optimized the value of the
number of k neighbors, and trained 10 kNN models, utilizing the top 1 to 10 genes from the
corresponding ranking as features. Subsequently, the KnowSeq knn_test function allowed
the assessment of each model’s effectiveness on the test sample set. The original source
code of this function was modified to perform min–max normalization on the training and
test sets jointly.

2.1.3. 5-Fold Cross-Validation Assessment Using MRMR as the Feature Selection
Method—Gene Signature Identification

Based on the findings from the preceding experiment, MRMR emerged as the most
effective method for feature selection, hence its employment for the subsequent phases of
this work. To mitigate the potential impact of sampling variability, the next step involved
evaluating the model’s performance across multiple training–test partitions of the dataset.
In particular, a 5-fold cross-validation assessment process was performed. For the training
set in each fold, DEGs were extracted, and an MRMR ranking of 10 genes was obtained. An
increasing number of genes from the ranking was used to train 10 kNN models. For each
number of genes, mean accuracies among the five folds were calculated. After inspecting
the MRMR rankings from each fold, a reduced gene signature was proposed as the final
feature selection for this classification task.

2.1.4. 5-Fold Cross-Validation Assessment Using the Gene Signature as the
Feature Selection

An additional 5-fold cross-validation was performed, where the same feature selection
was used consistently across folds—namely, the genes comprising the signature identified
in the prior cross-validation. To minimize the impact of the 5-fold partition on results,
20 iterations of the cross-validation were carried out, varying the random seed for the
generation of pseudo-random numbers.

2.1.5. Functional Annotation of the Gene Signature

Functional annotation of the genes was conducted manually utilizing resources such
as GeneCards (https://www.genecards.org/, version 5.18, accessed on 3 January 2024) and
the National Library of Medicine (https://www.ncbi.nlm.nih.gov/, accessed on 3 January
2024). Moreover, a comprehensive literature review was carried out to explore relationships
between each gene and uterine cancer or, alternatively, cancer in general. In addition to
manually searching for pertinent articles, the VarElect tool (https://ve.genecards.org/,
accessed on 3 January 2024) was also utilized for the gene-phenotype association search.

https://www.genecards.org/
https://www.ncbi.nlm.nih.gov/
https://ve.genecards.org/
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2.1.6. Complementary miRNA Sample Analysis

To carry out the study with miRNA samples, an analysis similar to the one described
above for RNA-Seq was conducted over the same TCGA projects. To avoid extending the
length of this work, a supplementary document is included (see Supplementary Materials),
providing detailed information on the methodology and presenting the different results
obtained. Only the most relevant results with miRNA data are briefly discussed in the
main manuscript.

2.2. Classification of Cervical Adenocarcinoma and Cervical Squamous Cell Carcinoma Samples

After confirming an adequate representation of the primary histological subtypes of
cervical cancer (adenocarcinoma and squamous cell carcinoma) within the downloaded
GDC samples, we proceeded to train the kNN model for classifying cervical cancer samples
into these two subtypes. To focus solely on cervical cancer, samples related to uterine
corpus cancer or healthy tissue were excluded from the analysis.

The preprocessing of the raw cervix cancer samples followed a similar approach to
the previous classification task. The primary distinction involved relabeling these samples
(ADENO—48 samples or SQUAMOUS—251 samples) based on information extracted from
the primary_diagnosis field in the clinical dataset (refer to Table 3). Five samples could not be
classified into any of these classes because their histological subtype was “Adenosquamous
carcinoma”. These five mixed samples were eliminated. After removing the outliers, there
were 46 ADENO and 244 SQUAMOUS samples. The steps followed for the identification
of a gene signature and its assessment for this classification task were analogous to those
explained for the previous classification. In this scenario, KnowSeq utilized the limma
biclass pipeline to extract DEGs.

Table 3. Number of downloaded cervical cancer samples that share the same primary diagnosis. All
samples belonging to the first four subtypes in the table were labeled as ADENO; those belonging to
the next 5 types as SQUAMOUS and those belonging to the last type were eliminated.

Histological Cervical Cancer Subtype Downloaded Samples

Adenocarcinoma, endocervical type 21

Adenocarcinoma, NOS 7

Endometrioid adenocarcinoma, NOS 3

Mucinous adenocarcinoma, endocervical type 17

Squamous cell carcinoma, NOS 169

Papillary squamous cell carcinoma 1

Squamous cell carcinoma, keratinizing, NOS 30

Basaloid squamous cell carcinoma 1

Squamous cell carcinoma, large cell, nonkeratinizing 50

Adenosquamous carcinoma 5

External Validation of the Gene Signature for the Classification of the Main Histological
Subtypes of Cervical Cancer

Through the GDC, we obtained additional cervical cancer samples from the Cancer
Genome Characterization Initiative (CGCI) program, specifically from the HTMCP-CC
project. Operating independently of TCGA, our goal was to externally validate the gene
signature designed for classifying histological subtypes of cervical cancer. In this new
GDC download, samples from both TCGA-CESC and CGCI-HTMCP-CC were acquired
simultaneously (the sample sheet and associated clinical tables are accessible in the work’s
GitHub repository). This facilitated the application of the preprocessing pipeline to the
combined set of cervical samples from both projects, a crucial step to address potential batch
effects that could lead to unexpected outcomes. Given that the CGCI-HTMCP-CC dataset
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had fewer samples than the TCGA-CESC project, the initial step involved undersampling
the TCGA-CESC samples, specifically from the majority class, SQUAMOUS. The number
of samples of each class from each project is displayed in Table 4. After obtaining the
preprocessed combined dataset, samples from the TCGA-CESC project were utilized to
train the kNN model with the gene signature previously obtained. Subsequently, samples
from the CGCI-HTMCP-CC project were used to test this model.

Table 4. Cancer cervix samples from TCGA-CESC (original dataset) and CGCI-HTMCP-CC (external
dataset) projects. Downloaded, randomly selected (through undersampling), and filtered samples of
each class.

- Class Downloaded Unders. Quality Samples

CESC ADENO 48 48 47
SQUAMOUS 251 150 149

CGCI ADENO 16 16 16
SQUAMOUS 174 174 170

2.3. Comparing the Adenosquamous Class with the Main Histological Subtypes of Cervical Cancer

The TCGA-CESC project included five adenosquamous (or mixed) cervix cancer
samples, whereas the CGCI-HTMCP-CC project had one. As previously mentioned, these
samples were excluded from the kNN classification of cervix cancer subtypes. Nevertheless,
we conducted an additional experiment to explore the expression of the top 12 DEGs (genes
with the lowest logFC among the two main histological subtypes) in these mixed samples.
These DEGs were identified using the combined dataset from both TCGA-CESC and CGCI-
HTMCP-CC samples, employing the KnowSeq DEGsExtraction function, as described in
Section 2.1.2.

Note: The work’s GitHub repository contains all the R Markdown files used to cre-
ate this article: https://github.com/Almorox/MDPI_Journal_GENES_Uterine_Cancers-
Characterization_through_Gene_Expression_Analysis (accessed on 29 January 2024).

3. Results and Discussion
3.1. Classification of Healthy, Cervical Cancer, and Uterine Corpus Cancer Samples
3.1.1. Identification of the Best Feature Selection Method

Using the training set (Table 2) and the specified statistical parameters, 19 genes were
detected as DEGs across the three classes. Examining the first 12 extracted DEGs, it can be
observed that, for most of them (with the exception of the MTND2P26 gene), the average
expression level in uterine corpus cancer samples lay between those of the other two
sample classes (see Figure 1, with associated adjusted p-values in Table 5). This indicates
that the classifier is expected to successfully differentiate between cervical cancer and
healthy classes but may encounter challenges in distinguishing uterine corpus cancer from
either of the other two classes.

Remarkably, the MRMR and RF feature selection methods achieved a kNN test ac-
curacy of 1 when three genes were considered (see Figure 2). However, when employing
a smaller number of genes, the MRMR method appears to be more effective. Therefore,
MRMR was chosen as the feature selection method for this work.

https://github.com/Almorox/MDPI_Journal_GENES_Uterine_Cancers-Characterization_through_Gene_Expression_Analysis
https://github.com/Almorox/MDPI_Journal_GENES_Uterine_Cancers-Characterization_through_Gene_Expression_Analysis
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Figure 1. Boxplots showing the expression of the first 12 extracted DEGs in each uterine sample class
(CORPUS_TUMOR, CERVIX_TUMOR and HEALTHY) using the training set.

Table 5. Adjusted p-values (calculated by the t-statistic test moderated by an empirical Bayes method
and adjusted using the BH method) for the differential expression of the first 12 extracted DEGs
across each pair of uterine sample classes, using the training set.

Gene CERVIX_TUMOR-
CORPUS_TUMOR

CERVIX_TUMOR-
HEALTHY

CORPUS_TUMOR-
HEALTHY

ADCYAP1R1 3.69 × 10−123 5.04 × 10−98 1.28 × 10−41

C20orf85 1.11 × 10−119 1.69 × 10−85 2.00 × 10−31

AC104596.1 9.71 × 10−116 4.81 × 10−81 6.27 × 10−29

S100A9 6.86 × 10−100 6.34 × 10−47 4.38 × 10−9

VWCE 6.19 × 10−173 5.33 × 10−149 9.19 × 10−75

MTND2P26 3.03 × 10−76 1.54 × 10−9 2.16 × 10−39

AP000769.1 5.78 × 10−101 7.13 × 10−67 4.44 × 10−22

KPRP 8.42 × 10−150 1.27 × 10−76 5.68 × 10−15

CIAO2B 6.04 × 10−155 1.64 × 10−76 1.84 × 10−13

SHQ1 6.79 × 10−154 3.92 × 10−91 2.58 × 10−24

CCNK 5.37 × 10−180 8.43 × 10−104 4.38 × 10−25

SERTM1 3.43 × 10−119 2.44 × 10−93 1.15 × 10−38
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Figure 2. Classification of CORPUS_TUMOR, CERVIX_TUMOR, and HEALTHY uterine samples:
kNN test accuracy obtained using different feature selection methods (MRMR, RF, and DA). The
values are presented as a function of the number of genes used.

3.1.2. 5-Fold Cross-Validation Using MRMR as the Feature Selection Method

Figure 3 illustrates that by utilizing only two MRMR-selected genes, the average test
accuracy across folds reaches 0.99, suggesting a promising outcome.

Figure 3. Classification of CORPUS_TUMOR, CERVIX_TUMOR, and HEALTHY uterine samples:
kNN mean training and testing accuracy of the 5-fold cross-validation using MRMR. The values are
presented as a function of the number of genes used.

Nevertheless, it is crucial to recognize that the healthy class is severely underrep-
resented, meaning that high error rates in its classification have minimal impact on the
overall classification accuracy. This is why another insightful graphical representation of
the classification results is the sum of the test confusion matrices from each fold. This matrix
offers a comprehensive overview of the successes and failures of the classification process
across all quality samples. In particular, as depicted in Figure 4, when utilizing three genes,
the sole type of error observed is the misclassification of healthy samples as samples of
uterine corpus cancer, with an error rate of 14.28%. The occurrence of the highest error rate
in the classification of the least represented class contributes to a decline in the overall test
F1 value (97.26%) compared to that of precision (99.5%).
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Figure 4. Classification of CORPUS_TUMOR, CERVIX_TUMOR, and HEALTHY uterine samples:
the sum of the test confusion matrices of each fold of the 5-fold cross-validation when using the first
three MRMR-selected genes. The green color indicates correct predictions, and the red color indicates
incorrect predictions.

Among the top two MRMR-selected genes from the 5-fold cross-validation, only the
VWCE and CLDN15 combination is observed in more than one fold (see Table 6). In fold 1,
this combination is followed by the ADCYAP1R1 gene, whereas in fold 4, it is followed by
SERTM1. Based on Table 5, ADCYAP1R1 exhibits lower adjusted p-values for differential
expression compared to SERTM1 across all three pairs of sample classes. Therefore, the
genes VWCE, CLDN15, and ADCYAP1R1 were selected to compose a gene signature, with
which the 5-fold cross-validation was repeated.

Table 6. Classification of CORPUS_TUMOR, CERVIX_TUMOR and HEALTHY uterine samples: top
10 MRMR-selected genes for each fold (train set) of the 5-fold cross-validation.

- Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10

Fold 1 VWCE CLDN15 ADCYAP1R1 CCNK KCNK10 SHQ1 SERTM1 CCDC153 CD34 GDF11

Fold 2 CCNK VWCE SHQ1 GDF11 SERTM1 CLDN15 ADCYAP1R1 CCDC153 CD34 CPOX

Fold 3 S100A7 CD34 ADCYAP1R1 CCNK VWCE SHQ1 SERTM1 KCNK10 CLDN15 CPOX

Fold 4 VWCE CLDN15 SERTM1 SHQ1 CCNK ADCYAP1R1 KCNK10 CD34 CPOX GDF11

Fold 5 VWCE GDF11 CCNK ADCYAP1R1 SHQ1 CLDN15 SERTM1 CPOX CD34 SERPINB5

3.1.3. 5-Fold Cross-Validation Using the Gene Signature for Feature Selection

Figure 5 (with associated adjusted p-values in Table 7) and Figure 6 allow us to
gain insight into the ability of VWCE, CLDN15, and ADCYAP1R1 genes to effectively
distinguish between the three classes of interest. The genes VWCE and CLDN15 exhibit
overexpression in cancerous uterine tissue compared to healthy uterine tissue. However,
this overexpression is more pronounced in the cervix than in the corpus. Conversely, the
gene ADCYAP1R1 demonstrates underexpression in cancerous uterine tissue compared to
its healthy counterpart, with this underexpression being more accentuated in the cervix
than in the corpus.
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Figure 5. Boxplots showing the expression of VWCE, CLDN15, and ADCYAP1R1 genes in each uterine
sample class (CORPUS_TUMOR, CERVIX_TUMOR, and HEALTHY) using all quality samples.

Table 7. Adjusted p-values (calculated by the t-statistic test moderated by an empirical Bayes
method and adjusted using the BH method) for the differential expression of VWCE, CLDN15, and
ADCYAP1R1 genes across each pair of uterine sample classes, using all quality samples.

Gene CERVIX_TUMOR-
CORPUS_TUMOR

CERVIX_TUMOR-
HEALTHY

CORPUS_TUMOR-
HEALTHY

VWCE 8.35 × 10−217 5.48 × 10−185 5.89 × 10−92

CLDN15 6.98 × 10−228 2.89 × 10−144 2.73 × 10−43

ADCYAP1R1 3.88 × 10−157 1.36 × 10−127 8.09 × 10−56

Figure 6. Heatmap showing the expression of VWCE, CLDN15, and ADCYAP1R1 genes in
21 randomly selected samples of each uterine class (CORPUS_TUMOR, CERVIX_TUMOR, and
HEALTHY). Undersampling of cancerous classes was carried out using all quality samples.

The mean training and test accuracy values achieved through 5-fold cross-validation
using VWCE, CLDN15, and ADCYAP1R1 as selected features were 100%. This optimal
result remained constant across the 20 iterations of the 5-fold cross-validation (carried out
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by varying the seed). Hence, the gene signature perfectly characterizes the three sample
classes (see Figure 7) and corrects the misclassification of healthy samples as uterine corpus
cancerous observed when using alternative MRMR-selected genes.

Figure 7. Classification of CORPUS_TUMOR, CERVIX_TUMOR, and HEALTHY uterine samples:
sum of the test confusion matrices of each fold of the 5-fold cross-validation using the complete gene
signature (VWCE, CLDN15, and ADCYAP1R1) for feature selection. The green color indicates correct
predictions.

3.1.4. Gene Signature Annotation

VWCE (Von Willebrand Factor C And EGF Domains) Gene. Biological functions
attributed to VWCE (also referred to as URG11) include its predicted involvement in
calcium ion binding activity, cellular response to viruses, and localization within the
cytoplasm. It may also serve as a regulatory component in the beta-catenin signaling
pathway and be a potential target for the chemoprevention of hepatocellular carcinoma.
Diseases linked to VWCE include tarsal-carpal coalition syndrome [24]. Furthermore, there
exist studies associating this gene with diverse types of neoplasms [25]. For instance, it
was found to be downregulated in breast and prostate cancers, where it functions as a
tumor suppressor [26,27]. Interestingly, another project report mentioned the observation
of VWCE overexpression in cervical cancer [28], which aligns with our findings. However,
the role of VWCE gene in uterine cancers remains unclear.

CLDN15 (Claudin 15) Gene. This gene is responsible for encoding a member of the
claudin family. Claudins play a crucial role in forming tight junction strands, which act
as a barrier to regulate the movement of solutes and water across the paracellular space
between epithelial or endothelial cell layers. CLDN15 is involved in pathways such as
the blood–brain barrier and immune cell transmigration, with its associated diseases,
including collagenous colitis [24]. It was reported as a good positive marker for malignant
pleural mesothelioma [29]. While alterations in the expression of other claudins in uterine
cancers have been documented, with notable increases in claudins-1 and -7 observed in
premalignant cervical lesions and invasive cancer compared to normal cervical epithelia, as
well as elevated levels of claudins-3 and -4 in endometrial cancer [30], the role of CLDN15
in uterine cancers remains largely undescribed.

ADCYAP1R1 (ADCYAP Receptor Type I) Gene. This gene encodes a membrane-
associated receptor for ADCYAP1 (adenylate cyclase-activating polypeptide 1), mediat-
ing various biological actions of this ligand. Specifically, it may regulate the release of
adrenocorticotropin, luteinizing hormone, growth hormone, prolactin, epinephrine, and
catecholamine. It causes smooth muscle relaxation and secretion in the gastrointestinal
tract. ADCYAP1R1-related pathways include signaling by NTRKs, and among its related
diseases are accommodative spasm and sudden infant death syndrome. A study conducted
by Jung et al. (2011) [31] detected a correlation between the level of ADCYAP1 promoter
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hypermethylation (causing transcriptional silencing of this gene) and the development
of cervical cancer. Our results can complement those of these authors, as we are identi-
fying another factor causing the loss of ADCYAP1 functions in cervical cancer cells: the
underexpression of one of its receptors.

3.1.5. Complementary miRNA-Seq Analysis

A double miRNA-Seq analysis was performed on the miRNA data from the same
samples. First, the whole miRNA dataset was employed, and MRMR revealed a gene
signature reaching an F1-macro score of 82% with only four biomarkers. Then, the DIANA-
TarBase v8 database [32] was used to recover the miRNAs targeting any of the genes in
the RNA-Seq signature, and the same MRMR algorithm attained similar results with this
small subset of miRNA. From both experiments, two miRNA-coding genes (hsa-mir-21 and
hsa-mir-10b) were identified as a double-gene miRNA-coding signature, demonstrating a
mean F1-macro score of 82% by themselves during a 5-fold cross-validation assessment in
the classification of the three types of uterine samples (cervix cancerous, corpus cancerous,
and healthy). Specifically, hsa-mir-21 is documented as a regulator of VWCE, and hsa-
mir-10b as a regulator of ADCYAP1R1, potentially reinforcing the involvement of these
protein-coding genes in the disease. Moreover, according to Sheedy et al. (2018) [33] and
Rhim et al. (2022) [34], research findings indicate that both hsa-mir-21 and hsa-mir-10b can
significantly contribute to the promotion of tumor growth, invasion, and metastasis in
various cancer types. Specifically, a study conducted by Huang et al. (2012) [35] revealed
that hsa-mir-10b exhibited downregulation in advanced-stage of small cell cervical cancer
(SCCC) tissues when compared to early-stage SCCC tissues.

3.2. Classification of Cervical Adenocarcinoma and Cervical Squamous Cell Carcinoma Samples
3.2.1. 5-Fold Cross-Validation Using MRMR as the Feature Selection Method

The outcomes of the 5-fold cross-validation applied to classify cervical cancer samples
into their primary histological subtypes (ADENO or SQUAMOUS) utilizing MRMR as the
feature selection technique yielded optimal results. Regardless of the number of genes
used (ranging from 1 to 10), both training and test accuracy values remained consistently
at 100% across all folds. This underscores the significant discriminative potential of the
genes identified by MRMR in distinguishing between these cancer subtypes. Furthermore,
depending on the fold, the number of extracted DEGs varied between 1000 and 1005.

In this instance, the top one MRMR gene varies in each fold (see Table 8), which is
likely a consequence of the composition of each fold’s training set. However, the gene
in the second position remains constant: ICA1L. Therefore, we aimed to assess the per-
formance of ICA1L as the sole final selected feature for this classification task, forming a
uni-gene signature.

Table 8. Classification of SQUAMOUS and ADENO cervix cancer samples: Top 10 MRMR-selected
genes for each fold (training set) of the 5-fold cross-validation.

- Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10

Fold 1 DYRK3 ICA1L GPR171 THPO AC091563.1 RHOV ZNF175 TINCR ANXA8L1 POPDC3

Fold 2 ZNF812P ICA1L ZNHIT1 GPR171 TINCR THPO AC091563.1 RHOV EPCAM ZNF175

Fold 3 GABRQ ICA1L GPR171 THPO AC091563.1 RHOV ZNF175 SIPA1L3 CARD16 AC112907.2

Fold 4 SERPINB13 ICA1L GPR171 THPO AC091563.1 AC012123.1 RHOV ZNF175 SIPA1L3 GPR89B

Fold 5 LINC01679 ICA1L GPR171 THPO AC091563.1 AC012123.1 RHOV ZNF175 TINCR ANKS4B

3.2.2. 5-Fold Cross-Validation Using the Gene Signature for Feature Selection

The mean training and test accuracy values achieved through 5-fold cross-validation
using ICA1L as the only selected feature were 100%. This optimal result remained constant
across the 20 iterations of the 5-fold cross-validation, suggesting that the expression of the
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ICA1L gene alone is indicative enough to determine whether a cancerous cervix sample
belongs to the adenocarcinoma or squamous cell carcinoma class.

Using all cervix cancer samples, the ICA1L differential expression among the
two classes of interest was associated with a logFC of 6.92 and an adjusted p-value of
0, which explains the perfect kNN prediction. The clear distinction between the two sample
classes is evident in the pronounced separation of their mean ICA1L expression values (see
Figure 8). The SQUAMOUS class exhibits the highest value, and there is no overlap among
the outlier values of each class.

Figure 8. Boxplots showing the expression of the ICA1L gene in each cervix cancer class (SQUAMOUS
and ADENO) using all TCGA-CESC quality samples.

3.2.3. External Validation of the Uni-Gene Signature for the Classification of Histological
Subtypes of Cervical Cancer

When using the TCGA-CESC sample set (original dataset) to train the kNN classifier
and the CGCI-HTMCP-CC sample set (external dataset) to test the classifier, utilizing only
the ICA1L gene as the selected feature, both the training and test accuracies were 100%. In
this way, the utility of the ICA1L gene to distinguish the two main histological subtypes
of cervix cancer was externally validated. Through Figure 9, it can be observed that the
expression of ICA1L gene in the two classes of interest exhibits similar behavior in both
datasets. This ICA1L differential expression was associated with a logFC of 5.36 and an
adjusted p-value of 2.22 × 10−178 in the TCGA-CESC dataset, while these same parameters
were 5.38 and 1.80 × 10−129, respectively, for the CGCI-HTMCP-CC dataset.

Figure 9. Boxplots showing the expression of the ICA1L gene in each cervix cancer class (SQUAMOUS
and ADENO): TCGA-CESC vs. CGCI-HTMCP-CC samples after joint normalization of both datasets.
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3.2.4. Gene Signature Annotation

ICA1L (Islet Cell Autoantigen 1 Like) gene. This gene’s products are predicted to enable
protein domain-specific binding activity, be involved in the regulation of transport, act
upstream of or within spermatid development, be located in acrosomal vesicles, and be
active in the Golgi apparatus. Diseases associated with ICA1L include amyotrophic lateral
sclerosis type 2 (juvenile) and myofibroma [24]. It has been proposed that tumors with SRF-
ICA1L fusions represent neoplasms exhibiting incomplete smooth muscle differentiation [36].
Nevertheless, the role of ICA1L in cervical cancer has not been described.

3.3. Comparing the Adenosquamous Class with the Main Histological Subtypes of Cervical Cancer

The top 12 DEGs, identified with the lowest logFC values, in the two major histological
subtypes of cervical cancer using the combined dataset encompassing TCGA-CESC and
CGCI-HTMCP-CC samples were DSG3, MUC5B, MSMO1, AC026725.1, ICA1L, DSC3,
AP1G1, CCDC89, SNED1-AS1, AC244034.3, AL360182.1, and FBXL13. Refer to Table 9 to
observe the logFC and adjusted p-values associated with each gene’s differential expression.

Table 9. LogFC and adjusted p-values (calculated by the t-statistic test moderated by an empirical
Bayes method and adjusted using the BH method) for the differential expression of the top 12 DEGs,
identified with the lowest logFC values, in the two major histological subtypes of cervical cancer
using the combined dataset encompassing TCGA-CESC and CGCI-HTMCP-CC samples.

Gene LogFC adj.P.Val

DSG3 5.6369 7.52 × 10−271

MUC5B −5.6182 2.58 × 10−216

MSMO1 5.6171 1.30 × 10−294

AC026725.1 5.4261 6.76 × 10−263

ICA1L 5.3658 1.88 × 10−319

DSC3 5.1875 1.45 × 10−291

AP1G1 5.0555 1.35 × 10−298

CCDC89 4.7556 3.06 × 10−276

SNED1-AS1 4.6948 5.27 × 10−272

AC244034.3 −4.6899 1.05 × 10−212

AL360182.1 4.6675 6.50 × 10−237

FBXL13 −4.6661 6.26 × 10−215

Figure 10 allows the observation of the expression of these genes in samples corre-
sponding to the mixed subtype (adenosquamous carcinoma) and facilitates comparison
with their expression in the two main subtypes. The same plot was constructed for TCGA-
CESC and CGCI-HTMCP-CC samples separately (see Figure 11). This enables confirming
that the expression values specific to each histological subtype are similar in both projects.
It can be observed that the six adenosquamous samples have similar expression values
with low dispersion. For nine of these genes (DSG3, MSMO1, AC026725.1, ICA1L, DSC3,
AP1G1, CCDC89, SNED1-AS1, and AL360182.1), the mean expression value in the mixed
class is closer to that of the ADENO class, while for the remaining three genes (MUC5B,
AC244034.3 and FBXL13), it is closer to that of the SQUAMOUS class. What is evident for
the 12 genes is that the expression value in the mixed class is closer to that of the class in
which the gene expression is lower, suggesting a lesser cellular differentiation in mixed
tumors compared to the main subtypes.

Dedifferentiation is one manifestation of tumor plasticity, wherein cancerous cells
lose their specialized characteristics and adopt less-differentiated phenotypes resembling
those observed during early embryonic development or regenerative processes. The loss
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of differentiation is linked to heightened tumor cell invasiveness and resistance to drugs.
Moreover, emerging evidence suggests its association with immune surveillance as well [37].
In squamous cell carcinoma, for instance, dedifferentiated tumor cells acquire stem-like
properties and express the immune-modulating molecule CD80, enabling them to evade
immune attacks [38].

Both the 2014 and 2020 World Health Organization (WHO) criteria require unequivocal
glandular and squamous differentiation for diagnosing cervical adenosquamous carcinoma.
Nevertheless, according to Stolnicu et al., in practice, diagnoses of this subtype are fre-
quently made erroneously in tumors lacking unequivocal squamous and/or glandular
differentiation [39]. A recent analysis of the morphology of this subtype revealed that,
in 42% of cases initially diagnosed as adenosquamous carcinoma, a reclassification was
necessary [9]. Thus, the observed pattern in our results, instead of providing insights for
the characterization of cervical adenosquamous carcinoma, may suggest the need to recon-
sider the diagnosis of these six mixed samples, which appear to resemble dedifferentiated
cervical tumors. Further investigation with a larger sample size is crucial to validate and
extend these findings.

Figure 10. Top 12 DEGs between the SQUAMOUS and ADENO cervix cancer classes: boxplots
showing their expression in the SQUAMOUS, ADENO, and ADENO_SQUAMOUS classes, using the
combined dataset encompassing TCGA-CESC and CGCI-HTMCP-CC samples.
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Figure 11. Top 12 DEGs between the SQUAMOUS and ADENO cervix cancer classes: boxplots
showing their expression in the SQUAMOUS, ADENO, and ADENO_SQUAMOUS classes. TCGA-
CESC vs. CGCI-HTMCP-CC samples after joint normalization of both datasets.

4. Conclusions and Future Work

The real gene expression quantification data obtained from TCGA underwent analysis
using KnowSeq, enabling the identification of differentially expressed genes among healthy
uterine tissue, cervical cancerous tissue, and uterine corpus cancerous tissue. Through
the utilization of the MRMR feature selection method, a gene signature consisting of only
three genes (VWCE, CLDN15, and ADCYAP1R1) was identified. The 5-fold cross-validation
results were optimal, with overall training and test accuracies of 100%. This result remained
consistent across 20 repetitions of the cross-validation. The three genes are protein-coding
genes. VWCE and CLDN15 have previously been associated with various neoplasms; how-
ever, their role in uterine cancers remains largely undescribed. In the case of ADCYAP1R1,
its ligand (ADCYAP1) has been previously reported as transcriptionally silenced in cervical
cancer. Hence, the observed underexpression of ADCYP1R1 in this sample class may indi-
cate an alternative mechanism for the inhibition of ADCYAP1 functions in cervical cancer
cells. Moreover, concurrently with the miRNA-Seq study, a two-gene miRNA-coding signa-
ture (hsa-mir-21 and hsa-mir-10b) was identified, exhibiting a remarkable 82% test F1-macro
score for the same classification task. The DIANA-Tarbase documents these miRNAs as
regulators of VWCE and ADCYAP1R1, respectively, potentially reinforcing the involvement
of these genes in uterine cancer.

In a parallel experiment, cervical cancer samples were classified into their two primary
histological subtypes: squamous cell carcinoma and adenocarcinoma. A uni-gene signature,
defined by the ICA1L gene, achieved 100% training and test accuracies in a 5-fold cross-
validation process. Once again, this result remained consistent across 20 repetitions of
the cross-validation. External validation of this gene signature was possible through the
CGCI-HTMCP-CC project. While ICA1L gene has previously been linked to neoplasms
exhibiting incomplete smooth muscle differentiation, this gene’s role in cervical cancer has
not been described.

Finally, the study examined the expression of 12 DEGs, identified between the main
histological subtypes of cervical cancer, in six cervical adenosquamous carcinoma (mixed)
samples. For all these genes, the expression value in the mixed class was closer to that of the
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class with lower gene expression, suggesting lesser cellular differentiation in mixed tumors
compared to the main subtypes. This outcome may indicate the need for reconsidering the
diagnosis of the six studied mixed samples.

Overall, this study offers valuable insights into the molecular mechanisms of cervical
and uterine corpus cancers, setting the stage for future investigations aimed at enhancing
diagnostic and treatment strategies. Subsequent research can delve into the presence and
expression of HPV oncogenes in cervical cancer samples, contrasting them with samples
from uterine corpus cancer and healthy uterine tissues. Moreover, exploring whether the
identified gene signatures possess prognostic value by examining their associations with
overall patient survival will be an intriguing approach for further exploration.
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