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ABSTRACT
Introduction: Treatment resistance poses a significant obstacle in oncology, especially in biliary tract 
cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted 
therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular 
mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and 
changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major 
focus of research: strategies being explored include combination therapies, modulation of the tumor 
microenvironment, and personalized approaches.
Areas covered: We provide a current overview and discussion of the most relevant mechanisms of 
resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we 
compare the different strategies that are being implemented to overcome these obstacles.
Expert opinion: So far there is no unified theory on drug resistance and progress is limited. To 
overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell 
transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide 
effective treatment strategies. Furthermore, we provide insights into what we consider the most 
promising areas of research, and we speculate on the future of managing treatment resistance to 
improve patient outcomes.
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1. Introduction and current therapeutic options

The term, biliary tract cancers (BTCs), refers to malignancies 
that arise in the bile ducts, including intrahepatic bile ducts, 
extrahepatic bile ducts, and the gallbladder. Overall, BTCs are 
relatively rare compared to other cancers, accounting for 
approximately 3% of all gastrointestinal malignancies, but 
with various incidence rates around the world [1]. In the 
United States, the estimated annual incidence of BTC is 
around 2,500 to 3,000 cases [2]. The risk factors for BTC include 
chronic inflammation of the bile ducts (such as in primary 
sclerosing cholangitis), gallstones, liver fluke infections, and 
genetic alterations [1].

Pancreatic cancer (PC) is a highly aggressive malignancy 
that arises in the tissues of the pancreas. It is more common 
than BTC, being the 12th most common cancer worldwide 
and accounting for approximately 2% of all new cancer cases 

[3]. In the United States, PC is the 10th most common cancer, 
and it is the third leading cause of cancer-related deaths, 
having an estimated annual incidence of around 60,000 
cases. The risk factors for PC include smoking, obesity, chronic 
pancreatitis, diabetes, family history of PC, as well as some 
genetic alterations [4].

1.1. Treatment algorithm in biliary tract cancer (BTC)

Despite the rarity of this disease, recent years have witnessed 
a substantial shift in the treatment paradigm of advanced BTC, 
with the introduction of both immunotherapy and target 
therapies (Table 1). Following the results of the phase-3 
TOPAZ-1 trial, standard first-line treatment has become the 
combination of immune-chemotherapy with anti- 
programmed death-ligand 1 (PD-L1) durvalumab plus 
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cisplatin – gemcitabine (GEM) [5]. While the overall survival 
(OS) did not exhibit a substantial numerical increase (12.9 vs 
11.3 months at the latest interim analysis), around 26% of 
patients in the immune-chemotherapy arm had a continued 
response after 1 year vs only 15% in the chemotherapy arm, 
showing how a long-lasting response can be obtained more 
frequently with immuno-chemotherapy [6]. Similar OS results 
have been observed with the combination of anti PD-1 pem-
brolizumab plus cisplatin-GEM, with an estimated ongoing 
response rate at 24 months of 18% [7].

Second-line treatment is now divided according to the 
presence of targetable mutations. Fibroblast growth factor 
receptor 2 (FGFR2) rearrangements have three Food and 
Drug Administration (FDA)-approved target drugs, pemigati-
nib, futibatinib, and infigratinib [8–11]. Although efficacy var-
ies with each drug, OS is overall significantly longer (up to 
21.7 months with futibatinib), and duration of response can 
range from 5 months with infigratinib, up to 9.1 and 9.7  
months with pemigatinib and futibatinib, respectively. IDH1 
mutations can be targeted using FDA-approved ivosidenib, 
based on a small progression-free survival (PFS) gain against 
placebo (2.7 vs 1.4 months) and PFS rates at 12 months of 22% 
vs 0%, although overall response rate (ORR) was only 2% [12]. 
Anti-Her2 therapy with zanidatamab was given FDA 
Breakthrough Approval in 2020 and the recent results of the 
HERIZON-BTC-01 trial are encouraging, with an ORR of 41% 
and PFS of 5.5 months [13]. Notwithstanding the agnostic 

therapies available for alteration such as neurotrophic tyrosine 
receptor kinase (NTRK), BRAF, RET, and high microsatellite 
instability (MSI-H), many other drugs are in the early stages 
of testing in BTC. This suggests the potential for an expansion 
in approved targeted treatments for BTC in the near future 
[14,15] (Table 1).

Second-line standard of care treatment for patients with no 
targetable mutations is still chemotherapy, with no clear pre-
ferred treatments. One of the most common regimens, oxali-
platin–5-fluorouracil is associated with a small but statistically 
significant OS gain when compared to active symptom control 
(6.2 vs 5.3 months), but with poor ORR (5%) and disease con-
trol rate (33%), indicating high levels of primary resistance 
[16]. A novel option is the use of liposomal-irinotecan +5-fluor-
ouracil, associated with PFS ranging from 2.7 to 7.1 months, 
and ORR of around 15% [17,18]. Several chemotherapy drugs 
have been experimented within second or subsequent lines of 
therapy, yet none has demonstrated a clear advantage over 
the others [19] (Table 1).

1.2. Treatment algorithm in pancreatic cancer (PC)

Chemotherapy with conventional anticancer agents is still the 
first-line treatment standard in metastatic PC (Table 2). The 
most commonly used regimens are FOLFIRINOX (5-fluoroura-
cil + irinotecan + oxaliplatin) or GEM + nab-paclitaxel, both 
with an OS of less than 1 year (11 and 8.5 months respec-
tively), ORR between 31.6% and 23%, and PFS rates at 12  
months of 12% and 16% [20,21]. A similar 11.1 months OS 
result has been observed with the NALIRIFOX regimen 
(5-fluorouracil, liposomal irinotecan, oxaliplatin), although 
with a better PFS rate at 12 months of 27% vs 14% of the 
GEM + nab-paclitaxel combination [22].

When it comes to second or subsequent lines of ther-
apy, the foundation remains chemotherapy-based, with 
many options available and no clear advantage of one 
over the others. Thus, treatment is usually personalized 
according to patients’ performance status, expected toxi-
cities, and previous treatments. OS is usually between 3 
and 9 months, and ORR varies between 10% and 20% for 
combination treatments to less than 10 for the monothera-
pies arm [23–26] (Table 2).

Regarding novel approaches, target therapies have not 
yielded significant success in the context of PC. There is, 
however, an exception for maintenance therapy with poly 
(ADP-ribose) polymerase (PARP) inhibitor, olaparib, in the set-
ting of BRCA1–2 germ-line mutated patients who have not 

Article highlights

● Therapeutic options for BTC and PC include chemotherapy, targeted 
therapy, and immunotherapy, however the prognosis of these 
patients remains poor.

● Resistance to these treatments is common and it may arise from 
diverse molecular mechanisms, such as genetic alterations, epige-
netic modifications, altered drug metabolism and efflux, and changes 
in the tumor microenvironment. Identifying and overcoming these 
mechanisms is a major focus of research.

● Addressing each patient individually, utilizing tools such as liquid 
biopsy or single-cell transcriptome studies can help identify primary 
mechanisms of resistance, allowing for targeted treatments.

● The article explores the emerging possibility of using artificial intelli-
gence to integrate data on different treatment resistance mechan-
isms, aiming for a unified understanding and guiding the 
development of more effective strategies.

● Examples of success in personalized medicine, such as the develop-
ment of new generation FGFR inhibitors in BTC and maintenance 
therapy with PARP inhibitor olaparib in BRCA1/2 mutated PC 
patients, are acknowledged.

Table 1. Treatment regimens in BTC.

Line Regimen Phase Number of patients enrolled Median OS (months) Authors Year

First-line PD-1 Durvalumab + Cisplatin + GEM III 685 11.7 Oh DY et al. [5] 2022
First-line PD-1 Pembrolizumab + Cisplatin + GEM III 1564 12.7 Kelley RK et al. [7] 2023
Second-line Pemigatinib II 146 17.8 Abou-Alfa GK et al. [8] 2020
Second-line Pemigatinib II 147 17.5 Vogel A et al. [9] 2022
Second-line Futibatinib II 103 21.7 Goyal L et al. [10] 2023
Second-line Infigratinib II 122 10.6 Javle M et al. [11] 2021
Second-line Futibatinib III 290 6.2 Lamarca A et al. [16] 2021
Second-line Liposomal-Irinotecan +5FU II 193 7.1 Yoo C et al. [17] 2021
Second-line Liposomal-Irinotecan +5FU + LV II 100 6.9 Vogel A et al. [18] 2022

Abbreviations: N: number of patients, OS: overall survival, PD: programmed cell death protein, GEM: gemcitabine, 5FU: fluorouracil, LV: leucovorin. 
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progressed during first-line platinum-based chemotherapy: 
this therapy was associated with longer PFS (7.4 vs 3.8 months 
in the placebo arm) and a doubled PFS rate at 12 months (33.7 
vs 14.5%), however, this advantage did not translate into an 
OS gain [27]. Epidermal growth factor receptor (EGFR) inhibi-
tor erlotinib has been tested alongside GEM vs GEM mono-
therapy, obtaining a 3 weeks gain in OS and similar ORR, thus 
this combo did not see much application in clinical practice 
[28]. Although the rate of PCs with genomic alterations sus-
ceptible to agnostic therapies is very low, Tyrosine Kinase 
Inhibitor (TKI) treatment for NTRK fusion-positive cases and 
immunotherapy for cases with MSI-H can sometimes be 
applied [29–31]. Many other targets are or have been tested, 
but none of them are being used outside of clinical trials [32] 
(Table 2).

2. Molecular mechanisms of chemoresistance

In the field of medical research, gaining a deep understanding 
of the intricate molecular mechanisms underlying chemoresis-
tance is of the utmost importance. Within the intricate web of 
cellular processes, various molecular players collaborate to 
orchestrate resistance, diminishing the efficacy of conven-
tional treatments [33]. Understanding these mechanisms 
holds great significance in the development of precision thera-
pies that can overcome chemoresistance.

2.1. Chemoresistance in BTC

Despite advances in diagnostic techniques and therapeutic 
modalities, the prognosis for patients with BTC remains 
bleak, primarily due to the high incidence of chemoresistance. 
Here, we review the current knowledge regarding the mole-
cular mechanisms contributing to chemoresistance in BTC 
(Figure 1).

2.1.1. Genetic alterations
Genetic alterations play a pivotal role in the development of 
chemoresistance to various chemotherapeutic agents. 
However, preclinical studies regarding the role of different 
genetic aberrations in chemoresistance and their ‘targeting’ 
in BTC models are limited [34] (Figure 1).

A study in both intra- and extra-hepatic cholangiocarcinoma 
(ICC and ECC) cells demonstrated that enhancement of 

expression of the tumor suppressor gene TP53, resulted in the 
up-regulation of p21 and a reduction in cell proliferation [35]. 
Furthermore, these models showed up-regulation of pro- 
tumoral proteins FAS, BAX, TYMP, and CES2, coupled with down- 
regulation of DHFR, RRM1, and BIRC5. These modifications were 
accompanied by increased sensitivity to antitumor drugs, parti-
cularly platinated drugs. Similar results were observed in ICC cells 
KKU-100 and KKU-M214, tested for their sensitivity to 5-fluorour-
acil, doxorubicin, and GEM [36]. Enhanced chemosensitivity to all 
these anticancer drugs was attributed to the activation of p53- 
mediated cell death. Indeed, enhanced susceptibility to che-
motherapeutic agents by the antioxidant/detoxifying enzyme 
NAD(P)H-quinone oxidoreductase-1 was abolished by knock-
down of TP53, hinting to an important role of p53 and its altera-
tions in the development of chemoresistance.

Dysregulation of oncogenes, such as the KRAS, might also 
contribute to chemoresistance by promoting cell survival and 
inhibiting apoptosis (Figure 1). Gain-of-function mutations in 
KRAS are present in approximately 45–55% of ICC and 10–15% 
of ECC. Furthermore, one study showed that BRAF, an impor-
tant downstream effector of KRAS, was mutated in up to 22% 
of ICC cases [37].

Of note, Peng et al. (2023) investigated the correlation 
between TP53 and KRAS in cholangiocarcinoma (CCA) patients, 
showing that these alterations were significantly associated 
with shorter PFS [38]. Thus, aberrations of TP53 and KRAS 
could serve as predictive indicators of chemoresistance and 
of an unfavorable prognosis in CCA patients (Figure 1).

Interestingly, a recent study showed that the tyrosine phos-
phatase SHP2 directly governs the activity of the transcription 
regulator protein YAP by dephosphorylating it and establish-
ing an association between reduced SHP2 phosphatase activ-
ity and chemoresistance in CCA cells, even in the context of 
RAS/RAF mutations [39]. Cell lines characterized by low SHP2 
expression and elevated phosphorylated form of YAP were 
resistant to GEM and cisplatin. Moreover, the marked che-
moresistance of xenografts with genetically deleted SHP2 
was overcome by using an inhibitor directed against YAP 
target genes, such as the antiapoptotic regulator MCL1.

Regarding relatively common mutations such as FGFR 
alterations, although data suggest a positive prognostic role, 
no correlation with response to first-line therapy has been 
found [40,41]. Conversely, alterations in DNA repair genes, 
such as BRCA1 and BRCA2, have been linked to higher 

Table 2. Treatment regimens in PC.

Line Regimen Phase Number of patients enrolled Median OS (months) Authors Year

First line 5FU + Irinotecan + Oxaliplatin II-III 342 11.1 Conroy T et al. [20] 2011
First line GEM + Nab-paclitaxel I-II 861 8.5 Von Hoff D et al. [21] 2013
First line 5FU + Liposomal Irinotecan + Oxaliplatin III 770 11.1 Wainberg Z et al. [22] 2023
Second line GEM + Nab-paclitaxel II-III 57 8.8 Portal A et al. [23] 2015
Second line Folfirinox + Irinotecan + Oxiplatin II 48 9 Chung M et al. [24] 2018
Second line 5FU/Leucovorin (+ Oxaliplatin) III 108 6.1 Gill S et al. [25] 2016
Second line Nanoliposomal Irinotecan + 5FU + Folinic Acid III 417 6.1 Wang-Gillam A et al. [26] 2016
Second line Olaparib III 154 18.9 Golan T et al. [27] 2019
Second line Erlotinib + GEM III 569 6.24 Moore M et al. [28] 2007
Second line Entrectinib I-II 54 10 Doebele R et al. [29] 2020
Second line Larotrectinib I-II 159 44.4 Hong D et al. [30] 2020
Second line Pembrolizumab II 233 23.5 Marabelle A et al. [31] 2020

Abbreviations: N: number of patients, OS: overall survival, 5FU: fluorouracil, GEM: gemcitabine, PEGPH20: PEGylated recombinant human hyaluronidase, 
mFOLFIRINOX: oxaliplatin, leucovorin, irinotecan, and fluorouracil. 
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sensitivity to platinum-based chemotherapy (Figure 1). Kim 
et al. investigated the correlation between DNA repair gene 
mutations and the clinical response to platinum-based che-
motherapy in patients with BTC and found that BRCA muta-
tions were significantly associated with PFS at the multivariate 
analysis (HR 0.150, 95% CI: 0.034–0.655, p = 0.012) [42]. This 
study demonstrated that BRCA mutations might have a role as 
predictive biomarkers for first-line platinum-based chemother-
apy in patients with advanced BTC. Of note, a study in three 
CCA cell lines (QBC939, HuH28 and TFK-1), showed that the 
radiosensitivity of CCA cells was enhanced by PARP inhibitor 
olaparib, inducing DNA lesions and apoptosis [43]. These find-
ings hint to a strong relationship between gene alteration and 
response to therapy and spark the debate on overcoming 
resistance to traditional anticancer drugs by using synergistic 
combinations with novel targeted drugs (Figure 1).

2.1.2. Epigenetic modifications
Epigenetic modifications, including DNA methylation, histone 
modifications, and non-coding RNA expression, have emerged 
as critical regulators of BTC pathogenesis (Figure 1).

CCA tissue exhibits a significant decrease in DNA hydroxy-
methylation compared to non-tumor tissue [44]. Additionally, 
hyper-methylation is observed in several gene promoters 
related to Wnt signaling, including the P16INK4a gene, found 
in up to 83% of CCA cases. P16INK4a inhibits the interaction 
between cyclin D1 and cyclin-dependent kinase 4 (CDK4). 

Methylation of the promoter halts P16INK4a activity, allowing 
CDK4 to bind to cyclin D1, initiating the cell’s entry into the 
S phase. The methylation of the CpG island is the primary 
factor leading to P16INK4a inactivation [45]. Treatment with 
CDK4/6 inhibitors in 15 CCA cell lines resulted in decreased 
number of cells in S-phase and induced senescence. The 
efficacy of this treatment was further confirmed in spheroids 
and patient-derived xenografts [46].

Furthermore, previous studies have highlighted the invol-
vement of miRNAs in chemoresistance [47] (Figure 1). For 
example, Meng et al. demonstrated that miR-200b and miR- 
21 play roles in sensitivity to GEM, with their inhibition sig-
nificantly increasing GEM cytotoxicity and apoptotic effects in 
CCA cell lines [48]. Inhibition of miR-200b correlated with 
increased expression of protein phosphatase non-receptor 
type 12, impacting cell proliferation and differentiation, while 
inhibition of miR-21 led to decreased expression of its direct 
target, PTEN, influencing the PI-3 kinase pathway and promot-
ing cell survival.

A study on the expression of 2555 miRNAs in CCA cells 
observed deregulation of 137 and 14 miRNAs in GEM-treated 
HuCCT-1 and TKKK cell lines, respectively, in comparison to 
their untreated controls [49]. Specifically, miR-664b-3p, miR- 
3651, and miR-6087 exhibited increased expression in HuCCT- 
1 cell lines but were downregulated in TKKK cell lines, sug-
gesting a potential role for these miRNAs in influencing the 
sensitivity of CCA cells to GEM [49].

Figure 1. Molecular mechanisms of chemoresistance in BTC. chemoresistance in biliary tract cancer is mainly caused by epigenetic modifications, genetic mutations, 
hypoxic tumor microenvironment, great metastatic capacity of tumor cells and deregulation of metabolic pathways induced by chemotherapeutic agents, including 
changes in drug entry and exit transporters and changes in enzymes involved in drug effects. This is supported by the effective reduction of current cytotoxic drugs. 
Created with Biorender.com.
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More recently, a high-throughput screening of 997 locked 
nucleic acid miRNA inhibitors in 6 CCA cell lines treated with 
cisplatin and GEM revealed that miR-1249 inhibition enhanced 
chemotherapy sensitivity across all tested cells [50]. miR-1249 
was found to be upregulated in CD133+ cells from human BTC 
stem cell niches and in chemo-resistant CCLP cells. Knockout 
of miR-1249 resulted in impaired expansion and enrichment of 
CD133+ subclones, reduced expression of cancer stem cell 
markers, and increased chemosensitivity. In xenograft models, 
miR-1249 knockout led to tumor shrinkage after exposure to 
weekly cisplatin and GEM, while wild-type models exhibited 
stable disease over treatment. Moreover, overexpression of 
miR-1249 was present in 41% of human BTCs cases, suggest-
ing its potential both as biomarker of chemoresistance and as 
a potential target.

2.1.3. Tumor microenvironment (TME)
TME plays a crucial role in chemoresistance by providing 
a supportive niche for cancer cells (Figure 1). Stromal cells, 
including cancer-associated fibroblasts (CAFs) and immune 
cells, secrete various factors, such as Transforming Growth 
Factor beta (TGF-β) and interleukins, that promote tumor 
growth and survival [51] (Figure 1). These factors can activate 
signaling pathways, such as PI3K/AKT and NF-κB, which con-
tribute to chemoresistance [52]. In particular, a recent study by 
Obata et al. (2023) demonstrated that this activation contri-
butes to GEM resistance in biliary tract cancer cells, promoting 
cell survival and suppressing apoptosis [53]. The study pro-
posed miR-451a as a potential therapeutic target in gallbladder 
cancer (GBC), because it significantly impeded cell proliferation, 
induced apoptosis, and mitigated chemoresistant features, 
including epithelial–mesenchymal transition (EMT), in both 
GBC and GEM-resistant GBC. This effect was likely mediated 
through the negative regulation of the phosphatidylinositol 
3-kinase/AKT pathway, achieved in part by directly downregu-
lating macrophage migration inhibitory factor [53].

In a separate study conducted by Yang et al., it was demon-
strated that the NF-κB pathway plays a crucial role in the 
emergence of chemoresistance in biliary tract cancer (BTC) 
cells. GEM-resistant gallbladder cancer (GBC) cells exhibited 
low expression of KRAS and inactivation of AKT/ERK signaling. 
Conversely, in the same resistant cells the p70S6K, p38MAPK, 
and NF-κB signaling pathways were activated [54].

Moreover, the hypoxic and nutrient-deprived conditions 
within TME can induce a quiescent state in cancer cells, render-
ing them less susceptible to chemotherapy [55] (Figure 1). 
Interestingly, the hypoxia-induced gene 2-oxoglutarate 5-dioxy-
genase 2 (PLOD2), was upregulated in BTC cells resistant to GEM, 
which were also characterized by low expression of epithelial 
markers and high expression of mesenchymal markers. The use 
of siRNA to downregulate PLOD2 led to reduction of chemore-
sistance, restoration of epithelial markers, and decrease of 
mesenchymal markers. In resected BTC samples, PLOD2 expres-
sion showed a significant correlation with lymph node metasta-
sis and stage of the disease [55]. Moreover, patients with high 
PLOD2 expression exhibited significantly lower recurrence-free 
survival and OS rates. Considering these findings, PLOD2 could 
be explored as a potential prognostic biomarker and therapeutic 
target for overcoming chemoresistance.

Collectively, we highlight the well-studied multifaceted nat-
ure of chemoresistance in BTC, urging further exploration of 
targeted therapies and combination strategies to enhance 
treatment efficacy and improve patient outcomes in this chal-
lenging disease.

2.2. Chemoresistance in PC

PC stands as one of the most formidable challenges in modern 
oncology, characterized by its aggressive nature and limited 
treatment success [56,57]. While significant strides have been 
made in understanding the molecular underpinnings of this 
malignancy, therapeutic progress has been impeded by the 
common inherent and acquired chemoresistance [58]. This 
review seeks to provide an overview of the existing knowl-
edge surrounding the molecular mechanisms implicated in 
chemoresistance in PC (Figure 2).

2.2.1. Genetic alterations
Genetic alterations play a crucial role in the development of 
chemoresistance in PC. For instance, mutations in KRAS, which 
are detected in more than 90% of PC patients, have been 
associated with resistance to multiple chemotherapeutic 
agents (Figure 2). Certain studies have also suggested that 
targeting KRAS may lead to the attenuation of chemoresis-
tance and improve the therapeutic response in PC patients. 
Recent preclinical studies have shown that the use of SHP2 
inhibitors (SHP099), MEK inhibitors (cobimetinib), and KRAS- 
G12C inhibitors (sotorasib), can enhance the efficacy of che-
motherapeutic agents in PC cells carrying KRAS mutations, as 
well as an acceptable safety profile in pretreated patients with 
KRAS-mutated advanced PC [59–61].

Alterations in TP53, have also been identified as key factors 
contributing to this resistance (Figure 2). Pan and colleagues 
demonstrated that the loss of p53 function has been asso-
ciated with aggressive tumor phenotypes, chemoresistance, 
and poor prognosis in PC patients, involving several mechan-
isms, such as dysregulation of cell cycle arrest, DNA damage 
repair, apoptosis, and autophagy [62].

Mutations that impact genes responsible for repairing 
DNA damage, such as BRCA1/2, ATM, and PALB2, have been 
extensively studied for their role in response to chemother-
apy [63,64] (Figure 2). These genes encode important pro-
teins involved in homology-directed repair (HDR), which is 
a system for accurately fixing DNA double-strand breaks 
(DSB) [65]. When there are mutations that disrupt the func-
tion of these genes, HDR is impaired, and cells rely more on 
error-prone repair mechanisms like non-homologous end 
joining and other DSB repair systems [66]. In 2018, Blair 
et al. found that a group of PC patients with BRCA1/2 muta-
tions had better outcomes when treated with platinum- 
based adjuvant chemotherapy compared to non-platinum- 
based adjuvant chemotherapy or nothing [67]. Additionally, 
a retrospective study on 262 patients, of which 50 had HDR 
mutations, showed that HDR-mutated patients had better 
PFS when treated with first-line platinum therapy [68]. 
Furthermore, a recent phase II study demonstrated that 
GEM + cisplatin treatment is effective against PCs with both 
BRCA1/2 and/or PALB2 mutations [69].
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2.2.2. Epigenetic modifications
Several epigenetic modifications, such as DNA methylation, 
histone acetylation and deacetylation, as well as histone 
methylation have been implicated in chemoresistance in PC. 
Most of these studies have demonstrated that disrupting DNA 
methylation homeostasis is a key factor in the development of 
human cancer. Furthermore, these studies have contributed to 
the realization that alterations in methylation patterns play 
a crucial role in distinguishing tumor cells and rendering 
them resistant to chemotherapy [70]. The abnormal methyla-
tion patterns in PC have been extensively described [71] 
(Figure 2).

Aberrant expression of noncoding RNAs, such as 
microRNAs and long noncoding RNAs, can also impact the 
response to chemotherapy as they can act as oncogenes or 
tumor suppressor genes [72–74] (Figure 2). Hong and collea-
gues found that miR-21, miR-27a, miRNA-146a, miRNA-196a, 
and miRNA200a were the most upregulated miRNAs, while 
miR-20a, miR-96, and miR-217 were significantly downregu-
lated in PC tissues [75,76]. This suggests that some miRNAs 
could promote oncogenic processes while others have tumor- 
suppressive effects. Several studies showed the role of miR-21 
in chemoresistance and poor prognosis [77–79], and the invol-
vement of other miRNAs has been recently reviewed by 
Vahabi and collaborators [80].

2.2.3. Epithelial–mesenchymal transition (EMT)
EMT is a critical process involved in the aggressive nature of 
cancers, leading to invasion, metastasis, and drug resistance 
[81] (Figure 2). El Amrani et al. conducted a study revealing 
that GEM induces EMT-like changes in PC cells [82]. These 
changes are mediated by the extracellular regulated kinase 
(ERK)-zinc finger E-box binding homeobox 1 (ZEB1) pathway. 
Inhibition of ERK1/2 phosphorylation or ZEB1 expression leads 
to a reduction in chemoresistance and invasion of GEM- 
resistant (GR) PANC-1 and MIAPaCa-2 cells. Additionally, GEM 
induced overexpression of CD44, CD24, and CD326 in GR cells 
compared to sensitive cells. Further studies have identified 
that AMPK-related kinase 5 and upregulation of glycolysis 
contribute to GEM resistance through EMT mechanisms.

Kuwada et al. demonstrated that the induction of EMT in 
PANC-1 and BxPC-3 cells by tumor associated macrophages 
(TAMs) render them more migratory and thereby promote 
growth and chemoresistance [83].

Lastly, EMT is closely linked to the modulation of the TGF-β 
pathway which is a key regulator of autophagy and apoptosis 
[84]. The TGFβ-miR200-MIG6 pathway orchestrates a kinase 
switch linked to epithelial–mesenchymal transition (EMT), 
resulting in resistance to EGFR inhibitors [85]. Noteworthy 
the antipsychotic drug brexpiprazole is able to overcome 
osimertinib resistance in both lung cancer and PC by 

Figure 2. Molecular mechanisms of chemoresistance in PC. chemoresistance in pancreatic cancer is mainly contributed by the epithelial–mesenchymal transition 
phenotype, genetic modifications, the hypoxic tumor microenvironment, the great metastatic capacity of tumor cells and the deregulation of metabolic 
pathways induced by chemotherapeutic agents, including changes in drug entry and exit transporters and changes in enzymes involved in drug effects. This is 
supported by the factors of an absence of symptoms that allow early detection and diagnosis, as well as the effective reduction of current cytotoxic drugs. 
Created with Biorender.com.
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suppressing survivin protein. This action subsequently inhibits 
TGF-β/SMAD signaling, preventing EMT [86,87]. The regulation 
of hMENA isoforms by TGF-β1 is pivotal in TGF-β1-induced 
EMT, presenting potential targets for the development of 
innovative prognostic and therapeutic strategies in PC [88].

2.2.4. Altered drug influx and efflux
Human equilibrative nucleoside transporter-1 (hENT-1 or 
SLC29A1) has been shown to play a crucial role in the intra-
cellular accumulation of nucleoside-based chemotherapeutic 
agents in PC cells, especially GEM [89,90] (Figure 2). Previous 
studies reported that the downregulation/inhibition of hENT-1 
resulted in cell chemoresistance to GEM and a retrospective 
analysis of the phase-3 clinical trials RTOG-9704 and ESPAC-1/3 
supported the role of hENT1 as a predictive biomarker of GEM 
efficacy, with patients with high hENT-1 expression having 
a significantly longer OS [91–93]. Of note, this association 
was missing in patients treated with 5-FU, suggesting 
a predictive and not prognostic role for hENT-1.

Similarly, another transport called dENT-2 (SLC29A2) has 
been identified in various PC cell lines, although with 
decreased expression compared to hENT-1 [94]. It has been 
shown that h-ENT2 expression and its mRNA levels decrease 
after treatment with GEM in resistant cell lines [95]. Expanding 
on these findings, deactivation of both hENT-2 and hENT-1 
results in diminished GEM uptake and sensitivity.

Efflux is the active process through which cells pump drugs 
out of their cytoplasm to avoid drug buildup. Thus, the expres-
sion of efflux pumps like ATP-binding cassette (ABC) multi- 
drug transporters like ABCB1 have been found to play a role in 
drug resistance, drug distribution, and toxicity [96] (Figure 2). 
For instance, in the context of irinotecan, ABCB1 plays a role in 
the cellular uptake of both the prodrug and its active meta-
bolite SN-38. However, the ABCB1 1236C >T variant markedly 
reduces irinotecan clearance, the ABCC2 3972T >C variant is 
linked to toxicity, and cells over-expressing ABCG2 are recog-
nized as resistant to both irinotecan and SN-38 [97].

Chen and collaborators reported a significantly lower pro-
moter methylation level of the AB transporter family (ABCB1, 
ABCC, and ABCG2) in a GEM-resistant cell line (SW1990/GZ) 
compared to primary cells [98]. Another study indicated 
a gradual decrease in the promoter methylation level of 
ABCB1, ABCC, and ABCG2 during the establishment of GEM 
resistance in PANC-1 and BxPC-3 cells [99]. This provides evi-
dence of the theoretical feasibility of predicting multi-drug 
resistance (MDR) of PC through independent indicators such 
as the promoter methylation level of ABCB1, ABCC and ABCG2. 
However, clinical trials evaluating the predictive role of these 
transporters did not translate into successful clinical application.

Other interesting studies evaluated the expression and 
activity of drug-metabolizing enzymes. Recently, a study con-
ducted by Yada et al. investigated the role of cytochrome 
P450 enzymes in chemoresistance of PC, showing that mRNA 
expression of cytochrome-P450 was upregulated in 
a concentration-dependent manner following GEM treatment. 
Moreover, the sensitivity to GEM increased with the use of 
a cytochrome-P450 inhibitor, indicating that this enzyme may 
be related to GEM resistance in PC [100].

The combination of nab-paclitaxel and GEM is another pri-
mary treatment option for patients diagnosed with advanced or 
metastatic PC [21]. Notably, the efflux of paclitaxel is facilitated 
by phosphorylated glycoprotein [101] and a recent study 
showed its key role in the resistance of SUIT02, PANC-1, and 
PaTu-T cells [102]. The glycoprotein known as secreted protein 
acidic and rich in cysteine (SPARC) has been extensively studied 
as a potential biomarker for assessing the activity of nab- 
paclitaxel, correlating it with PC cell proliferation and metastasis 
[103]. An initial immunohistochemical study conducted on 36 
patients revealed a dose-dependent correlation between higher 
levels of SPARC expression and improved OS, however this was 
not conformed in following studies [104]. Furthermore, nab- 
paclitaxel has exhibited the ability to inactivate cytidine deami-
nase, the enzyme which mediates the conversion of GEM into its 
inactive form, thus resulting in increased levels of GEM and 
a higher response rate in KPC models [105].

2.2.5. Tumor microenvironment
Approximately 80% of PC tumor mass is constituted by stroma 
comprising cellular components (stellate cells, fibroblasts, 
endothelial and immune cells) and an extracellular matrix 
(ECM). Tumor stroma contributes to tumorigenesis by promoting 
invasion and enhancing tumoral angiogenesis, however the new 
vessels are often defective, explaining the hypoxic environment 
often observed in TME [106]. In addition, the stroma creates 
physical barriers that limit drug penetration and promotes drug 
resistance, by activating signaling pathways that are involved in 
cell proliferation [107,108] (Figure 2). Various growth factors 
(such as TGF-β, VEGF, CTGF, HGF, FGF), matricellular proteins, 
metalloproteinases, tissue inhibitors of metalloproteinases, and 
cytokines have been documented to impact drug effectiveness.

Sonic hedgehog (Shh), a soluble ligand, over-expressed by 
neoplastic cells in PC, drives formation of a fibroblast-rich 
desmoplastic stroma. Surprisingly, Shh-deficient tumors are 
more aggressive and exhibit undifferentiated histology, 
increased vascularity, and heightened proliferation features 
[109]. Together, these data demonstrate that some compo-
nents of the tumor stroma can also act to restrain tumor 
growth and should not be inhibited.

Some stromal cells, including CAFs and immune cells, can 
play an active role in promoting chemoresistance. They pro-
vide cancer cells with survival signals, activate signaling path-
ways that facilitate drug efflux, and secrete cytokines that 
hinder apoptosis [110,111]. Lastly, the ECM, composed of 
proteoglycans, hyaluronic acid (HA), and collagen, plays 
a crucial role in influencing interstitial fluid pressure and 
blood vessel distribution, contributing to hypoperfusion, 
hypoxia, and altered cancer cell metabolism. This, in turn, 
reduces drug delivery and activity [112,113] (Figure 2).

In summary, PC presents one of the most formidable chal-
lenges in oncology, marked by its aggressive nature and lim-
ited treatment success, largely attributed to the pervasive 
issue of chemoresistance. This comprehensive review delves 
into the intricate molecular mechanisms underlying chemore-
sistance in PC, highlighting genetic alterations, epigenetic 
modifications, EMT, altered drug influx and efflux, and the 
TME as key contributors.
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2.3. Overcoming chemoresistance

As seen before, the mechanisms underlying chemoresistance 
are complex, numerous, and often intertwined. Despite these 
difficulties, several attempts have been made to try to over-
come chemoresistance in both BTC and PC (Table 3).

Given the genetic alterations associated with chemoresis-
tance, one approach is to combine standard chemotherapy 
with drugs directed against genes involved in chemoresis-
tance, and this subject is explored in the dedicated chapter 
on target therapy (Figure 3).

Regarding epigenetic changes that can lead to chemoresis-
tance, Kurdistani et al. analyzed the role of histone modifications 
in GEM resistant PC [72]. The researchers evaluated the effects of 
histone deacetylase inhibitors (HDACi) on PC cell lines and 
patient-derived xenograft models. They found that treatment 
with the HDACi vorinostat sensitized cells to GEM, resulting in 
decreased cell viability and increased apoptosis. Analysis of his-
tone modifications revealed that treatment with vorinostat led to 
increased acetylation of histones H3 and H4, as well as decreased 
methylation of histone H3 lysine 27, which is associated with 
gene silencing. Furthermore, combination treatment with vori-
nostat and GEM resulted in improved survival in PC xenografts 
compared to either treatment alone. A neoadjuvant phase 1 trial 
with the combination of vorinostat plus multi TKI sorafenib and 
chemoradiotherapy demonstrated good tolerability and 
encouraging antitumoral activity [114]. This suggests that mod-
ulation of histone modifications through HDACi holds potential 
for overcoming GEM-resistance in PC. Furthermore, DNA methyl-
transferase inhibitors have also being explored as epigenetic 
therapy: a phase 1 trial including both PC and BTC of guadecita-
bine and durvalumab was associated with a good tolerability 

profile and although the efficacy was limited, a group of patients 
had prolonged benefit, indicating the need for better biomarkers 
of response for this class of drugs [115].

Epigenetic changes can also take the form of alternation in 
miRNA, thus several studies have explored the idea of miRNA 
silencing or the use of miRNA mimics [116]. A new drug targeting 
the chemokine receptor CXCR4 along with miR-210 in CCA cell 
lines showed that this drug reversed the hypoxia-induced drug 
resistance and increased sensitivity to treatment with GEM plus 
cisplatin [117]. Overall treatment with miRNA has been widely 
explored in the preclinical setting, however a phase-1 trial on 
a drug targeting miR-34a in solid tumors including PC and CCA 
[118], showed that the treatment was associated with high infu-
sion related adverse events.

Efforts to address phenotypic changes associated with che-
moresistance due to EMT have been undertaken by targeting 
crucial pathways, albeit with limited success. For instance, 
drugs aimed at Notch, a pathway implicated in the emergence 
of CD44-positive PC stem cells and EMT in preclinical models, 
yielded unsatisfactory outcomes [119]. In a phase-1/2 clinical 
trial, the monoclonal antibody against Notch2/Notch3 (tarex-
tumab) failed to enhance overall survival in combination with 
GEM and nab-paclitaxel. Moreover, the gamma-secretase inhi-
bitor MK0752, when combined with GEM, resulted in severe 
adverse effects, causing a high rate of patient withdrawal 
[120,121] (Table 3).

Recent studies have indicated that metformin, a medication 
used for diabetes, enhances the antiproliferative effects of PC 
cells by inhibiting EMT. This effect might potentially improve 
the overall prognosis of PC patients. In fact, therapeutic expo-
sure to metformin was associated with reduced morbidity and 

Table 3. Overcoming chemoresistance in BTC and PC.

Tumor 
type Target Regimen Results Authors Year

PC Histone modifications HDACi Vorinostat − Viability decreased and apoptosis increased in cells 
− Combinations improved survival in PC xenografts

Kurdistani S.K et al. [72] 2004

CCA Chemokine receptor 
CXCR4

miR-210 − Hypoxia reduced 
− Sensitivity to drug increased

Xie Y et al. [117] 2018

PC and 
CCA

Oncogenic pathways MRX34 (liposomal miR-34a 
mimic)

− Acceptable safety 
− Evidence of antitumor activity in some patients

Beg M.S et al. [118] 2017

PC Notch pathway Tarextumab (Notch antagonist) − Tumor growth inhibited 
− Tumor initiation cells frequenty decreased

Yen W. C et al. [119] 2017

PC Notch pathway Tarextumab + GEM + Nab- 
paclitaxel

− Similar OS in patients O’Reilly E. M et al. [120] 2017

PC Notch pathway MK0752 + GEM − Severe adverse effecs Cook N et al. [121] 2014
PC EMT Metformin − Cancer cells proliferation inhibited 

− Morbidity and mortility rates reduced 
− Short term survival rate slightly increased 
− No differences in long term survival rate

Gulla A et al. [122] 2022

PC EMT 5-AZA Tumor growth reduced 
− Less aggressive tumor model 
− More drug/sensitive tumor model

Gailhouste L et al. [125] 2018

PC Hedgehog pathway IPI-926 − No remarkable results Jimeno A et al. [127] 2013
PC Hyaluronic acid PEGPH20 + GEM + Nab- 

paclitaxel
− PFS and OS was slightly increased Hingorani S R et al. [128] 2018

PC Hyaluronic acid PEGPH20 + FOLFIRINOX − Toxicity and secondary effects Ramanathan R K. et al. 
[129]

2019

PC JAK2/STAT3 pathway Ruxolitinib + Capecitabine − Well tolerated by patients 
− OS lightly increased

Hurwitz H. I et al. [130] 2015

PC JAK2/STAT3 pathway Ruxolitinib + Capecitabine − Clinical results do not improve in second-line 
treatment

Hurwitz H. I et al. [131] 2017

Abbreviations: CCA: cholangiocarcinoma, PC: pancreatic cancer, EMT: epithelial-mesenchymal transition, miR: microRNA, GEM: gemcitabine, 5-AZA: 5-azacytidine, OS: 
overall survival, PFS: progression-free survival. 
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mortality rates, but modestly increased short-term survival 
rates without affecting long-term survival rates in PC 
patients [122].

Another important aspect of both PC and BTC is the TME 
and its role in favoring chemoresistance (Figures 1 and 2). 
A therapeutic option may involve reversing the protumori-
genic signals of CAFs or transforming them into a non-CAFs 
phenotype ‘re-educating’ CAFs to adopt a non-tumor- 
associated state [123,124]. One such approach involves the 
use of epigenetic modulating agents like the demethylating 
agent 5-Azacytidine (5-AZA). The administration of 5-AZA can 
transform an aggressive PC model into a less aggressive and 
more drug-sensitive phenotype. This transformation has 
been observed in vivo, with reduced tumor growth following 
engraftment of treated transformed cells. Additionally, when 
combined with GEM, 5-AZA exhibits a noticeable inhibitory 
effect on the growth of GEM-resistant PC cells [125]. A phase 
2 trial with azacitidine and anti PD-1 pembrolizumab 
as second-line treatment in PC did not show improved PFS, 
however one patient had a notably long survival and main-
tained response, indicating the need for predictive biomar-
kers [126].

The stromal components in PC have been targeted using 
Hedgehog pathway inhibitors, such as IPI-926 or recombinant 
pegylated HA enzyme PEGPH20, however with unsatisfactory 
clinical outcomes [127,128]. A randomized phase-2 trial com-
bining PEGPH20 with GEM and nab-paclitaxel in patients with 
high levels of HA only met the secondary endpoint of PFS and 
had to be temporarily halted due to increased thrombosis 

[128]. Similarly, a randomized phase II trial investigating front-
line PEGPH20 combined with FOLFIRINOX in a non-biomarker- 
selected population was terminated early due to lack of effec-
tiveness in the interim analysis [129]. Disappointing results 
have also been observed with inhibitors targeting the JAK2/ 
STAT3 pathway, such as ruxolitinib, which did not show pro-
mising results in a phase-3 study when combined with cape-
citabine [130,131] (Table 3).

The first-line standard of care for more than 10 years before 
immunotherapy was included in the management of BTC was 
GEM with cisplatin, which was based on the groundbreaking 
phase III ABC-02 study that was published in 2010 [132]. The 
doublet regimen achieved a median progression-free survival 
(mPFS) of 8.0 months and median overall survival (mOS) of 
11.7 months, a statistically significant improvement compared 
to 5.0 months and 8.1 months for GEM alone. Patients were 
randomized to receive either GEM/cisplatin or GEM monother-
apy. The objective response rate (ORR) was 26.1% and the 
disease control rate (DCR) was 81.4% for the doublet arm.

Treatment alternatives for those without modifiable 
changes include 5-FU/LV with oxaliplatin (5-FU/LV plus 
FOLFOX) and 5-FU/LV plus nanoliposomal (nal-)irinotecan. 
FOLFOX produced an ORR of 4.9% in the phase III ABC-06 
study, resulting in a substantial but clinically negligible 
improvement in OS of 6.2 months as opposed to 5.3 months 
with supportive treatment alone [16]. More recently, 5-FU/LV 
was examined in the second-line scenario with or without nal- 
irinotecan in the NIFTY phase IIb study. The revised extended 
follow-up data showed lesser differences, with the masked 

Figure 3. Mechanisms of resistance to target therapy and strategies to overcome them. there are three main mechanisms underlying resistance to targeted 
therapies: phenotypic transformations, on-target alterations and off-target alterations. Currently, attempts are being made to overcome this barrier by developing 
new drugs against common resistance mutations, combination of different treatments and personalized treatments based on liquid or tissue biopsy. Created with 
Biorender.com.
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ICR-assessed mPFS reported as 4.2 and 1.7 months, respec-
tively, and the BICR-assessed mPFS of 7.1 months with nal- 
irinotecan vs. 1.4 months without nal-irinotecan [17].

A new stage II study assessing albumin-bound paclitaxel 
added to GEM-cisplatin in BTC detailed a medium overall 
survival of 19.2 months [133] in the meanwhile a stage III 
trial with this triplet versus the normal GEM-cisplatin doublet 
is not ongoing (NCT03768414) [134].

It is important to note that while these strategies show 
promise, overcoming chemoresistance remains a complex 
and ongoing research area. Clinical trials and translational 
studies are warranted to validate the effectiveness of these 
approaches in BTC and PCs.

3. Molecular mechanisms of resistance to target 
therapy

In the era of precision medicine, targeted therapies have 
emerged as a promising frontier in the treatment of various 
malignancies. These therapies, designed to specifically target 
aberrant molecular pathways driving cancer growth, have 
demonstrated remarkable efficacy in numerous tumors 
[135,136]. However, a formidable challenge persists: the devel-
opment of resistance to these targeted interventions. As with 
conventional chemotherapies, cancer cells exhibit 
a remarkable capacity to adapt and evolve, rendering once- 
effective targeted therapies progressively less potent [137]. 
Broadly, there are three main mechanisms underlying resis-
tance to target therapies [137] (Figure 3).

(1) On-target alterations: these include changes in the tar-
get receptor that cause the drugs to not be able to 
inhibit the pathway. A striking example of this mechan-
ism can be found in EGFR mutated non-small cell lung 
cancer (NSCLC): the use of adenosine triphosphate 
(ATP)-competitive inhibitors such as gefitinib and erlo-
tinib is often associated with the development of 
a T790M point mutation in the EGFR gene, causing an 
increase in affinity for the physiologic substrate ATP 
and thus decreasing the inhibition on the downstream 
pathway by the target drugs [138]. Other than single 
amino acid changes, on-target alteration can also 
include RNA alternative splicing, as has been seen in 
melanoma BRAF V600E patients treated with TKI, or 
gene amplification, as seen in imatinib-treated patients 
with chronic myeloid leukemia [139,140] (Figure 3).

(2) Off-target alterations: to bypass a drug’s inhibition on 
a specific survival pathway, cancer cells often exhibit 
upregulation of different proliferation pathways. For 
example, BRAF V600E melanoma patients have to be 
treated with both BRAF and MEK inhibitors because the 
use of BRAF monotherapy leads to an upregulation in 
NRAS and a consequent mitogen-activated protein 
kinase (MAPK) reactivation [141]. Similarly, NSCLC trea-
ted with EGFR, anaplastic lymphoma kinase (ALK), RET, 
or reactive oxygen species (ROS)-1 inhibitors, often dis-
play a secondary MET amplification driving resistance 
[142] (Figure 3).

(3) Phenotypic transformation: histological changes have 
been described in several cancers treated with TKI 
[143]. EGFR mutated and ALK fusion-positive NSCLC 
treated with TKI can exhibit a transformation to small 
cell lung cancer, sometimes retaining the original 
mutation [144]. More commonly the phenotypic trans-
formation takes the shape of an EMT, in which altera-
tions in gene expression and transcriptional 
mechanisms give rise to cells with mesenchymal prop-
erties such as changes in cells’ polarity, weakened 
cellular adhesion, increased migratory capacity, and 
cytoskeletal remodeling [145] (Figure 3).

To summarize, targeted therapies have managed to demon-
strate remarkable efficacy by specifically attacking the aber-
rant molecular pathways that drive cancer growth. However, 
on-target, off-target and phenotypic changes can allow cancer 
cells to bypass the inhibition from target therapies. 
A comprehensive understanding of the underlying resistance 
mechanisms is essential to develop strategies to overcome 
them or to preemptively address them, thereby maximizing 
the long-term effectiveness of targeted therapies in the chan-
ging landscape of precision medicine.

3.1. Resistance to target therapy in biliary tract cancer

Although target therapies were added to the standard treatment 
paradigm of BTC only recently, the problem of treatment resis-
tance has already emerged prominently. Due to a few clinical 
trials, research studies, and case reports focusing on different 
targets and drugs, we have garnered limited insight into the 
mechanisms that drive this phenomenon in BTC. On-target 
alterations have been detected using circulating tumor DNA 
(ctDNA) in liquid biopsy in patients treated with FGFR inhibitors. 
A small case series on eight patients with FGFR fusion or ampli-
fication reported that, at disease progression, 5/8 patients had 
developed mutations in the kinase domain of FGFR [146]. 
Interestingly each patient had up to 9 mutations, indicating 
a wide heterogeneity of resistance mechanisms. A similar pattern 
of development of multiple point mutations per patient was 
observed in the ctDNA of 2 out of 3 FGFR2 fusion-positive CCA 
patients progressing after treatment with infigratinib; further-
more, autopsy data on one of the patients showed that all 12 
sampled metastases retained the FGFR fusion alteration but with 
different interlesional mutations, pointing to the idea that pro-
gression was not driven by selection of FGFR fusion-negative 
clones but from different convergent resistance mutations [147].

Regarding off-target alteration, it has been suggested that 
the co-presence of other mutations could be a cause for pri-
mary resistance to FGFR inhibitor, for example, 9 patients with 
both FGFR2 fusions and p53 mutations did not have an objec-
tive response to pemigatinib, and patients with CDKN2A or 
PBRM1 alteration had a shorter PFS [148]. Consistent with find-
ings on colon cancer, primary resistance to EGFR therapy has 
also been noticed in CCA patients harboring a K-RAS mutation 
[149](Figure 1). Furthermore, off-target secondary resistance to 
FGFR inhibitors has been observed in both preclinical models, 
with a reactivation of MEK/ERK [150], and in the clinical setting, 
with the activation of the PI3K/AKT pathway [151].
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In BTC there are complex interlaying mechanisms between 
the tumor microenvironment and it has been observed that 
cancer-associated fibroblasts can favor epithelial–mesenchy-
mal transition, resistance to chemotherapy and cancer pro-
gression [152]. Furthermore, a preclinical paper suggests that 
epithelial–mesenchymal transition and acquisition of cancer 
stem cell properties can be a resistance mechanism in CCA 
cells treated with EGFR inhibitor erlotinib [153].

3.2. Resistance to target therapy in pancreatic cancer

The genetic landscape of PC has been well analyzed in search 
of targetable mutations, but monotherapy treatment with 
target drugs did not have much success in PC, possibly due 
to many dysregulated pathways with complex and multiple 
cross talks and the fact that the most commonly mutated 
genes do not have a corresponding target drug [58]. Thus, 
information on resistance mechanisms pertaining to PC speci-
fically is scarce and limited to the few drugs that have been 
used in more advanced clinical trials.

For example, although KRAS alterations are present in 
around 90% of PC cases (Figure 2), only a very small subset 
exhibits the G12C alteration that makes it susceptible to the 
target inhibitor sotorasib [154]. However, even in these 
selected patients, the recorded ORR to second or further-line 
target therapy was only 21% [61]. Preclinical data point to the 
activation of alternative signaling pathways and the develop-
ment of new mutations in the KRAS gene as possible second-
ary resistance mechanisms to KRAs inhibitor, ongoing trials are 
evaluating allele-specific inhibitors and pan-(K)RAS inhibitors 
against the more common allele variants G12D, G12V, and 
G12R 290 [155].

Furthermore, the presence of KRAS alteration has been 
linked to resistance to another type of target treatment, 
EGFR inhibitor. For example, the combination of anti-EGFR 
antibody nimotuzumab plus GEM had an OS advantage only 
in KRAS wild-type patients [156]. Many other trials with EGFR 
inhibitors (both TKI and monoclonal antibody) failed to prove 
a survival benefit in unselected pancreatic patients, again, 
probably due to alternative active pathways [157]. It should 
also be noted that, although the combination of erlotinib in 
association with GEM is associated with an OS gain [28], this 
regimen is not often used in clinical practice as the benefit in 
the trial was minimal.

One of the few target therapies that has been approved in 
PC is the PARP inhibitor, olaparib, in the setting of BRCA1/2 
germline-mutated patients that had not progressed after pla-
tinum-based first-line therapy. This is quite a rare scenario in 
which two mechanisms of DNA repair are blocked, one related 
to the BRCA gene and one to PARP enzymes, making the 
cancer cells extremely susceptible to DNA damage mechan-
isms. Despite this encouraging premise, maintenance therapy 
with olaparib after platinum-based first-line therapy was not 
associated with a gain in OS (18.9 vs 18.1 months), but only 
a PFS gain (7.4 vs 3.8 months in the placebo arm) [27]. 
Although clinical data on PC patients are not available, resis-
tance mechanisms to olaparib have been studied in pancreatic 
cell lines, pointing to the development of multiple genetic 
alterations including upregulation of MDR genes and 

phenotype changes such as EMT, furthermore, in other cancer, 
resistance to olaparib was also associated with 53BP1 down-
regulation and BRCA reversion mutations [158].

3.3. Overcoming target therapy resistance

Understanding the molecular mechanisms of resistance to 
targeted therapy is crucial for developing strategies to over-
come or prevent resistance (Table 4). The first issue that needs 
to be addressed is how to recognize which resistance mechan-
isms are at play in each patient. Given the wide spectrum of 
resistance mechanisms and the high intra-tumoral heteroge-
neity of both BTC and PC, it is unlikely that a single lesion 
biopsy will unravel the full complexity of the resistance 
mechanisms that can arise in each patient. Thus, it is crucial 
to implement tools that will give a more comprehensive pic-
ture of the resistance mechanisms during cancer progression. 
In this context, the implementation of liquid biopsy is emer-
ging as a very valuable tool.

A study on 23 patients with BTC reported an overall blood/ 
tissue concordance at diagnosis of 74%, ranging from 55% per 
ECC and 92% for ICC [159], indicating the need for more in 
depth analysis on the applicability of liquid biopsy, especially 
in extrahepatic CCA. In PC, a meta-analysis on the use of liquid 
biopsy found an overall sensitivity of 70% and a specificity of 
86% when compared to molecular analysis of tissue specimen; 
when looking at studies on KRAS mutations only, the sensitiv-
ity of liquid biopsy was a bit lower, around 65%, but with 
a high 91% specificity [160]. Of note, 78% of mutations 
detected in circulating free DNA were not found in the lesion 
biopsy, again confirming the likely inadequacy of single lesion 
biopsy [160].

Detecting the type or types of ongoing resistance mechan-
isms is only part of the problem, as then we need viable 
strategies to combat them (Table 4).

The development of target drugs that are active against the 
most common resistance mutations could be a noteworthy 
approach (Figure 3). For example, in EGFR-mutated NSCLC 
osimertinib, an irreversible TKI, active against a common resis-
tance mutation associated with previous inhibitors, has led to 
significant increase in PFS [161]. In BTC this has been partially 
done with the development of futibatinib, an FGFR irreversible 
inhibitor active against some secondary kinase domain muta-
tions arising from previous treatment with target therapy 
[162]. Furthermore, drugs such as erdafitinib are being tested 
not only in FGFR2 fusion positive cases but also in FGFR1–4 
alteration, and another FGFR inhibitor, tinengotinib, has 
recently proved to be useful also in patients pretreated with 
FGFR inhibitors [163,164]. However, we still do not have 
a complete picture of which mutations can arise and will likely 
respond to each FGFR inhibitor on the market, so we are still 
away from a truly personalized approach.

Multiple new drugs are currently being tested. For example, 
the novel KRAS inhibitor (MRTX1133), targeting the G12D 
mutation, has already demonstrated preclinical efficacy, show-
ing tumor regression in the majority of tested cell line xeno-
grafts (8 out 11) and patient-derived xenografts [165], and is 
now being tested in a clinical trials (NCT05737706) [166]. 
Another pan-KRAS inhibitor called BI-3406, currently in 
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phase-1 trials, disrupts the binding of KRAS to its activator 
SOS1 [167], and similarly another KRAS G12X inhibitor called 
RMC-6236 is being tested in at least two phase 1 trials 
(NCT05379985, NCT06128551) [168,169]. Additionally, the 
SHP2 inhibitor TNO155 has shown promising safety and toler-
ability, and multiple clinical trials are underway to test its 
efficacy in combination with other therapies [170,171].

Another emerging therapy for PC involves targeting the 
Fanconi Anemia (FA) pathway, which is involved in DNA cross- 
link repair: ATR inhibitors, which inhibit the downstream sig-
naling of the FA pathway, have been shown to be effective in 
preclinical studies when combined with chemotherapy agents 
such as GEM [172,173] (Table 4).

A different strategy consists in combining multiple target 
drugs to block multiple pathways, similar to what has already 
been done in other cancers like melanoma [174] (Figure 3). 
Such combination therapies can help overcome and prevent 
resistance by blocking alternative signaling pathways or com-
pensatory mechanisms. In preclinical BTC cell models derived 
from patients harboring FGFR2 fusion and that had progressed 
on FGFR inhibitor monotherapy, there was a synergic activity of 
EGFR and FGFR inhibitors [149]. Similarly, in a CCA cell line, 
a synergistic effect was observed with the use of a mTOR 
inhibitor plus a FGFR inhibitor [151]. This cell line was derived 
from a patient progressing to FGFR monotherapy due to upre-
gulation of the PI3K/AKT/mTOR pathway, which is frequently 
upregulated in FGFR constitutionally active cancer cells and 
that can act as a bypass mechanism when FGFR is inhibited 
[151]. Again, this underlines the need to identify the mechan-
isms of resistance to allow for personalized treatments.

Similarly, in PC, the use of KRAS and MEK inhibitor has been 
associated with a compensatory activation of the AKT/mTOR 

pathway through cross talks proteins, thus the combination of 
either KRAS or MEK inhibitor along with an mTORC1/2 inhibi-
tor has been used in preclinical models to prevent the activa-
tion of alternative pathways as a mechanism of resistance 
[175]. Several trials investigating combination therapies are 
underway, mostly in basket trials on solid tumors including 
PC, and involving different targets such as SHP2, ERK, MEK, 
KRAS, EGFR, VEGF, and CD4/6 [176–178] .Furthermore, given 
the use of olaparib in BRCA1/2 mutated patients, one study 
explored the use of mTOR inhibitors in combination with PARP 
inhibitors, pointing to a synergic effect of this combination 
even in BRCA wild-type cell lines [179]. The combination of 
PARPi with immune checkpoint inhibitors has also been spe-
cifically used because BRCA insufficiency can trigger the pro-
duction of type I interferon and pro-inflammatory cytokines, 
which can lead to an innate immune response that is depen-
dent on the stimulator of interferon genes [180]. Furthermore, 
in a dose-dependent manner, clinical models have shown that 
PARP inhibition up-regulates PD-L1 and inactivates glycogen 
synthase kinase-3 (GSK3). As a result, T-cell activation is sup-
pressed, which increases the death of cancer cells [181]. 
A phase 1/2 trial comparing PARPi niraparib plus nivolumab 
or ipilimumab as maintenance therapy after chemotherapy 
showed promising results in PFS for the niraparib–ipilimumab 
combination [182] and more trials are ongoing with olaparib 
plus pembrolizumab (NCT05093231, NCT04548752, 
NCT04753879) [183–185]

The combination of target therapy and immunotherapy is 
also being investigated (Figure 3). Currently, a phase-2 study 
(NCT04753879) is actively enrolling participants to evaluate 
the effectiveness of maintenance olaparib in combination 
with pembrolizumab after low-dose GEM, nab-paclitaxel, 

Table 4. Overcoming target therapy resistance in BTC and PC.

Tumor 
type Target Regimen Results Authors Year

ICC EGFR (and FGFR) Infigratinib + Futibatinib − Tumor regression in vivo Wu Q et al. [150] 2022
BTC FGFR TAS-120 − Notable inhibition in a huge spectrum of 

FGFR mutated cells
Goyal L et al. [162] 2019

PC KRAS MRTX1133 − Tumor regression in xenograft models Wang X et al. [165] 2022
PC KRAS BI-3406 − Tumor growth suppression in xenograft 

models
Hofmann M. H et al. [167] 2021

PC Fanconi Anemia 
pathway

AZD6738 + GEM − Tumor growth inhibition in vitro 
− Anti-tumor efficacy in vivo 
− Drug sensitivity increased

Wallez Y et al. [172] 2018

PC Fanconi Anemia 
pathway

VE-821 − Sensitization of normoxic and hypoxic PC 
cells to radiation/chemotherapy

Prevo R et al. [173] 2012

BTC KRAS and mTORC1/2 Several compounds − Inhibition of protein translation and cell 
survival pathways in vitro 

− Toxicity enhanced 
− Sustained and durable inhibition of growth 

of PDAC tumors in vivo 
− Prevention of metastatic formation in vivo 
− Cell death increased and resistance 

mitigated in vivo

Brown W. S et al. [175] 2020

PC mTORC2 and PARP PP242 + Olaparib − Cell growth and invasion suppressed 
− Tumor cells more sensitive to drugs 
− Tumor size reduced in vivo

Bu C et al. [179] 2023

PC Multi-targets Nab-paclitaxel + GEM + Cisplatin +  
Irinotecan + Capecitabine +  
Pembrolizumab + Olaparib

− Study ongoing NCT04753879 [185] 2023

PC BRCA1/2 and PALB2 Niraparib + Dostarlimab − Study ongoing NCT04493060 [186] 2023

Abbreviations: ICC: intrahepatic cholangiocarcinoma, BTC: biliary tract cancer, PC: pancreatic cancer, EGFR: epidermal growth factor receptor, FGFR: fibroblast growth 
factor receptor, KRAS: kirsten rat sarcoma virus, PARP: poli-ADP ribose polymerase, GEM: gemcitabine, PC: pancreatic cancer. 
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capecitabine, cisplatin, and irinotecan in previously untreated 
metastatic PC patients [185]. Additionally, the National 
Cancer Institute is conducting a phase-2 trial 
(NCT04548752) comparing the use of olaparib alone versus 
the combination of olaparib and pembrolizumab in patients 
with metastatic germline BRCA1/2-mutated PC. Another trial 
(NCT04493060) is currently investigating the use of niraparib 
and dostarlimab, an anti-PD-1 antibody, in metastatic PC 
patients with BRCA1/2 and PALB2 mutations [186]. In BTC 
some ongoing trials include the anti IDH1 ivosidenib with 
nivolumab plus ipilimumab and the combination of PARP 
inhibitor olaparib plus durvalumab (NCT05921760, 
NCT03991832) [187,188]

In conclusion, resistance to targeted therapy is a complex 
phenomenon driven by various molecular mechanisms. By 
unraveling these mechanisms and developing innovative stra-
tegies, we can enhance the effectiveness of targeted therapies 
and improve patient outcomes.

4. Mechanisms of resistance to immunotherapy

Immunotherapy, heralded as a revolutionary paradigm in can-
cer treatment, has redefined the landscape of oncology by 
harnessing the intricate interplay between the immune system 
and malignant cells [189]. By empowering the body’s immune 
defenses to recognize and combat cancer, immunotherapeutic 
agents have yielded unprecedented responses across 
a spectrum of malignancies. However, in PC, this class of 
drugs had to contend with high levels of primary resistance 
and the quick emergence of secondary resistance. The phenom-
enon of resistance to immunotherapy represents a complex 
interplay of biological mechanisms, whereby tumors employ 
a variety of strategies to evade or subvert the immune system’s 
potent antitumor effects. Understanding the diverse molecular 
and cellular mechanisms that confer resistance to immunother-
apy is paramount for advancing the effectiveness of these 
groundbreaking treatments. Broadly speaking there are two 
main components associated with immune evasion [190–192]. 
First, cancer cells possess intrinsic factors that play a crucial role 
in antigen presentation, a process vital for the immune system 
to recognize and eliminate cancer cells. However, loss of tumor 
neoantigen, changes in antigen presentation and processing, 
and hyperexpression of immune checkpoint proteins, can all 
help in the immune evasion. Furthermore, alteration of intra-
cellular signaling due to genetic mutation, phenotypic transfor-
mation (such as EMT or a reversion to stem cell phenotype), 
and the secretion of metabolites to modify the tumor micro-
environment are all possible causes of immune resistance as 
well. Second, the TME significantly shapes the presence, com-
position, and function of tumor infiltrating lymphocytes and 
other immune cells. The expression of immunosuppressive fac-
tors by the cancer cells, the presence of dysfunctional blood 
vessels, and a hostile, often hypoxic, environment are some of 
the factors contributing to immune evasion.

By illuminating the dynamic adaptations that underlie resis-
tance, we aim to catalyze the development of strategies cap-
able of overcoming these barriers and extending the 
transformative potential of immunotherapeutic approaches 
in the fight against BTC and PC.

4.1. Resistance to immunotherapy in BTC

Immunotherapy has been proven to prolong survival in BTC 
and has now become part of the first-line treatment, in com-
bination with cisplatin and GEM. However, the number of 
patients responding to treatment is less than 30%, pointing 
to high levels of primary resistance to treatment (Figure 1), 
and biomarkers of response that have been used in other 
cancers, such as PD-L1, have not been useful in BTC [5,7].

As BTCs are known to be very heterogeneous, several 
attempts have been made to classify them and possibly predict 
a response to therapy. For example, a genomic analysis divided 
BTC into 4 different categories, and it points out the presence of 
a cluster (cluster 4) as having both a high mutational load, 
causing elevated levels of neoantigens, and also having a high 
expression of immune checkpoint genes involved in suppressing 
an immune response [193]. Furthermore, a paper on TME in iCCA 
points out the presence of four subtypes: the I1 immune-desert 
subtype is associated with feeble tumoral and stromal immune 
signaling, the I2 immunogenic subtype has a strong lymphoid 
and myeloid response, I3 myeloid subtypes displays only 
a strong myeloid response and the I4 mesenchymal subtypes is 
associated with activated fibroblasts, EMT, stem cells like features 
and neoangiogenesis174. This classification reflects survival rates 
with the I4 subtype having shorter survivals and I2 subtypes 
having better survival rates [194]. We can then speculate that 
different subtypes could respond differently to immunotherapy, 
but no correlation between clinical data and response to differ-
ent therapies is available.

Subclassification aside, several papers point to an intrinsic 
ability of BTC cells to suppress an immune response (Figure 4). 
The secretion of PDGF-D and TGF-β by cancer cells causes the 
activation of CAFs, which in turn promotes the creation of 
a pro-inflammatory response with low CD8+ T cells and anti-
gen presenting cells, and high Tregs and myeloid-derived 
suppressor cells [195]. Furthermore, around half of BTC were 
found to have a low antigen presenting molecules (MCH)-1 
expression, associated with worse survival rates and the levels 
of MCH-1 were also correlated with tumor associated lympho-
cytes and macrophages [196] (Figure 4).

It should also be noted that the presence of certain muta-
tions could influence immune response. For example, IDH1 
mutations cause an accumulation of the oncometabolite 
D-2-hydroxyglutarate, and, at least in gliomas, is associated 
with low CD8+ T cells and repression of the tumor immune 
system [197]. Furthermore, FGFR signaling has been asso-
ciated with a decrease in MCH-II, upregulation of PD-L1 and 
increase of regulatory T cells, again leading to an immune 
suppressive environment [198].

To conclude, the causes of immune evasion in BTC are 
numerous (Figure 4); however, data on how these mechanisms 
relate to response to immunotherapy is lacking.

4.2. Resistance to immunotherapy in pancreatic cancer

Immunotherapy is not effective for PC, despite the increased 
knowledge of the genomic landscape and of the complex TME 
(Figure 5). Although it can be considered in patients with MSI 
or high tumor mutational burden, in this small subset of 
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patients (around 2%), ORR to pembrolizumab has been 
reported between 62% and 18%, likely thanks to the high 
number of neoantigens being produced, capable of stimulat-
ing the immune system [31,199].

One culprit of immunotherapy’s discouraging results is 
certainly the TME: PCs have a dense and prominent stroma, 
rich with immunosuppressive cells such as regulatory T-cells 
(Treg), suppressive myeloid cells [200], CAFs and TAMs, but 
lack of effector T cells [201](Figure 5). However, different 
compositions of TME have been described, with more mature- 
intermediate-immature characteristics, that correlate with 
prognosis, so it is possible that different subtypes may have 
different responses to immunotherapy [202]. Furthermore, PC 
cells often exhibit low expression of tumor antigens, limiting 
the ability of the immune system to mount an effective 
response, and they can upregulate immunosuppressive pro-
teins such as PD-L1 and Cytotoxic T-Lymphocyte Antigen 4 
[202] (Figure 5).

4.3. Overcoming immunotherapy resistance

Overcoming immunotherapy resistance in cancer is a major focus 
of ongoing research and clinical trials and several strategies are 
being explored to enhance the effectiveness of immunotherapy.

First of all, a better understanding of which patients will 
benefit from immunotherapy will certainly be helpful, but 
unfortunately, markers used in other cancers, such as PD-L1, 
did not prove to be useful. For example, the use of pembro-
lizumab in pretreated BTC patients was associated with ORR 

between 6% and 13% with no discernible association with PD- 
L1 expression [203]. On the other hand, the use of nivolumab 
in the same subset of patients saw similar ORR results (11%) 
and a significant correlation between PFS and PD-L1 expres-
sion, however, most notably, all responders to treatment had 
MSI [204]. Currently, both in BTC and PC, the use of immu-
notherapy alone is only recommended in MSI cases, however, 
there could be other subsets of patients that could benefit 
from it. For example, a small case series on 12 BTC or PC 
patients with homologous recombination deficiency showed 
that the use of combination immunotherapy with nivolumab 
and ipilimumab was associated with an ORR of 42%, with 4 
patients reaching a complete response. Furthermore, the 
responders had a much higher level of TIL compared to non- 
responders, with a T cell inflamed signature on RNA expres-
sion analysis [205]. Furthermore, as stated before, several 
papers have tried to subclassify BTC and PC according to the 
different levels of immune suppression, but so far these clas-
sifications were not correlated to response to immunotherapy 
[193,194,202] (Table 5).

Other than a better selection of patients, equally important 
is the development of better and more effective approaches to 
stimulate the immune system and combat immune resistance.

Over the years, a viable strategy has been the use of combi-
nation therapies (Figure 3). The combination of different drugs 
that can target multiple immune checkpoints has had conflict-
ing results: for example, the use of anti PD-L1 and anti CTLA4 
was associated with ORR of around 20% when involving nivo-
lumab and ipilimumab [206], while with the combination of 

Figure 4. Immunoresistance mechanism in BTC. tumor cells secrete PDGF and TGF-β which helps to recruit a large amount of TME CAFs through PDGFR-β signaling, 
these activated CAFs can release (1) proinflammatory compounds such as TGF-β and TNF-α that reinforce production by part of the tumor cells themselves; (2) ECM 
remodeling factors including MMP1, MMP2, MMP3, and MMP9; (3) growth factors including EGF, PDGF-B, and angiogenic factors, such as VEGF. VEGF isoforms, in 
turn, activate multiple VEGFRs (VEGFR1–3) that are found in a wide variety of endothelial and lymphatic cells, immune cells, and tumor cells themselves. Created 
with Biorender.com.
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durvalumab and tremelimumab the ORR was less than 5% 
[207]. Moreover, other combinations are being tested with 
drugs working on different mechanisms of action, such as 
immunotherapy plus targeted therapy or chemotherapy. As 
stated before, the combination of chemo-immunotherapy is 
now the standard first-line in BTC, but many more are being 

evaluated such as anti VEGFR regorafenib + avelumab, or pem-
brolizumab + Lenvatinib, or chemotherapy plus lenvatinib and 
anti-PD-1 toripalimab [208–210]. Furthermore, given the immu-
nosuppressive nature of some genetic alterations, the idea of 
combining target inhibitor and immunotherapy is being 
explored: anti IDH1 Ivosidenib + nivolumab, anti FGFR2 

Figure 5. Immunoresistance mechanism in PC. (a) The tumor cells recruit and malignant the fibroblasts and macrophages of the tumor environment, thus the 
extracellular matrix becomes highly fibrotic and creates a physical barrier that prevents the infiltration of T cells into the tumor. (b) Immune evasion tactics in 
pancreatic cancer include: KRAS produced by the tumor cell reduces the expression of MHC I; just as miRNA-containing exosomes from tumor cells silence the 
expression of MHC II molecules in dendritic cells; and increased expression of antiphagocytic molecules such as CD47 prevents APC processing and tumor clearance. 
(c) The tumor suppresses immune responses through the expression of PD-L1, the recruitment of MDSC that activates regulatory T cells and inhibits T cells and NK 
cells, as well as the high expression of IDO that also allows them to block to the T cells. Created with Biorender.com.

Table 5. Overcoming immunoresistance in BTC and PC.

Tumor type Regimen Phase
Number of patients 

enrolled
Median OS 
(months) Authors Year

PC and BTC Ipilimumab + Nivolumab N.S 12 N.S Terrero G et al. [205] 2022
PC Atezolizumab + Autogene Cevumeran +  

mFOLFIRINOX
I 34 18 Rojas L. A et al. [216] 2023

BTC Pembrolizumab II 24 and 104 5.7 Piha-Paul S.A et al. [203] 2020
BTC Nivolumab II 54 14.2 Kim R. D et al. [204] 2020
BTC Ipilimumab + Nivolumab II 39 5.7 Klein O et al. [206] 2019
BTC Durvalumab + Tremelimumab II 116 10.1 Doki Y et al. [207] 2022
BTC GEM/Cisplatin + Durvalumab III 128 12.8 Oh D. Y et al. [5] 2022
BTC GEM/Cisplatin + Pembrolizumab III 1564 12.7 Kelley R. K et al. [7] 2023
BTC Lenvatinib + Pembrolizumab II 32 11.0 Lin J et al. [208] 2020
BTC Regorafenib + Avelumab II 34 11.9 Cousin S et al. [209] 2022
BTC Gem/Oxiplatin + Lenvatinib + Toripalimab II 30 22.5 Shi G.-M et al. [210] 2023
BTC EGFR CAR-T I 19 - Guo Y et al. [211] 2018
BTC Allogeneic NK cells + Pembrolizumab I/II 40 - Leem G et al. [218] 2022
PC IMP321 + GEM I 18 25 Wang-Gillam A et al. [213] 2013
PC GEM + Nab-paclitaxel + Indoximod II 135 10.9 Bahary N et al. [214] 2018

Abbreviations: N: number of patients, BTC: biliary tract cancer, PC: pancreatic cancer, N.S: not said, OS: overall survival, GEM: gemcitabine, mFOLFIRINOX: oxaliplatin, 
leucovorin, irinotecan and fluorouracil, NK: natural killer, EGFR: epidermal growth factor receptor. 
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futibatinib + pembrolizumab, anti MEK cobimetinib + atezolizu-
mab, or the implementation of chimeric antigen receptor- 
engineered autologous T (CAR-T) cell immunotherapy directed 
against EGFR positive cells, just cite a few [195,211] (Table 5). 
Furthermore, other than PD-L1 or CTLA4 inhibition, novel 
immune targets are being explored, alone or in combination 
with other immune-stimulating drugs, with the intent to modify 
the immunosuppressive effect of the tumor microenvironment 
and boost the effect of immune cells. Some of these targets are, 
for example: TIM-3, LAG-3, TIGIT, and VISTA plus in PC specifi-
cally CD40, CD11b, OX40, IDO, and B7/H3 [212–215].

Many other innovative immune strategies are in the early 
stages of testing. For example, the use of vaccines or oncolytic 
viruses, to enhance antigen presentation and improve the recog-
nition of tumor cells by the immune system [216]. Furthermore, 
the use of adoptive cell transfer therapy is being explored in 
different types of solid tumors, including BTC and PC [217]. It 
involves genetically modifying a patient’s own immune cells, 
such as T cells or natural killer cells, to express chimeric antigen 
receptors or T cell receptors that specifically recognize tumor 
antigens; These modified cells are then infused back into the 
patient to target and kill cancer cells. For example, an early trial 
with the combination of allogeneic natural killer cells in combi-
nation with pembrolizumab showed good tolerability and some 
antitumor activity [218]. Finally, since epigenetic modifications 
can influence the expression of genes involved in immune 
response regulation, the modulation of these epigenetic 
changes through specific drugs has the potential to sensitize 
the tumor to immunotherapy and overcome resistance: for this 
reason, several new drugs such as DNA methyltransferase inhi-
bitors, HDAi, BET inhibitors, and EZH2 inhibitors are being tested 
[219] (Table 5).

Furthermore, several phase II studies are currently underway 
investigating the possibility of incorporating immunotherapy 
into the adjuvant treatment of BTC, as It is possible that an 
early use of immunotherapy could lead to less treatment resis-
tance. Combinations being explored include capecitabine plus 
lenvatinib and tislelizumab (NCT05254847 [220]), capecitabine 
plus camrelizumab and radiotherapy (NCT04333927 [221]), and 
capecitabine with durvalumab and tremelimumab 
(NCT05239169 [222]). Furthermore, a phase II trial 
(NCT04506281 [223]) is ongoing using the combination of ori-
palimab plus gemcitabine-oxaliplatin plus lenvatinib, which was 
previously studied in advanced/metastatic cases as a treatment 
for resectable iCCA, with promising results [210].

To conclude, the road to overcome resistance to immu-
notherapy is still long. The lack of predictive tools to imple-
ment a better selection of patients that will likely benefit from 
immunotherapy and the complex immunosuppressive envir-
onment of both BTC and PC, are significant challenges that 
need to be overcome. Hopefully, an even better understand-
ing of the resistance mechanisms at play and the ever- 
changing new ideas and technologies being studied will 
allow for a breakthrough soon.

5. Conclusions

Treatment resistance in pancreatic and biliary tract cancer is 
a significant challenge in the field of oncology, as it concerns 

all available therapies, from chemotherapy, to target therapy 
and immunotherapy. As these cancers have limited treatment 
options, shedding light on these hidden mechanisms of treat-
ment resistance can pave the way for groundbreaking 
advancements in the fight against cancer.

The molecular mechanisms of resistance are numerous, 
complex, and often intertwined, as they include processes 
that are inherently connected: genetic alterations, altered 
drug metabolism and efflux, changes in the tumor microenvir-
onment, and phenotypic transformations (Figures 1 and 2). 
Unraveling the complexities of these mechanisms is essential 
to develop strategies to overcome or prevent resistance, ush-
ering in a new era of personalized medicine, where tailored 
treatments can effectively combat chemoresistant cancers.

Despite the existence of multiple current therapies that 
are being employed to combat different levels of chemore-
sistance (Tables 3–5), it is imperative to emphasize the role 
of collaborative interdisciplinary research in the pursuit of 
overcoming treatment resistance in PC and BTC. Integrating 
insights from diverse scientific disciplines, including geno-
mics, pharmacology, immunology, and computational biol-
ogy, can provide a more comprehensive understanding of 
the intricate network of factors contributing to resistance. 
Furthermore, advancements in diagnostic tools and technol-
ogies, such as liquid biopsies and high-throughput sequen-
cing, hold promise in identifying early markers of treatment 
resistance. These tools not only enhance our ability to 
monitor the dynamic changes in the molecular landscape 
of tumors but also enable timely adjustments to therapeutic 
interventions.

Combination therapies, modulation of the tumor microen-
vironment, new drugs and personalized medicine approaches 
are being explored as potential solutions (Figure 3). To confirm 
the efficacy of these strategies, particularly in complex and 
heterogeneous cancers like BTC and PC, additional studies and 
clinical trials are required.

In conclusion, the fight against treatment resistance in PC 
and BTC necessitates a multi-faceted approach that encom-
passes not only therapeutic strategies but also collaborative 
research endeavors and the integration of cutting-edge tech-
nologies. By embracing the complexity of these challenges 
and leveraging the collective expertise of the scientific com-
munity, we can pave the way for transformative break-
throughs in the battle against chemoresistant cancers.

6. Expert opinion

Considering previous studies on drug resistance in pancreatic 
and biliary tract cancer, the scientific community is still far 
away from having a concise picture of how cancer cells are 
able to survive the treatments that are routinely administered 
to patients.

In this review, we provide a concise picture of the mechan-
isms that have been discovered so far, in order to underline 
the astounding number of mechanisms that have been 
observed and studied in these cancers. What is truly lacking 
then is a solid theory of how all these different mechanisms 
combine to make both pancreatic and biliary tract cancers so 
challenging to treat. Unfortunately, the development of 
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a unified theory on resistance to therapy is made even more 
challenging by the high heterogeneity of these cancers, so 
that the main mechanisms of resistance can be different not 
only between patients but also within different metastatic 
lesions of the same patients, or even different tumor areas of 
a single nodule [224,225].

Given how complicated the topic is, perhaps a different 
approach needs to be taken to the issue. One suggestion is 
to address each patient as an individual rather than concen-
trating on PC or BTC in general. This translates into the notion 
of creating a tool that can assist in identifying the primary 
mechanisms at work to better target the cancer in practice. 
This might take the form of a liquid biopsy, but it might also 
be a deeper single-cell transcriptome study of the tissue sam-
ple or perhaps another as-yet-undeveloped technology 
[160,226]. Indeed, an article on identifying resistance mechan-
isms in gastrointestinal cancer points to a better clinical rele-
vance of the results obtained with liquid biopsy compared to 
tissue biopsy, as a liquid biopsy gave a more complete picture 
of the various ongoing resistance mechanisms while tissue 
biopsy could only identify the mechanisms relevant to the 
small acquired tissue sample [227]. Furthermore, to better 
probe intra-tumoral heterogeneity, analysis of transcriptomic 
data from single cells are being performed to predict drug 
sensitivity and test selective drugs that could overcome treat-
ment resistance, although these types of tests are only 
recently starting to be implemented in the clinical setting 
[228,229].

Given the rapid advances in computer technology, another 
emerging possibility is the use of artificial intelligence (AI) to 
integrate all the data available on different treatment resistance 
mechanisms. The use of AI could enable us to truly have 
a unified picture of the mechanisms of resistance to therapy, 
and consequently, it could help point scientists in the right 
direction for the development of more useful strategies to 
overcome resistance [230–232]. AI has already been used to 
identify genes that are likely to be involved in modifications 
related to drug resistance, including epigenetic changes, and to 
predict which drugs are more likely to advance from the pre-
clinical to the clinical setting, helping reduce the costs and time 
spent on dead-end projects [230,231]. In the setting of PC, 
advances in AI have already been made regarding early diag-
nosis, both with biomarkers and radiological imaging, while in 
the early stages of both PC and BTC, AI is being used to aid 
surgeons in cases of uncertain diagnostic imaging or for plan-
ning of complex surgery [233,234]. Hopefully, the implementa-
tion of AI in both PC and BTC to better understand the 
mechanisms of drug resistance will be part of the near future.

A more in-depth knowledge of the resistance mechanisms 
is helpful to guide treatment decisions, but it is only useful 
when combined with the development of new drugs or 
improvement of drugs that are already available. Small steps 
in this direction have already been made, for example, the 
development of new generation FGFR inhibitors in BTC, active 
against some resistance mutation to previous drugs, or the 
use of maintenance therapy with PARP inhibitor olaparib in 
BRCA1/2 mutated PC patients [235]. Although these therapies 
are only applicable to a small subset of patients, we believe 
that they should be seen as a success and as herald drugs in 

the new landscape of personalized medicine. Hopefully, this 
type of personalized treatment can continue to be explored, 
even though the challenges are not only scientific in nature 
but also economical, as the road to developing drugs that can 
only be used in a small subset of patients is often arduous.

To conclude, the current therapeutic options for PC and 
BTC, including chemotherapy, targeted therapy, and immu-
notherapy, have shown limited success in overcoming treat-
ment resistance. Our expert opinion is that a deeper 
understanding of each patient’s resistance mechanisms could 
really help in implementing the right drugs to prolong survi-
val. To make these tailored treatments possible, it is also 
paramount that scientists keep working on novel approaches. 
We believe that an improvement in treatment results for these 
aggressive malignancies is feasible through a deeper compre-
hension of the molecular causes of resistance, the creation of 
customized methods, and the investigation of innovative com-
bination medicines.
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