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aDepartment of Continuum Mechanics and Structural Analysis, School of Engineering, University of Seville , Camino de los Descubrimientos
s/n, E-41092-Seville, Spain

bDepartment of Mechanics, University of Cordoba, Campus de Rabanales, Cordoba, CP 14071, Spain

Abstract

The need for high-performance lightweight materials for the design of aerospace structures predicts a remark-
able future role of carbon nanotubes (CNTs). In particular, thin curved fuselage panels are widely employed.
However, the theoretical difficulties in the underlying differential problem induced by the curvature, as well as
a still under development technology of CNT-based composites, the number of studies dealing with buckling
behavior of this structural typology is limited. The present study aims to provide some insight into the linear
buckling analysis of functionally graded carbon-nanotube reinforced (FG-CNTRC) cylindrical curved panels un-
der compressive and shear loading. Effective properties of materials of the panels reinforced by single-walled
carbon nanotubes (SWCNTs) are estimated through a micromechanical model based on either the Eshelby-Mori-
Tanaka approach or the extended rule of mixtures. A series of numerical simulations have been carried out to
inspect the influence of curvature, panel aspect ratio, the distribution profile of reinforcements (uniform and three
non-uniform distributions) and CNTs orientation angle on the buckling critical load under compressive and shear
loading in uniform thermal environments. Results demonstrate that the change of fiber orientation, CNTs distri-
bution, panel aspect ratio, loading condition and temperature have noticeable effects on the buckling strength and
buckling modes of FG-CNTRC curved panels.
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1. Introduction

The interest in composite materials for the design of aerospace structures has been steadily growing over the
last decades. The upsurge in the need for lightweight structures able to give high level performances has led to a
more intensive use of advanced materials, such as fiber reinforced composites, laminates, sandwiches, foams and
nanostructures [1]. In particular, carbon nanotubes (CNTs) exhibit manifold interesting features as reinforcing
fibers for high strength materials [2] and smart materials with self-sensing capabilities [3, 4]. The introduction of
composite materials to a larger extent on commercial aircrafts such as Boeing 787 and Airbus A380, predicts a
remarkable role of carbon nanotube-reinforced composites (CNTRC) for both aeronautical and aerospace industry
[5]. A promising direction is the application of CNTs as reinforcements in Functionally Graded Materials (FGM).
This branch of advanced materials is characterized by spatially continuous varying properties [6]. These materials
are inhomogeneous composites characterized by smooth and continuous variations in both compositional profile
and material properties, feature that eludes characteristic issues of laminates such as delamination and debonding
[7–9]. An interesting application of these new materials is on curved fuselage panels. However, due to the math-
ematical difficulties involved in their formulation, works on prediction of the critical buckling loads of CNTRC
cylindrical unstiffened curved panels subjected to uniform axial compression and shear are scarce in the literature.

Papers related to the buckling theory of curved panels are not so numerous in comparison to the literature
devoted to flat shell or cylindrical shell buckling. In the case of isotropic curved panels under axial compressive
loading, some analytical solutions were proposed under the assumption of critical loads equal to the case of full
revolution cylinders. This is the case of the reference expressions developed by Redshaw [10] and Timoshenko
[11]. Stowell [12] proposed a modified form of Redshaw’s expression taking into account the influence of the
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boundary conditions. However, gross differences have been found with these simplifications in comparison to
some experimental results in the literature [13–15]. Further investigations were conducted by Yamura et al. [16]
who studied numerically the buckling plastic collapse and by Park et al. [17, 18] who provided a simplified method
to estimate the ultimate strength based on Faulkner’s formule for a single plate with a newly defined slenderness
parameter including curvature effect. Le Tran et al. [19] proposed semi-empirical formulae for predicting the
elastic buckling and ultimate strength based on finite element simulations. Similar analyses were also conducted
for the case of buckling of curved shells under shear loading. The initial analysis were conducted by Legget
[20] for long, slightly curved plates under uniform shear stresses. There are some other analytical results in the
literature (see e.g. [21, 22]) although due to the nonexistence of simple trigonometric shape functions for shear
buckling modes of curved panels, numerical simulations by finite element analysis has proven to be more feasible
[23, 24].

With regard to the analysis of CNTRC and FG-CNTRC structural elements, the number of publications has
considerably increased in recent years with plenty of newly results. One of the first works concerning non-uniform
distributions of CNTs within an isotropic matrix was published by Shen [25]. In this work, a nonlinear vibration
analysis of FG-CNTRC plates in thermal environments was presented. Shen and Zhang [26] analyzed the thermal
buckling and postbuckling behavior of uniform and symmetric FG-CNTRC plates under in-plane temperature vari-
ation. The results showed that functionally graded CNT distributions can rise the buckling temperature as well as
the thermal postbuckling strength of plates. However, it is also observed that in some cases the plate with interme-
diate nanotube concentration may not present intermediate buckling temperature and initial thermal postbuckling
strength. Based on the homogenization framework of Eshelby-Mori-Tanaka, Arani et al. [27] investigated analyt-
ically and numerically the buckling behavior of moderately thick CNTRC rectangular plates subjected to uniaxial
compression. Adopting classical laminate plate theory and third-order shear deformation theory, the authors opti-
mized the orientation of CNTs to achieve the highest critical load. A similar contribution by Mehrabadi et al. [28]
analyzed the mechanical buckling of FG-CNT reinforced composite Mindlin plates subjected to both uniaxial and
biaxial in-plane loadings. The buckling analysis of FG-CNTRC plates under in-plane mechanical loads was also
carried out by Lei et al. [29] using the element-free kp-Ritz method. In that work, a micromechanical model based
on either the Eshelby-Mori-Tanaka approach or the extended rule of mixture showed good synergism between both
methodologies for the case of uniaxially CNT reinforced composites. Zhu et al. [30] proposed a meshless local
Petrov-Galerkin approach based on the moving Kriging interpolation technique for the geometrically nonlinear
thermoelastic analysis of FG plates in thermal environments. Later work of the same group dealt with the me-
chanical and thermal buckling analysis of ceramic-metal FG plates [31]. Lei et al. [32] employed the IMLS-Ritz
method for the buckling analysis of thick FG-CNT skew plates resting on Pasternak foundations. Similar results
can be found in the literature concerning the buckling analysis of FG-CNTRC thick plates resting on Winkler [33]
and Pasternak foundations [34], the buckling analysis of thick FG-CNTRC skew plates under biaxial compression
[35], the postbuckling behavior of FG-CNTRC plates with elastically restrained edges under axial compression
[36], as well as of biaxial compressed arbitrarily straight-sided quadrilateral ceramic-metal FGM plates [37]. This
methodology has been found useful for other manifold applications such as the free vibration of moderately thick
laminated CNTRC plates [38] and triangular plates [39], large deformation of FG-CNT reinforced composite
quadrilateral plates [40], and FG-CNTRC plates with elastically restrained edges [41]. Those studies concluded
that the FG-X profile results in the stiffest CNT configuration, unlike the FG-O profile which generates the least
stiff configuration. Similar conclusions were reached by Zhang et al. [42] who investigated the large deflection
behavior of FG-CNTRC plates resting on elastic foundations under transversely distributed loads. It is also worth
mentioning the proposal of these authors of a state-space Levy method for the vibration analysis of FG-CNTRC
plates subjected to in-plane loads based on higher-order shear deformation theory [43]. Nevertheless, the number
of publications dealing with cylindrical panels is less numerous. It is noteworthy the work of Lei et al. [44] which
presented parametric studies of the dynamic stability of CNTRC-FG cylindrical panels under static and periodic
axial forces using the mesh-free-kp-Ritz method and the Eshelby-Mori-Tanaka homogenization scheme. Shen and
Xiang [45] employed the higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity
to study the postbuckling of axially compressed FG-CNTRC cylindrical panels resting on elastic foundations in
thermal environment.

Regarding the state of the art of mechanical analysis of FG-CNTRC composites [46], only a limited number of
works reported on the buckling analysis of FG-CNTRC cylindrical panels under axial compressive and tangential
forces. The influence of the different variables involved in the micromechanics of functionally graded materials,
such as volume fraction, CNT distributions, fiber orientation angle and temperature-dependent material properties,
on the buckling behavior of curved panels is still unexplored. The objective of the present study is to investigate
the effect of the main design variables which influence the linear buckling behavior of FG-CNTRC unstiffened
curved panels. The panels have been modeled with the commercial FEA software ANSYS v15.0 with effective
properties of materials estimated by means of a micromecamechanical model based on either the Eshelby-Mori-
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Tanaka approach or the extended rule of mixtures. Detailed parametric studies have been carried out to inspect the
influence of curvature, panel aspect ratio, the distribution profile of reinforcements (uniform and three non-uniform
distributions) and CNTs orientation angle on the buckling critical load under compressive and shear loading in
uniform thermal environments. The results show substantial influence of these variables on the buckling strength
and buckling modes of FG-CNTRC curved panels.

The paper is organized as follows. Section 2 introduces the terminology used for the parametrization of
FG-CNTRC cylindrical curved panels as well as the homogenization schemes. Section 3 sets up the basis of
the eigenvalue buckling analysis of FG-CNTRC cylindrical curved panels. Section 4 presents some comparison
analyses with the existing literature, buckling analysis of FG-CNTRC curved panels under axial compressive and
tangential forces. Finally, Section 5 presents the conclusions derived from this work.

2. FG-CNTRC cylindrical curved panels

The FG-CNTRC cylindrical curved panel and the corresponding local coordinate system {u, v,w} considered in
this paper are shown in Fig. 1a. This panel is assumed to be thin and of projected width b, straight length a, radius
R, span angle β and uniform constant thickness t. In order to characterize the curvature of the panels, it is defined a
non-dimensional parameter Z = s2/R · t (modified Bartdorf’s parameter deprived of the effects of Poisson’s ratio),
being s the curved length of the panel. From a physical point of view, this parameter is proportional to the sagitta
of the curved edges h (given by b2/8 · R) divided by its thickness t. In order to visualize the curvature parameter
Z, the schematic curved shapes of selected curvature parameters are shown in Fig. 1b. The CNTs are assumed to
be uniaxially aligned at α degrees with respect to the axial direction (x-axis) and functionally graded along the
thickness of the panel by four different distributions, namely UD, FG-V, FG-O and FG-X. UD-CNTRC represents
the uniform distribution whilst FG-V, FG-O and FG-X CNTRC are linear distributions of carbon nanotubes along
the radial direction. According to these distributions (Fig. 2), the CNT volume fractions VCNT (z) are given by
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Figure 1: a) Geometry and coordinate system of carbon nanotube nanoreinforced cylindrical panel. b) Schematic views of
panels with different curvature parameters Z.

VCNT = V∗CNT (UD CNTRC)

VCNT =
4|z|
t V∗CNT (FG-X CNTRC)

VCNT = (1 + 2z
t )V∗CNT (FG-V CNTRC)

VCNT = 2(1 − 2|z|
t )V∗CNT (FG-O CNTRC)

(1)

with V∗CNT the volume fraction of CNTs that can be calculated from the mass fraction of nanotubes, wCNT , as

V∗CNT =
wCNT

wCNT + (ρCNT /ρm) − (ρCNT /ρm)wCNT
(2)
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where ρm and ρCNT are the densities of the matrix and CNTs, respectively. Hence, the cases of uniformly dis-
tributed (UD), i.e. VCNT = V∗CNT , and functionally graded (FG) CNTRCs will have the same value of mass
fraction of CNTs.
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Figure 2: Variation of nanotube volume fraction (VCNT ) along the radial direction for types of FG-V, FG-O, FG-X and UD.

The effective material properties of the two-phase nanocomposites mixture of uniaxially aligned CNTs re-
inforcements and a polymeric matrix, can be estimated according to the Mori-Tanaka scheme [47] or the rule
of mixtures [48, 49]. The accuracy of the extended rule of mixtures (EROM) has been widely discussed and a
remarkable synergism with the Mori-Tanaka scheme for functionally graded ceramic-metal beams is reported in
[50].

2.1. Extended Rule of Mixtures
According to the extended rule of mixtures, the effective material properties of CNTRC panels can be ex-

pressed as [25]

E11 = η1VCNT ECNT
11 + VmEm (3a)

η2

E22
=

VCNT

ECNT
22

+
Vm

Em (3b)

η3

G12
=

VCNT

GCNT
12

+
Vm

Gm (3c)

where ECNT
11 , ECNT

22 and GCNT
12 indicate the Young’s moduli and shear modulus of SWCNTs, respectively, and Em

and Gm represent the corresponding properties of the isotropic matrix. In order to account for the scale-dependent
material properties, the CNT efficiency parameters, η j ( j=1,2,3), are introduced and can be calculated by matching
the effective properties of the CNTRC obtained from a molecular dynamics (MD) or multi-scale simulation with
those from the rule of mixtures. VCNT and Vm are respectively the volume fractions of the carbon nanotubes and
matrix, whose sum equals unity. Similarly, the thermal expansion coefficients in the longitudinal and transverse
directions, α11 and α22, Poisson’s ratio ν12 and the density ρ of the nanocomposites can be determined in the same
way as

ν12 = VCNTν
CNT
12 + Vmν

m (4a)

ρ = VCNTρ
CNT + Vmρ

m (4b)

α11 = VCNTα
CNT
11 + Vmα

m (4c)

α22 = (1 + νCNT
12 )VCNTα

CNT
22 + (1 + νm)Vmα

m − ν12α11 (4d)

where νCNT
12 and νm are Poisson’s ratios, and αCNT

11 , αCNT
22 and αm are the thermal expansion coefficients of the CNT

and matrix, respectively. Note that ν12 is considered to be constant over the thickness of the functionally graded
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CNTRC plates. In addition, we assume that G23 = G13 = G12. The rest of the other effective mechanical properties
are defined as follows

E33 = E22, G13 = G12, ν23 = E22
2G23
− 1,

ν13 = ν12, ν31 = ν21, ν32 = ν23,

ν21 = ν12
E22
E11

(5)

2.2. Eshelby-Mori Tanaka approach
The Mori-Tanaka method [51] allows to extension of the theory of Eshelby [52, 53], restricted to one single

inclusion in a semi-infinite elastic, homogeneous and isotropic medium, to the case of multiple inhomogeneities
embedded into a finite domain. The Eshelby-Mori-Tanaka approach, known as the equivalent inclusion-average
stress method, is based on the equivalent elastic inclusion idea of Eshelby and the concept of average stress in the
matrix due to Mori-Tanaka. In this paper, we consider a linear elastic polymer matrix reinforced by a large number
of dispersed aligned and straight CNTs. According to Benveniste’s revision [54], the following expression of the
effective elastic tensor is obtained:

C = Cm + VCNT 〈(Cr −Cm) Ar〉 (VmI + VCNT 〈Ar〉)−1 (6)

where I is the identity tensor, Cm is the stiffness tensor of the equivalent fiber, Cr is the stiffness tensor of the
equivalent fiber, and Ar is the dilute mechanical strain concentration tensor for the fiber:

Ar =
[
I + S (Cm)−1 (Cr −Cm)

]−1
(7)

The tensor S is the Eshelby’s tensor, as given by Eshelby [52] and Mura [55]. The terms enclosed with angle
brackets in Eq. 6 represent the average value of the term over all orientations defined by transformation from
the local fiber coordinates (o − x′1x′2x′3) to the global coordinates (o − x1x2x3)(Fig. 3). The matrix is assumed to
be elastic and isotropic, with Young’s modulus Em and Poisson’s ratio νm. Each straight CNT is modeled as a
long fiber with transversely isotropic elastic properties. Therefore, the composite is also transversely isotropic.
The substitution of the non-vanishing components of the Eshelby’s tensor S for a straight, long fiber along the
x2-direction in Eq. 7 gives the dilute mechanical strain concentration tensor. Then the substitution of Ar (Eq. 7)
into Eq. 6 gives the tensor of effective elastic moduli of the composite reinforced by aligned and straight CNTs.
In particular, the Hill’s elastic moduli are found as [47]:

Micro scale

Macro scale

x3

x2

x1

x′2

x′1

x′3

β

α

Figure 3: Representative volume element (RVE) including straight CNTs.

k =
Em{EmVm + 2kr(1 + vm)[1 + VCNT (1 − 2vm)]}

2(1 + vm)[Em(1 + VCNT − 2vm) + 2Vmkr(1 − vm − 2v2
m)]

(8)

l =
Em{vmVm[Em + 2kr(1 + vm)] + 2VCNT kr(1 − v2

m)}
(1 + vm)[Em(1 + VCNT − 2vm) + 2Vmkr(1 − vm − 2v2

m)]
(9)

n =
E2

mVm(1 + VCNT − Vmvm) + 2VmVCNT (krnr − l2r )(1 + vm)2(1 − 2vm)
(1 + vm)[Em(1 + VCNT − 2vm) + 2Vmkr(1 − vm − 2v2

m)]

+
Em[2V2

mkr(1 − vm) + VCNT nr(1 + VCNT − 2vm) − 4Vmlrvm]
Em(1 + VCNT − 2vm) + 2Vmkr(1 − vm − 2v2

m)

(10)
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p =
Em[EmVm + 2pr(1 + vm)(1 + VCNT )]

2(1 + vm)[Em(1 + VCNT ) + 2Vm pr(1 + vm)]
(11)

k =
Em[EmVm + 2mr(1 + vm)(3 + VCNT − 4vm)]

2(1 + vm){Em[Vm + 4VCNT (1 − vm)] + 2Vmmr(3 − vm − 4v2
m)}

(12)

where k, l, m, n and p are Hill’s elastic moduli of the composite; k is the plane-strain bulk modulus normal to the
fiber direction, n is the uniaxial tension modulus in the fiber direction, l is the associated cross modulus, m and p
is the shear moduli in planes normal and parallel to the fiber direction, respectively. kr, lr, mr, nr and pr are the
Hill’s elastic moduli for the reinforcing phase (CNTs). The material properties of the composite can be expressed
in terms of engineering constants as [56]:

E11 = n −
l2

k
(13)

E22 =
4m(k − l2)

kn − l2 + mn
(14)

ν12 = ν13 =
l

2k
(15)

ν23 =
n(k − m) − l2

n(k + m) − l2
(16)

G12 = G13 = p (17)

3. Formulation of eigenvalue buckling analysis of FG-CNTRC cylindrical curved panels

The numerical studies of eigenvalue buckling analysis are conducted with the coomercial software ANSYS
v15.0. The panel is modeled with the standard structural shell element, Shell 181 [57]. This element type is a
quadrilateral 4-nodes element involving both bending and membrane properties with three rotational and three
translational degrees of freedom per node. This element is suitable for thin to moderately-thick shell structures.
The aim of this paper is focused on the study of the linear buckling of simply supported cylindrical curved panels
subjected to axial pressure and shear forces. Hence, the boundary conditions considered in the modeling procedure
are summarized in Table 1. Note that the boundary conditions are defined correspondingly in the local cylindrical
coordinates {u, v,w} as represented in Fig. 1a.

Table 1: Boundary conditions for buckling under axial compression and tangential forces

Compression Shear
u v w u v w

Corner 1 cpl 0 1 1 1 1

Corner 2 cpl 0 1 1 0 1

Corner 3 1 0 1 1 0 1

Corner 4 1 1 1 1 0 1

Edge 1 cpl 0 1 0 0 1

Edge 2 0 0 1 0 0 1

Edge 3 1 0 1 0 0 1

Edge 4 0 0 1 0 0 1

(cpl coupled; 1 restrained; 0 free).

The theoretical background of this procedure consists on the application of an arbitrary reference level of
external load {R}re f , and perform a standard linear analysis to determine element stresses. The effects of membrane
stresses on the lateral deflection are accounted for by the stress stiffness matrix [Kσ]re f which augments the
conventional stiffness matrix [K]. For a generic load level, obtained by multiplying the reference load by the
scalar λ, the stress stiffness matrix can be written

[Kσ] = λ [Kσ]re f ; {R} = λ {R}re f (18)

Eqs. 18 imply that multiplication of all loads Ri in {R} by λ also multiplies the intensity of the stress field by
λ but does not alter the distribution of stresses. Because the problem is assumed linear, the conventional stiffness
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matrix [K] does not depend on loading. Let buckling displacements {δD} take place relative to displacements
{D}re f of the reference configuration. Then because the external loads do not change at a bifurcation point, we
have  ([K] + λcr [Kσ]) {D}re f = λcr {R}re f

([K] + λcr [Kσ])
(
{D}re f + {δD}

)
= λcr {R}re f

(19)

Subtraction of the first equation from the second yields

([K] + λcr [Kσ]) {δD} = 0 (20)

Eq. 20 is an eigenvalue problem whose smallest root λcr defines the smallest level of external load for which
the bifurcation takes place, namely

{R}cr = λcr {R}re f (21)

The eigenvector {δD} associated with λcr is the buckling mode. Eq. 20 can be rewritten in a more compact
way as [K]net {δD} = 0. Because forces of this new problem are zero, it can be said that the stresses of critical
intensity lead the net stiffness to be singular with respect to the buckling mode {δD}. Mathematically, [K]net has a
zero determinant thus the linear bifurcation problem reduces to the following eigenvalue problem∣∣∣[K] + λcr [Kσ]re f

∣∣∣ = 0 (22)

Finally, in order to implement the constitutive equations of the resulting CNTRCs into the modeling, the prein-
tegrated sections module of ANSYS is employed. This module permits the specification of the membrane, bending
and coupling stiffness matrices of the shells. For this purpose, let the constitutive equations of the CNTRCs written
in Voigt’s notation as follows

s11
s22
s12
s23
s13

 =


Q11(z) Q12(z) 0 0 0
Q12(z) Q22(z) 0 0 0

0 0 Q66(z) 0 0
0 0 0 Q44(z) 0
0 0 0 0 Q55(z)

 ·

γ11
γ22
γ12
γ23
γ13

 (23)

Q11 = E11
1−ν12ν21

, Q22 = E22
1−ν12ν21

, Q12 = ν21E11
1−ν12ν21

,

Q66 = G12, Q44 = G23, Q55 = G13
(24)

where E11 and E22 are effective Young’s moduli of CNTRC panels in the local coordinates; G12, G13 and G23
are the shear moduli; ν12 and ν12 are Poisson’s ratios obtained by the extended rule of mixtures (EROM) or the
Eshelby-Mori-Tanaka approach. Note that Qi j varies with z according to the grading profile of the CNTRC along
the thickness. Thus, the components of the extensional stiffness CE , bending extensional coupling stiffness CC ,
bending stiffness CB, and transverse shear stiffness CS are defined by the following integrals

(Ci j
E ,C

i j
C ,C

i j
B ) =

∫ t/2
−t/2 Qi j(z) · (1, z, z2)dz (i, j = 1, 2, 6),

Ci j
S = 1

ks

∫ t/2
−t/2 Qi j(z)dz (i, j = 4, 5)

(25)

where ks denotes the transverse shear correction factor for FGM, given by [58]

ks =
6 − (νCNT

12 VCNT + νmVm)
5

(26)

4. Results and discussion

In this section, several numerical examples are presented to study the buckling behavior of FG-CNTRC curved
panels under uniform axial compression and shear in uniform thermal environment. Poly{(m-phenylenevinylene)
-co-[(2,5-dioctoxy-p-phenylene)vinylene]} (PmPV) is considered as the matrix and the mean material properties
are assumed to be νm = 0.34, ρm = 1.15g/m3 and Em=(3.52 − 0.0047T )GPa, where T = T0 + ∆T and room
temperature T0 = 300K. The armchair (10,10) SWCNTs are selected as reinforcements. For the Eshelby-Mori-
Tanaka approach, we use the the analytical results of Popov et al. [59]. In the case of the extended rule of
mixtures, the properties of SWCNTs are taken from the MD simulation carried out by Shen and Zhang [26] and
summarized in Table 2. The key issue for the successful application of the extended rule of mixtures to CNTRCs
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relies on the CNT efficiency parameters η j( j=1,2,3). In the present study, the CNT efficiency parameters are
determined by matching the Young’s moduli E11 and E22 from the MD simulations given by Han and Elliot [60]
with the counterparts computed by the rule of mixtures. For example, η1 = 0.149 and η2 = 0.934 for the case of
V∗CNT = 0.11, and η1 = 0.150 and η2 = 0.941 for the case of V∗CNT = 0.14, and η1 = 0.149 and η2 = 1.381 for the
case of V∗CNT = 0.17. In addition, we assume that η3 = η2. Unless otherwise specified, the Eshelby-Mori-Tanaka
approach is applied to predict effective material properties of CNTRCs. For the subsequent analyses, it is set up
a constant length of b=100cm and thickness t=b/50. In order to define the mesh density, convergence studies of
panels with two different aspect ratios, namely a/b=1 and a/b=2, have first been performed as represented in Fig. 4.
Different uniform mesh divisions of (a/b)8×8, (a/b)16×16, (a/b)32×32, (a/b)64×64 and (a/b)128×128 have been
used, wherein (a/b)64×64 was found to provide accurate results and has been used for all the following results.

Table 2: Temperature-dependent material properties for (10,10) SWCNT (L=9.26 nm, R=0.68 nm, h=0.067 nm, νCNT
12 = 0.175)

Temperature (K) ECNT
11 (TPa) ECNT

22 (TPa) GCNT
12 (TPa) αCNT

11 (×10−6/K) αCNT
22 (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682
400 5.5679 6.9814 1.9703 4.1496 5.0905
500 5.5308 6.9348 1.9643 4.5361 5.0189
700 5.4744 6.8641 1.9644 4.6677 4.8943
1000 5.2814 6.6220 1.9451 4.2800 4.7532
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Figure 4: Convergence analysis of the buckling load intensity factor kσ = σcr
σE

of UD-CNTRC panels subjected to axial
compression (SSSS, b=100cm, t=b/50, R=b/2, V∗CNT =0.11) for different panel aspect ratios: a) a/b=1 and b) a/b=2.

4.1. Comparison studies

First, we carry out several numerical experiments to validate the present computational approach. However,
since no results are available in the literature for FG-CNTRC curved panels, the comparison studies focus on
the cases of simply supported (SSSS) orthotropic flat shells and isotropic curved panels, configurations which
do have analytical solutions and are provided in the literature. In addition, the results obtained from the present
computational approach are also compared to results available in the literature on the buckling behavior of FG-
CNTRC flat panels.

4.1.1. Orthotropic flat shells
The case of orthotropic rectangular shells (Z=0, a×b) subjected to compressive edge forces was studied by

Hwang and Lee [61]. In the case of buckling under uniaxial compression of simply supported shells, closed
solutions are provided as follows:

σcr

σo
=

m2

R2 +
χ2

m2 + 2η (27)
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where σcr is the critical buckling stress and m is the number of half-waves in the loading direction. The terms σo,
R, λ and η are defined as:

σo =
π2 √D11D22

b2h
; χ = λ1/4(a/b) (28)

λ =
D22

D11
; η =

D12 + 2D66
√

D11D22
(29)

with Di j the flexural rigidities of the shell. The width b and thickness t of the shell are set to 1m and t=0.021m,
respectively, and the Young’s modulus in x-direction Ex=1.81 × 1011N/m2, Young’s modulus in y-direction
Ey=1.03 × 1010N/m2, shear modulus Gxy=7.53 × 109N/m2 and Poisson’s ratio νxy = 0.28. Buckling load pa-
rameters for the first m parameters (m = 1, . . . , 5) are depicted in Fig. 5. Here, it is observed that the number
of buckle waves increases as the plate aspect ratio increases. Note that each mode shape takes place in a range
of aspect ratios, and the buckling mode changes when there is a change in the energy state of the plate. In the
case of the present computational approach, the first critical buckling load is represented which corresponds to the
buckling mode with the lowest energy state, associated with the buckling eigenvalue problem, and thus it provides
the minimum envelope of the analytical curves.
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Figure 5: Comparison analysis of the critical buckling stress σcr/σo as a function of the adjusted plate aspect ratio R for the
first five buckling modes (m = 1, . . . , 5) of a simply supported rectangular orthotropic plate.

4.1.2. Isotropic curved panels
In this second test, the results of the present approach for unstiffened curved isotropic panels are compared to

the theoretical formulae found in the literature. In particular, the numerical values of the critical buckling load are
compared to the reference analytical expressions proposed by Redshaw [10], Timoshenko [11], Stowell [12] and
Domb and Leigh [62], whose expressions are collected in [19]. In order to simplify the comparison, all the results
are expressed by the so-called load intensity factor kσ defined by

kσ =
σcr

σE
; σE =

π2E
12(1 − ν2)

( t
s

)2
(30)

The results of this comparison are presented in Fig. 6 where the load intensity factor kσ is plotted as a function
of the curvature parameter Z. For values of Z tending towards zero, all formulae naturally converge to kσ = 4
corresponding to the case of flat square plate. It is also remarkable that, for all curves, the buckling coefficients
increase with Z. This tendency is due to the fact that for increasing values of Z, larger curvature values lead to
higher circumferential membrane stresses in the radial direction. Nonetheless, some differences can be found in
the asymptotic behavior of these methodologies. In the case of the formulae of Redshaw and Timoshenko, the
buckling coefficients asymptotically converge towards a straight line with slope equal to the buckling coefficient
of a revolution cylinder. On the contrary, the formulae of Domb and Leigh, Stowell and the present numerical
approach converge towards half this value. These differences can be attributed to the different boundary conditions
considered in these two sets of approaches. The assumption of a full revolution cylinder of the first set of formulae
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assumes four free cut edges, whereas the refined boundary conditions for curved panels of the second set of
approaches only consider two.

1 10 100
1

10

100

Log Z

L
og

k σ

Present
Redshaw [10]
Timoshenko [11]
Stowell [12]
Domb & Leigh [51]

Figure 6: Comparison of the reference analytical buckling coefficients with the present numerical results.

4.1.3. FG-CNTRC flat panels
Finally, the present computational approach has been also compared to the results provided by Lei et al. [29]

with the element-free kp-Ritz method for the buckling behavior of FG-CNTRC flat panels subjected to uniaxial
compression. Table 3 shows the comparison of the buckling load parameter Ncr = Ncrb2/(Emt3) of various types
of CNTRC plates with different boundary conditions, namely simply supported (SSSS), fully clamped (CCCC)
and simply supported with one free edge (SSSF). Width-to-thickness ratio of the plates is set to be b/t=10 and
CNT volume fraction is taken to be V∗CNT =0.11. The effective material properties of CNTRCs plates have been
estimated by both the extended rule of mixture and the Eshelby-Mori-Tanaka approach. It can be seen that the
results obtained by the proposed methodology math very well with the cited reference. Furthermore, the buckling
load parameter obtained by the extended rule of mixture agrees well with the solution of Eshelby-Mori-Tanaka
approach. Consistent with many previously published works, this result supports the convenience of the use of
the simple extended rule of mixtures in the case of uniaxially CNT reinforced composite. Nonetheless, the mi-
cromechanics model of Eshelby-Mori-Tanaka allows to model a greater number of effects such as agglomeration
of nanoinclusions, random distribution of fillers or waviness [47, 50, 56, 63, 64].

Table 3: Comparison study of the buckling load parameter Ncr = Ncrb2/
(
Emt3

)
for UD, FG-O and FG-X CNTRC flat panels

under uniaxial compression and different boundary conditions (a=b, b/t=10, V∗CNT =0.11).

Mode Boundary conditions

SSSS CCCC SSSF

Ref. [29] EMT EROM Ref. [29] EMT EROM Ref. [29] EMT EROM
UD
1 14.11 14.33 14.19 25.73 25.10 24.94 12.31 12.79 12.77
2 23.31 24.50 24.40 26.28 27.13 27.00 16.68 17.07 16.75
3 25.65 28.44 27.15 29.67 31.12 30.98 22.54 23.91 23.84

FG-O
1 9.83 9.97 9.85 21.12 20.30 20.15 7.90 8.24 8.23
2 18.61 19.64 19.55 22.85 23.74 23.64 12.60 12.79 12.51
3 23.04 24.45 23.30 27.41 28.12 27.69 17.71 18.87 18.83

FG-X
1 17.06 17.38 17.24 27.89 27.52 27.35 15.35 15.97 15.94
2 25.62 26.93 26.82 27.93 28.74 28.62 19.52 20.09 19.76
3 26.67 30.41 30.04 30.45 32.06 31.92 24.90 26.41 26.33
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4.2. Results for FG-CNTRC curved panels

The results obtained by the proposed methodology have been shown to be stable and similar to those provided
in the literature. Some new results are now presented for unstiffened curved FG-CNTRC panels subjected to axial
compression and tangential forces. All the foregoing results are defined by the non-dimensional buckling load
intensity factor as follows

kσ =
σcr

σE
; σE =

π2Em

12(1 − ν2
m)

( t
s

)2
(31)

4.2.1. FG-CNTRC Curved panels under axial compression
The cylindrical shells are considered simply supported on all edges (w=0); along the curved edge 1 (loaded

one) the longitudinal displacements are allowed but restricted while in the curved edge 3 are restrained (see Fig. 1).
The straight edges 2 and 3 are free to wave in the circumferential direction as stated in Table 1. The external load
is introduced by means of an external uniform compression on the edge 1 in the longitudinal direction.

The effect of the fiber orientation angle α on the critical buckling load is analyzed for different reinforcement
distributions and curvature in Fig. 7. The results show that in the case of flat shells (h/R=0) the buckling load
intensity factor presents positive curvature with respect to the fiber angle α. This fact favors the origin of peak
values for fibers approximately aligned with the diagonal direction of the shell. Moreover, among the different
distributions of CNTs, FG-X distribution leads to the largest buckling loads whilst the FG-O distribution conducts
to the minimum values. This is because the profile of the reinforcement distribution affects the stiffness of the
shells. This circumstance points out the advantage of FG materials, in which a desired stiffness can be achieved by
adjusting the distribution of CNTs along the thickness direction of the shells. It is concluded that reinforcements
distributed close to the top and bottom induce higher stiffness values of shells [65]. Another essential aspect is the
influence of the fiber direction. In the case of flat shells, for every reinforcement distribution the critical buckling
load increases up to 40% with respect to the shells with fibers aligned with the axial direction. In the case of
curved shells (h/R=0.9), the curvature significantly increases the buckling load values with respect to the flat
configuration. However, this more complex geometry distorts the relationship between the buckling load factor
and the fiber orientation angle. It is noticeable that despite the fiber distributions conserve their relative order, there
is a range of angles, approximately between 70◦ and 85◦, in which they do not show a significant difference. The
effect of the curvature is clarified in Fig. 8 with the analysis of the relationship between the buckling load factor
and fiber angle for CNT uniform distribution and different ratios h/R. In this figure, it is highlighted the stiffening
effect of the curvature. Furthermore, the curves change from a positive curvature with one clear maximum peak
to curves with two maximum and one minimum peaks. Similar conclusions can be extracted by varying the CNTs
volume fraction V∗CNT as in Fig. 9. In this figure, it is represented the buckling load intensity factor for different
fiber orientation angles α and UD-CNTRC panels with increasing CNT volume fractions. The results show that
the buckling load intensity factors have higher values when the volume fraction of CNT is larger as it raises the
stiffness of the panels. The curvature parameter Z and the fiber angle α also have a substantial influence on the
shape of the first buckling mode as can be clearly seen in Figs. 10 and 11.
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Figure 7: Effect of fiber angle α on the buckling load intensity factor kσ of a FG-CNTRC panel subjected to compressive forces
α (SSSS, b=100cm, a=2· b, t=b/50, R=b/2, V∗CNT =0.11) for different profiles: UD ( ), FG-V ( ), FG-O ( ) and
FG-X ( )
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Figure 8: Effect of fiber angle α on the buckling load intensity factor kσ of a UD-CNTRC panel subjected to compressive
forces α (SSSS, b=100cm, a=2· b, t=b/50, V∗CNT =0.11) for different h/R ratios
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Figure 9: Effect of fiber angle α on the buckling load intensity factor kσ of a UD-CNTRC panel subjected to compressive
forces α (SSSS, b=100cm, a=2· b, t=b/50, R=b/2) for different SWCNT volume fractions

Fig. 12 shows the buckling load parameters for simply supported FG-CNTRC curved panels with aspect ratio
a/b changing from 0.5 to 8. It can be seen that the buckling load parameters decrease as the plate aspect ratio
increases due to the activation of buckling modes with higher number of waves. I is also noticeable that the FG-V
and UD distributions show similar results in the curved configuration. This fact, which can also be observed in
Fig. 7, results in the inversion of the order of these two curves for certain values of fiber orientation angles and
aspect ratios.

Effects of different uniform temperature environments (T=300, 400 and 500K) on the buckling load parameters
of FG-CNTRC curved panels with different reinforcement distributions are shown in Table 4. For this study,
the extended rule of mixtures is used to predict the effective material properties of CNTRCs. It can be seen
that the buckling load intensity factors decrease as temperature increases. This is because an increment of the
temperature reduces the elastic moduli of CNTRCs shells since material properties of the matrix and SWCNTs
are assumed to be temperature-dependent. As in previous analyses, we also found here that FG-X and FG-O
CNTRC shells have the highest and lowest values of buckling load intensity factors, respectively, in different
temperature environments.
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Figure 10: First elastic buckling modes for UD-CNTRC flat panel (h/R = 0) and curved panels (h/R = 0.45, 0.9) subjected to
compressive loading for different fiber orientation angles (α) (SSSS, b=100cm, a=2· b, t=b/50, V∗CNT =0.11).
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Figure 11: First elastic buckling modes for UD-CNTRC flat panel (h/R = 0) and curved panels (h/R = 0.45, 0.9) subjected to
compressive loading with fiber orientation angle (α) of 30◦ (SSSS, b=100cm, a=2· b, t=b/50, V∗CNT =0.11).
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Figure 12: Variation of the buckling load intensity factor kσ of FG-CNTRC panels versus plate aspect ratio under axial com-
pression (SSSS, b=100cm, t=b/50, V∗CNT =0.11, α=0◦) for different profiles: UD ( ), FG-V ( ), FG-O ( ) and FG-X
( ).

Table 4: Effect of environment temperature on the buckling load intensity factor (kσ=σcr/σE ;
σE=

(
π2E(m,T=300K)/12

(
1 − ν2

(m,T=300K)

))
(t/s)2) of FG-CNTRC curved panels under axial compression (SSSS, b=100cm,

a=2· b, t=b/50, V∗CNT =0.11, α=0◦).

T (K) h/R Type of CNTRC

UD FG-V FG-O FG-X

300 0 15.57 13.76 10.52 20.68
0.45 121.13 120.76 99.79 131.73
0.9 268.10 268.04 223.02 310.36

400 0 12.66 10.80 7.86 17.45
0.45 74.04 77.06 65.65 81.95
0.9 176.42 176.33 145.27 192.27

500 0 9.41 7.56 5.15 13.41
0.45 23.27 23.93 17.76 28.56
0.9 49.41 50.51 39.85 58.67

4.2.2. FG-CNTRC Curved panels under tangential forces
In this second set of tests, the buckling behavior of simply supported FG-CNTRC curved shells subjected to

shear forces has been analyzed. The boundary conditions in the modeling procedure, which ensure a state of pure
shear, are given in Table 1. The shear forces have been applied in the form of uniform shell edge loads along the
middle surface of plates. Fig. 13 shows the loading types considered in these analyses.
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Figure 13: Positive (+Nxy) and negative (-Nxy) shear loading of a FG-CNTRC curved shell.
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Table 5: Effect of environment temperature on the buckling load intensity factor (kσ=σcr/σE ;
σE=

(
π2E(m,T=300K)/12

(
1 − ν2

(m,T=300K)

))
(t/s)2) of FG-CNTRC curved panels under axial compression (SSSS, b=100cm,

a=2· b, t=b/50, V∗CNT =0.11, α=45◦).

T (K) h/R +Nxy -Nxy

UD FG-V FG-O FG-X UD FG-V FG-O FG-X

300 0 37.90 34.76 30.99 44.13 376.83 275.60 215.33 513.54
0.45 160.94 152.45 138.91 176.84 625.71 511.23 423.58 766.69
0.9 439.24 418.10 381.01 480.92 1341.70 1143.93 980.55 1526.26

500 0 24.60 22.21 19.67 28.93 317.74 237.34 188.46 417.78
0.45 99.63 94.47 86.45 107.56 455.72 383.99 325.06 526.10
0.9 269.92 257.57 236.54 292.33 865.75 791.69 710.65 897.06

700 0 8.00 7.03 6.15 9.42 113.54 113.97 107.83 114.13
0.45 23.21 22.65 21.60 24.28 130.79 123.61 116.47 137.50
0.9 62.72 61.09 58.23 65.80 172.77 173.17 172.41 174.17

Fig. 14 shows the effect of the fiber angle α on the buckling load factor kσ for square flat and curved shells.
The critical loads of the FG-CNTRC panels under negative shear are higher than those of under positive shear
for every fiber angle. This is because in the former case the compressive component of the shear is more closely
aligned with the fibers. Furthermore, like in the case of compressive loadings, fiber orientation angles aligned
with the diagonal of the panels (45◦) conduct to higher buckling loads. For further illustration of these results, the
first buckling modes of UD-CNTRC panels for different fiber orientation angles and h/R ratios are also depicted
in Figs. 15 and 16. Finally, the effect of different temperature environments has been also explored for the case of
FG-CNTRC curved panels subjected to shear forces. The results, summarized in Table 5, also show decreases in
the buckling load intensity factors as temperature increases
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Figure 14: Effect of fiber angle α on the buckling load intensity factor kσ of a FG-CNTRC flat panel subjected to tangential
forces (+Nxy “-”, -Nxy “=” ) for different profiles: UD ( ), FG-V ( ), FG-O ( ) and FG-X ( ); (SSSS, b=100cm,
a=b, t=b/50, V∗CNT =0.11).

15



+Nxy -Nxy +Nxy -Nxy

h/R=0 h/R=0.45

α
=
0
º

α
=
3
0
º

α
=
9
0
º

α
=
6
0
º

Figure 15: First elastic buckling modes of simply supported UD-CNTRC flat panel (h/R=0) and curved panel (h/R=0.9) under
shear forces with different fiber orientation angles α (b=100cm, a=b, t=b/50, V∗CNT =0.11).
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Figure 16: First elastic buckling modes for UD-CNTRC flat panels (h/R = 0) and curved panels (h/R = 0.45) under shear
forces with fiber orientation angle (α) of 30◦ under shear forces (SSSS, b=100cm, a=b, t=b/50, V∗CNT =0.11).
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5. Conclusions

In this paper, the critical buckling of FG-CNTRC cylindrical curved panels under compression and shear forces
have been investigated by finite elements analyses. The plates are reinforced by SWCNTs and effective material
properties of CNTRC plates are estimated either by the Eshelby-Mori-Tanaka approach or the extended rule of
mixture. Comparison studies were performed to verify the accuracy and efficiency of the present approach and the
results were found to be in good agreement with previously published works. Detailed case studies illustrate the
influence of fiber angle, aspect ratio, temperature, SWCNTs grading profile and curvature . The key contributions
of this study can be summarized as follows:

• The curvature increases the buckling load values with respect to the flat configuration. This effect is ex-
plained by higher circumferential membrane stresses in the radial direction induced by an increasing curva-
ture.

• The buckling load intensity factor kσ of flat panels subjected to compressive loading presents positive cur-
vature with respect to the fiber orientation angle α. One clear maximum peak is found for fiber orientations
aligned with the diagonal of the panel. On the contrary, the effects of the fiber orientation angle α on the
buckling load factor become more complex as the curvature increases. It is shown a change from curves
with one single maximum peak to curves with one minimum and two maximum peaks.

• FG-X distribution leads to the largest buckling loads in all the studied cases whilst the FG-O distribution
conducts to the minimum values. It is concluded that reinforcements distributed close to the top and bottom
induce higher stiffness values.

• In the case of curved panels, it is found some fiber orientation angle ranges in which there is not a big
difference among the different CNT distributions. In particular, for curved panels with ratio h/R=0.9, in the
range of fiber angles between 70◦ and 85◦, all the fiber distributions present very similar results.

• In all cases, the buckling load intensity factors have higher values when the volume fraction of CNT is larger
as it raises the stiffness of the panels.

• In the case of curved configurations under compressive loading, slight differences on the buckling loads are
found for FG-V and UD distributions with certain values of fiber orientation angle and aspect ratio. This
fact even results in the inversion of the relative order of these two distributions.

• The buckling load intensity factors decrease as temperature increases in FG-CNTRC curved panels sub-
jected to compressive and tangential forces as a result of the temperature-dependent material properties.

• The critical loads of the FG-CNTRC panels under the negative shear are higher than those of positive shear
for all fiber angles, exhibiting a maximum value for fibers approximately aligned with the diagonal direction
(α = 45◦).
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