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ABSTRACT
In this paper we study the role of turbulence transport on

loss prediction using high fidelity scale-resolving simulations.
For this purpose we use eight high-fidelity simulation datasets
and compute flux of entropy and stagnation pressure transport
equation budgets for all the cases. We find that under certain
unsteady inflow conditions the stagnation pressure coefficient is
not a reliable loss metric even at low Mach number conditions.
This is due to the turbulence transport terms. The impact of
these terms, typically assumed to be negligible, made stagnation
pressure loss coefficient under-predict loss from 0% to over 40%
when compared to entropy loss coefficient for cases considered
here. This effect was most pronounced for the cases with highly
unsteady inflow conditions and at low Reynolds numbers.

INTRODUCTION
High fidelity simulations provide the details of the entire

flow field in the blade passage and therefore may be used to ex-
plore loss generation and loss generating mechanisms [1]. The
most commonly used loss metric is the the stagnation pressure
loss coefficient. This is because it can be directly measured and
is a workhorse for evaluating the performance of different blade
designs experimentally. There are other available metrics, such
as entropy [2] or mechanical work potential [3], which have an
advantage of better representing the lost work due to their ability
to account for heat transfer and thermal mixing effects. However,
they rely on quantities which are difficult to measure or have to
be derived (e.g. entropy cannot be measured directly). As a re-

sult they are difficult to implement experimentally and lead to
high levels of measurement uncertainty. It is therefore of inter-
est to investigate complete transport equations using high fidelity
simulations and compare loss drivers between different loss met-
rics.

Transport equations have been practically used since the 80s.
Among the first, the work of Moore et al. [4] used mean part of
the Reynolds decomposed transport equation of stagnation pres-
sure (e.g., [5]) and applied it to the 2D-field measurements per-
formed by means of hot-wire probes. They found that the inte-
gration of the production of the turbulence kinetic energy repre-
sented the generation of stagnation pressure loss well. Similarly,
more recent papers, either experimental (e.g., [6–8]) or numeri-
cal (e.g., [9, 10]) made strides to understand the mechanism by
which turbulence extracts work from the mean flow via turbu-
lence production. The interest in the production of turbulence
kinetic energy is partially motivated by the relative ease of com-
puting it from the experimental data with relatively low uncer-
tainty. On the other hand, other terms appearing in the trans-
port equations are difficult to obtain and are often neglected. For
this reason, the transport equation of entropy, that relates the en-
tropy generation rate to the viscous dissipation and heat transfer
terms has been computed in more recent high-fidelity simulations
(e.g., [11–16]). These authors showed that the full volume inte-
gration of the right hand side of the entropy transport equation
may provide a spatial breakdown of losses pointing out at their
sources. In addition, Leggett et al. [15] provided a comparison
of entropy and mechanical work potential terms appearing in the
respective transport equations.
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In the present paper we will compare different loss coeffi-
cients computed from several unsteady high-fidelity simulations
of compressor blades and we will further discuss the results com-
puting the full transport equation of entropy and stagnation pres-
sure flux. The paper is structured as follow: (1) the global loss
coefficients are introduced; (2) The numerical methods and sim-
ulation cases are summarised; (3) transport equations of entropy
flux and stagnation pressure flux are analysed to provide a ratio-
nale for a comparison of the metrics; (4) the result section that
discusses the different loss coefficients and loss budgets with a
focus on the effect of turbulence on the different budgets.

In particular, the paper will address the following questions:

1. What determines the stagnation pressure and entropy loss
coefficients?

2. What drives the difference between the loss coefficients?
3. When can we expect the two coefficients to vary?

Lastly, the paper will demonstrate why entropy loss coefficient
does not match stagnation pressure loss coefficient despite adia-
batic and subsonic flow conditions.

COMPUTATIONAL SETUP
Solver details

For this study we use high-fidelity datasets of Przytarski
and Wheeler [12, 14]. These datasets were generated using the
high-order compressible Navier–Stokes solver 3DNS [17]. In to-
tal, eight datasets were used which consisted of two NACA65
datasets at steady turbulent inflow conditions, three NACA65
datasets at unsteady inflow conditions akin to multi-stage envi-
ronment and three CDA (Controlled Diffusion Airfoil) datasets
unsteady inflow conditions akin to multi-stage environment. Ta-
ble 1 summarises the datasets and shows the running conditions
of each case. For cases with unsteady inflow conditions reduced
frequency Fred was also reported and the unsteadiness intensity
was decomposed into periodic Pu and turbulent Tu components.
The spanwise extent for NACA65 cases was 10% of the axial
chord, while CDA cases used spanwise extent equal to 15% of
axial chord. Maximum viscous wall for these geometries are re-
ported in Table 2 asserting the wall-resolved accuracy. Setup
details and a more thorough description of each case, including
a procedure used to mimic the multi-stage environment, can be
found in [12, 14]. An example of an instantaneous flowfield for
steady and unsteady NACA65 profile as well as an unsteady CDA
profile can be seen in Figure 1 for which the spanwise vorticity
contours were plotted.

LOSS METRICS
As discussed by Denton [2], there are several loss coeffi-

cients that are used in turbomachinery. The most popular loss
coefficients are entropy, enthalpy and stagnation pressure loss

steady NACA65

unsteady NACA65

unsteady CDA

FIGURE 1: Instantaneous spanwise vorticity flowfield for 3 ex-
ample cases considered here: NACA65−Tu4 (top), NACA65−
Gap40 (center) and CDA−Gap40 (bottom).

coefficients. As asserted by Denton [2], entropy and enthalpy
loss coefficients should report virtually identical results. How-
ever, the advantage of entropy loss coefficient is that it is more
applicable in the engine setting. More in-depth discussion on the
limitations of each loss coefficient can be found in the literature
e.g. [18, 19].

Despite the consensus that entropy loss coefficient is the
most accurate for engine performance evaluation, the industrial
practice often relies on stagnation pressure loss coefficient due
to the ease of measuring it in an experimental setting. However,
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TABLE 1: Details of 2 steady and 6 unsteady inflow cases

Geometry Case Re Ma Fred Pu Tu

NACA65 Tu4 140k 0.065 − − 4.0%

NACA65 Tu6 140k 0.065 − − 6.0%

NACA65 Gap30 140k 0.065 1.71 5.0% 4.2%

NACA65 Gap40 140k 0.065 1.71 3.6% 3.3%

NACA65 Gap50 140k 0.065 1.71 3.0% 2.9%

CDA Gap30 250k 0.20 2.49 4.9% 3.1%

CDA Gap40 250k 0.20 2.49 3.7% 2.9%

CDA Gap50 250k 0.20 2.49 3.2% 3.0%

TABLE 2: Maximum near-wall viscous units

Case Mesh ∆+
n ∆

+
t ∆+

z

steady NACA65 73M 0.9 7 7

unsteady NACA65 130M 0.6 4.8 6.0

unsteady CDA 170M 0.9 15.5 10.0

in our experience it is often difficult to obtain consistent results
from entropy and stagnation pressure loss coefficients. Given
the availability of relevant high-fidelity datasets, it is desirable
to study the predictive capability of these loss coefficients, what
determines them and their limitations for the unsteady, turbulent
turbomachinery flows.

Entropy loss coefficient
Entropy loss coefficient can be computed from high-fidelity

data directly by taking time-averaged and flux-averaged entropy
at the inlet and outlet of the integration domain:

ω
s =

T2(s2 − s1)

ht,1 −h1
(1)

alternatively, entropy can be approximated with time-averaged
and mass-averaged pressure and temperature:

s− sre f =Cp ln(T/Tre f )−R ln(p/pre f ) (2)

to compute the derived entropy loss coefficient:

ω
s(T,p) =

T2(s(T,p)2 − s(T,p)1)
ht,1 −h1

(3)

Enthalpy loss coefficient
Enthalpy loss coefficient (time-averaged and mass-

averaged) can be computed according to:

ω
h =

h2 −h2s

ht,1 −h1
(4)

and is a popular choice for the design practice as it is independent
of the Mach number.

Stagnation pressure loss coefficient
The stagnation pressure loss coefficient can be obtained ex-

perimentally by directly measuring total pressure which can be
time-averaged and mass-averaged:

ω
p =

pt,1 − pt,2

pt,1 − p1
(5)

This is the most commonly used loss coefficient and it is gener-
ally accepted that it is an accurate estimate, at least in the limit
of low Mach numbers. When stagnation pressure is measured at
sufficiently high frequency at incompressible limit the stagnation
pressure formula reads:

pt = p̄+
1
2

ūiūi +
1
2

u′iu
′
i (6)

where 1
2 ūiūi represents mean kinetic energy and 1

2 u′iu
′
i represents

turbulent kinetic energy. However, in practice, when unsteadi-
ness is low enough, turbulent part of the kinetic energy is dis-
carded resulting in:

pt,no T KE = p̄+
1
2

ūiūi (7)

Equations 6 and 7 are in practice used interchangeably, but
at highly unsteady flowfields they result in different stagnation
pressure estimates and may have an impact in particular when
comparing experimental results against RANS derived predic-
tions. Definition in equation 6 arise from the total kinetic energy

3 TURBO-24-1006, Przytarski

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Turbomachinery. Received January 09, 2024;
Accepted manuscript posted April 03, 2024. doi:10.1115/1.4065287
Copyright © 2024 by ASME; reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/turbom

achinery/article-pdf/doi/10.1115/1.4065287/7326806/turbo-24-1006.pdf by U
niversita D

egli Studi D
i G

enova, D
avide Lengani on 11 April 2024



TABLE 3: The summary of loss coefficients for all the cases

NACA65 NACA65 CDA

Loss Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50

ωs 0.0290 0.0383 0.0271 0.0259 0.0262 0.0229 0.0208 0.0208

ω
s(T,p) 0.0296 0.0390 0.0284 0.0267 0.0270 0.0234 0.0213 0.0212

ωh 0.0296 0.0390 0.0284 0.0267 0.0270 0.0235 0.0213 0.0212

ω p 0.0255 0.0287 0.0145 0.0186 0.0205 0.0207 0.0207 0.0206

ω
p
no T KE 0.0225 0.0180 0.0067 0.0128 0.0161 0.0149 0.0151 0.0153

transport euqation that will be shown later (eq. 15a), while def-
inition in equation 7 arise from the mean part of the kinetic en-
ergy transport equation, shown in Appendix A (eq. 20a). Both
of these definitions can be used to obtain a mass-averaged stag-
nation pressure loss coefficient which will be referred to as:

ω p - for stagnation pressure including TKE
ω

p
no T KE - for stagnation pressure without TKE

In this paper we will explore the impact of turbulent kinetic en-
ergy on these predictions and the role turbulent transport plays in
stagnation pressure loss coefficient in general.

EVALUATION OF LOSS COEFFICIENTS
Table 3 gives a summary of above mentioned loss coeffi-

cients for all the cases considered here. For the steady cases, i.e.
NACA65 Tu4 and Tu6 the reference planes which were used to
compute the loss coefficients were set at 30% axial chord up-
stream of the leading edge and downstream of the trailing edge.
For the unsteady cases the reference planes were set at the do-
main inlet (20−40% upstream of the leading edge depending on
the gap) and at the sampling plane which was located at roughly
10% axial chord downstream of the trailing edge.

As evident from the Table 3, both entropy and enthalpy loss
coefficients result in closely matching estimates. On the other
hand, the mass-averaged pressure loss coefficient (ω p) results
in values which are not only quantitatively different, but also
qualitatively misleading by reversing the loss trend for unsteady
NACA65 cases. These values were highlighted in red. The es-
timates are even worse when mass-averaged stagnation pressure
loss coefficient without the inclusion of turbulent kinetic energy
(ω p

no T KE ) is considered (also highlighted in red). This empha-
sises the need of including turbulent kinetic energy for mass-
averaged stagnation pressure estimates when highly unsteady
flowfields are considered.

To understand why the mass-averaged stagnation pressure
coefficient (ω p) is inaccurate, in the next section we will exam-
ine entropy and stagnation pressure transport equations.

LOSS TRANSPORT EQUATIONS
The loss coefficients give us an estimate of losses in a global

sense so that an overall performance of a system can be assessed.
However, with all the information that high-fidelity datasets of-
fer, these losses can be studied in more detail by examining their
transport equations. Here, specifically we will consider entropy
transport equation and kinetic energy transport equation.

To study these transport equations all the quantities will be
integrated in the volume, Ω, between the same reference planes
as were used for the computations of loss coefficients. Through-
out the paper the integrated quantities are capitalized, for in-
stance the integrated dissipation will be:

Φ =
∫

Ω

φdΩ (8)

and since the simulation were compressible, all quantities used
in the budgets are Favre-averaged:

f̄ ≡ ρ f
ρ̄

(9)

Entropy transport equation
First we examine the entropy transport equation, [20]:

ρ
Ds
Dt

=

(
1
T

τi j
∂ui

∂x j

)
+κ

(
(∇T )2

T 2

)
−
(

∇ · q
T

)
(10)
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FIGURE 2: Comparison of loss contributions to entropy (left)
and stagnation pressure (right) loss metrics the steady inflow
NACA65 Tu4 case.

To gain further insight we may decompose the flowfield into
mean and turbulent components by performing Reynolds decom-
position:

f = f̄ + f ′ (11)

For the purpose of comparing entropy with stagnation pressure
loss metrics we rearrange the equation so that the left hand side
is akin to T ∆s term, while the right hand side has contributions
which are due to the viscous dissipation and heat transfer terms.
Following a similar procedure as the one outlined in [21], we
obtain:

T ρ
Ds
Dt

= τ̄i j
∂ ūi

∂x j︸ ︷︷ ︸
φm

+τ ′i j
∂u′i
∂x j︸ ︷︷ ︸
φ f

+κ
1
T̄

(
∂ T̄
∂xi

)2

︸ ︷︷ ︸
irqm

− T̄
∂

∂xi

(
q̄i

T̄

)
︸ ︷︷ ︸

rqm

− T̄
∂

∂xi

(
q̄′i
T̄

)
︸ ︷︷ ︸

rq f

(12a)

where

ts - entropy generation rate
φm - viscous dissipation due to mean strains
φT - turbulent viscous dissipation

irqm - mean flow irreversible heat transport
rqm - mean flow reversible heat flux
rq f - turbulent reversible heat flux

FIGURE 3: Comparison of loss contributions to entropy (left)
and stagnation pressure (right) loss metrics for the unsteady in-
flow NACA65 Gap40 case.

FIGURE 4: Comparison of loss contributions to entropy (left)
and stagnation pressure (right) loss metrics for the unsteady in-
flow CDA65 Gap40 case.

The first two terms on the right-hand-side are the irreversible
entropy changes due to viscous friction while the terms three,
four and five are the irreversible and reversible changes in en-
tropy due to heat transfer. For the cases considered in this paper,
integrated heat transfer terms are negligible (adiabatic, low Mach
numbers). It is also important to point out that in a computational
sense, another term comes about, εN , due to the combined effects
of discretization errors and numerical filtering (artificial dissipa-
tion). As a result for cases considered here the flux of entropy
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budgets can be computed as:

∫
T ρ

Ds
Dt

dΩ︸ ︷︷ ︸
T ST

≈
∫ (

τ̄i j
∂ ūi

∂x j

)
dΩ︸ ︷︷ ︸

Φm

+
∫ (

τ ′i j
∂u′i
∂x j

+ εN

)
dΩ︸ ︷︷ ︸

Φ f+N

(13)

Equation 13 suggests that for adiabatic flows at low Mach num-
bers, entropy comes about purely as a result of viscous dissi-
pation. It also allows for the estimation of artificial dissipation
term, εN caused by the insufficient mesh resolution. This fact
was previously used by Przytarski and Wheeler [14] to assess the
simulation resolution and a more in-depth discussion of entropy
budgets can be found there. We further assert that the artificial
dissipation can be accounted to the turbulent viscous dissipation
by performing Reynolds decomposition of kinetic energy trans-
port equation and computing full budget for both mean and tur-
bulent components. This is shown in Appendix A. Consequently,
for the remainder of the paper, we will refer to the combined re-
solved and unresolved turbulent viscous dissipation as Φ f+N .

Stagnation pressure transport equation
To obtain the stagnation pressure transport equation (same

as kinetic energy transport equation), momentum and continuity
equations can be rearranged to obtain:

Dpt

Dt
≈

D
(
ρ

1
2 uiui

)
Dt

+ui
∂ p
∂x j

= ui
∂τi j

∂x j
(14)

As before, we can gain more insight by decomposing the
flowfield into mean and turbulent components by performing
Reynolds decomposition and averaging with respect to time as
shown in ( [22], p. 71):

ūi
∂ p̄t

∂xi︸ ︷︷ ︸
f sp

≈ ūi

(
ρ̄

1
2

ūiūi

)
︸ ︷︷ ︸

advm

+ ūi

(
ρ̄

1
2

u′iu
′
i

)
︸ ︷︷ ︸

adv f

+ ūi
∂ p̄
∂xi︸ ︷︷ ︸

pwm

=

− τ̄i j
∂ ūi

∂x j︸ ︷︷ ︸
φm

−τ ′i j
∂u′i
∂x j︸ ︷︷ ︸
φ f

− ∂

∂x j

[
ūi

(
ρu′iu

′
j

)]
︸ ︷︷ ︸

trm f

− ∂

∂x j

[
ρu′j

(
1
2

u′iu
′
i

)]
︸ ︷︷ ︸

tr f f

+
∂ τ̄i jūi

∂x j︸ ︷︷ ︸
vdm

+
∂τ ′i ju

′
i

∂x j︸ ︷︷ ︸
vd f

+ ū′i
∂ p̄
∂xi︸ ︷︷ ︸

pw f

−
∂ p′u′i
∂xi︸ ︷︷ ︸
pd f

+ p′
∂u′i
∂xi︸ ︷︷ ︸

pl f

(15a)

where

f sp - mean flow of stagnation pressure
adv - convection of kinetic energy
pw - pressure work
tr - turbulent transport due to unsteadiness
vd - viscous diffusion
φ - viscous dissipation

pd - pressure diffusion
pl - pressure dilation

LOSS TRANSPORT EQUATIONS BUDGETS AND LOSS
COEFFICIENTS

Entropy and stagnation pressure transport equations can be
directly related to loss coefficients:

ω
s(T ST ) =

T2(s2 − s1)

ht,1 −h1
≈ 1

ht,1 −h1

T ST

ṁ
(16a)

ω
p(FSP) =

pt,1 − pt,2

pt,1 − p1
≈

ρre f

pt,1 − p1

−FSP
ṁ

(16b)

as a result, we are now able to split each loss coefficient into its
constituent components and comment directly on their relative
importance:

T ST = Φm +(Φ f+N) (17a)
−FSP = Φm +(Φ f+N) (17b)

+Trm f +Tr f f −V Dm −V D f −PWf +PD f −PL f︸ ︷︷ ︸
typically assumed≈0

As mentioned before, for cases considered here, the entropy loss
coefficient is driven purely by the viscous dissipation, conve-
niently split into dissipation due to mean strains Φm and turbulent
dissipation Φ f+N (the sum of resolved and unresolved compo-
nents).
The stagnation pressure loss coefficient arise as an interplay be-
tween dissipation due to mean strains Φm, turbulent dissipation
Φ f+N , turbulent transport due to mean and turbulent fields Trm f
and Tr f f , mean and turbulent viscous diffusion V Dm and V D f ,
as well as turbulent pressure work PWf , pressure diffusion PD f
and pressure dilation PLF . It should be mentioned that since
Moore et al. [4], the diffusive terms (Trm f , f f , V Dm, f , PWf , PD f ,
PL f ) are often neglected as it is assumed that their volume in-
tegral is negligible. Furthermore, there are practical difficulties
estimating these terms experimentally. High-fidelity datasets are
immune to such limitations and so are perfect test bed for verify-
ing these assumptions under a variety of conditions.

Table 4 shows the entropy transport equation budgets for all
the cases. Below the budget, entropy loss coefficient derived
from the budget is compared to the one computed globally at the
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TABLE 4: Entropy transport equation budgets

T ST ≈ Φm +Φ f+N

NACA65 NACA65 CDA

Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50

T ST 7.564 9.954 6.980 6.668 6.726 2111.269 1916.130 1916.756

Φm 3.588 3.660 3.419 3.472 3.554 962.015 904.669 911.772

Φ f+N 3.976 6.295 3.561 3.196 3.172 1149.254 1011.461 1004.984

ωs(T ST ) 0.0295 0.0388 0.0272 0.0260 0.0263 0.0234 0.0213 0.0213

ωs
m 0.0290 0.0383 0.0271 0.0259 0.0262 0.0229 0.0208 0.0208

reference frames. Very good agreement is shown between these
two loss coefficients.

Similarly, Table 5 shows the stagnation pressure transport
equation budgets for all the cases. At the bottom of the table
the stagnation pressure loss coefficient derived from the budget
is compared to the one computed globally and, again, a good
agreement is shown between these two loss coefficients for all
the cases.

Some of the terms in the stagnation pressure transport equa-
tion budgets (mainly PWf ,PLF ) were not possible to compute
and as a result were not considered. Despite omitting them in the
budget, the difference between left hand side and the right hand
side terms (LHS-RHS) is small and it is therefore concluded that
these terms can be considered negligible for the cases considered
here.

In the next section we will explore how the components of
these loss budgets determine the overall loss coefficient.

COMPARISON OF LOSS CONTRIBUTIONS
The first thing to note from Table 5 is that while most dif-

fusive terms are indeed close to zero and negligible as typically
assumed, however the turbulent transport terms Trm f and Tr f f
are consistently high and range from 15% of turbulence dissipa-
tion Φ f for the moderate turbulence NACA65 Tu4 case, all the
way to over 100% for the unsteady NACA65 Gap30 case.

This is further demonstrated by integrating all the budgets
along the streamwise direction to obtain a line integral plots
for the steady NACA65 Tu4 case, Figure 2, unsteady NACA65
Gap40 case, Figure 3 and unsteady CDA Gap40 case, Figure
4. For all the cases the domain was normalised by the axial
chord with x = 0 coordinate corresponding to the leading edge

FIGURE 5: Example domain decomposition for the NACA65
Tu4 case.

and x = 1 coordinate corresponding to the trailing edge.
Turbulent transport terms Trm f and Tr f f play a significant

role in stagnation pressure transport equation for most of the con-
sidered cases. For CDA cases their impact appears to be limited
as both terms are of similar magnitude and opposite sign and
therefore lead to error cancellation.

It can be also noted that turbulent transport terms have
stronger impact on the cases that feature more unsteady/turbulent
inflow. As a result, by the virtue of how stagnation pressure
transport is computed and due to the terms’ negative contribu-
tion, they reduce the stagnation pressure loss coefficient resulting
in erroneous performance prediction.

To understand where the impact of turbulent transport terms
is the strongest we perform a domain decomposition and com-
pute a loss budget for different regions. We determine the bound-
ary layer and the wake edges with a vorticity criterion. Figure 5
shows the resulting region split. Figure 6 shows separate budgets
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TABLE 5: Flux of stagnation pressure transport equation budgets

−FSP = Φm +Φ f+N +Trm f +Tr f f −V Dm −V D f −PWf +PD f −PL f

NACA65 NACA65 CDA

Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50

−FSP =−Advm −Adv f −PWm 6.691 7.576 3.811 4.801 5.308 1,816.369 1,891.532 1,929.971

Φm 3.588 3.660 3.419 3.472 3.554 962.015 904.669 911.772

Φ f+N 3.976 6.295 3.561 3.196 3.172 1149.254 1011.461 1004.984

Trm f -0.847 -2.587 -3.905 -2.551 -2.004 -387.640 -207.121 -208.588

Tr f f - - 0.688 0.649 0.488 94.282 213.863 202.576

−V Dm -0.012 -0.009 -0.014 -0.015 -0.015 -2.451 -2.229 -2.240

−V D f -0.008 -0.017 -0.005 -0.005 -0.005 -1.881 -1.577 -1.544

−PWf - - - - - - - -

PD f - - 0.129 0.080 0.111 4.810 26.336 33.456

−PL f - - - - - - - -

LHS - RHS -0.073 -0.315 0.054 0.016 -0.016 -41.965 13.668 -32.144

ω p(FSP) 0.0264 0.0298 0.0149 0.0187 0.0208 0.0204 0.0212 0.0217

ω
p
m 0.0255 0.0287 0.0145 0.0186 0.0205 0.0207 0.0207 0.0206

for the combined regions of boundary layers and wake and for
the freestream for the steady inflow NACA65 Tu4 case. Simi-
larly, Figure 7 shows analogous budget for the unsteady inflow
NACA65 Gap40 case, and Figure 8 for the unsteady inflow CDA
Gap40 case. The overall loss comparison for the remaining cases
is given in Table 6. It is clear from both figures that vast majority
of turbulent transport Trm f and Tr f f happens in the freestream.
As a result the loss, as predicted by stagnation pressure, is well
predicted for the boundary layers and wake regions, however, it
reduces in the freestream which skews the overall loss prediction.
This was the case for most of the datasets considered here. For
two CDA cases with Gap40 and Gap50 that effect was negligible
as the two turbulent transport terms were of similar magnitude
and opposite signs.

The results suggest that even for the cascades exposed to
moderate levels of freestream turbulence, stagnation pressure
loss coefficient may lead to incorrect predictions, especially

when cases with varying or unsteady inflow conditions are con-
sidered.

To understand why turbulent transport by the mean flow
Trm f is negative we can inspect the formula behind the term:

trm f =
∂

∂x j

[
ūi

(
ρu′iu

′
j

)]
(18)

In the freestream the Reynolds stress terms (ρu′iu
′
j) are expected

to universally decay at the steady rate. For a compressor this de-
cay is combined with a flow deceleration (ūi). As a result (also
because of the sign of the term) the overall contribution to the
stagnation pressure budget is negative, artificially lowering the
predicted loss. We expect this to be the case when meaning-
ful levels of turbulence/periodic unsteadiness(2− 3% or above)
is present. The erroneous stagnation pressure loss coefficient be-
haviour happens irrespective of low Mach number conditions and
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FIGURE 6: Comparison of loss contributions for the steady in-
flow NACA65 Tu4 case for boundary layers and wake (top) and
freestream (bottom).

is purely related to the freestream unsteadiness and turbulence
transport term that arise due to it.

To understand why turbulent transport by the turbulent flow
Tr f f is positive for the unsteady inflow cases considered here we
can inspect the formula behind the term:

tr f f =
∂

∂x j

[
ρu′j

(
1
2

u′iu
′
i

)]
(19)

The unsteady inflow cases consisted of periodic wakes which
have an appearance of u′, v′ fluctuations. These fluctuations grow
in size as the wake is initially accelerated and turned when enter-
ing the passage and subsequently diffused in the aft portion of it.
Such behaviour would result first in an increase of Tr f f term and
then its slow reduction. Figures 3 and 4 suggest that the initial

FIGURE 7: Comparison of loss contributions for the unsteady
inflow NACA65 Gap40 case for boundary layers and wake (top)
and freestream (bottom).

acceleration and turning dominate and determine the magnitude
of this term which then stays relatively constant for the remain-
der of the passage where it is diffused.

We can also determine which components of the turbulent
transport contribute the most. This is shown in Table 7 which
demonstrates that for the cases considered here two terms asso-
ciated with the u′u′ and u′v′ Reynolds stresses are responsible
for the entire turbulent transport Trm f (other terms were close to
0). This is encouraging as it suggests that at a mid-span section
the turbulent transport term can be successfully estimated exper-
imentally by considering only these two components alone and
measuring Reynolds stress components associated with them.
This has been demonstrated before by Perdichizzi et al [23] or
Jelly et al. [24]. The role of turbulent transport term Trm f was
also previously recognised by Folk et al. [25,26] who used rapid
distortion theory to estimate the magnitude of this term for tur-
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FIGURE 8: Comparison of loss contributions for the unsteady
inflow CDA Gap40 case for boundary layers and wake (top) and
freestream (bottom).

bine flow exposed to combustor turbulence. As far as Tr f f term
is concerned, it appears to be entirely determined by the stream-
wise fluctuations u′ and turbulent kinetic energy 1

2 u′iu
′
i.

GIBBS EQUATION
The Gibbs equation accounts for the changes in fluid proper-

ties along the flow path and relates the change in enthalpy to the
change in entropy and pressure. This relationship can be applied
to stagnation properties of the flow as follows:

Tt
Ds
Dt

=
Dht

Dt
− 1

ρt

Dpt

Dt
(20)

When considering adiabatic flow through a stationary blade row
- stagnation temperature is constant, consequently:

Tt
Ds
Dt

≈− 1
ρt

Dpt

Dt
(21)

This is demonstrated to be true in figure 9 for which a series of
500 instantaneous snapshots were used to compute Gibbs equa-
tion budgets in their compressible form. This assertion often
leads to a conclusion that:

∆s ≈−R ln
(

pt,2

pt,1

)
(22)

However, as shown before, this does not hold for the data pre-
sented. To explain why that is we perform Reynolds decomposi-
tion on incompressible stagnation pressure:

Dpt

Dt
≈ D

Dt

(
p+

1
2

ρuiui

)
(23)

and find:

Dpt

Dt
≈ D̄

Dt

(
ρ̄

1
2

ūiūi

)
︸ ︷︷ ︸

advm

+
D̄
Dt

(
ρ̄

1
2

u′iu
′
i

)
︸ ︷︷ ︸

adv f

+ ūi
∂ p̄
∂xi︸ ︷︷ ︸

pwm

− ∂

∂x j

[
ūi

(
ρu′iu

′
j

)]
︸ ︷︷ ︸

trm f

− ∂

∂x j

[
ρu′j

(
1
2

u′iu
′
i

)]
︸ ︷︷ ︸

tr f f

− ū′i
∂ p̄
∂xi︸ ︷︷ ︸

pw f

+
∂ p′u′i
∂xi︸ ︷︷ ︸
pd f

− p′
∂u′i
∂xi︸ ︷︷ ︸

pl f

(24a)

where

D
Dt

=
∂

∂ t
+u j

∂

∂x j
(25)

and

D
Dt

= u j
∂

∂x j
(26)

This decomposition allows us to distinguish between the mean
flow of stagnation pressure (15a) and the flux of stagnation
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TABLE 6: Entropy and stagnation pressure loss prediction for the combined region of boundary layers and wake and for freestream

NACA65 NACA65 CDA

Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50

T ST,tot 7.564 9.954 6.980 6.668 6.726 2111.269 1916.130 1916.756

−FSPtot 6.770 7.656 3.819 4.810 5.317 1860.353 1931.734 1972.560

T ST,blw 6.289 6.616 5.836 5.688 5.789 1771.757 1610.546 1627.988

−FSPblw 6.149 6.331 6.338 5.953 5.956 1449.368 1441.570 1424.509

T ST, f ree 1.2752 3.3381 1.1441 0.9799 0.9377 339.5117 305.5845 288.7683

−FSPf ree 0.622 1.325 -2.519 -1.143 -0.639 410.985 490.164 548.050

−FSPblw/T ST,blw 97.77% 95.69% 108.61% 104.66% 102.90% 96.43% 106.38% 102.90%

−FSPf ree/T ST, f ree 48.76% 39.70% -220.16% -116.63% -68.17% 36.17% 64.81% 102.99%

pressure (24a) budget. The first one is akin to the commonly
used mass-averaged stagnation pressure loss coefficient which is
favoured due to the relative ease of measuring it experimentally.
The second one corresponds to the correct estimate of loss, but
cannot be easily measured experimentally. The difference be-
tween the two, which has been highlighted earlier, is due to the
presence of turbulent transport terms as well as pressure work, di-
lation and diffusion terms. While the last three terms were found
to be negligible, the turbulent transport terms, also known as the
Reynolds stress work on boundaries, were found to play a signif-
icant role for the conditions considered here. These conditions
are of relevance to many cascade experiments that feature high
levels of unsteadiness at the inflow.

CONCLUSIONS
A series of high fidelity datasets of compressor cascades at

varying inflow conditions was analysed in this paper. For each of
the cases a comparison between entropy, enthalpy and stagnation
pressure loss coefficient was carried out. To understand the dif-
ference between the entropy loss coefficient and stagnation pres-
sure loss coefficient a transport equation budget was performed
for both terms. This resulted in the following list of conclusions.

While entropy and enthalpy gave almost identical loss pre-
dictions, stagnation pressure loss coefficient was found to be un-
reliable loss metric for cases considered here under-predicting

loss for one of the cases by as much as 40% when compared
to the entropy loss coefficient (NACA65 Gap30 case). This was
the case despite all the simulations were run at adiabatic and low
Mach number conditions. The use of stagnation pressure esti-
mate discarding turbulent kinetic energy resulted in even more
unreliable predictions highlighting the importance of including
it when comparing experimental data with RANS for highly un-
steady flowfields.

To understand the discrepancy between loss coefficients, en-
tropy and stagnation pressure transport equation budgets were
performed. All the budgets were fully balanced and allowed to
elucidate the origin of the discrepancy. This was traced to the
turbulent transport terms which arise as part of the stagnation
pressure transport equation. These terms were found to be pri-
marily present in the freestream. A commonly used assumption
of its negligible contribution to the overall budget was found to
be wrong even when only moderate levels of inflow turbulence
were present. The combined impact of these terms was found to
be negative for a compressor resulting in artificially lower loss
estimates by the mass-averaged stagnation pressure loss coeffi-
cient. This was linked to flow deceleration in a compressor. For
a turbine flow, loss estimates are likely to be artificially higher
due to the flow acceleration.

The use of stagnation pressure loss coefficient may still be
valid when low levels of inflow unsteadiness are present and
when turbulent transport is low. The impact also appears to be
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TABLE 7: Contribution of different components to turbulent transport Trm f

NACA65 NACA65 CDA

Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50
∂

∂x

[
ū
(
ρu′u′

)]
/Trm f 0.74 0.85 1.09 1.14 1.13 2.45 3.82 3.64

∂

∂x

[
v̄
(
ρu′v′

)]
/Trm f 0.26 0.15 -0.09 -0.14 -0.14 -1.44 -2.79 -2.61

∂

∂x

[
ρu′
( 1

2 u′u′
)]

/Tr f f - - 0.87 0.87 0.86 0.67 0.74 0.74

∂

∂x

[
ρu′
( 1

2 v′v′
)]

/Tr f f - - 0.07 0.07 0.07 0.25 0.22 0.21

∂

∂x

[
ρu′
( 1

2 w′w′
)]

/Tr f f - - 0.06 0.06 0.07 0.08 0.05 0.04

more pronounced for the cases at lower Reynolds number. In ad-
dition it was shown that integrated turbulent transport terms were
low within the boundary layers and wake. As a result loss pre-
dicted by entropy and stagnation pressure in those regions was in
good agreement. In experimental setting, however, such decom-
position may be difficult to achieve, while estimating turbulent
transport is beyond current standard experimental practice.

FIGURE 9: Gibbs equation budget for the unsteady inflow
CDA65 Gap40 case.
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NOMENCLATURE
gax Axial gap
Cax Axial chord
h Enthalpy
s Entropy
tsT Entropy generation rate
f .sp. Flux of stagnation pressure
Tr Energy transfer between flowfields (turbulence produc-

tion)
q Heat transfer
Ma Mach number
ṁ Mass flow rate
Pu Periodic intensity
Tu Turbulence intensity
p Pressure
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T Temperature
Fred Reduced frequency
Re Reynolds number based on inlet cond. and axial chord
u Velocity
RANS Reynolds-Averaged Navier-Stokes
T KE Turbulent Kinetic Energy
LHS Left hand side
RHS Right hand side
x quantity x
X Volume integral of x
x Time-average of x
x′ Fluctuating component of x
xi Component of a vector quantity
Xtot Quantity integrated over the entire domain
Xblw Quantity integrated over the boundary layer and wake

regions
X f ree Quantity integrated over the freestream region
xh Related to enthalpy
xs Related to entropy
xp Related to pressure
xt Related to stagnation quantity
xm Related to mean flowfield
x f Related to fluctuating flowfield
xm f Related to the action of both mean and fluctuating flow-

fields
x f f Related to the action of fluctuating flowfield on itself

GREEK LETTERS
ρ Density
ω Loss coefficient
τ Shear stress
∆+

n Viscous wall units in wall-normal dir.
∆
+
t Viscous wall units in streamwise dir.

∆+
z Viscous wall units in spanwise dir.

φ Viscous dissipation
Φ Integrated viscous dissipation
ε Artificial dissipation
Ω Volume of a domain
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Appendix A: Double decomposition of kinetic energy

Considerable insight can be drawn from the analysis of ki-
netic energy budget. Using Reynolds decomposition kinetic en-
ergy can be decomposed into mean (m) and fluctuating (f) com-

ponents (full derivation available e.g. at [27]):

D̄
Dt

(
ρ̄

1
2

ūiūi

)
︸ ︷︷ ︸

advm

=− ūi
∂ p̄
∂xi︸ ︷︷ ︸

pwm

−
(
−ρu′iu

′
j
∂ ūi

∂x j

)
︸ ︷︷ ︸

tm f

− ∂

∂x j

[
ūi

(
ρu′iu

′
j

)]
︸ ︷︷ ︸

trm f

+
∂ τ̄i jūi

∂x j︸ ︷︷ ︸
vdm

− τ̄i j
∂ ūi

∂x j︸ ︷︷ ︸
φm

(27a)

D̄
Dt

(
ρ̄

1
2

u′iu
′
i

)
︸ ︷︷ ︸

adv f

=

+

(
−ρu′iu

′
j
∂ ūi

∂x j

)
︸ ︷︷ ︸

tm f

− ∂

∂x j

[
ρu′j

(
1
2

u′iu
′
i

)]
︸ ︷︷ ︸

tr f f

+
∂τ ′i ju

′
i

∂x j︸ ︷︷ ︸
vd f

−τ ′i j
∂u′i
∂x j︸ ︷︷ ︸
φ f

− ū′i
∂ p̄
∂xi︸ ︷︷ ︸

pw f

−
∂ p′u′i
∂xi︸ ︷︷ ︸
pd f

+ p′
∂u′i
∂xi︸ ︷︷ ︸

pl f

(27b)

where

D̄
Dt

≡ ∂

∂ t
+ ū j

∂

∂x j
(28)

and

adv - convection of kinetic energy
pw - pressure work

t - energy transfer between mean and fluctuating flowfield
(turbulence production)

tr - diffusion due to unsteadiness/turbulence
vd - viscous diffusion
φ - viscous dissipation

pd - pressure diffusion
pl - pressure dilation

Table A1 shows that mean kinetic energy budgets is satisfied. For
turbulent kinetic energy budget the balance was achieved when
artificial dissipation was added to the resolved dissipation, Table
A2. This further validates the methodology taken in this study.
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TABLE A1: Double decomposition - mean kinetic energy budget

Advm =−PWm +Tm f −Trm f +V Dm −Φm

NACA65 NACA65 CDA

Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50

Advm 111.1445 110.9216 107.7270 109.5839 109.9521 46763.7137 46822.3687 46945.5559

PWm -105.2509 -106.1870 -105.9626 -106.2991 -105.8217 -45480.7915 -45432.2649 -45490.2992

Tm f 3.1712 3.3751 2.3372 2.4060 2.5776 695.0648 750.2811 780.8226

Trm f 0.8466 2.5871 3.9051 2.5509 2.0044 387.6402 207.1210 208.5881

V Dm 0.0118 0.0090 0.0139 0.0145 0.0147 2.4507 2.2288 2.2402

Φm 3.5879 3.6597 3.4189 3.4715 3.5539 962.0147 904.6694 911.7720

LHS - RHS -0.0070 0.2958 -0.0727 -0.0273 0.0179 15.9336 -55.4968 -26.5095

TABLE A2: Double decomposition - turbulent kinetic energy budget

Adv f =−PWf +Tm f −Tr f f +V D f −Φ f −PD f +PL f

NACA65 NACA65 CDA

Tu4 Tu6 Gap30 Gap40 Gap50 Gap30 Gap40 Gap50

Adv f 0.7976 2.8418 2.0468 1.5165 1.1772 533.4470 501.4282 474.7137

PWf - - - - - - - -

Tm f 3.1712 3.3751 2.3372 2.4060 2.5776 695.0648 750.2811 780.8226

Tr f f 0.0000 0.0000 -0.6882 -0.6488 -0.4883 -94.2817 -213.8627 -202.5755

V D f 0.0083 0.0167 0.0052 0.0050 0.0051 1.8809 1.5766 1.5437

Φ f+N 3.9764 6.2947 3.5608 3.1964 3.1722 1149.2538 1011.4609 1004.9839

PD f - - -0.1294 -0.0801 -0.1112 -4.8095 -26.3358 -33.4561

PL f - - - - - - - -

LHS - RHS 0.0007 -0.0610 0.0108 0.0021 -0.0118 -17.9523 1.6265 16.0645
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