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a b s t r a c t

Robotic manipulators provide advantages in working environments regarding efficiency and safety,
which is further increased in the case of elastic joint manipulators, whose mechanical compliance
reduces the energy involved in collisions with workers. Cable-driven manipulators are elastic joint
manipulators particularly suitable for industrial inspection thanks to the relocation of actuators outside
hostile environments, increasing the manipulator payload-to-weight ratio. Recently, synthetic fibre
cables are substituting steel cables due to their better-performing mechanical properties, but their
visco-elastic behaviour must be compensated in the controller design. The key novelty of this work
is using the four elements model, which includes the viscous behaviour, to design a non-linear full-
state feedback controller for cable-driven manipulators. Furthermore, the mathematical proof of the
closed-loop Lyapunov stability is provided.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent decades, robotic systems have become increasingly
elevant in working environments. Indeed, robots are able to
erform a wide variety of different tasks, supporting workers.
his growth is occurring because their employment can improve
orking efficiency, both in terms of time and cost, and can
ignificantly reduce or even eliminate risks to human workers’
afety and fatigue [1].
One of the most important robotic applications is manipula-

ion since it enables physical interaction with the environment
urrounding the robot. Industrial and manufacturing sectors are
he most common environments where robotic manipulators are
xploited since, in these contexts, they can commonly lift and
lace heavy and dangerous objects – like car plates and steel
eams – or perform industrial inspection and maintenance tasks
n hazardous and harsh environments, avoiding any risks to hu-
an lives. Nevertheless, humans must also manipulate in con-

exts other than industries, e.g. construction sites, medicine, and
griculture. Even in these applications, robotic arms can be a great
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solution to reach a high level of efficiency, safety, and speed that
is impossible for human workers to attain [2–4].

Usually, robotic manipulators are divided into two primary
families [5]: rigid manipulators and flexible manipulators, which,
in turn, are subdivided into flexible link and elastic joint manip-
ulators.

Elastic joint manipulators have many advantages with respect
to rigid joints manipulators, such as improving the robot dynamic
efficiency or ensuring high reduction ratios with power-efficient
compact inline devices [6]. Moreover, the mechanical compliance
provided by elastic actuation or transmission reduces the kinetic
energy in any possible collisions reducing the risk of injury to the
workers, increasing their safety. However, the task of controlling
this kind of manipulators is complicated by the presence of joints
elasticity. Indeed, if an elastic joint manipulator is controlled
using just the motor driver feedback, the lack of compensation
for the joints flexibility may lead to end-effector position and
orientation errors under heavy load or high joint torque [7,8].
Boussoffara et al. explained how neglecting joints flexibility can
even lead to instability [9]. Thus, when dealing with model-based
control of elastic joint manipulators, joints flexibility must be in-
cluded in the robot model to avoid performance degradation [10].
In 1981, Nicosia et al. presented one of the first studies that con-
sidered the elasticity in the dynamic model of a manipulator [11].
In 1987, Spong proposed a Lagrangian formulation that, assuming
a large reduction ratio, simplifies the dynamic model of an elastic

joint manipulator [12], while, in 2015, Buondonno and De Luca
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ublished an efficient generalised Newton–Euler algorithm that
omputes the inverse dynamics of these robots [13]. Farah et al.
xploited a geometrical and dynamic identification procedure to
roduce a dynamic model that considers the stiffness and damp-
ng of each flexible joint of a serial robot [14], while Bauchau and
emani proposed some visco-elastic models suitable for elastic
oint manipulators [15].

There are several varieties of elastic joint manipulators, e.g.
obots with harmonic drives [16], cycloidal gears [17], and cable-
riven actuation [18]. In the case of cable-driven manipulators,
oints elasticity is introduced by a set of cables that transfer
he motion from the actuators to the joints. Typically, a cable-
riven manipulator is composed of a robotic arm and an actuation
ystem, which includes actuators and cables. This structure allows
eparating the actuators from the robotic arm, typically placing
hem in a chassis at the base of the manipulator, reducing the
ize and weight of the robotic arm and increasing its payload ca-
abilities. Moreover, it keeps the actuators outside the workspace,
hich could be an important advantage if the robot is designed
o operate in harsh environments. An example would be in indus-
rial inspection tasks, where the environment is often dangerous
nd narrow. The small dimensions of the robotic arm and the
rotection of the actuators make cable-driven manipulators par-
icularly suitable for such applications, especially if their ability
o move inside confined environments is increased by hyper-
edundancy. Several examples of hyper-redundant cable-driven
anipulators are present in literature, like the continuum robot
roposed by Dong et al. [19] and the long-reach cable-driven
anipulator designed by Canali et al. [20]. For these reasons,
able-driven manipulators are widely employed in industrial en-
ironments to increase workers’ safety and reduce plant down-
ime due to inspection tasks. According to SPARC, these are both
riority objectives for industries [21].
One of the most critical aspects of cable-driven manipulators

esign is the material of cables themselves. Cables can be made
f stainless steel [22], or synthetic fibre, as in the Super Dragon
obot [23]. A comparison between the physical properties of these
wo materials was performed by Horigome and Endo in 2016 [24],
ho also conducted repetitive bending experiments on synthetic

ibre cables in 2018 [25]. This work suggested that synthetic fibre
ables have many advantages with respect to steel cables: (i) they
re lighter, which further reduces the robotic arm weight, (ii) they
an wrap around pulleys with smaller diameter, which allows
educing robotic arm dimensions, and (iii) they have a higher
ensile strength.

As already mentioned, to obtain an accurate dynamic model of
n elastic joint manipulator, which is crucial to perform model-
ased control, the joints flexibility must be considered in the
obot model. In the case of cable-driven manipulators, this con-
ists of modelling the robotic arm and the dynamic behaviour of
he cables. Regarding the robotic arm, the Lagrange formulation
s the basis of the first works on manipulator modelling [26,
7]. Orin et al. presented a recursive Newton–Euler method to
nalyse the dynamics of spatial open-chain mechanisms [28],
hile Hollerbach developed an efficient algorithm to derive La-
range equations of a serial manipulator [29]. In 1982, Silver
emonstrated the equivalence of the Lagrange and Newton–Euler
ethods [30]. The most relevant Newton–Euler algorithms are

he Composite Rigid Body Algorithm [31] and the Articulated
ody Algorithm [32]. Finally, Featherstone presented a compar-
son between recursive Newton–Euler algorithms [33]. Over the
ears, many methods to add the cables dynamics to the model
f the manipulator have been introduced. Zhao et al. proposed
complete model of a cable-driven manipulator derived using

he Lagrangian dynamics [34]. Fichera and Grossard proposed

framework to produce a piece-wise elastic torque model for
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cable-driven robots exploiting standard procedures to identify the
parameters [35], while Choi and Park described the main charac-
teristics of cables through an integrated elasto-plastic model [36].
In 2018, Takata et al. modelled synthetic fibre cables with Flory’s
model and demonstrated that, by applying a sufficient preload, it
can be reduced to a four elements model [37].

Cable-driven manipulators are non-linear systems. The litera-
ture presents many studies related to the control of elastic joint
manipulators motion using non-linear control strategies. For a
traditional PD controller, the robustness to uncertainties on mass
matrix parameters and friction model was proved for elastic
joint robots by Tomei in 1991 [38]. Albu-Schäffer et al. exploited
the passivity properties of cable-driven manipulators to produce
a passivity-based control framework for elastic joint manipula-
tors [39]. A passivity-based control strategy was also proposed in
2014 by Caverly and Forbes for a planar cable-driven manipula-
tor [40]. In 2013, Wang et al. developed a visual servo control for
a soft cable-driven manipulator, whose mechanical compliance
and number of Degrees of Freedom (DoFs) make it particularly
suitable for operating in confined environments [41] . In the same
year, Salimi et al. proposed a gain scheduling controller for a
cable-driven robotic system [42], while, in 2018, Wang et al.
studied an adaptive time-delay control scheme composed of a
time delay estimation, injected dynamics, and adaptive law [43].
Endo et al. proposed a global feedback linearisation that stabilises
the system using static state feedback, which requires full-state
feedback up to the third derivative of the joints position [23].
An adaptive fractional-order nonsingular terminal sliding mode
control was applied to a 2 DoFs manipulator by Wang et al. in
2019 and 2020 [44,45]. In 2021, Sun et al. proposed a Fuzzy-
PID controller for cable-driven parallel robots, which was tested
on several different kinds of robots and whose performance was
compared with an active control method and a passive control
scheme [46].

In literature, a common practice is using a simplified model
of synthetic fibre cables to design model-based controllers for
cable-driven manipulators. The most common approach is mod-
elling synthetic fibre cables as linear springs. Many studies have
demonstrated the Lyapunov stability of cable-driven manipula-
tors regulated by controllers based on these simplified mod-
els [46]. Conversely, although modelling the behaviour of cables
has been deeply investigated and has reached remarkable re-
sults in terms of accuracy, the literature presents a considerable
dearth of control strategies based on these more accurate models.
Compared to previous studies, the key novelty of this work is
the mathematical proof of closed-loop stability in the sense of
Lyapunov for cable-driven manipulators regulated by a non-linear
full-state feedback controller designed using the four elements
model, which accurately describes the visco-elastic behaviour of
synthetic fibre cables. This mathematical proof leads to some
constraints on the matrices of the non-linear full-state feedback
controller. At the time of this writing, the literature does not
include any research approaching the problem using this model.
Ultimately, this work aims to fill the research gap between the
advanced modelling techniques of cables’ dynamics and their
application in model-based controller designs, introducing as the
main contribution the mathematical proof of the Lyapunov sta-
bility for cable-driven manipulators described by one of these
advanced modelling techniques and regulated by a model-based
controller.

The proposed controller can stabilise cable-driven manipula-
tors that respect the following design requirements: cables must
be made of synthetic fibre and routed along the robotic arm
in such a way that the linear motion of the cable is directly
proportional to the angular motion of the joint.
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The cable-driven manipulator presented by Ludovico et al. [47]
is used in a simulated scenario to highlight the stable behaviour
of the robotic system regulated by the proposed controller.

The results of this study represent an important starting point
for improving the accuracy and precision of different model-
based controllers for cable-driven manipulators, which is the
main driver and motivation of this research study.

The paper is organised as follows. Section 2 describes the
methods used to achieve the desired results, such as the math-
ematical tools and definitions, the dynamic model of the generic
cable-driven manipulator, and the setup of a Simulink

®
simula-

tion. Section 3 includes the proof of the stability of the closed-
loop system. Section 4 reports and discuss the results of the
mathematical proof described in the previous section and the
results of the simulation. In Section 5, finally, a brief conclusion
is given.

2. Material and methods

This section contains a brief explanation of the mathematical
tools used in the paper, an overview of the robotic structure,
the formalisation of the dynamic model of the complete sys-
tem, the description of the control strategy applied to the sys-
tem, and a summary of the stability theory used to verify that
the chosen regulation scheme stabilises the system. Finally, the
implementation of a Simulink

®
simulation is described.

2.1. Mathematical tools

Given a scalar a ∈ R,

A = diag (a)n ∈ Rn×n

is the diagonal matrix with all entries equal to a. Likewise, given
a set of scalars {bi ∈ R : i = 1, . . . , n},

= diag (bi)n ∈ Rn×n

s the diagonal matrix whose main diagonal is composed of the
calars {bi ∈ R : i = 1, . . . , n}.
Given a square invertible matrix S ∈ Rn×n,

−T
=

(
ST

)−1
.

iven a square matrix Z ∈ Rn×n, its symmetric part is defined as:

s =
1
2

(
Z + ZT ) .

Given a vector v ∈ Rn×1, whose components are defined as
i ∈ R, its Euclidean Norm is defined as:

v∥2 =

√ n∑
i=1

v2
i .

iven a symmetric matrix O ∈ Rn×n, its Spectral Norm is defined
s follows:

O∥ =

√
λmax

(
OTO

)
= |λmax (O)| ,

here λmax (O) denotes the maximum eigenvalue of O. In a sim-
lar way, λmin (O) denotes the minimum eigenvalue of O.

A matrix Q ∈ Rn×n is called positive definite, whose notation
is Q ≻ 0, if

⟨v,Qv⟩ = vTQv > 0 , ∀v ̸= 0,

while it is called positive semi-definite, whose notation is Q ⪰ 0,
if

⟨v,Qv⟩ = vTQv ≥ 0 , ∀v.
362
Fig. 1. Four elements model.

According to Johnson [48], a square matrix Q ∈ Rn×n is positive
(semi-)definite if and only if its symmetric part Qs is positive
(semi-)definite.{
Q ≻ 0 ⇐⇒ Qs ≻ 0
Q ⪰ 0 ⇐⇒ Qs ⪰ 0

.

A square matrix Q ∈ Rn×n is negative (semi-)definite, whose
notation is Q ≺ 0 (Q ⪯ 0), if and only if −Q is positive
(semi-)definite:{
Q ≺ 0 ⇐⇒ −Q ≻ 0
Q ⪯ 0 ⇐⇒ −Q ⪰ 0

.

If Q = Q T , Q is positive (negative) definite if all its eigenvalues
are positive (negative); if the eigenvalues are greater (less) or
equal to zero, Q is positive (negative) semi-definite.

2.2. Robotic structure

A generic cable-driven manipulator is usually divided into two
main parts: the robotic arm and the actuation system, composed
of cables and actuators. Regarding the former, in this paper, a
cable-driven manipulator with a rigid robotic arm composed of n
revolute joints is considered. About the latter part, the actuation
system is assumed to be composed of two synthetic fibre cables
per joint, routed along the robotic arm so that the map between
the linear velocity of the cables and the angular velocity of the
joints is constant and decoupled. In literature, many examples of
cable-driven manipulators that respect these assumptions can be
found, like the one designed by Canali et al. [20].

2.3. Dynamic model

In this section, the dynamic model of the complete system is
extrapolated and described. First, the dynamic model of cables
is investigated, then the dynamics of the rigid robotic arm is
reported, and finally the overall dynamic model introduced by
Ludovico [49] is summarised.

2.3.1. Dynamic model of cables
In many works, cables of cable-driven manipulators are mod-

elled as linear springs. In this work, instead, cables are modelled
using the four elements model, which includes the visco-elastic
phenomena.

The four elements model, shown in Fig. 1, is a series of (i) a
spring element k1, which describes the elasticity, (ii) a damper
element c2, which is related to viscosity, and (iii) a parallel of a
spring k3 and a damper c3, which models the retarded elasticity.

In the case of a manipulator that satisfies the assumptions
described in Section 2.2, each joint is driven by two cables, one
pulled in the opposite direction with respect to the other during
the robot motion. In this context, thus, the ith couple of cables



L. De Mari Casareto Dal Verme, D. Ludovico, A. Pistone et al. ISA Transactions 142 (2023) 360–371

d

i
l
a

d

a

s

w
d

[

a
c
l

a
S
o

U

T

T

l

M

S
t

M

w
g

g

C

i
f
e
C[
S
α

I
m
p

τ

F

q

riving the ith joint can be modelled as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ11i = −k1d1s11i + k3d2s21i +
vji − vai

li
ṡ21i = k1d2s11i − k3d2s21i

ṡ12i = −k1d1s12i + k3d2s22i −
vji − vai

li
ṡ22i = k1d2s12i − k3d2s22i
∆Fi = k1

(
s11i − s12i

)
(1)

where ∆Fi is the net force applied by the ith couple of cables, li
s the length of the each cable composing the ith couple when no
oads are applied, vji and vai are the linear velocity of the ith joint
nd of the ith cable, respectively, d1 and d2 are defined as

1 =
c2 + c3
c2c3

,

d2 =
1
c3

,

nd s11i , s21i , s12i , and s22i represent the dimensionless strain of
the ith couple of cables, defined such that

s11i + s21i =
ldi − li

li
,

12i + s22i = −
ldi − li

li
,

here ldi is the length of each cable of the ith couple when
eformed by a load.
Defining a new set of variables as

∆s1i
∆s2i

]
=

[
s11i − s12i
s21i − s22i

]
σ1 =

[
∆s11 · · · ∆s1n

]T
,

σ2 =
[
∆s21 · · · ∆s2n

]T
,

∆F =
[
∆F1 · · · ∆Fn

]T
,

nd exploiting (1), the dynamic model of the cables driving a
able-driven manipulator with n joints can be re-written as fol-
ows:⎧⎨⎩

σ̇1 = −K1D1σ1 + K3D2σ2 + LRq̇ − Lu
σ̇2 = K1D2σ1 − K3D2σ2

∆F = K1σ1

, (2)

where q̇ is the vector of angular velocities of the joints, u is the
system input, i.e. the vector of linear velocities of the anchor
points of cables, L is a diagonal matrix composed of the inverse
of the lengths of the cables, R is the map between the linear
motion of the cables and the angular motion of the joints, K1 and
K3 are diagonal matrices representing the springs k1 and k3 for
all the cables, and D1 and D2 are diagonal matrices including the
viscosity for all the cables. Therefore, using the definitions given
in Section 2.1:

L = diag
(
2
li

)
n

≻ 0 , i = 1, . . . , n ,

R = diag (ri)n ≻ 0 , i = 1, . . . , n ,

K1 = diag (k1)n ≻ 0 ,

K3 = diag (k3)n ≻ 0 ,

D1 = diag (d1)n ≻ 0 ,
D2 = diag (d2)n ≻ 0 .
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2.3.2. Dynamic model of the robotic arm
The dynamic model of a rigid robotic arm can be derived from

the Lagrange’s equations

d
dt

∂L

∂ q̇i
−

∂L

∂qi
= τi i = 1, . . . , n , (3)

where the Lagrangian

L = T − U

is expressed as the difference between the kinetic energy T and
the potential energy U , while τi is the generalised force at ith joint
nd qi and q̇i are the ith joint position and velocity, respectively.
ince the robotic arm is rigid, the potential energy U comprises
nly the gravitational contribution:

= Ug .

he kinetic energy is a quadratic form of the joint velocities, i.e.

=
1
2
q̇TM(q)q̇ , (4)

where M(q) ∈ Rn×n is the inertia matrix of the robotic manipu-
ator and is defined such that

(q) = MT (q) ≻ 0.

ubstituting (4) in (3) and calculating the derivatives, the equa-
ions of motion can be derived:

(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (5)

here τ ∈ Rn×1 is the joints forces vector, g(q) ∈ Rn×1 is the
ravity forces vector, whose ith element is

i(q) =
∂Ug

∂qi
, (6)

and C(q, q̇)q̇ ∈ Rn×1, defined as

(q, q̇)q̇ = Ṁ(q)q̇ −
1
2

[
∂

∂q
(
q̇TM(q)q̇

)]T

,

s the vector of Coriolis and centrifugal forces. It is possible to
actorise the vector C(q, q̇)q̇ in many ways, depending on the
lements of the matrix C(q, q̇). A possible way is to use the
hristoffel symbols of the first type [5], which ensure that

Ṁ(q) − 2C(q, q̇)
]

= −
[
Ṁ(q) − 2C(q, q̇)

]T
.

ince g(q) is composed of trigonometric functions, a constant
∈ R+ exists such that∂g(q)
∂q

 ≤ α , ∀q , (7)

which, considering two generic configurations qa and qb, implies
thatg (qa) − g (qb)


2 ≤ α

qa − qb


2 , ∀ (qa, qb) . (8)

n the case of a cable-driven manipulator that meets the require-
ents described in Section 2.2, the vector of joints forces τ is
roportional to the cables strain, and can be defined as:

= −RTK1σ1 . (9)

inally, in virtue of (9), (5) can be re-written as follows:

¨ = M−1(q)
[
−C(q, q̇)q̇ − g(q) − RTK σ

]
. (10)
1 1
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Fig. 2. Non-linear full-state feedback controller diagram.
2.3.3. Complete dynamic model
The complete dynamic model of the cable-driven manipulator

is composed of the dynamic model of the cables, reported in (2),
and the dynamic model of the rigid robotic arm, presented in (10).
Thus, the dynamic model of the cable-driven manipulator is:⎧⎪⎨⎪⎩

σ̇1 = −K1D1σ1 + K3D2σ2 + LRq̇ − Lu
σ̇2 = K1D2σ1 − K3D2σ2

q̈ = M−1(q)
[
−C(q, q̇)q̇ − g(q) − RTK1σ1

] . (11)

The model reported in (11) ensures a higher precision than the
simplified approaches mentioned in Section 1, since includes the
visco-elastic behaviour of synthetic fibre cables.

2.4. Control strategy: full-state feedback control

This section is dedicated to the description of the full-state
feedback controller used to stabilise the cable-driven manipulator
modelled in (11).

Defining the state variable vector

x =
[
σT
1 σT

2 qT q̇T ]T ,

the dynamic model shown in (11) can be expressed in state-space
representation{
ẋ = f (x, u)
y = h(x)

, (12)

where

f (x, u) =

⎡⎢⎣ −K1D1σ1 + K3D2σ2 + LRq̇ − Lu
K1D2σ1 − K3D2σ2

q̇
M−1(q)

[
−C(q, q̇)q̇ − g(q) − RTK1σ1

]
⎤⎥⎦ ,

h(x) = q .

(13)

To stabilise the non-linear system described in (12) and (13),
a full-state feedback controller, whose schematic is shown in
Fig. 2, is implemented. Besides the full-state feedback, the control
input is enforced with an additional feed-forward signal, called
u∗, which, given the desired robot configuration q∗, is computed
as follows:

u∗
= L−1 [

K3D2σ
∗

2 − K1D1σ
∗

1

]
, (14)

where σ∗

1 and σ∗

2 are the desired values of σ1 and σ2 and are
evaluated by the Nx block, which computes the complete desired
state vector x∗ as follows:

x∗
=

⎡⎢⎣σ∗

1
σ∗

2
q∗

q̇∗

⎤⎥⎦ =

⎡⎢⎣−K−1
1 R−Tg (q∗)

K1K−1
3 σ∗

1
q∗

0

⎤⎥⎦ = Nx
(
q∗

)
, (15)

where g (q∗) is the vector of gravity forces in the desired con-
figuration, calculated on-line by the Nx block using the recursive
Newton–Euler algorithm.

Given (15), u∗ can be re-written in the more compact form

u∗
= N σ∗,
u 1
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where

Nu = L−1K1 (D1 + D2) .

Applying the full-state feedback control strategy, thus, the
control law is:

u = Kpxe + u∗ , (16)

where
xe = x∗

− x ,

Kp =
[
Kp1 Kp2 Kp3 Kp4

]
,

(17)

with{
Kpi ∈ Rn×n

: i = 1, . . . , 4
}
.

Therefore, (16) can be re-written as

u =
[
Kp1 Kp2 Kp3 Kp4

]⎡⎢⎣σe1
σe2
qe
q̇e

⎤⎥⎦ + u∗

= Kp1σe1 + Kp2σe2 + Kp3qe + Kp4 q̇e + u∗ ,

(18)

where
σe1 = σ∗

1 − σ1 ,

σe2 = σ∗

2 − σ2 ,

qe = q∗
− q ,

q̇e = q̇∗
− q̇ .

(19)

2.5. Lyapunov stability theory

This section summarises the Lyapunov stability theory, which
will be exploited in Section 3 to prove the stability of the closed-
loop system.

Considering a generic non-linear system of the form shown
in (12) and (x = x∗) as an equilibrium point of the system, if a
scalar continuously differentiable function

V (x) :

{
V (x) = 0 , if x = x∗

V (x) > 0 , ∀x ̸= x∗

exists such that its time derivative along the system trajectory

V̇ (x) =
∂V (x)
∂x

ẋ < 0 , ∀x ̸= x∗,

then the equilibrium point (x = x∗) of the non-linear system
is asymptotically stable. If V̇ (x) ≤ 0, instead, the equilibrium
point is stable. If V (x) has the just described characteristics, it is a
Lyapunov function for the system and the system is stable in the
sense of Lyapunov.

2.6. Simulation

This section is dedicated to the Simulink
®

simulation per-
formed to test the stability of the closed-loop system in a chosen
case of study. For the simulation, the cable-driven manipulator
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Fig. 3. CAD model of the cable-driven manipulator.
Source: Reprinted, with permission, from [47].
© 2021 IEEE.

Table 1
Zylon PBO cables four elements model parameters.

Value Uncertainty Unit

K1 2.933 × 105 1.73 × 104 N
c2 5.78 × 109 1.33 × 109 N s
K3 7.67 × 106 1.74 × 106 N
c3 9.08 × 107 2.23 × 107 Ns

Table 2
Cable-driven hyper-redundant manipulator parameters.
Source: Reprinted, with permission, from [47].

2021 IEEE.
J1 J2 J3 J4 J5 J6 Unit

m 2.16 2.16 1.55 1.55 1.3 1.3 kg
CoM 197 197 170 170 136 136 mm
l 500 500 500 500 500 500 mm
r 55 55 55 55 55 55 mm
l 1 1.5 2 2.5 2.9 3.4 m

presented by Ludovico et al. [47], which meets the requirements
for being modelled as exposed in Section 2.3, is used. This section
includes a description of the robotic platform and the simulation
design.

2.6.1. Simulated robot
The cable-driven manipulator developed by Ludovico et al. [47]

onsists of six modules connected by six revolute joints, whose
otational axes are parallel one to the other, as shown in Fig. 3.
his design constrains the manipulator motion on one plane. Each
oint is composed of a circular pulley of radius r that is rigidly
ttached to its rigid link, which has length l: the couple composed
f a link and its pulley forms one module.
Each module is driven by a synthetic fibre cable made of Zylon

BO, whose parameters of the four elements model are reported
n Table 1. The cable is fixed on both sides to a linear actuator, is
rapped on the pulley, and transfers the motion of the actuator
o the module through the friction with the pulley itself. Cables
outing is realised through rolling bushings in such a way that
ables pass along the neutral axis of each link, which generates a
onstant and decoupled map between the actuator linear velocity
nd joint angular velocity. This means that these two quantities
re directly proportional one to the other.
Even if this robot has just one cable per joint, it is possible
o consider the part of the cable passing below the pulley and

365
the part passing above it as two different cables. Hence, it is
possible to model the cable-driven manipulator shown in Fig. 3
with the model reported in Section 2.3.3, where the pulley radius
r is the map between the linear motion of the cable and the
angular motion of the joint. This means that, for this robot, matrix
R is composed of the radius of the six pulleys. The geometric
parameters of each joint Ji, are listed in Table 2, where m is the
mass of each module and CoM is the location of its centre of mass.

2.6.2. Simulation design
The control strategy shown in Section 2.4 and depicted in Fig. 2

is applied to the robot described in Section 2.6.1 in a simulation
implemented and executed in Simulink

®
to test the closed-loop

system behaviour. In the simulation, the proportional gain Kp
is chosen respecting the constraints extracted from the stability
proof reported in Section 3. Since the system stability is proved
for any closed-loop equilibrium point, the simulation is designed
so that the regulated robot reaches different equilibrium points.

At the beginning of the simulation, the robot is set to a ran-
dom initial configuration, whose relative equilibrium point is
evaluated solving the static equation of the system dynamics.
The initial value of the reference signal is the starting configu-
ration, which is maintained for 30 s. Then, a sequence of nine
steps is given as angular position reference to each joint of the
robot. The amplitude of the steps is randomly generated in the
interval [−0.25, 0.25] rad, taking into account the joint limit of
[−π/3, π/3] rad. In this way, including the initial condition, the
closed-loop system behaviour is tested at 10 equilibrium points.
Since the state variable σ2 has a higher time constant with respect
to the others, while the first eight intervals are 30 s long, the
last two are 105 s long. In this way, as shown in Section 4, it
is possible to appreciate the convergence of all the components
of the state error, xe. With this reference signal design, which is
depicted in Fig. 4, the simulation lasts 450 s.

3. Calculation: Lyapunov stability

In this section, the stability of the closed-loop system is proved
exploiting the Lyapunov stability theory described in Section 2.5.
All the mathematical definitions used in this section are sum-
marised in Appendix.

Consider the following function as Lyapunov function candi-
date:

V (x) =

4∑
i=1

Vi (x) ,

V := V (x) ,

Vi := Vi (x) ,

(20)

where

V1 =
1
2
eTGe ,

V2 =
1
2
q̇TMq̇ ,

V3 = Ug (q) − qTg(q∗) − Ug (q∗) + q∗Tg(q∗) ,

4 =
1
2
qT
eG2qe ,

(21)

ith

P = R−T L−T
≻ 0 , (22)

e = PTσe1 − qe , (23)

G = GT
≻ 0 , (24)

2 = GT
2 ≻ 0 : λmin (G2) > α , (25)
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here λmin (G2) represents the smallest eigenvalue of G2.
Since V1 and V2 are quadratic forms, their positive-definiteness

s ensured. Therefore, V is positive-definite if V3 + V4 is positive-
efinite. The stationary points of V3 + V4, which is function of q,
re given by the solutions of

∂ (V3 + V4)

∂q
= g(q) − g(q∗) + G2qe = 0 , (26)

hich has the unique solution q = q∗. Moreover, in virtue of (7)
nd (25),

∂2 (V3 + V4)

∂q2 =
∂g(q)
∂q

+ G2 > 0 , (27)

hich means that q = q∗ is an absolute minimum for V3 + V4.
herefore, since

V3 + V4|q=q∗ = 0 , (28)

he constrain reported in (25) ensures the positive-definiteness
f V3 + V4 and, consequently, of V .
The time derivative of (20) is

˙ =

4∑
i=1

V̇i.

The verification of V̇ ≤ 0, which is a sufficient condition for
he stability in the sense of Lyapunov of the closed-loop system,
s conducted considering each Vi function separately.

The time derivative of V1 is

˙1 = eTGPT σ̇e1 − eTGq̇e,

hich, using (2) and (19), becomes

˙1 = − eTGPT [−K1D1σ1 + K3D2σ2] + eTGPT [
Lu − LRq̇ + LTRT q̇

]
.

xploiting the symmetry of L and R and (19), V̇1 can be re-written
s follows:
˙1 = − eTGPT [

−K1D1(σ∗

1 − σe1 )
]
+

T T [
∗

] T T (29)

− e GP K3D2(σ2 − σe2 ) + e GP Lu .
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Substituting (16) in (29), V̇1 can be re-written again as

V̇1 = eTGPT [(
LKp1 − K1D1

)
σe1 + LKp3qe +

+
(
K3D2 + LKp2

)
σe2 + LKp4 q̇e

]
+

+ eTGPT [
Lu∗

− K1D1σ
∗

1 − K3D2σ
∗

2

]
,

which, in virtue of (14) and (19), reduces to:

V̇1 = eTGPT [(
LKp1 − K1D1

)
σe1 + LKp3qe

]
+ eTGPT [(

K3D2 + LKp2

)
σe2 − LKp4 q̇

]
.

Using (23), V̇1 can be re-written as follows:

V̇1 =
[
σT
e1 qT

e
]
H

[
σe1
qe

]
+ σT

e1PGP
T (

K3D2 + LKp2

)
σe2+

− qT
eGP

T (
K3D2 + LKp2

)
σe2 + qT

eGP
T LKp4 q̇ − σT

e1PGP
T LKp4 q̇ ,

(30)

where

H =

[
PH1 PH2
−H1 −H2

]
,

H1 = GPT (
LKp1 − K1D1

)
,

H2 = GPT LKp3 .

Setting

Kp2 = −L−1K3D2

and using (22), (30) reduces to:

V̇1 =
[
σT
e1 qT

e
]
H

[
σe1
qe

]
− eTGR−TKp4 q̇ . (31)

The time derivative of V2 is

V̇2 = q̇TMq̈ +
1
2
q̇T Ṁq̇,

hich, in virtue of (10), becomes

˙2 = q̇T
[
−C(q, q̇)q̇ +

1
2
Ṁq̇ − g(q) − RTK1σ1

]
. (32)

ince
[
Ṁ(q) − 2C(q, q̇)

]
is skew-symmetric,

˙
T [

Ṁ(q) − 2C(q, q̇)
]
q̇ = 0
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nd, therefore, (32) reduces to:

˙2 = −q̇Tg(q) − q̇TRTK1σ1 . (33)

he time derivative of V3 is

V̇3 =
∂Ug (q)

∂q
q̇ − q̇Tg(q∗),

which, exploiting (6), can be re-written as

V̇3 = g(q)T q̇ − q̇Tg(q∗),

which, in virtue of (15), can be re-written again in the form

V̇3 = g(q)T q̇ + q̇TRTK1σ
∗

1 . (34)

he combination of (33) and (34) implies that

˙2 + V̇3 = q̇TRTK1σe1 . (35)

he time derivative of V4 is
˙4 = qT

eG2q̇e,

hich, using (19), becomes

˙4 = −qT
eG2q̇ . (36)

iven (31), (35), and (36), the time derivative of the Lyapunov
unction proposed in (20), reduces to:
˙ = V̇1 + V̇2 + V̇3 + V̇4 =

=
[
σT
e1 qT

e
]
H

[
σe1
qe

]
− σT

e1PGR
−TKp4 q̇

+ qT
eGR

−TKp4 q̇ + q̇TRTK1σe1 − qT
eG2q̇ .

(37)

Choosing G, G2, and Kp4 as follows:

G = P−1K T
1 RK

−1
p4 RT

≻ 0 ,

G2 = GR−TKp4 = P−1K T
1 R ≻ 0 ,

Kp4 = diag
(
kp4i

)
n

,

{
kp4i ∈ R+

: i = 1, . . . , n
}

,

G and G2 are both diagonal, and thus symmetric, as required
by (24) and (25). Therefore, (37) reduces to:

V̇ =
[
σT
e1 qT

e
]
H

[
σe1
qe

]
, (38)

which is a quadratic form that is less or equal to zero for any
(σe1 , qe) if H is negative semi-definite. In sight of (38), then, the
closed-loop system is stable if

H ⪯ 0 ⇐⇒ Hs ⪯ 0 H⇒ V̇ ≤ 0,

where Hs is the symmetric part of H and is defined as

Hs =

[
PH1

1
2 (PH2 − H1)

1
2 (PH2 − H1) −H2

]
. (39)

The matrix Hs, and consequently H , is negative semi-definite
if and only if, considering two generic vectors v ∈ Rn×1 and
w ∈ Rn×1, the following statement holds:

z =
[
vT wT

]T
,

zTHsz ≤ 0 , ∀z ̸= 0 ,

which, using (39), becomes:

zTHsz = vTPH1v +
1
2
vT (PH2 − H1) w

+
1
2
wT (PH2 − H1) v − wTH2w ≤ 0 .

(40)

ssuming all Kpi as diagonal matrices, i.e.

p = diag
(
kp

)
, (41)
i ij n

a
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here

kpij ∈ R : i = 1, . . . , 4 , j = 1, . . . , n
}

,

oth the matrices H1 and H2 are diagonal as well. Thus, re-
efining H1, H2, and P as follows:

1 = diag
(
h1i

)
n ,

{
h1i ∈ R : i = 1, . . . , n

}
,

2 = diag
(
h2i

)
n ,

{
h2i ∈ R : i = 1, . . . , n

}
,

P = diag (pi)n , {pi ∈ R : i = 1, . . . , n} ,

(42)

ondition (41) allows to reduce (40) to:
TPH1v + vT (PH2 − H1)w − wTH2w ≤ 0,

hich, choosing

1 = −PH2,

an be further simplified as

− vTP2H2v + 2vTPH2w − wTH2w ≤ 0 . (43)

iven (42) and assuming vi and wi as the ith components of v and
, respectively, (43) can be re-written as follows:
n∑

i=1

(
p2i h2iv

2
i − 2pih2iviwi + h2iw

2
i

)
≥ 0,

hich can be re-written again in the form:
n∑

i=1

[
h2i (pivi − wi)

2]
≥ 0 . (44)

etting

h2i > 0 : i = 1, . . . , n
}

H⇒ H2 ≻ 0,

nequality (44) is verified ∀(v, w), since each element of the
ummation is non negative. Thus, Hs ⪯ 0 if{
H2 ≻ 0
H1 = −PH2

, (45)

hich implies that V̇ ≤ 0. Consequently, V is a Lyapunov function
or the closed-loop system and, therefore, the equilibrium point
x = x∗) of the closed-loop system is stable.

Constraints reported in (45) can be translated in the following
onstraints on Kp1 and Kp3 :

Kp1 = L−1K1D1 − PKp3

Kp3 ≻ 0
.

To summarise, if all Kpi are diagonal matrices such that

p1 = L−1K1D1 − PKp3 ,

p2 = −L−1K3D2 ,

p3 ≻ 0 ,

p4 ≻ 0 ,

(46)

nd if G2 respects condition (25), then the equilibrium point (x =
∗) of the closed-loop system described in (11), (14), and (16) is
table and the system is stable in the sense of Lyapunov.

. Results and discussion

This section exposes and discusses the results obtained by
he mathematical calculation that proved the closed-loop stability

nd the results of the simulation described in Section 2.6.
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Fig. 6. Response of the first joint in the interval [0, 90] s to highlight the
ransient in the first two steps.

.1. Stability results

The calculation provided in Section 3 demonstrates that the
obotic structure modelled in (11) can be stabilised in the sense
f Lyapunov by the non-linear full-state feedback controller il-
ustrated in Section 2.4. This result can be achieved by choosing
he elements Kpi ∈ Rn×n of the gain Kp ∈ Rn×4n, defined in (17),
s diagonal matrices where n is the number of joints of the ma-
ipulator. According to (46), matrices Kp1 and Kp2 have a specific
orm, which depends on Kp3 for the former and is constant for the
atter, while Kp3 and Kp4 need to be positive definite. Therefore,
he desired performance of the closed-loop system depends only
n the tuning of the gains Kp3 and Kp4 , which control the joints
ngular position and velocity, respectively. Since both Kp3 and Kp4
re diagonal, the tuning problem consists in tuning the 2n entries
f the two matrices.
Given (46), the closed-loop system is stable even if Kp1 is a

atrix of zeros, condition that occurs when

p3 = P−1L−1K1D1.

his particular case implies that the strain σ1 is not used as feed-
ack signal, leading to a degradation of the closed-loop system
erformance.
Lyapunov stability theory ensures that the set of conditions

eported in (46) stabilises the equilibrium point of the closed-loop
368
system, but it does not assert that it is the only combination of Kpi
that achieve this goal. Indeed, the choice of a different Lyapunov
function or a change of the assumptions on Kp could lead to
other solutions. For example, if Kpi matrices were not forced to
be diagonal, the reduction of (40) to the square of a binomial
shown in (44) would not be possible, forcing matrices H1 and H2
to satisfy different conditions. An alternative condition could be
to choose Kpi matrices such that (PH2 − H1) is skew-symmetric
and H1 and H2 are negative-definite and positive-definite, re-
spectively. This solution leads to the stability of the closed-loop
system but complicates the construction and tuning of a proper
gain Kp, which must have a form simultaneously implying that
(PH2 − H1) is skew-symmetric, H1 is negative-definite, and H2
is positive-definite. Conversely, the constraint on Kpi that forces
them to be diagonal matrices still stabilises the system, gives
them a simple structure and simplifies the procedure of tuning
the proportional gain Kp to the choice of 2n values, which is a
remarkable advantage of the solution presented in Section 3.

4.2. Simulation results

In sight of conditions (46), the simulation described in Sec-
tion 2.6 is performed setting

Kp3 = Kp4 = I,

here I ∈ Rn×n is the identity matrix. Fig. 6 shows the joints’
angular position q response to the reference signal described
in Section 2.6, while Fig. 5 highlights the first joint response
transient during the first 90 s of the simulation, corresponding to
the initial configuration and the first two steps of the reference
signal. The behaviour of the state error vector xe for the first joint
during the whole simulation is reported in Fig. 7, which clearly
shows its boundedness, as expected from a stable system con-
trolled by a full-state feedback regulator. As already mentioned
in Section 2.6.2, the time constant of σ2 is higher than the other
tates, therefore, its boundedness can be appreciated only in the
ast two steps of the reference signal, which have longer intervals.
o better evaluate the behaviour of the simulated system, Fig. 8
hows the trend of three of the four components of the state error
ector xe for the first joint in a neighbourhood of the first step of
he reference signal. This picture shows the stability of σ , q ,
e1 e
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Fig. 7. State error xe of the first joint in the simulation.
Fig. 8. Detail of σe1 , qe , and q̇e variables of the first joint in the interval [29, 35]s to highlight the transient behaviour.
and q̇e at the selected equilibrium point, but it also highlights the
oscillations of σe1 and q̇e during the transient. This chattering is
mainly due to the discontinuity of the step reference signal and,
in real applications, can be faced smoothing the reference signal
and properly tuning the matrices Kp3 and Kp4 .

5. Conclusions

In this paper, the stability of a cable-driven manipulator con-
trolled by a full-state feedback regulator is investigated. Assuming
that the cable-driven manipulator has n revolute joints and two
cables per joint routed along the structure so that the angular
motion of the joint and the linear motion of the cable are propor-
tional one to the other, a generic dynamic model of the robotic
system is presented. The dynamics of the robotic arm is modelled
369
using the Lagrangian formulation, while cables are modelled us-
ing the four elements model, which permits to include the linear
visco-elastic phenomena. The application of this model, which is
more accurate than the most commonly used spring model, is
an unexplored territory and can be game-changing in the field
of control of cable-driven manipulators.

A non-linear full-state feedback controller is designed for the
just described robotic structure and the stability of the equilib-
rium point of the closed-loop system is demonstrated exploiting
the direct method of Lyapunov. The stability study allows ex-
trapolating some constraints for the proportional gain of the
full-state feedback controller Kp ∈ Rn×4n, which ensure the
stability of the equilibrium point. A great advantage of the so-
lution proposed in this work is the reduction of the problem
of tuning the proportional gain Kp to the tuning of the two
diagonal matrices K ∈ Rn×n and K ∈ Rn×n, for a total of 2n
p3 p4
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alues. Ultimately, this study presents a model-based controller
or cable-driven manipulators whose main advantages are the use
f a more accurate model compared to the ones in the literature
nd the simple tuning procedure, which consists of the choice
f a few parameters. The Lyapunov stability proof of the closed-
oop system is the main contribution of this study since the vast
ajority of the previous works provided stability proof using
ore simple models of cables’ dynamics.
Finally, a Simulink

®
simulation is implemented and per-

formed in such a way that the system reaches several random
equilibrium points to test the proposed control strategy in a case
study using the model of a pre-existing cable-driven manipula-
tor. The simulation results confirms the stability of the selected
closed-loop equilibrium points.

Although the proposed control strategy presents some restric-
tions on the design of the robot, which must satisfy the conditions
stated in Section 2.2 and the constraint on G2 reported in (25),
and on the necessity of measuring or estimating all the state
variables, this work represents a key starting point to develop
model-based controllers for cable-driven manipulators actuated
by synthetic fibre cables, modelled with the four elements model.
The next step will be tuning the proportional gain to obtain the
desired performance of the closed-loop system and comparing its
behaviour with other control strategies found in the literature.
The proposed approach strongly depends on the dynamic model
of the system and, therefore, could be affected by parameters
uncertainty. To reject these possible inaccuracies and potential
external disturbances, the controller here presented could be
modified to increase its robustness, such as considering sliding
mode algorithms, integral action, or adaptive control techniques,
like gain scheduling, fuzzy adaptive control, neural networks, or
iterative learning algorithms. Finally, implementing the controller
on a real robotic platform is a part of the future works that get
inspiration from the study presented here.
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Appendix. Mathematical definitions and notations

This appendix summarises all the mathematical definitions
and notations used in the paper. The mathematical tools exploited
in the following are explained in Section 2.1.

L = diag
(
2
li

)
n

≻ 0 , i = 1, . . . , n where li is the ith cable length

R = diag (ri)n ≻ 0 , i = 1, . . . , n where ri is the map between

the ith joint and the ith cable
motion

K1 = diag (k1)n ≻ 0 where k1 is the first elastic
constant of the four elements
model

K3 = diag (k3)n ≻ 0 where k3 is the second elastic
constant of the four elements
model

D1 = diag (d1)n ≻ 0 where d1 is the first damping
constant of the four elements
model

D2 = diag (d2)n ≻ 0 where d2 is the second
damping constant of the four

elements model
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σ1 ∈ Rn×1 the first cable strain vector

σ2 ∈ Rn×1 the second cable strain vector

q ∈ Rn×1 robot configuration vector
(joint angle)

q̇ ∈ Rn×1 robot joint velocity vector
(joint angular velocity)

q̈ ∈ Rn×1 robot joint acceleration vector
(joint angular acceleration)

x =
[
σT
1 σT

2 qT q̇T ]T the state vector

σ∗

1 ∈ Rn×1 the desired value of σ1

σ∗

2 ∈ Rn×1 the desired value of σ2

q∗
∈ Rn×1 the desired value of q

q̇∗
∈ Rn×1 the desired value of q̇

x∗
=

[
σ∗T
1 σ∗T

2 q∗T q̇∗T ]T the desired value of x
σe1 = σ∗

1 − σ1 the error on the first cable
strain vector

σe2 = σ∗

2 − σ2 the error on the second
cable strain vector

qe = q∗
− q the error on the configuration

vector (joint angle)
q̇e = q̇∗

− q̇ the error on the joint velocity
vector (joint angular velocity)

xe = x∗
− x the state error vector

u∗
= L−1 [

K3D2σ
∗

2 − K1D1σ
∗

1

]
the feed-forward signal
included in the control input

Kp =
[
Kp1 Kp2 Kp3 Kp4

]
the proportional gain of the
full-state feedback controller

Kp1 = diag
(
kp1j

)
n

, j = 1, . . . , n the part of Kp controlling σ1

Kp2 = diag
(
kp2j

)
n

, j = 1, . . . , n the part of Kp controlling σ2

Kp3 = diag
(
kp3j

)
n

, j = 1, . . . , n the part of Kp controlling q

Kp4 = diag
(
kp4j

)
n

, j = 1, . . . , n the part of Kp controlling q̇

u = Kpxe + u∗ the control input

P = R−T L−T
≻ 0 a positive-definite diagonal

matrix used in the Lyapunov
function

e = PTσe1 − qe a vector used in the Lyapunov
function

G = GT
≻ 0 a positive-definite symmetric

matrix used in the Lyapunov
function

G2 = GT
2 ≻ 0 a positive-definite symmetric

matrix used in the Lyapunov
function

H =

[
PH1 PH2
−H1 −H2

]
a matrix used in the Lyapunov
function

H1 = GPT (
LKp1 − K1D1

)
a matrix included in H

H2 = GPT LKp3 a matrix included in H
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