
R espiratory diseases encompass a spectrum of 
conditions,  including both acute and chronic 

ailments,  each exhibiting a distinct pathology.  Acute 
respiratory disease,  such as infectious pneumonia,  is 
caused by severe acute respiratory syndrome coronavi-
rus-2 [1-3],  influenza virus [4 , 5],  and bacteria [6-8].  
Chronic respiratory diseases include asthma [9-11],  
chronic obstructive pulmonary disease (COPD) [12-
16],  interstitial lung disease (e.g.,  idiopathic pulmonary 
fibrosis [IPF]) [17-21],  and lung cancer [22 , 23].

Innate and adaptive immune responses are involved 
in respiratory diseases [24-28].  Several studies have 

shown that neurotransmitters play critical roles in these 
immune responses.  Neurotransmitters are produced by 
neurons and released into the synaptic cleft where they 
act on target cells by binding to receptors [29-31].  In 
addition to norepinephrine and acetylcholine [32-34],  
various neurotransmitters that are secreted into the 
lungs and airways (e.g.,  substance P,  calcitonin gene- 
related peptide,  and vasoactive intestinal peptide) play 
critical roles in the respiratory system [35 , 36].  These 
neurotransmitters are responsible for the lung immune 
response.

Furthermore,  several investigations have revealed 
that the neurotransmitter neuropeptide Y (NPY) plays 
an essential role in the lung immune response 
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The lungs are very complex organs,  and the respiratory system performs the dual roles of repairing tissue while 
protecting against infection from various environmental stimuli.  Persistent external irritation disrupts the 
immune responses of tissues and cells in the respiratory system,  ultimately leading to respiratory disease.  
Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis.  The 
NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1,  Y2,  Y3,  
Y4,  Y5,  and Y6).  Of these receptors,  Y1,  Y2,  Y4,  and Y5 are functional in humans,  and Y1 plays important 
roles in the immune responses of many organs,  including the respiratory system.  NPY and the Y1 receptor have 
critical roles in the pathogenesis of asthma,  chronic obstructive pulmonary disease,  and idiopathic pulmonary 
fibrosis.  The effects of NPY on the airway immune response and pathogenesis differ among respiratory  
diseases.  This review focuses on the involvement of NPY in the airway immune response and pathogenesis of 
various respiratory diseases.
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[32 , 35 , 37 , 38].  Our laboratory has reported that NPY 
plays critical roles in asthma [39],  COPD [40],  and IPF 
[41] via the airway immune response.  However,  the 
roles of NPY in respiratory disease pathogenesis are 
controversial and poorly understood.  In this review,  we 
discuss the effects of NPY on the lung immune response 
based on data from our laboratory and previous 
reports.

NPY is a 36-amino-acid polypeptide first identified 
in the porcine brain in 1982 [42].  NPY is expressed 
throughout the central and peripheral nervous systems 
[43 , 44].  The NPY receptor is a seven-transmembrane- 
domain G-protein-coupled receptor with six subtypes 
(Y1,  Y2,  Y3,  Y4,  Y5,  and Y6) [45-47].  The Y1,  Y2,  
Y4,  and Y5 NPY receptors are functional in humans 
[48 , 49].  NPY maintains homeostasis by increasing 
appetite,  controlling anxiety,  regulating circadian 
rhythms [50-53],  and regulating the immune responses 
of various organs and cells via multiple receptors [54-
59].  These findings suggest that NPY has a critical role 
in the airway immune response and may be responsible 
for respiratory disease pathogenesis.  This review 
focuses on the roles of NPY in various respiratory dis-
orders in relation to the airway immune response.

Upper Respiratory Tract Infections

The upper respiratory tract,  consisting of the nasal 
cavity,  sinuses,  pharynx,  and larynx,  protects against 
inhaled microorganisms through innate and adaptive 
immune responses [60 , 61].  The sinuses prevent lower 
respiratory tract infections through their epithelial 
mucociliary clearance function.  Neuropeptides,  neu-
ropeptide receptors,  and the bitter taste receptor (T2R) 
regulate the secretion of airway surface fluid [62 , 63].  
Gram-negative bacteria secrete acyl homoserine lac-
tones as quorum-sensing molecules.  These bitter com-
pounds bind to T2R (T2R38) receptors,  which are 
expressed on sinus ciliary epithelial cells.  This binding 
induces Ca2+ signaling,  leading to nitric oxide (NO) 
production.  NO,  in turn,  upregulates ciliary beating 
and promotes the mucosal ciliary clearance of patho-
gens in the airway surface fluid [62 , 63].  NPY reduces 
NO production and the ciliary beat frequency response 
in a protein kinase C-dependent manner via the NPY–
Y2 receptor without T2R-induced Ca2+ signaling [64].  
T2R initiates Ca2+ signaling in response to acyl homo-
serine lactones secreted by bacteria and swiftly gener-

ates cyclic adenosine monophosphate (cAMP),  which 
directly kills pathogenic microbes [62 , 63].

The co-administration of NPY and norepinephrine 
increases intracellular cAMP and Ca2+ concentrations in 
human tracheal gland cells and leads to the inhibition of 
secretions from those cells [65].  These data suggest that 
NPY may negatively affect sinus clearance.  To confirm 
this,  further investigations are needed.

NPY may also be associated with the pathogenesis of 
cystic fibrosis (CF),  based on a report showing that low 
serum NPY levels are correlated with poor respiratory 
function in CF patients [66].  CF is a disease in which an 
abnormality in the cystic fibrosis transmembrane con-
ductance regulator (CFTR) gene results in dysfunctional 
epithelial clearance throughout the body,  including the 
gastrointestinal tract and pancreas,  leading to chronic 
refractory sinusitis and airway infection [67 , 68].  The 
signal transduction pathway comprising phospholipase 
C β2 (PLCβ2),  inositol 1,4,5-trisphosphate receptor 
subtype 3 (IP3R3),  and transient receptor potential cat-
ion channel 6 (TRPC6) converts extracellular signals 
into a sustained Ca2+ response [63] and modulates the 
release of NPY [69].  The absence of the CFTR gene 
causes a primary dysfunction that increases the level of 
NPY as well as the proliferation and apoptosis of pro-
genitor cells in the olfactory epithelium via PLCβ2/
IP3R3/TRPC6 signaling [69].

Hydrogen carbonate ion (HCO3
−) promotes the 

polymerization of mucins secreted by mucous cells and 
crucially influences the secretion of antimicrobial pep-
tides from serous cells [70 , 71].  Vasoactive intestinal 
peptide receptors on the plasma membrane of serous 
cells initiate GαS activation of adenylyl cyclase,  leading 
to elevated cAMP levels and the efflux of chloride ions 
and HCO3

− through CFTR [70 , 71].  NPY inhibits  
adenylyl cyclase and decreases vasoactive intestinal 
peptide-activated cAMP responses; this blunts CFTR-
mediated anion and vasoactive intestinal peptide- 
activated cAMP secretions [71].  In CF,  the absence of 
CFTR prevents the initiation of anion secretion,  while 
NPY leads to persistent inflammation in human gland 
cells [71].

However,  there is a lack of information regarding 
which NPY receptors participate in the pathology of CF.  
More detailed investigations of NPY in the upper respi-
ratory tract,  including the sinuses,  are warranted 
because sinus clearance dysfunction,  including CF,  
leads to infection of the lower respiratory tract and 

96 Itano et al. Acta Med.  Okayama　Vol.  78,  No.  2



severe pneumonia.

Viral and Bacterial Pneumonia

Influenza virus infection causes severe pneumonia,  
resulting in fatality due to the overproduction of cyto-
kines [72 , 73].  Influenza virus infection induces the 
release of interferon (IFN)-α/β from alveolar macro-
phages.  Cytokine storms also trigger IFN-α/β-induced 
alveolar macrophages,  thereby promoting apoptosis of 
alveolar epithelial cells [72].  Furthermore,  the influ-
enza virus invades the alveoli,  leading to epithelial cell 
apoptosis or necrosis and the production of proinflam-
matory cytokines and chemokines,  including IFN-α,  
interleukin (IL)-6,  tumor necrosis factor-α,  C-C motif 
chemokine ligand 2,  and C-X-C motif chemokine 
ligand (CXCL)10.  These molecules recruit neutrophils 
and monocytes to the alveolus,  resulting in lung tissue 
damage [72 , 73].  Only one report has investigated the 
role of NPY in the pathogenesis of influenza infection 
[74].  Activation of the NPY–Y1 receptor on alveolar 
macrophages during influenza infection suppresses the 
cytokine signaling-3 suppressor,  thereby enhancing 
phosphorylated signal transducer and activator of  
transcription-3-mediated IFN responses.  This elevated 
production of proinflammatory cytokines and chemok-
ines (e.g.,  IL-6,  CXCL1,  and CXCL2) contributes to the 
pathogenesis of influenza virus infection and pneumo-
nia [74].  Notably,  NPY is not produced by a neural 
source; rather,  it is secreted by alveolar macrophages.

Bacterial pneumonia is a respiratory illness caused 
by severe bacterial infection in patients with chronic 
respiratory disease.  In Japan,  Streptococcus pneumo-
niae,  Moraxella catarrhalis,  and Haemophilus influenzae 
are the primary causative organisms [75].

The neuropeptides NPY,  substance P,  neurokinin A,  
calcitonin gene-related peptide,  and vasoactive intesti-
nal peptide exhibit antibacterial activity against various 
bacterial infections [76].  In addition,  NPY has specific 
receptors on human neutrophils,  which moderate bac-
terial phagocytosis and the release of reactive oxygen 
species [77].  In a study examining the effects of NPY,  
calcitonin gene-related peptide,  substance P,  and 
somatostatin on H. influenzae and M. catarrhalis,  NPY 
demonstrated the greatest efficacy in terms of permea-
bilizing and killing bacteria [78]; compared with other 
neurotransmitters,  NPY exhibited greater bactericidal 
activity against H. influenzae and M. catarrhalis.  In terms 

of bactericidal activity,  the opsonin-dependent pathway 
is regarded as the most crucial mechanism for aug-
menting neuropeptide-mediated phagocytosis.  NPY 
may exhibit higher bactericidal activity compared to 
other neurotransmitters by enhancing opsonin-depen-
dent phagocytosis and reducing reactive oxygen species 
production [78].

However,  only a few studies have examined the role 
of NPY in viral and bacterial pneumonia; further 
research is warranted.

Asthma

Bronchial asthma is a complex syndrome with mul-
tiple phenotypes,  encompassing allergic and non-aller-
gic forms as well as eosinophilic,  neutrophilic,  pouch- 
granulocytic,  and obesity-related variants.  Airway 
immune responses,  including the secretion of numer-
ous cytokines and chemokines,  as well as the activation 
of various immune cells,  are associated with asthma 
development [79-81].  Severe asthma pathogenesis may 
involve neutrophils,  T helper (Th) 17 cells,  group 2 
innate lymphoid cells (ILC2s),  and thymic stromal 
lymphopoietin [82-86].

Our laboratory has demonstrated several pathogenic 
pathways of asthma via the airway immune response 
[39 , 87-91].  Leukotriene B4 and its receptor BLT1,  
chemokine receptor 5,  neutrophil elastase,  the receptor 
for advanced glycation end products (RAGE),  and reti-
noid X receptor are associated with the development of 
airway hyperresponsiveness (AHR) and an increase in 
the type-2 response [87-91].  AHR and type-2 responses 
are often associated with increased numbers of CD3+,  
CD4+,  and CD8+ T cells in the lungs [88].  RAGE 
induces the activation of Th2 lymphocytes; aggregation 
of ILC2s to the airways; and enhancement of CXCL1,  
CXCL2,  and IL-1β levels via the IL-33–ST2 pathway 
[90].  The retinoid X receptor partial agonist NEt-4IB 
has been shown to reduce the numbers of CD4+ T cells,  
CD8+ T cells,  and CD11b+ cells in the lungs of an ani-
mal model of asthma [91].

Several studies have shown that NPY is essential in 
the pathogenesis of asthma.  Specifically,  NPY expres-
sion increases in the lungs,  where it promotes allergic 
airway inflammation and the Th2 response.  In contrast,  
NPY-deficient mice show fewer eosinophils and lower 
levels of immunoglobulin E in bronchoalveolar lavage 
fluid,  resulting in diminished allergic airway inflamma-
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tion [92].  NPY induces a Th1-to-Th2 cell shift and 
stimulates dendritic cells,  suggesting its involvement in 
asthma pathogenesis [93].  NPY promotes the migra-
tion of immature dendritic cells and the onset of Th2 
polarization via NPY–Y1 receptors,  as well as the acti-
vation of extracellular signal-regulated kinase and p38 
mitogen-activated protein kinase [94].  We have also 
shown that NPY promotes the activation of Th2 cells,  
the accumulation of CD11c+ antigen-presenting cells in 
the airways,  and the migration of CD11c+ antigen-pre-
senting cells into mediastinal lymph nodes after sensiti-
zation to house dust mites; notably,  treatment with the 
NPY–Y1 receptor antagonist BIBO-3304 attenuates 
AHR and inflammation [39].

NPY modulates macrophage function via the NPY–
Y1,  Y2,  and Y5 receptors [95].  During the chronic 
phase of ovalbumin-induced allergic airway inflamma-
tion in an animal model,  NPY levels are elevated within 
macrophages and peritracheal cells.  Additionally,  this 
phase results in the localization of NPY–Y1 and Y5 
receptors to structural and inflammatory cells in the 
lung [96].  The roles of NPY and macrophages in asthma 
are unclear and require further investigation.

In a report concerning the relationship between 
non-Th2 asthma and NPY,  the loss of forkhead box 
protein p1 (Foxp1) and forkhead box protein p4 (Foxp4) 
induced AHR without eosinophilic inflammation; the 
loss of Foxp1 and Foxp4 induced ectopic expression of 
NPY near bronchial epithelial cells.  Moreover,  NPY 
promoted AHR by inducing Rho kinase activity and 
phosphorylating myosin light chains [97].

NPY expression is associated with obesity; it causes 
obesity-related inflammation by activating macrophages 
in adipose tissue and increasing the expression levels of 
several inflammatory mediators [98 , 99].  Obesity is 
involved in the pathogenesis of allergic and nonallergic 
asthma in a weight-dependent manner [100 , 101].  An 
examination of NPY gene polymorphisms in over-
weight subjects (body mass index ≥ 25 kg/m2) demon-
strated an elevated prevalence of asthma in overweight 
subjects carrying the NPY-399T allele,  but not the NPY-
Pro7 allele.  Overweight classification was also associ-
ated with increased atherosclerosis,  as determined by 
carotid intima media thickness.  However,  total heart 
rate variability was higher in patients with asthma and 
correlated negatively with carotid intima media thick-
ness,  irrespective of the NPY genotype.  This suggests 
that the regulation of sympathetic balance differs 

between asthma and atherosclerosis [102].  Moreover,  
another report showed that body mass index values are 
higher in asthma patients than in healthy individuals;  
NPY and IL-6 levels are positively correlated with IL-4 
levels [103].

Psychological and environmental stresses exacerbate 
the pathophysiology of asthma [104 ,105].  Physiological 
stress in asthma patients has a persistent enhancing 
effect on IL-4 and Th2 inflammatory responses.  NPY 
mediates the association between high stress levels and 
IL-4 overexpression in asthma patients [106].  The stress 
of cold stimulation in a house dust mite-induced 
asthma model significantly increases the numbers of 
total leukocytes and eosinophils in bronchoalveolar 
lavage fluid,  and these changes are positively correlated 
with NPY concentrations [107].

These findings suggest that mental and environmen-
tal stresses are associated with elevated NPY levels.  
However,  the detailed mechanism by which the 
stress-induced elevation of NPY affects immune cells in 
asthma is unknown.  NPY is involved in Th2 inflamma-
tion,  non-Th2 inflammation,  obesity,  and stress.  The 
results of many studies have suggested that NPY pro-
motes asthma exacerbation,  implying that NPY pro-
motes allergic inflammation and the Th2 response,  as 
shown in Fig. 1.  However,  further analyses of the roles 
of NPY are needed,  particularly with respect to nonal-
lergic and Th2-independent asthma.

COPD

The primary essential factor in the onset of COPD is 
chronic exposure to inhaled tobacco smoke,  toxic 
gases,  and pollutants,  which results in airway inflam-
mation [108 , 109].  This persistent airway inflammation 
is responsible for the progressive lung damage in 
COPD,  leading to alveolar wall destruction [110].  
Inflammation in COPD involves macrophages,  neutro-
phils,  lymphocytes,  and various proinflammatory 
cytokines and chemokines [110-112].  Several studies 
have focused on innate immune responses in COPD 
pathogenesis [113 , 114].

Our laboratory has identified several pathogenic 
pathways in COPD via the airway immune response 
[40 , 115-120].  Cysteinyl leukotriene receptor antago-
nists ameliorate AHR and static compliance in an  
asthma-COPD overlap model constructed using por-
cine pancreatic elastase (PPE) and ovalbumin by inhib-
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iting type-2 cytokines,  CXCL1/2 chemokines,  and 
tumor necrosis factor-α [115].  RAGE,  which exacer-
bates asthma pathogenesis [90],  plays a critical role in 
promoting neutrophilic inflammation and stimulating 
the onset of emphysema in a PPE-induced emphysema 
model [116].  The retinoid X receptor partial agonist 
NEt-4IB,  which suppresses the allergic airway response 
[91],  also inhibits the development of emphysema 
[117].  IL-17A secreted from Th17 cells is essential for 
the development of lung inflammation and emphysema 
in PPE-induced pulmonary emphysema [118].  IL-23 is 
critical for the development of emphysema in that it 
exacerbates neutrophilic inflammation while elevating 
both the level of IL-17 and the number of Th17 cells in 
the lungs [119].  Although IL-33 is essential for the 
development of asthma [121],  our laboratory showed 
that the loss of IL-33 promotes the development of 
emphysema [120].

Some studies have indicated that NPY is responsible 
for COPD pathogenesis.  Our laboratory showed that 
NPY inhibits the development of emphysema by 
decreasing the secretion of proinflammatory chemok-
ines,  the production of IL-17A,  and the number of 
group 3 innate lymphoid cells (ILC3).  Treatment with 
the NPY–Y1 receptor antagonist BIBO-3304 exacer-
bates the development of emphysema [40].

Exposure to cigarette smoke reduces NPY levels in 

the paraventricular nucleus and fat mass; it also regu-
lates adipose cytokine production [122].  A study com-
paring neuropeptide expression in the airways of COPD 
patients showed that vasoactive intestinal peptide and 
substance P expression levels increase in the airway  
epithelium,  glands,  and muscle fibers,  whereas NPY 
expression levels significantly decrease [123].  NPY 
expression increases around nerve fibers in the tracheal 
epithelium but decreases with growth when mice are 
exposed to side-steam tobacco smoke during the early 
postnatal period [124].  However,  the mechanisms by 
which NPY concentrations and expression levels 
decrease in COPD are unknown.  Figure 2 shows the 
hypothetical role of NPY in the pathogenesis of COPD 
based on data from our laboratory and previous reports 
[40 , 123 , 124].  Furthermore,  to our knowledge,  our 
laboratory study is the only investigation that has 
demonstrated the mechanism underlying the NPY 
immune response in COPD [40].  Thus,  further 
research is needed concerning the role of NPY in 
COPD.

Pulmonary Fibrosis

There are several types and classifications of pulmo-
nary fibrosis,  including IPF [125-127].  IPF is a disease 
with poor prognosis,  characterized by progressive  
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Fig. 1　 The role of NPY in asthma patho-
genesis.  Exposure of bronchial epithelial cells 
to allergens stimulates dendritic cell matura-
tion and neuropeptide Y (NPY)-induced Th2 
polarization.  Levels of T helper 2 (Th2) cyto-
kines,  such as IL-4,  IL-5,  IL-9,  and IL-13,  
increase.  Mast cells produce immunoglobulin 
E (IgE),  and eosinophils are activated.  IL-25,  
IL-33,  and thymic stromal lymphopoietin 
(TSLP) from bronchial epithelial cells induce 
the production of group 2 innate lymphoid 
cells (ILC2),  which cause allergic inflamma-
tion by producing cytokines IL-5 and IL-13.  
NPY promotes Th2 polarization and allergic 
inflammation through these immune responses 
[39 ,92-94].
IgE,  immunoglobulin E; ILC2,  group 2 innate 
lymphoid cell; NPY,  neuropeptide Y; Th2,  T 
helper 2; TSLP,  thymic stromal lymphopoietin.



pulmonary fibrosis and respiratory failure [17 ,128 ,129].  
It is fatal when complicated by acute exacerbations 
[130-132].  Pirfenidone and nintedanib are the only 
anti-fibrotic agents used to treat IPF [133-138]; new 
therapeutic agents for IPF are needed.

The epithelial‒mesenchymal transition (EMT) plays 
a critical role in IPF progression [139-142].  Although 
many mechanisms of IPF pathogenesis have been eluci-
dated using mouse models of bleomycin (BLM)-
induced pulmonary fibrosis [143-146] and in vitro 
experiments with human lung epithelial A549 cells 
[147-149],  IPF pathogenesis is particularly complex 
and remains poorly understood.

IL-1β is a proinflammatory cytokine in the IL-1 
family; its release from airway epithelial cells and alve-
olar macrophages promotes the development of fibrosis 
in IPF [144 , 150-154].  IL-1β stimulates Th17 cells,  
increases the level of IL-17A,  and promotes the EMT,  
leading to the progression of pulmonary fibrosis [142 ,  
155 , 156].  IL-1β and Th17 cells are also involved in the 
pathologies of various organs and cells [157-160].

NPY exhibits anti-inflammatory effects by suppress-
ing IL-1β and other inflammatory cytokines and 
chemokines [161-163].  Thus,  we explored whether 
NPY could protect against pulmonary fibrosis in IPF via 

the suppression of IL-1β.  We found that NPY protected 
against fibrosis onset in IPF by inhibiting IL-1β through 
the NPY–Y1R axis [41].  To our knowledge,  that report 
was the first to show that NPY has a critical role in IPF 
pathogenesis.

In the same study,  we established a BLM-induced 
pulmonary fibrosis model using NPY-deficient (NPY-/-) 
and wild-type (WT) mice in vivo [41].  Using this model,  
we found a significant exacerbation of lung fibrosis and 
worsened airway inflammation in BLM-exposed NPY-/- 
mice compared to WT mice.  Both the level of IL-1β and 
the number of Th17 cells in the airway were signifi-
cantly greater in NPY-/- mice than in WT mice at the 
acute phase of BLM exposure.  NPY treatment signifi-
cantly reduced the fibrotic area and significantly low-
ered the levels of IL-1β in both WT and NPY-/- mice that 
had BLM-induced lung fibrosis.  These findings sug-
gested that NPY ameliorates the development of lung 
fibrosis by suppressing the production of IL-1β and the 
number of Th17 cells.  Our in vitro experiments in the 
same study showed that A549 cells exposed to BLM 
exhibited significantly greater IL-1β release and EMT 
promotion; NPY reduced IL-1β release from BLM-
exposed A549 cells and suppressed the EMT [41].  
Under steady-state conditions,  Y1 was the most highly 
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Fig. 2　 The hypothetical role of NPY in the patho-
genesis of chronic obstructive pulmonary disease 
(COPD).  Cigarette smoking damages bronchial epithe-
lial cells and reduces the uptake of NPY,  presumably 
released from nerves [124] into bronchial epithelial 
cells,  glandular cells,  and muscle fibers [123].  Airway 
inflammation induces the production of ILC3s,  which 
stimulate IL-17A release.  C-X-C motif chemokine 
ligand 1 (CXCL1) recruits and activates neutrophils;  
macrophage-derived CXCL2 and matrix metalloprotein-
ase-9 (MMP-9) promote COPD onset.  NPY protects 
against the development of COPD by inhibiting airway 
inflammation caused by ILC3-derived IL-17A [40].
COPD,  chronic obstructive pulmonary disease;  
CXCL1,  C-X-C motif chemokine ligand 1; CXCL2,  
C-X-C motif chemokine ligand 2; ILC3,  group 3 innate 
lymphoid cell; MMP-9,  matrix metalloproteinase-9;  
NPY,  neuropeptide Y.



expressed NPY receptor in A549 cells.  Concurrent 
treatment of BLM-exposed A549 cells with the Y1 
receptor antagonist BIBP3226 and NPY led to enhanced 
IL-1β production and EMT promotion.  These in vivo 
and in vitro results suggest that NPY suppresses pulmo-
nary fibrosis progression by regulating IL-1β produc-
tion and the EMT through the NPY–Y1 receptor axis 
[41].

We also assessed the numbers of NPY-positive cells 
in mice and humans in the same study [41].  In animals 
with BLM-induced lung fibrosis,  NPY-positive cells 
were mainly expressed in bronchial epithelial cells and 
epithelial cell adhesion molecule (EpCAM)-positive 
cells,  as the studies [96 , 97] that previously demon-
strated NPY-positive cell expression in asthma models.  
We also evaluated the expression of NPY-positive cells 
using tissue from transplanted human lungs.  We found 
that NPY-positive cells were expressed around bronchial 
epithelial cells,  EpCAM-positive cells,  and pro-surfac-
tant protein C-positive cells in samples from a healthy 

lung donor.  The number of NPY-positive bronchial 
epithelial cells was decreased in IPF,  consistent with 
prior findings [123] that demonstrated reduced NPY-
positive cell expression in COPD lung tissue.  We 
detected IL-1β-positive cells among EpCAM-positive 
cells and alveolar macrophages in samples from IPF 
patients [41].  These findings indicate that NPY pro-
duced by bronchial epithelial cells suppresses the devel-
opment of pulmonary fibrosis by inhibiting IL-1β secre-
tion from bronchial epithelial cells and alveolar 
macrophages (Fig. 3).  Compared to healthy lung tissue,  
IPF lung tissue contains fewer NPY-positive cells,  pre-
sumably because NPY production from bronchial epi-
thelial cells is suppressed in IPF.  However,  the sample 
size in that study [41] was small; further research is 
needed.  Another limitation of that study was that its 
design did not allow evaluation of the associations 
among NPY,  alveolar macrophages,  and nervous tissue.  
To our knowledge,  however,  our laboratory is the first 
to describe the critical role of NPY in IPF pathogenesis.  
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Fig. 3　 The role of NPY in the pathogenesis of idiopathic pulmonary fibrosis (IPF).  In healthy lungs,  neuropeptide Y (NPY) is secreted 
from bronchial epithelial cells and maintains lung homeostasis via the Y1 receptor (Y1R) on type II alveolar epithelial cells (ATIIs).  Stimuli 
(e.g.,  bleomycin) damage bronchial epithelial cells,  and NPY expression is lower in damaged bronchial epithelial tissue than in healthy 
lung tissue.  IL-1β secretion,  mainly from bronchial epithelial cells,  ATIIs,  and alveolar macrophages,  is significantly enhanced.  NPY may 
protect against the development of IPF by inhibiting IL-1β secretion and T helper 17 (Th17) cell migration via the NPY‒Y1R axis [41].
ATIIs,  type II alveolar epithelial cells; IPF,  idiopathic pulmonary fibrosis; NPY,  neuropeptide Y; Y1R,  NPY‒Y1 receptor; Th17,  T helper 17.



Despite its limitations,  our study highlights the need for 
further investigation of NPY in IPF pathogenesis.

Conclusions and Future Perspectives

In this review,  we have discussed the roles of NPY 
and the airway immune responses in several respiratory 
diseases.  Notably,  our laboratory showed that NPY acts 
via the Y1 receptor in respiratory diseases,  but that the 
effects of NPY and corresponding immune responses 
differed among asthma,  COPD,  and IPF [39-41].  Our 
laboratory and others have shown that NPY affects Th 
cells in a manner that is distinct among respiratory dis-
eases [39 , 41 , 92 , 93 , 106].  NPY regulates the Th1/Th2 
balance,  and a nervous tissue-derived decrease in NPY 
levels results in a shift toward Th1 cells [164].  Moreover,  
NPY promotes Th2 polarization by inducing dendritic 
cell migration [94].  In an animal model of experimen-
tal autoimmune encephalomyelitis,  NPY decreases the 
levels of cytokines derived from Th1 and Th17 cells 
while increasing the levels of cytokines derived from 
Th2 cells [165].  Therefore,  NPY may exert distinct 
effects on Th cells,  potentially exacerbating asthma 
pathogenesis in Th2-dependent asthma,  while inhibit-
ing the onset of lung fibrosis by regulating Th17 cells in 
IPF.  NPY in the lungs may moderate respiratory disease 
pathogenesis via the airway immune response.  Further 
studies are needed to confirm this hypothesis.
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