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Abstract

Colorectal cancer (CRC) cells harboring KRAS or BRAF mutations show a more-malignant

phenotype than cells with wild-type KRAS and BRAF. KRAS/BRAF–wild-type CRCs are

sensitive to epidermal growth factor receptor (EGFR)-targeting agents, whereas KRAS/

BRAF–mutant CRCs are resistant due to constitutive activation of the EGFR-downstream

KRAS/BRAF signaling pathway. Novel therapeutic strategies to treat KRAS/BRAF mutant

CRC cells are thus needed. We recently demonstrated that the telomerase-specific replica-

tion-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 exhibit thera-

peutic potential against KRAS-mutant human pancreatic cancer cells. In this study, we

evaluated the therapeutic potential of OBP-301 and OBP-702 against human CRC cells

with differing KRAS/BRAF status. Human CRC cells with wild-type KRAS/BRAF (SW48,

Colo320DM, CACO-2), mutant KRAS (DLD-1, SW620, HCT116), and mutant BRAF (RKO,

HT29, COLO205) were used in this study. The antitumor effect of OBP-301 and OBP-702

against CRC cells was analyzed using the XTT assay. Virus-mediated modulation of apo-

ptosis, autophagy, and the EGFR-MEK-ERK and AKT-mTOR signaling pathways was ana-

lyzed by Western blotting. Wild-type and KRAS-mutant CRC cells were sensitive to OBP-

301 and OBP-702, whereas BRAF-mutant CRC cells were sensitive to OBP-702 but resis-

tant to OBP-301. Western blot analysis demonstrated that OBP-301 induced autophagy

and that OBP-702 induced autophagy and apoptosis in human CRC cells. In BRAF-mutant

CRC cells, OBP-301 and OBP-702 suppressed the expression of EGFR, MEK, ERK, and

AKT proteins, whereas mTOR expression was suppressed only by OBP-702. Our results

suggest that p53-armed oncolytic virotherapy is a viable therapeutic option for treating

KRAS/BRAF-mutant CRC cells via induction of autophagy and apoptosis.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0294491 November 16, 2023 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Tamura S, Tazawa H, Hori N, Li Y,

Yamada M, Kikuchi S, et al. (2023) p53-armed

oncolytic adenovirus induces autophagy and

apoptosis in KRAS and BRAF-mutant colorectal

cancer cells. PLoS ONE 18(11): e0294491. https://

doi.org/10.1371/journal.pone.0294491

Editor: Alvaro Galli, CNR, ITALY

Received: September 14, 2023

Accepted: November 2, 2023

Published: November 16, 2023

Copyright: © 2023 Tamura et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its supporting information

files.

Funding: This study was supported in part by

JSPS KAKENHI grants JP25462057 and

JP21K07219 to H.T.” The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: Y.U. is the President & CEO

of Oncolys BioPharma, Inc. H.T. and T.F. are

consultants for Oncolys BioPharma, Inc. The other

authors have no potential conflicts of interest to

https://orcid.org/0000-0003-4658-1050
https://orcid.org/0000-0002-4484-1253
https://doi.org/10.1371/journal.pone.0294491
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294491&domain=pdf&date_stamp=2023-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294491&domain=pdf&date_stamp=2023-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294491&domain=pdf&date_stamp=2023-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294491&domain=pdf&date_stamp=2023-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294491&domain=pdf&date_stamp=2023-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0294491&domain=pdf&date_stamp=2023-11-16
https://doi.org/10.1371/journal.pone.0294491
https://doi.org/10.1371/journal.pone.0294491
http://creativecommons.org/licenses/by/4.0/


Introduction

Colorectal cancer (CRC) is the third leading cause of death worldwide [1]. CRCs harboring

KRAS and BRAF mutations are often refractory to chemotherapy, resulting in a poorer prog-

nosis than cases involving wild-type KRAS and BRAF due to tumor recurrence and metastasis

[2]. KRAS/BRAF wild-type CRCs are sensitive to the epidermal growth factor receptor

(EGFR)-targeting agents cetuximab and panitumumab [3]. However, KRAS/BRAF–mutant

CRCs are highly resistant to EGFR-targeting therapy due to constitutive activation of the

EGFR-downstream RAS-RAF-MEK-ERK signaling pathway [3]. Moreover, microsatellite sta-

ble (MSS) CRC reportedly exhibits greater resistance to immunotherapy compared with

microsatellite instable (MSI) CRC [4]. Therefore, novel therapeutic strategies that will improve

the clinical outcome in patients with KRAS/BRAF–mutant MSS CRC are needed.

KRAS–mutant CRCs harboring mutations at codon 12 or 13 are associated with worse

prognosis [5]. BRAF–mutant CRCs frequently exhibit V600E mutation, leading to poor prog-

nosis [6]. Constitutive activation of the RAS-RAF-MEK-ERK pathway plays a crucial role in

the resistance to EGFR-targeting agents in KRAS/BRAF–mutant CRC cells [7]. Targeting the

RAS-RAF-MEK-ERK pathway using BRAF, MEK, and ERK inhibitors improves the resistance

to EGFR-targeting therapy in KRAS/BRAF-mutant CRC cells [8]. Dual inhibition of the RAS-

RAF-MEK-ERK and EGFR-downstream PI3K-AKT-mTOR pathways using BRAF, MEK,

ERK, and EGFR inhibitors has been suggested to be effective for treating KRAS/BRAF–mutant

CRC cells [9]. Therefore, novel therapeutic strategies that suppress the RAS-RAF-MEK-ERK

and EGFR-PI3K-AKT-mTOR pathways is needed for treating KRAS/BRAF–mutant CRCs.

Oncolytic virotherapy has recently emerged as a novel antitumor therapy against CRCs

[10]. Oncolytic viruses induce tumor-specific death of malignant tumor cells via modulated

viral replication [11]. Telomerase activity is higher in malignant tumor cells than normal cells

[12]. To target malignant tumor cells with telomerase activity, we developed two types of telo-

merase-specific replication-competent oncolytic adenoviruses, OBP-301 [13] and OBP-702

armed with the wild-type p53 tumor suppressor gene [14]. We previously demonstrated that

OBP-301 induces autophagy-related death in human lung cancer cells by suppressing EGFR

expression [15]. Moreover, we recently demonstrated that OBP-301 and p53-armed OBP-702

exhibit high antitumor efficacy against KRAS-mutant human pancreatic cancer cells via the

KRAS-MEK-ERK signaling pathway [16]. Therefore, we hypothesized that OBP-301 and

OBP-702 would be effective for use in eliminating KRAS/BRAF–mutant CRC cells.

In the present study, we investigated the therapeutic potential of the telomerase-specific

replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 for eliminat-

ing human CRC cells with differing KRAS/BRAF mutation status and microsatellite stability.

The ability of OBP-301 and OBP-702 to induce apoptosis and autophagy and modulate the

EGFR-MEK-ERK and AKT-mTOR signaling pathways was analyzed by Western blotting.

Materials and methods

Cell lines

The human CRC cell line Colo320DM was obtained from the Japanese Collection of Research

Bioresources Cell Bank (Osaka, Japan). The human CRC cell lines SW48, SW620, DLD-1,

HCT116, HT29, and RKO were obtained from the American Type Culture Collection (Manas-

sas, VA, USA). The human CRC cell lines CACO-2 and COLO205 were obtained from the

Riken BioResource Research Center (Tsukuba, Ibaraki, Japan). Colo320DM cells were main-

tained in Dulbecco’s modified Eagle’s medium. SW48, SW620, DLD-1, and COLO205 cells

were maintained in RPMI-1640 medium. CACO-2 and RKO cells were maintained in Eagle’s
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Minimal Essential Medium. HCT116 and HT-29 cells were maintained in McCoy’s 5A

medium. All media were supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicil-

lin, and 100 μg/ml streptomycin. Culture medium for CACO-2 cells were supplemented with

20% FBS and 1% non-essential amino acids solution. The cells were routinely maintained at

37˚C in a humidified atmosphere with 5% CO2.

Recombinant adenoviruses

The telomerase-specific replication-competent adenovirus OBP-301 (suratadenoturev), in

which the promoter element of the human telomerase reverse transcriptase gene drives expres-

sion of the E1A and E1B genes, was previously constructed and characterized [13,17] (Fig 1A).

OBP-702 was generated by modifying OBP-301 via insertion of a human wild-type p53 gene

expression cassette into the E3 region of OBP-301 [14,18] (Fig 1B).

Cell viability assay

Cells were seeded in 96-well plates at a density of 103 cells/well. After 24 h, cells were infected

with OBP-301 or OBP-702 at a multiplicity of infection (MOI) of 0, 1, 5, 10, 50, or 100 plaque-

forming units (PFU)/cell. Uninfected (mock-treated) cells were used as virus-infected cells at

an MOI of 0. Cell viability was determined on day 3 after virus infection using a Cell Prolifera-

tion Kit II (Roche Molecular Biochemicals, Indianapolis, IN, USA) according to the manufac-

turer’s protocol.

Western blot analysis

Cells were seeded in a 100-mm dish at a density of 105 cells/dish 24 h before virus infection.

The cells were then infected for 72 h with OBP-301 or OBP-702 at the indicated MOI. Unin-

fected (mock-treated) cells were used as virus-infected cells at an MOI of 0. Whole-cell lysates

were prepared in lysis buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% Triton X-100)

Fig 1. Structures of telomerase-specific replication-competent oncolytic adenoviruses. A OBP-301 is a telomerase-

specific replication-competent oncolytic adenovirus in which the hTERT promoter drives expression of the E1A and

E1B genes. B OBP-702 is a p53-armed OBP-301 variant in which the Egr1 promoter drives expression of the human

wild-type p53 gene. Ad5, adenovirus serotype 5; hTERT, human telomerase reverse transcriptase; IRES, internal

ribosome entry site; ITR, inverted terminal repeat.

https://doi.org/10.1371/journal.pone.0294491.g001
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containing a protease inhibitor cocktail (Complete Mini; Roche Applied Science, Mannheim,

Germany). Proteins (20 μg per lane) were electrophoresed on 6–10% SDS polyacrylamide gels

and then transferred onto polyvinylidene difluoride membranes (Hybond-P; GE Health Care,

Buckinghamshire, UK). Blots were blocked with Blocking One (Nacalai Tesque, Kyoto, Japan)

at room temperature for 30 min. The primary antibodies used were as follows: rabbit anti–

poly (ADP-ribose) polymerase (PARP) polyclonal antibody (pAb) (1:1000, 9542; Cell Signaling

Technology, Danvers, MA, USA), rabbit anti-p62 pAb (1:1000, 5114; Cell Signaling Technol-

ogy), mouse anti-E1A monoclonal antibody (mAb) (1:500, 554155; BD Bioscience, Franklin

Lakes, NJ, USA), mouse anti-p53 mAb (1:1000, 18032; Cell Signaling Technology), rabbit anti-

EGFR pAb (1:1000, 2232; Cell Signaling Technology), mouse anti-MEK1/2 mAb (1:1000,

4694; Cell Signaling Technology), rabbit anti-ERK1/2 mAb (1:1000, 4695; Cell Signaling Tech-

nology), rabbit anti-AKT mAb (1:1000, 4691; Cell Signaling Technology), rabbit anti-mTOR

mAb (1:1000, 2983; Cell Signaling Technology), and mouse anti–β-Actin mAb (1:5000, A5441;

Sigma-Aldrich, St. Louis, MO, USA). The secondary antibodies used were horseradish peroxi-

dase–conjugated antibodies against mouse IgG (1:2500, NA931; GE Healthcare) or rabbit IgG

(1:5000, NA934; GE Healthcare). Immunoreactive bands on the blots were visualized using

enhanced chemiluminescence substrate (ECL Prime; GE Healthcare).

Statistical analysis

Data are expressed as means ± SD. The significance of differences was assessed using the Stu-

dent’s t-test. Statistical significance was defined as P<0.05.

Results

In vitro cytopathic effect of OBP-301 against human CRC cells with

different KRAS/BRAF mutation status

To investigate the therapeutic potential of oncolytic adenoviruses against human CRC cells,

we used three KRAS/BRAS wild-type human CRC cell lines, Colo320DM (MSS type), SW48

(MSI type), and CACO-2 (MSS type); three KRAS-mutant human CRC cell lines, SW620

(MSS type), DLD-1 (MSI type), and HCT116 (MSI type); and three BRAF-mutant human

CRC cell lines, HT29 (MSS type), RKO (MSI type), and COLO205 (MSS type). The viability of

CRC cells after infection with OBP-301 for 72 h was assessed using an XTT assay. OBP-301

treatment significantly suppressed the viability of KRAS/BRAF wild-type and KRAS-mutant

CRC cells, independent of microsatellite status (Fig 2A and 2B). BRAF-mutant CRC cells

were relatively less sensitive to OBP-301 compared with KRAS/BRAF wild-type or KRAS-

mutant CRC cells (Fig 2C). These results suggest that OBP-301 has therapeutic potential

against human CRC cells with wild-type KRAS/BRAF or mutant KRAS, but not mutant

BRAF.

OBP-301 induces autophagy in human CRC cells with different KRAS/

BRAF mutation status

Oncolytic adenoviruses have been shown to induce autophagy-related cell death in tumor cells

[19–21]. We previously demonstrated that OBP-301 and OBP-702 exhibit cytopathic activity

in association with autophagy and apoptosis in a variety of human cancer cells [15,18]. To

investigate whether OBP-301 induces autophagy and apoptosis in human CRC cells, human

CRC cells with different KRAS/BRAF mutation status were infected with OBP-301 for 72 h,

and cell lysates were then prepared and subjected to Western blotting. OBP-301 treatment

induced apoptosis with upregulation of C-PARP (but not autophagy due to a lack of p62
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expression) in KRAS/BRAF wild-type Colo320DM cells (Figs 3A and S1). Following OBP-301

treatment, KRAS/BRAF wild-type SW48 cells exhibited autophagy with downregulation of

p62 (Figs 3A and S1). OBP-301 treatment further induced autophagy (but not apoptosis) in

KRAS-mutant and BRAF-mutant CRC cells (Figs 3B, 3C, S2 and S3). The expression of p53

protein was decreased by OBP-301 treatment in both p53-intact (SW48, RKO) and

p53-mutant (Colo320DM, SW620, HT29, DLD-1) CRC cells (Fig 3). These results suggest that

OBP-301 has therapeutic potential to induce autophagy in human CRC cells with wild-type

Fig 2. OBP-301 reduces the viability of human CRC cells with wild-type and mutant KRAS. A, B, C Human CRC

cells with different KRAS/BRAF mutation status, KRAS/BRAF wild type (A), mutant KRAS (B), and mutant BRAF (C),

were treated with OBP-301 at the indicated multiplicity of infection (MOI) for 72 h. Cell viability was quantified using

the XTT assay. Uninfected (mock-treated) cells were shown as virus-infected cells at an MOI of 0. Cell viability was

calculated relative to that of the mock-treated group, which was set at 100%. Cell viability data are expressed as

mean ± SD (n = 5). The Student’s t-test was used to evaluate the significance of differences. *P<0.05; **P<0.01 (versus

an MOI of 0).

https://doi.org/10.1371/journal.pone.0294491.g002
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Fig 3. OBP-301 induces autophagy in human CRC cells. A, B, C Human CRC cells with different KRAS/BRAF

mutation status, KRAS/BRAF wild type (A), mutant KRAS (B), and mutant BRAF (C), were treated with OBP-301 at

the indicated MOI for 72 h. Cell lysates were prepared and subjected to Western blot analysis of PARP, cleaved PARP

(C-PARP), p62, E1A, and p53 expression. β-Actin was assayed as a loading control. Uninfected (mock-infected) cells

were shown as virus-infected cells at an MOI of 0.

https://doi.org/10.1371/journal.pone.0294491.g003
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KRAS/BRAF or mutant KRAS. However, OBP-301-induced autophagy was not effective to

treat BRAF-mutant CRC cells.

In vitro cytopathic effect of OBP-702 against human CRC cells with

different KRAS/BRAF mutation status

To investigate the therapeutic potential of p53-armed OBP-702 against human CRC cells,

human CRC cells with different KRAS/BRAF mutation status were treated with OBP-702 for

72 h, and the viability of the cells was then assessed by XTT assay. OBP-702 treatment signifi-

cantly decreased the viability of KRAS/BRAF wild-type, KRAS-mutant, and BRAF-mutant

CRC cells, independent of microsatellite status (Fig 4). These results suggest that OBP-702 has

therapeutic potential against human CRC cells independent of KRAS/BRAF mutation and

microsatellite status.

OBP-702 induces apoptosis and autophagy in human CRC cells with

different KRAS/BRAF mutation status

To investigate whether OBP-702 induces autophagy and apoptosis in human CRC cells,

human CRC cells with different KRAS/BRAF mutation status were infected with OBP-702 for

72 h, after which cell lysates were prepared and subjected to Western blotting. OBP-702 treat-

ment induced apoptosis in all CRC cells with different KRAS/BRAF mutation status (Figs 5

and S4–S6). Moreover, OBP-702 treatment induced autophagy in all CRC cells except KRAS/

BRAF wild-type Colo320DM cells, which lack p62 expression (Figs 5 and S4–S6). The expres-

sion of p53 protein was increased by OBP-702 treatment in both p53-intact (SW48, RKO) and

p53-mutant (Colo320DM, SW620, HT29, DLD-1) CRC cells (Figs 5 and S4–S6). These results

suggest that OBP-702 has therapeutic potential to induce apoptosis and autophagy in human

CRC cells independent of KRAS/BRAF mutation status.

OBP-702 suppresses the EGFR-MEK-ERK and AKT-mTOR signaling

pathways in BRAF-mutant human CRC cells more strongly than OBP-301

BRAF-mutant CRC cells have been shown to exhibit activation of the EGFR-MEK-ERK and

AKT-mTOR signaling pathways, resulting in malignant progression [22]. To explore the

underlying mechanism of differing sensitivity to OBP-301 and OBP-702 in BRAF-mutant

CRC cells, we investigated whether OBP-301 and OBP-702 suppress the EGFR-MEK-ERK

and AKT-mTOR signaling pathways in BRAF-mutant CRC cells. BRAF-mutant HT29 cells

were treated with OBP-301 or OBP-702 for 72 h, after which cell lysates were prepared and

subjected to Western blotting. OBP-301 and OBP-702 efficiently suppressed the expression

of EGFR, MEK, ERK, and AKT proteins (Figs 6A, S7 and S8). However, mTOR expression

was suppressed by OBP-702 but not OBP-301 (Figs 6A, S7 and S8). These results suggest

that OBP-702 is superior to OBP-301 in suppressing the AKT-mTOR signaling pathway,

although the EGFR-MEK-ERK signaling pathway was similarly suppressed by OBP-301 and

OBP-702.

To evaluate whether oncolytic virus–mediated p53 activation suppresses the expression of

mTOR in BRAF-mutant CRC cells, BRAF-mutant HT29 cells were treated with OBP-301 and

p53-expressing Ad-p53 or non-expressing control DL312 for 72 h. OBP-301 monotherapy

induced autophagy with downregulation of p62, but it did not induce apoptosis, whereas treat-

ment with Ad-p53 or DL312 did not induce either apoptosis or autophagy (Figs 6B and S9).

Combination therapy with OBP-301 and Ad-p53 induced apoptosis with upregulation of

C-PARP and p53, in addition to autophagy, more strongly than combination treatment with
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OBP-301 and DL312 (Figs 6B and S9). The expression of mTOR protein was suppressed by

combination treatment with OBP-301 and Ad-p53 but not combination treatment with OBP-

301 and DL312, although the expression of EGFR, MEK, ERK, and AKT proteins was similarly

suppressed by combination treatment with OBP-301 and Ad-p53 or DL312 (Figs 6B and S9).

These results suggest that oncolytic virus–mediated p53 activation plays a crucial role in sup-

pression of the AKT-mTOR signaling pathway and apoptosis induction in BRAF-mutant CRC

cells.

Fig 4. OBP-702 reduces the viability of human CRC cells independent of KRAS/BRAF mutation status. A, B, C

Human CRC cells with different KRAS/BRAF mutation status, KRAS/BRAF wild type (A), mutant KRAS (B), and

mutant BRAF (C), were treated with OBP-702 at the indicated MOI for 72 h. Cell viability was quantified using the

XTT assay. Uninfected (mock-treated) cells were shown as virus-infected cells at an MOI of 0. Cell viability was

calculated relative to that of the mock-treated group, which was set at 100%. Cell viability data are expressed as

mean ± SD (n = 5). The Student’s t-test was used to evaluate the significance of differences. *P<0.05; **P<0.01 (versus

an MOI of 0).

https://doi.org/10.1371/journal.pone.0294491.g004
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Fig 5. OBP-702 induces apoptosis and autophagy in human CRC cells. A, B, C Human CRC cells with different

KRAS/BRAF mutation status, KRAS/BRAF wild type (A), mutant KRAS (B), and mutant BRAF (C), were treated with

OBP-702 at the indicated MOI for 72 h. Cell lysates were prepared and subjected to Western blot analysis of PARP,

cleaved PARP (C-PARP), p62, E1A, and p53 expression. β-Actin was assayed as a loading control. Uninfected (mock-

infected) cells were shown as virus-infected cells at an MOI of 0.

https://doi.org/10.1371/journal.pone.0294491.g005
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Discussion

KRAS/BRAF-mutant CRC cells are thought to exhibit greater malignant potential in associa-

tion with a greater likelihood of progression, metastasis, and resistance to EGFR-targeted ther-

apies compared with KRAS/BRAF wild-type CRC cells [2,3]. Therefore, novel therapeutic

strategies to treat KRAS/BRAF-mutant CRC are needed. In this study, we investigated the

therapeutic potential of OBP-301 and OBP-702 against human CRC cells with different

KRAS/BRAF mutation and microsatellite status. KRAS wild-type and KRAS-mutant CRC

cells were sensitive to both OBP-301 and OBP-702 independent of microsatellite status.

BRAF-mutant CRC cells were less sensitive to OBP-301 compared with OBP-702. OBP-301

Fig 6. OBP-702 suppresses the EGFR-MEK-ERK and AKT-mTOR signaling pathways in BRAF-mutant CRC cells. A

BRAF-mutant HT29 cells were treated with OBP-301 or OBP-702 at the indicated MOI for 72 h. Cell lysates were prepared and

subjected to Western blot analysis of EGFR, MEK, ERK, AKT, and mTOR expression. B BRAF-mutant HT29 cells were treated

with OBP-301, DL312, or Ad-p53 at the indicated MOI for 72 h. Cell lysates were prepared and subjected to Western blot

analysis of PARP, C-PARP, p62, E1A, p53, EGFR, MEK, ERK, AKT, and mTOR expression. β-Actin was assayed as a loading

control. Uninfected (mock-infected) cells were shown as virus-infected cells at an MOI of 0. C Outline of the EGFR-MEK-ERK

and AKT-mTOR signaling pathways in BRAF-mutant CRC cells infected with OBP-301 or OBP-702.

https://doi.org/10.1371/journal.pone.0294491.g006
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induced autophagy in association with downregulation of p62 and p53 protein expression in

CRC cells, whereas OBP-702 induced apoptosis and autophagy in association with upregula-

tion of C-PARP and p53 protein expression in CRC cells. OBP-301 and OBP-702 efficiently

suppressed the expression of EGFR, MEK, ERK, and AKT proteins in BRAF-mutant CRC cells

(Fig 6C). However, mTOR expression was suppressed by OBP-702 but not OBP-301 (Fig 6C).

Thus, p53-armed oncolytic virotherapy appears to be a promising antitumor strategy that

strongly induces apoptosis and autophagy in KRAS/BRAF-mutant CRC cells by suppressing

the EGFR-MEK-ERK and AKT-mTOR signaling pathways.

Oncolytic virotherapy with various viruses has been shown to induce the antitumor effect

against KRAS/BRAF-mutant cancers, including CRC [23–26]. Jiffry et al. demonstrated that

oncolytic reovirus-induced autophagy is effective to treat KRAS-mutant CRC cells [24]. Oncoly-

tic adenovirus-induced autophagy has also been suggested to contribute to antitumor effect via

mediating oncolysis and autophagy-related cell death [27]. We previously reported that OBP-

301 induces autophagy-related cell death in human lung cancer cells by suppressing the EGFR

expression [15]. OBP-301 and OBP-702 efficiently induced autophagy in KRAS/BRAF wild-

type and KRAS-mutant CRC cells, although p53 expression was differentially modulated by

OBP-301 and OBP-702. These findings suggest that autophagy induction may be involved in

the therapeutic effect of OBP-301 and OBP-702 independent of p53 modulation. Autophagy

plays both pro-survival and antitumoral roles in CRC cells [28]. The EGFR signaling pathway

modulates autophagy in association with cell survival and cell death [29]. Li et al. demonstrated

that the anti-EGFR antibody cetuximab induces autophagy in association with cell death in

human CRC cells by activating the Beclin 1/hVps34 complex [30]. Giannopoulou et al. showed

that the anti-EGFR antibody pantitumumab induces autophagy-related death in KRAS-mutant

CRC cells by increasing the Beclin 1 protein level [31]. We also demonstrated that OBP-301 and

OBP-702 induce autophagy-related death in KRAS-mutant human pancreatic cancer cells by

suppressing the KRAS signaling pathway [16]. Thus, oncolytic virotherapy appears to be a

promising antitumor strategy for inducing autophagy-related death in KRAS/BRAF wild-type

and KRAS-mutant CRC cells by suppressing the EGFR-KRAS signaling pathway.

p53-armed OBP-702 induced apoptosis in BRAF-mutant CRC cells, whereas non-armed

OBP-301 or p53-expressing Ad-p53 did not induce apoptosis, suggesting that p53-activating

oncolytic virotherapy would be effective for treating BRAF-mutant CRC via apoptosis induc-

tion. With regard to the molecular mechanism of the OBP-702–mediated cytopathic effect

against BRAF-mutant CRC cells, our data showed that OBP-702 suppresses the expression of

mTOR protein in BRAF-mutant CRC cells. Accumulating evidence indicates that p53 activa-

tion inhibits the mTOR pathway at transcriptional and non-transcriptional levels [32]. With

regard to the role of mTOR inhibition in BRAF-mutant CRC cells, Mao et al. demonstrated

that suppression of the AKT-mTOR signaling pathway enhances the sensitivity to BRAF inhi-

bition in BRAF-mutant CRC cells [33]. Garcia-Garcia et al. showed that dual blockade of the

MEK-ERK and AKT-mTOR signaling pathways results in the induction of apoptosis in

BRAF-mutant RKO cells (p53 wild-type) but not BRAF-mutant HT-29 cells (p53 mutant)

[34], suggesting that p53 activation plays an important role in suppression of the MEK-ERK

and AKT-mTOR signaling pathways, followed by apoptosis induction. Although whether sup-

pression of mTOR is associated with OBP-702-induced apoptosis remains unclear, He et al.

demonstrated that mTOR inhibitors induce apoptosis in KRAS/BRAF-mutant CRC cells via

the extrinsic apoptotic pathway [35]. Thus, OBP-702 treatment may contribute to the induc-

tion of apoptosis in BRAF-mutant CRC cells by suppressing the AKT-mTOR and EGFR-ME-

K-ERK signaling pathways and activating the p53 signaling pathway.

Combination of oncolytic virotherapy with small molecules targeting the MEK-ERK path-

way has also been shown to induce more profound antitumor efficacy than monotherapy in in
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vivo tumor models with KRAS/BRAF mutations [36]. Lee et al. showed that combination of

MEK inhibitor promotes the antitumor efficacy of oncolytic vaccinia virus against chemo-

resistant human ovarian cancer cells via enhancement of virus replication [37]. Bommareddy

et al. demonstrated that combination of MEK inhibitor enhances antitumor effect of oncolytic

herpes simplex virus against KRAS-mutant murine CRC tumors via enhancement of cyto-

pathic activity and antitumor immunity [38]. Thus, in vivo experiments using immune-defi-

cient and immune-competent mice are warranted to evaluate the therapeutic potential of

OBP-301 and OBP-702 against KRAS/BRAF-mutant CRC tumors in monotherapy and com-

bination therapy with small molecules targeting the MEK-ERK pathway.

Clinical application of OBP-301 and OBP-702 is expected as treatment modalities for CRC.

Administration route of OBP-301 and OBP-702 is limited to intratumoral injection to avoid

the antiviral immune response mediated by circulating neutralizing antibody. Therefore, rectal

cancer may be suitable in treating accessible CRC tumors. We previously reported that intratu-

moral injection of OBP-301 suppresses lymph node metastasis in an orthotopic rectal tumor

model with KRAS-mutant HCT116 cells [39]. It has also been shown that intratumoral injec-

tion of OBP-702 exhibits antitumor effect in subcutaneous and orthotopic tumor models with

human pancreatic cancer cells harboring in-frame BRAF deletion [16]. More recently, we

demonstrated that endoscopic intratumoral injection of OBP-301 with radiotherapy was feasi-

ble and well tolerated in esophageal cancer patients [40]. Although whether the feasibility and

safety of intratumoral injection of OBP-702 in CRC patients remains to be elucidated, rectal

cancers with KRAS/BRAF mutations may be potent candidate for treating with OBP-301 and

OBP-702.

In conclusion, we demonstrated that the telomerase-specific oncolytic adenoviruses OBP-

301 and OBP-702 have therapeutic potential for inducing autophagy-related death in KRAS

wild-type and KRAS-mutant CRC cells. Moreover, OBP-702–mediated p53 activation may

provide a novel therapeutic option for inducing apoptosis in BRAF-mutant CRC cells. In vivo
experiments are needed to evaluate the therapeutic potential of OBP-301 and OBP-702 against

KRAS/BRAF-mutant CRC tumors.
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