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Key Points

• ABC-DLBCL is
enriched in Japanese
DLBCL.

• DLBCL90 is a robust
biomarker that is
consistent across
geographical areas.
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The distribution and clinical impact of cell-of-origin (COO) subtypes of diffuse large B-cell

lymphoma (DLBCL) outside Western countries remain unknown. Recent literature also

suggests that there is an additional COO subtype associated with the germinal center dark

zone (DZ) that warrants wider validation to generalize clinical relevance. Here, we

assembled a cohort of Japanese patients with untreated DLBCL and determined the refined

COO subtypes, which include the DZ signature (DZsig), using the NanoString DLBCL90 assay.

To compare the distribution and clinical characteristics of the molecular subtypes, we used

a data set from the cohort of British Columbia Cancer (BCC) (n = 804). Through the 1050

patient samples on which DLBCL90 assay was successfully performed in our cohort, 35%,

45%, and 6% of patients were identified to have germinal center B-cell–like (GCB) DLBCL,

activated B-cell–like (ABC) DLBCL, and DZsig-positive (DZsigpos) DLBCL, respectively, with

the highest prevalence of ABC-DLBCL, differing significantly from the BCC result (P < .001).

GCB-DLBCL, ABC-DLBCL, and DZsigpos-DLBCL were associated with 2-year overall survival

rates of 88%, 75%, and 66%, respectively (P < .0001), with patients with DZsigpos-DLBCL

having the poorest prognosis. In contrast, GCB-DLBCL without DZsig showed excellent

outcomes after rituximab-containing immunochemotherapy. DZsigpos-DLBCL was

associated with the significant enrichment of tumors with CD10 expression, concurrent

MYC/BCL2 expression, and depletion of microenvironmental components (all, P < .05).

These results provide evidence of the distinct distribution of clinically relevant molecular

subtypes in Japanese DLBCL and that refined COO, as measured by the DLBCL90 assay, is a

robust prognostic biomarker that is consistent across geographical areas.
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Introduction

Diffuse large B-cell lymphoma (DLBCL), the most common type of
lymphoma, has a heterogeneous and complex biology. DLBCL is
divided into 2 molecular subtypes, with distinct biological and
clinical characteristics, as revealed through the cell-of-origin
(COO), based on gene expression profiling; germinal center
B-cell-like DLBCL (GCB-DLBCL), and activated B-cell-like DLBCL
(ABC-DLBCL).1-3 The molecular subtyping of COO has been
translated into immunohistochemistry (IHC)-based algorithms4-7;
however, from 10% to 50% of these malignancies are misclassified
based on the gene expression profiling–based COO classification,
which is considered the gold standard,6,8,9 contributing to a lower
reproducibility of the prognostic significance.9,10

In addition, recent studies have developed gene expression signa-
tures, the double-hit (DHIT) signature and the molecular high-grade
signature, which can identify high-grade B-cell lymphoma with MYC
and BCL2 rearrangements (HGBL-DH-BCL2) as well as high-risk
GCB-DLBCL with a similar gene expression profile.11,12 These
studies show that both gene expression signatures identify tumors
with a distinct COO derived from the germinal center dark zone
(DZ), which was supported by recent single-cell transcriptomic
analyses.13 The DHIT signature was also translated into an assay
(DLBCL90) applicable to routine formalin-fixed paraffin-embedded
(FFPE) tissues, which can be widely used in clinical practice.11,14

Notably, a recent large-scale study using the DLBCL90 assay has
shown that the DHIT signature identified a subgroup with the
poorest prognosis that was expressed in all evaluated tumors of
Burkitt lymphoma, an archetypical DZ lymphoma. Reflecting these
findings, the DHIT signature was renamed as DZ signature (DZsig)
and can be considered a refinement of the COO classification.15

These efforts have significantly contributed to the advancement of the
molecular classification of DLBCL; however, data were derived from
countries in North America and Europe, and the distribution of the
molecular subtypes in other geographical regions remains unknown.
Herein, we present the results of a molecular characterization based
on the DLBCL90 assay in 1050 Japanese patients with DLBCL
treated with rituximab-containing immunochemotherapy.

Patients and methods

Patient cohort

This study’s patient cohort comprised 1576 patients who were
consecutively diagnosed with de novo DLBCL, not otherwise
specified, or HGBCL-DH with DLBCL morphology and treated
with rituximab-containing immunochemotherapies between 2008
and 2018 at 9 institutions included in the Okayama Hematology
Study Group. The 9institutions were all located in the Western part
of Japan; Okayama University Hospital, National Hospital Organi-
zation (NHO) Okayama Medical center, Okayama City Hospital,
Red Cross Okayama Hospital, Okayama Rosai Hospital (Okayama,
Okayama), the Kochi Health Sciences Center (Kochi, Kochi),
Ehime Prefectural Central Hospital, NHO Shikoku Cancer Center
(Matsuyama, Ehime), and the Japanese Red Cross Society Himeji
Hospital (Himeji, Hyogo). This study was reviewed and approved by
ethics committee at participating institutions in accordance with
the Declaration of Helsinki.
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The study cohort also included patients meeting the following
criteria: aged ≥18 years; treated with curative intent with rituximab,
cyclophosphamide, doxorubicin, vincristine, and prednisone (R-
CHOP) or R-CHOP–like immunochemotherapy for at least 1 cycle
(median, 6; range, 1-8 cycles); and with available complete clinical
and laboratory data. We permitted adding central nervous system
relapse prophylaxis, such as high-dose IV methotrexate or intra-
thecal chemotherapy, if necessary, to the aforementioned standard
chemotherapies. We excluded patients receiving intensified regi-
mens: rituximab, cyclophosphamide, vincristine, doxorubicin, and
dexamethasone (n = 19); rituximab, high-dose methotrexate, and
cytarabine (n = 2); rituximab, dexamethasone, etoposide, ifosfa-
mide, and carboplatin (n = 2); cyclophosphamide, cytarabine,
etoposide, dexamethasone, and rituximab (n = 1); rituximab, ifos-
famide, dexamethasone, etoposide, and cytarabine (n = 1); or rit-
uximab, mitoxantrone, etoposide, and prednisolone (n = 1).
Patients were excluded if they had primary mediastinal large B-cell
lymphoma, primary central nervous system lymphoma, a history of
an indolent lymphoma, history of intake of immune suppressors
such as methotrexate, or positive HIV serology results. All tissues
were reviewed by expert hematopathologists (Y.S. and Y.N.) to
confirm the diagnosis.16

For the comparison of the distribution in refined COO subtypes
(including DZsig) between Japanese and Western patients with
DLBCL, we used population-based registry data from the British
Colombia Cancer (BCC) study of 804 patients diagnosed with de
novo DLBCL, 629 of whom were treated with R-CHOP.15

Molecular and phenotypic data determined by the DLBCL90
assay and complete clinical information were available for all cases
in that cohort.

Digital gene expression profiling

To extract RNA from the FFPE tissue samples, we used a Maxwell
RSC RNA FFPE kit (Promega Corporation, Madison, WI) per the
manufacturer’s instructions. Gene expression profiling was per-
formed on an nCounter platform (NanoString Technologies,
Seattle, WA) using the DLBCL90 assay. The assay includes 30
genes to distinguish DLBCL from primary mediastinal B-cell lym-
phoma (previously reported as Lymph3Cx17), 15 genes to define
COO (previously reported as Lymph2Cx18), and 30 to detect the
DZ signature (1 overlapping with Lymph2Cx); additionally, there
were 3 other important genes and 13 housekeeping genes. RNA
(200 ng) extracted from FFPE tissues was hybridized overnight at
65◦C with probes used to quantitate the 90 genes that contribute
to the DLBCL90 assay, processed on the nCounter prep station,
and analyzed with the nCounter digital analyzer to acquire gene
expression data. The linear predictor score for COO was calcu-
lated as per previous reports,11,18 and tumors were assigned to the
GCB-DLBCL, ABC-DLBCL, or unclassified (UNC) DLBCL group.
Based on the previous report that the COO classification had
taken priority over the DZsig classification in ABC tumors, the
DZsig scores were additionally examined in the GCB-DLBCL and
UNC-DLBCL groups. DZsig-positive (DZsigpos) tumors in the
GCB-DLBCL and UNC-DLBCL groups were assigned to the
DZsigpos-DLBCL group, whereas DZsig-negative or DZsig-
indeterminate tumors in the GCB-DLBCL and UNC-DLBCL
groups were assigned to the GCB-DLBCL and UNC-DLBCL
groups, respectively (Figure 1A).
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Figure 1.
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Table 1. Characteristics of patients in this study cohort, based on molecular subtypes

GCB DZsigpos ABC UNC P value P value* P value†

Number of patients 367 65 468 150

Age, y (n, %)

Median 70 70 73 73

<61 81 (22.1) 13 (20) 67 (14.3) 22 (14.7) .022 1 .027

≥61 286 (77.9) 52 (80) 401 (85.7) 128 (85.3)

Sex (n, %)

Male 197 (53.7) 43 (66.2) 266 (56.8) 85 (56.7) .304 .467 1

Female 170 (46.3) 22 (33.8) 202 (43.2) 65 (43.3)

Performance status (n, %)

0-1 307 (84.3) 51 (79.7) 369 (80) 126 (85.1) .205 1 .729

2-4 57 (15.7) 13 (20.3) 92 (20) 22 (14.9)

NA 3 1 7 2

Stage (n, %)

I/II 199 (54.2) 28 (43.1) 184 (39.3) 62 (41.3) < .001 .641 < .001

III/IV 168 (45.8) 37 (56.9) 284 (60.7) 88 (58.7)

LDH level (n, %)

Normal 182 (49.6) 17 (26.2) 139 (29.7) 61 (40.9) < .001 .003 < .001

>ULN 185 (50.4) 48 (73.8) 329 (70.3) 88 (59.1)

NA 0 0 0 1

Extranodal sites (n, %)

0-1 305 (83.1) 51 (78.5) 355 (75.9) 119 (79.3) .085 1 .077

≥2 62 (16.9) 14 (21.5) 113 (24.1) 31 (20.7)

IPI risk group (n, %)

Low (0-1) 140 (38.5) 14 (21.9) 98 (21.3) 37 (25.5) < .001 .092 < .001

Low-intermediate (2) 89 (24.5) 17 (26.6) 121 (26.2) 37 (25.5)

High-intermediate (3) 74 (20.3) 20 (31.3) 117 (25.4) 42 (29)

High (4-5) 61 (16.8) 13 (20.3) 125 (27.1) 29 (20)

NA 3 1 7 5

NA, not applicable; ULN, upper limit of normal.
*P value is based on the comparison between GCB and DZsigpos subtypes.
†P value is based on the comparison between GCB and ABC subtypes.
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IHC and FISH analyses on tissue microarrays

FFPE tissues with sufficient material and tumor content were
selected for tissue microarray (TMA) construction. IHC staining on
the 4-μm slides of TMAs was performed for MYC, BCL2, BCL6,
CD3, CD4, CD8, CD10, CD31, CD68, and MUM1 (antibodies are
listed in supplemental Table 1) on the Bond Rx platform (Leica
Biosystems, Wetzlar, Germany), and their digital scanning images
were analyzed independently using the QuPath.19 Each cell was
predicted with a deep learning model implemented in QuPath
(StarDist extension), and then the pseudodetections were filtered
Figure 1. Distribution of refined COO in Japanese patients with DLBCL. (A) Gene e

(B) The number of patients with COO classification (inner circle) and with DZsig classific

between classes is shown in the bar graph. (C) Heat map shows the Lymph2Cx componen

DLBCLs shown as columns. Arrayed below the heat map are clinical characteristics of the

group. Multinomial logistic regression P value (GCB vs ABC) is shown above the bar plot. (E

DZsig classification (outer circle) separated into new classes. (F) Bar plot showing the dis

indeterminate; mRNA, messenger RNA; Neg, negative; OHSG, Okayama Hematology Stu

7462 URATA et al
out based on their detection probability (<0.3) and nuclei size
(>100 μm2). For staining intensity, we manually set thresholds to
apply 4 step scoring (from 0 to ≥3), and cases that scored ≥1
were labeled as positive. In addition, a more detailed expression
range could be assessed by evaluating continuous measurements
of H-score, a weighted scoring system ranging from 0 to 300,
taking into account the percentage of tumor cells with staining
intensities of 0, 1, 2, and ≥3. The H-score was calculated for tumor
cell staining using the following formula: H-score = (% at 0) × 0 +
(% at 1+) × 1 + (% at 2+) × 2 + (% at 3+) × 3, as described
xpression profiling–based molecular classification algorithm using the DLBCL90 assay.

ation separated into a new class (outer circle). For the latter, the overall distribution

t of the DLBCL90 assay with the 15 informative genes shown as rows, and all 1050

tumors. (D) Comparison of the distribution of molecular subtypes according to age

) The number of patients in the BCC cohort, with COO classification (inner circle) and

tribution of refined COO in the 2 cohorts compared using Fisher exact test. Ind,

dy Group; Pos, positive.
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previously.20 The positive ratio for CD31 staining was calculated as
the sum of all positive areas divided by the total area of each TMA
core.

Fluorescence in situ hybridization (FISH) analysis was performed
using commercially available dual-color, break-apart probes
(probes are listed in supplemental Table 2). Two investigators (Y.N.
and T.U.) independently scored at least 100 nuclei per tumor
according to previous methods.21-23 The tumors displaying break-
apart signals in ≥10% of cells were considered to have
translocation.

Statistical analysis

We used the Fisher exact test to compare categorical data. The
Wilcoxon rank-sum test was used between 2 groups, whereas the
Kruskal-Wallis test was used for multiple comparisons for
nonparametric testing to compare numerical data. Bonferroni
correction for multiple comparisons was applied when necessary.
The Kaplan-Meier method was used to estimate progression-free
survival (PFS; progression/relapse or death from any cause) and
overall survival (OS; death from any cause), with the log-rank test
performed to compare survival curves. Univariable and multivariable
Cox proportional hazard regression models were used to evaluate
potential prognostic factors. We used multinomial logistic regres-
sion to estimate odds ratios and 95% confidence intervals (CIs) to
determine an association between age groups and molecular
26 DECEMBER 2023 • VOLUME 7, NUMBER 24
subtypes. We also performed logistic regression analyses to
evaluate the associations of the COO distributions in our and BCC
cohorts with clinical factors, including age. All reported P values
are 2-sided, and those <.05 were considered statistically signifi-
cant. All analyses were performed using R software version 4.2.1
(https://cran.r-project.org) and GraphPad Prism version 9.

Results

Determination of COO and the DZsig in Japanese

patients with DLBCL

DLBCL90 was successfully performed in 1050 of 1576 patients.
Of the 526 patients for whom a DLBCL90 result was not obtained,
298 did not have FFPE tissue samples available, 171 did not have
sufficient RNA, and 57 did not meet the previously established
quality criteria for DLBCL90 (supplemental Figure 1). The patient
demographics and baseline characteristics of the final cohort are
presented in supplemental Figure 2 and supplemental Tables 3 and
4. There were no significant differences in the baseline charac-
teristics between the final study cohort and the excluded 526
cases, with the exception that biopsy specimens were more
frequently obtained from extranodal sites in the excluded cases
(P < .001). The median age was 72 years (range, 18-95); 591 of
1050 (56%) were men, and 481 of 1050 (46%) had a high or high-
intermediate risk based on the international prognostic index (IPI).
MOLECULAR CLASSIFICATION IN JAPANESE DLBCL 7463
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Of the 1050 patients, 426 (41%) had a COO of GCB, 468 (45%)
had ABC, and 156 (15%) had UNC (Figure 1A-C). Within the
GCB-DLBCL and UNC-DLBCL groups, 65 patients were
assigned to the DZsigpos group, and the remaining patients were
assigned to their respective COO subgroups, per the algorithm
shown in Figure 1A. As a result, patients in our cohort were
assigned into 4 molecular subtypes as follows: 367 patients
(35.0%) to GCB, 65 (6.2%) to DZsigpos, 468 (44.6%) to ABC, and
150 (14.3%) to UNC (Figure 1A-C).

ABC-DLBCL was associated with unfavorable IPI factors for age,
disease stage, and lactate dehydrogenase (LDH) levels compared
with GCB-DLBCL (P = .03, P < .001, and P < .001, respectively).
In contrast, there were no significant differences in the baseline
characteristics between patients in the DZsigpos-DLBCL and
GCB-DLBCL groups, with the exception of elevated LDH (P = .03;
Table 1). We also analyzed the association of molecular subtypes
with age using the multinomial logistic regression method, which
notably revealed that the proportion of patients with ABC-DLBCL
was significantly increased in higher-age groups compared with
that of patients with GCB-DLBCL (P = .006; Figure 1D).

Comparisons of the baseline characteristics of patients in this
study with BCC real-world data showed that our cohort included
patients with DLBCL who were significantly older and had a higher
proportion of elevated LDH (P < .001; supplemental Table 5). In
the BCC cohort (n = 804), there were 286 ABC-DLBCL, 341
GCB-DLBCL, 93 DZsigpos-DLBCL, and 84 UNC-DLBCL cases
(Figure 1E), with the proportion of patients with ABC-DLBCL being
significantly higher (44.6% vs 35.6%) and those with GCB-DLBCL
and DZsigpos-DLBCL being significantly lower (35.0% vs 42.4%
and 6.2% vs 11.6%, respectively) in the Japanese cohort (all P <
.01 using Fisher exact test; Figure 1F). Based on the logistic
regression models, our cohort was also found to have a statistically
significant higher proportion of patients with ABC-DLBCL
compared with the BCC cohort after adjusting for age and other IPI
factors (supplemental Figure 3).

Association between biopsy sites and molecular

subtypes

Half of the cases (490 of 1050) in this cohort were diagnosed
using biopsy samples obtained from various extranodal sites
(biopsy information of the excluded cohort is also shown in
supplemental Table 4), prompting further analyses of the associa-
tion of biopsy sites with molecular subtypes. The distribution of
molecular subtypes based on biopsy sites is shown in Figure 2 and
supplemental Figure 4. The proportions of ABC, GCB, and
DZsigpos-DLBCL in the nodal sites were 48.2% (270 of 560
cases), 30.4% (170 of 560 cases), and 7.0% (39 of 560 cases),
respectively. When analyzing extranodal sites, ABC-DLBCL was
enriched in the breast (73.7% [14 of 19 cases]; P < .05, Fisher
exact test) and testis (71.0% [22 of 31 cases]; P < .05, Fisher
exact test) compared with nodal sites, which is consistent with
previous reports.24,25 Remarkably, GCB-DLBCL tumors were
significantly enriched in the upper and lower gastrointestinal (GI)
Figure 3. Prognostic significance of molecular classification of DLBCL. (A,B) Kapla

curves showing OS according to the molecular subtypes combined with 2 IPI risk groups

(high). (E,F) Forest plots show the results of multivariable analyses (PFS and OS). IPI scores

significant; PR, primary refractory. *P < .05; **P < .01; ***P < .001; ****P < .0001.
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tract (58.8% [60 of 102 cases] and 48.6% [34 of 70 cases],
respectively; both P < .01, Fisher exact test) and thyroid gland
(87.5% [14 of 16 cases]; P < .01, Fisher exact test) compared with
nodal sites. In contrast, DZsigpos tumors were not significantly
enriched in any extranodal sites compared with nodal sites
(Figure 2; supplemental Figure 4; supplemental Table 6). We also
analyzed the associations between COO and biopsy sites in stage
I/II (limited) and III/IV (advanced) groups separately and found
similar trends in these 2 groups. Indeed, GCB-DLBCL was
significantly enriched in biopsy specimen from the upper GI tract
and thyroid, and ABC-DLBCL in the breast in limited disease (all,
P < .05). Nonetheless, in limited disease, there was a trend toward
the enrichment of GCB-DLBCL and ABC-DLBCL in the lower GI
tract (P = .12) and testis (P = .08), respectively, probably not
reaching statistical significance because of the small sample size
(supplemental Figure 5).

Prognostic significance of the molecular subtypes in

Japanese DLBCL

With a median follow-up of 2.8 years (range, 0.05-11) in living
patients, the 2-year PFS and OS rates of the cohort were 66.6%
(95% CI, 63.6-69.8) and 80.6% (95% CI, 78.0-83.3), respectively
(supplemental Figure 2). The survival outcomes of the excluded
cases were similar to those of the final cohort (supplemental
Figure 2). Compared with GCB-DLBCL, patients with DZsigpos-
DLBCL and ABC-DLBCL had significantly shorter survival (log-
rank, P < .0001 for PFS and OS; Figure 3A-B; supplemental
Table 7). Indeed, DZsigpos-DLBCL exhibited the poorest out-
comes, with 2-year PFS and OS rates of 49.7% and 66.2%,
respectively. In sharp contrast, GCB-DLBCL had excellent an OS
rate of 88% at 2 years. The outcomes of DZsig-intermediate and
DZsig-negative tumors were similar and significantly better than
those of DZsigpos tumors, indicating the clinical relevance of
identifying DZsigpos-DLBCL (supplemental Figure 6). It is note-
worthy that both our study and the BCC study had similar out-
comes for patients in each molecular subtype, except for the PFS
in GCB (supplemental Figure 7), indicating that the molecular
subtype had a similar significant prognostic impact in Japanese
DLBCL, which is consistent with previous reports.11,12,25 We also
found that the proportion of primary refractory disease (refractory
or relapse within 9 months of diagnosis) within all relapse/pro-
gressions was highest in DZsigpos-DLBCL (68%) compared with
other subtypes (P = .046; GCB-DLBCL, 44%; ABC-DLBCL, 49%;
and UNC, 41%; supplemental Table 8).

In our cohort, patients with a high- or high-intermediate–risk IPI
scores also had shorter survival than those with low- or low-inter-
mediate–risk IPI scores (supplemental Figure 8; log-rank P < .001
for PFS and OS).

Within the molecular subtypes, IPI scores were significantly asso-
ciated with outcomes in ABC-DLBCL and GCB-DLBCL (P <
.0001 for PFS and OS in both subtypes but did not significantly
stratify patients with DZsigpos-DLBCL; Figure 3C-D; supplemental
Figure 9). Multivariable analyses revealed that the DZsigpos and
n-Meier curves represent PFS and OS, per the molecular subtypes. (C,D) Kaplan-Meier

: low/low-intermediate–risk IPI group (low) and high/high-intermediate–risk IPI group

were classified into 2 groups as described earlier. DPE, dual protein expressor; ns, not
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ABC subtypes were independent predictors of PFS and OS when
adjusted for the 2 IPI groups (Figure 3E-F). When stratified per the
IPI group, the prognostic effect of the molecular subtypes was
more evident in the low-risk IPI group (supplemental Figure 10).

Phenotypical characterization of the DZ signature

These results demonstrate the distinct clinical relevance of the
DZsig, prompting us to further analyze the phenotypic character-
istics associated with DZsigpos-DLBCL. FISH analysis in 187
tumors showed that HGBL-DH-BCL2 was detected in 4 of 9
DZsigpos-DLBCL cases (44%), whereas only 2 of the remaining
178 tumors were HGBL-DH-BCL2. This is consistent with previ-
ous results,11,12 albeit with lower sample size evaluated in this
study (supplemental Figure 11). IHC studies indicated that patients
with concurrent MYC and BCL2 expression (647 and 649 tumors
available for MYC and BCL2, respectively) were found in 41% of
cases with DZsigpos-DLBCL, which was a significantly higher
percentage than that of GCB-DLBCL (7%; P < .0001), shown in
Figure 4A-B. Indeed, as determined by the H-score, DZsigpos

tumors had a significantly higher protein expression of MYC and
BCL2 compared with GCB tumors (P < .001 and P < .05,
respectively), whereas the messenger RNA expression of MYC
(P < .001), but not that of BCL2, was significantly higher
(Figure 4C). Because studies have demonstrated the critical role of
the tumor microenvironment (TME) in understanding the biology
and therapeutic targets of DLBCL,26-29 we sought to characterize
the TME of our DLBCL cohort and investigate its association with
molecular subtypes and clinical outcomes. IHC staining revealed
that the proportion of CD3+, tumor-infiltrating lymphocytes was the
lowest in patients with DZsigpos-DLBCL, followed by ABC-DLBCL,
GCB-DLBCL, and UNC-DLBCL in ascending order (P < .001,
Kruskal-Wallis test), which is in line with the findings of previous
studies.11,26 Furthermore, the macrophage and microvessel den-
sities, respectively defined by CD68 and CD31, were also
decreased in DZsigpos-DLBCL and ABC-DLBCL (both P < .05,
Kruskal-Wallis test), indicating that the microenvironmental com-
ponents were consistently depleted in these subtypes (Figure 4D).

Discussion

In this real-world study, we determined the distribution and clinical
relevance of transcriptomic COO profiling, including DZsig, with
the largest sample size in Asian countries, to our knowledge,
demonstrating the high prevalence of ABC-DLBCL, which con-
trasts with Western countries, where GCB-DLBCL constitutes the
majority of DLBCL.11,18 This is in line with the results of 2 recent
phase 3 trials,30,31 wherein 51% to 62% of patients in Asian
countries had the ABC subtype, compared with only 25% to 36%
of patients in North America,32,33 suggesting the importance of a
geographical-based design and size estimation in clinical trials
considering COO subtypes. Of note, ABC-DLBCL was still more
prevalent in our cohort than in the BCC cohort after adjusting for
age and other clinical factors. In the POLARIX study, which
showed higher prevalence of ABC-DLBCL in Asian countries,33
Figure 4. Phenotypic characterization of the DZsig. (A) Heat map represents the 30

DLBCLs shown as columns. Arrayed below the heat map are immunohistochemical chara

molecular subtypes. (C) Box plots showing H-score (left) of c-MYC and BCL2, and messe

compared using Wilcoxon rank-sum test. (D) Comparison of mean z scores of IHC-positiv
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there was also no significant difference in the age and serum
LDH level at baseline between Asian and global populations.
Another study using a clinical trial data set, which also demon-
strated the increased proportion of ABC-DLBCL in Asian pop-
ulations, suggested the potential association with higher
prevalence of Epstein-Barr virus positivity in Asian countries.32

Taken together, the cause of the increased proportion of ABC-
DLBCL in Asian populations needs to be elucidated. Furthermore,
our study used the DLBCL90 assay, providing more comprehen-
sive transcriptomic subtypes to distinguish DZsigpos-DLBCL from
GCB-DLBCL, which has a putative COO of the germinal center
DZ.11 In line with recent studies, the DZsig was significantly
associated with poor prognosis and a lower representation of the
TME in our cohort,11,12,25,26 suggesting the clinical and biological
significance of the DZsig regardless of the geographical region.

This study demonstrated that in patients undergoing R-CHOP
immunochemotherapy, those with ABC-DLBCL and DZsigpos-
DLBCL have worse prognosis compared with patients with GCB-
DLBCL. Recently, the novel immunotherapeutic drug polatuzumab
vedotin, which is a potential replacement for vincristine (pola-R-
CHP), showed a PFS benefit over the R-CHOP regimen in the
phase 3 POLARIX study.31 Remarkably, an exploratory subgroup
analysis suggested a benefit with the pola-R-CHP regimen in
patients with ABC-DLBCL, indicating that the clinical impact of
pola-R-CHP might be greater in Japanese populations. However,
the subgroup analyses were not sufficiently powered, and the
DZsig was not available. Thus, future studies are warranted to
assess the clinical significance of the refined COO classification in
pola-R-CHP, which can help identify high-risk DLBCL populations
requiring alternative treatment approaches.

To date, only a few studies have comprehensively determined the
COO subtype of primary extranodal lymphomas.25,34 Moreover, the
biopsy sites were not clearly identified in these studies; thus, our
data set, which contains detailed information regarding the biopsies,
could be used to assess the COO profile according to the disease
site. Consistent with previous reports,24,35,36 ABC-DLBCL was
more commonly observed in cases with biopsy samples obtained
from the testis, breast, and adrenal gland. Notably, GCB-DLBCL
was significantly enriched in biopsy samples from the thyroid gland
and both upper and lower GI tracts compared with those from the
lymph node. The associations of GCB-DLBCL with the GI and
thyroid biopsies were also observed in cases with limited-stage
disease, indicating that GCB-DLBCL are common in primary GI
tract and thyroid lymphomas. Some low-grade lymphomas, such as
marginal zone lymphoma in the thyroid and duodenal follicular
lymphoma, are known to arise in these organs, indicating the pos-
sibility that these DLBCL arise from occult low-grade lymphomas. In
contrast, our results did not show the specific extranodal sites
involving DZsigpos tumors, probably because of the small number of
DZsigpos cases that we included in our study.

There is increasing evidence that interactions between cell-intrinsic
changes and host immune response of DLBCL tumors are critical
informative DZsig genes shown as rows, and the 432 patients with GCB or DZsigpos-

cteristics of the tumors. (B) Bar plots show the proportion of MYC/BCL2 DPEs, per

nger RNA expression (right) of MYC and BCL2 in DZsigpos tumors vs GCB tumors,

e rate for each antibody per molecular subtypes. mRNA, messenger RNA.
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for disease development.26-29,37-39 In particular, the disrupted cross
talk between lymphoma cells and the microenvironment contribute
to escaping immune surveillance, and genetic and epigenetic alter-
ations are suggested as biological mechanisms of immune
escape.25,37-39 Notably, DZsigpos and molecular high-grade sub-
types were characterized with an overall lower presence of the
microenvironment, including stromal components, indicating the
strong cell-autonomous mechanism underlying aggressive clinical
behavior.11,12,26 Our work not only validates such biological aspects
of high-risk DLBCL groups but also suggests the clinical utility,
based on an IHC method, in the evaluation of the TME and response
to treatment, particularly, immunomodulatory and cellular therapies.

There were some limitations inherent to the retrospective nature of
this study. Cases with insufficient RNA or unavailable FFPE tissue
samples were excluded, mainly because of limited access to
biopsies from extranodal sites. Although the survival outcomes of
the excluded cases did not differ significantly from those of the final
cohort, they potentially affected the distribution and clinical signif-
icance of COO subtypes in our cohort. Another potential selection
bias is that some patients who received intensive treatment regi-
mens were excluded; this group of patients would often include
patients with HGBL-DH-BCL2. This might also have excluded
patients with DZsigpos-DLBCL, which resulted in the underesti-
mation of this molecular subtype in our cohort.

In conclusion, to our knowledge, this study is the first to evaluate
the clinical relevance of molecular classifications, including the DZ
signature, outside Western countries. Our results demonstrated a
high prevalence of ABC-DLBCL, which underlines the need for
adjustments in study design and caution when interpreting the
results of clinical trials. Furthermore, we provided a more
comprehensive analysis of transcriptomic subtypes to distinguish
DZsigpos-DLBCL from GCB-DLBCL, demonstrating the clinical
and biological significance of the DZ signature regardless of
geographical region. In addition to being able to determine the
unfavorable prognosis of patients with DLBCL who may need
alternative treatment approaches, the absence of the DZsig also
identifies the GCB-DLBCL subgroup as having excellent outcomes
after R-CHOP therapy. Our IHC studies also showed a lower
involvement of the TME in DZsigpos tumors, which is in line with the
findings of previous transcriptomic analyses.11,12,26 Thus, these
consistent clinical and biological findings may further advance the
recognition of the DZsig and the refined COO classification. The
robustness of DLBCL90, which can identify patients who are more
likely to benefit from intensified treatment and novel therapies,
should be evaluated in future prospective trials.
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