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Shallow nitrogen-vacancy (NV) centers are promising candidates for high-precision sensing applications;
these defects, when positioned a few nanometers below the surface, provide an atomic-scale resolution along
with substantial sensitivity. However, the dangling bonds and impurities on the diamond surface result in a
complex environment which reduces the sensitivity and is unique to each shallow NV center. To avoid the
environment’s detrimental effect, we apply feedback-based quantum optimal control. We first show how a direct
search can improve the initialization and readout process. In a second step, we optimize microwave pulses for
pulsed optically detected magnetic resonance (ODMR) and Ramsey measurements. Throughout the sensitivity
optimizations, we focus on robustness against errors in the control field amplitude. This feature not only protects
the protocols’ sensitivity from drifts but also enlarges the sensing volume. The resulting ODMR measurements
produce sensitivities below 1 μT Hz− 1

2 for an 83% decrease in control power, increasing the robustness by
approximately one third. The optimized Ramsey measurements produce sensitivities below 100 nT Hz− 1

2 giving
a twofold sensitivity improvement. Being on par with typical sensitivities obtained via single NV magnetometry,
the complementing robustness of the presented optimization strategy may provide an advantage for other
NV-based applications.

DOI: 10.1103/PhysRevA.106.013107

I. INTRODUCTION

Quantum sensing with nitrogen-vacancy (NV) [1] centers
have evolved into a prominent branch of quantum technolo-
gies in the last two decades [2–6]. NV centers serve as a
multipurpose sensor for detecting magnetic [7–10] and elec-
tric fields [11], temperature [12,13], and pressure [14,15].
Additionally, NV centers find applications as quantum mem-
ories [16], quantum registers [17], and in other areas of
emerging quantum technologies [6,18,19]. Rapid improve-
ment in nanofabrication methods [20–22], material science
research [23,24], as well as control methodologies [4,6,25–
27] have led to a variety of NV-based quantum sensors with
applications in the fields of life sciences [28,29] and material
studies [30]. NV centers exhibit optical spin-state polarization
and spin-state-dependent fluorescence [2,7,8]. Additionally,
the NV spin state can be manipulated with resonant mi-
crowave (MW) control fields. Various sensing protocols are
available that use MW-based unitary gates under the two-
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level approximation [4]. However, state-of-the-art NV-based
quantum sensors do not perform on par with their theoret-
ical potential. Because of the potential applications, further
improvement of NV magnetometry is a flourishing and mul-
tidisciplinary research topic [4–6]. While the NV centers
particularly close to the surface may offer high nanoscale
resolution [33,34], they also exhibit especially short dephas-
ing and decoherence times. Likewise, limitations and errors
related to the experimental setup, such as drift, finite band-
width, and transfer functions, restrict the performance of these
sensing methods. For example, to exploit the full potential
of NV-based scanning probe applications, the MW antenna
has to be brought close to the cantilever [35–37], which can
be experimentally challenging given the microscopic scale of
the scanning devices. If the distance between antenna and
cantilever is larger, it reduces the contrast and, hence, the
sensitivity of the setup. Additionally, applications with NV-
based scanning probes [38,39] that move with respect to the
antenna experience variations in control power. The power
variations, in turn, lead to a correspondingly worsened sen-
sitivity. Similarly, applications with single NV centers [40,41]
or ensembles of NV centers [5,42,43] in bulk diamond are
subject to variation in control power depending on the dis-
tance from the MW antenna. In all these cases, robustness
against control power variation can simplify the experimental
procedure without the need for any modification to the setup
or the control pulse itself.
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FIG. 1. Schematic for the closed-loop optimization with single NV centers in diamond. The optimization algorithm suggests control pulses
and parameters to the setup. The resulting figure of merit (FoM) is calculated from the output and passed back to the optimizer. This cycle
repeats until the FoM converges. (a) An exemplary plot of the convergence of the FoM with the number of algorithm iterations Ni; the algorithm
suggests different controls to find the global optimal solution. (b) The in-phase and quadrature components (I and Q) of a typical guess for a
MW control pulse suggested by the algorithm. (c) The confocal setup used in combination with the RedCRAB optimization program; laser
(green arrow) and MW (blue arrow) pulses are used to control the NV spin state. The fluorescence (red arrow) is collected with an optical fiber
P connected to a single photon counter (APD), logged with a data acquisition device (DAQ), and further processed on the local control system
to pass the FoM to the remote optimization server. (d) The two-step optimization strategy introduced in this work. In step 1 the laser-based
spin-state initialization and readout processes are optimized. Step 2 creates robust MW control pulses for pulsed ODMR (p-ODMR) and
Ramsey sensing sequences via QOC. (e) Lattice structure of the NV center. The NV quantization axis is shown as a dotted black line. The
component of the external magnetic dc field along the NV quantization axis is denoted as BNV and quantified via the sensing methods. The
confocal schematic in (c) is is drawn with parts adapted and modified from Refs. [31,32] with permission under terms of reuse. For details on
the setup, see Appendix A.

One strategy to partially compensate for these limita-
tions involves quantum optimal control (QOC) [6,26,27].
QOC has previously been applied to optimize MW control
pulses for quantum sensing with NV centers in a variety of
settings [6,44–52]. Its common objective connects the di-
verse family of QOC algorithms: to iteratively improve a
time-dependent control pulse until a given goal has been
reached. Some of these algorithms rely on simulations (open
loop) to quantify the quality of the pulses. In contrast,
others achieve the same via direct interaction with the ex-
periment [closed loop, Figs. 1(a)–1(c)]. Algorithms such as
GRAPE [53,54] (gradient ascent pulse engineering) or Kro-
tov’s method [55,56] require the calculation of the derivative
of the goal function (gradient based). The dCRAB algorithm
(dressed Chopped RAndom Basis) [27,57,58] can be im-
plemented under a gradient-free strategy. Additionally, the
functional parametrization approach of the dCRAB algo-
rithm can be combined with gradient search methods via
algorithms like GROUP [59] (gradient optimization using
parametrization) or GOAT [60] (gradient optimization of

analytic controls). Even with a moderate number of basis
functions, the control pulse can contain enough information
to steer the system [61,62].

With the ultimate goal of enhancing the sensitivity of the
main dc magnetometry methods with NV centers (Sec. II),
this work presents a two-step strategy to exploit the full
potential of feedback-based optimization algorithms and
QOC [27,47,63,64] in connection with shallow single NV
centers in diamond [<10 nm below the surface, Fig. 2(a)].
At the first step, the optical spin initialization and read-
out processes are optimized via a gradient-free Nelder-Mead
search [65] in the parameter landscape corresponding to the
properties of the experimental system and setup (Sec. IV A).
In the second step, we utilize the gradient-free dCRAB
algorithm to optimize the MW pulses for spin-state manipula-
tion. The optimization routine is implemented via the QOC
software package REDCRAB (remote dCRAB) [47,64]. The
optimized MW controls are developed for two dc magne-
tometry methods (Sec. IV B), namely, the pulsed ODMR
sequence [12,66] and the Ramsey sensing protocol [7,8].
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FIG. 2. Sample characterization: (a) Confocal scan of the dia-
mond sample with shallow single NV centers. (b) Count rate of a
single NV vs the input laser power (this corresponds to a source
power in the range of 0 to 40 mW). The saturation behavior can
be studied to obtain the excitation power with the best signal-to-
background ratio for the experiments. Ideally, this lies below the
saturating laser power. (c) Typical emission spectra of the single NV
centers in the sample. The NV charge states have different spectral
signature, the given spectrum indicates negatively charged NV state.
(d) Exemplary second-order correlation measurement, which is per-
formed to identify single NV centers in the sample. τc is the delay
time in the photon antibunching measurement with the NV [g2(0) ≈
0.27].

Two optimization bases, Fourier [67] and Sigmoid [68] (see
Appendix B), are compared to assess their suitability for the
involved methods. All optimizations include a figure of merit
[FoM, see Fig. 1(a)] based on the optical readout contrast.
To include robustness against variation in MW drive strength,
the FoMs are adapted to scan over control amplitudes ranging
from 100% to 20% of the maximum. Finally, the optimized
pulses are assessed for their enhancement of the average sen-
sitivity and robustness (Sec. V).

II. DC MAGNETOMETRY METHODS

The transitions in the energy-level structure of the NV cen-
ter strongly influence its sensitivity towards external magnetic
fields (sensitivity is defined in Appendix C, more details in
Sec. IV A). The optical ground state forms a spin-one triplet
system, with a zero-field splitting (ZFS) of ≈2.871 GHz. In
the presence of an external magnetic field along the NV cen-
ter’s axis (BNV), Zeeman splitting lifts the degeneracy between
the ms = ±1 states. This splitting provides a direct way to
quantify BNV. A pseudo-two-level system can be constructed
from the ms = 0 and one of the ms = ±1 states. The two-
level approximation forms the basis for various magnetometry
techniques with NV centers [2,7,10,21].

The most straightforward procedure to detect dc magnetic
fields is called continuous-wave optically detected magnetic
resonance (cw-ODMR) [66,69]. The method involves contin-
uous polarization of the NV spin state with a green laser, while
MW pulses with different drive frequencies ωmw are applied

sequentially to locate the resonance peaks. The splitting be-
tween the resonance peaks is proportional to BNV. Cw-ODMR
measurements are less demanding in terms of practical re-
sources and complexity than pulsed measurement schemes,
as they do not require pulsed controls. However, by nature,
continuous-wave measurements have a lower spin-readout fi-
delity and suffer from optical and MW power broadening [66].

The dephasing time T ∗
2 sets a limit to the achievable

sensitivities with different dc magnetometry methods [see
Appendix C, Eq. (C4)]. Short-laser and MW pulses help to
overcome the power broadening effect [66] and attain better
sensitivities. Pulsed ODMR involves pulsed optical excita-
tions and spin-state transfer using MW π pulses. For shallow
NV centers, the spin states decay quickly. Hence, pulsed
ODMR experiments with short, high-power control pulses can
be advantageous. The short control pulses inherently result
in faster measurements, which lead to an improvement in
the overall sensitivity. The pulsed ODMR method also offers
enhanced readout contrast, which further improves the sensi-
tivity. Note that the sensitivity is defined as the least detectable
magnetic field within a measurement time of 1 s [4,70].

In general, the cw-ODMR and pulsed ODMR methods do
not exploit the quantum property of spin superposition, which
provides a way to make the measurements more sensitive [4].
Conversely, the double-pulse-based Ramsey sequence does
utilize spin superposition states for sensing. It also has the
advantage of avoiding the power broadening effects [71]. The
Ramsey method consists of two π

2 pulses, with free precession
time τ in-between. The optically initialized NV spin state is
transferred into a superposition state by the first of the two
π
2 pulses. This superposition state interacts with the external
magnetic field for the time τ , thus accumulating a phase.
Eventually, the second π

2 pulse converts the accumulated
phase into an optically measurable population difference. In
contrast to the ODMR-based frequency-sweep methods, the
Ramsey sensing protocol is performed at a fixed ωmw. In
addition, τ can be varied to measure minimal fluctuations in
external magnetic fields [4]. In general, the Ramsey method
can be used to sense any magnetic fields that change slowly
enough, i.e., with frequencies less than 1

τ
(see Appendix C).

III. SAMPLE AND EXPERIMENTAL SETUP

All experiments in this work involve an electronic-
grade diamond sample (300 μm × 100 μm ×40 μm) with
implanted NV centers (Fig. 2). The nitrogen ion implan-
tation was performed with a fluence of 3 × 1011 cm−2 at
6 keV, which results in an average depth on around 9.3 ±
3.6 nm [72]. The implantation was followed by annealing
(850 ◦C), which forms NV centers in the implanted layer,
which shows a uniform density over the sample. Afterward,
a second oxidation annealing at 400 ◦C was performed, fol-
lowed by tri-acid cleaning. This process removes the top
layer of the diamond, resulting in reduced the NV density
and depth. The average NV density is estimated via confocal
fluorescence maps to be around 7 × 107 cm−2. The value is
obtained by analyzing confocal scans of the sample surface
[see Fig. 2(a)].

For the experiment, the sample is mounted on an �-shaped
strip-line MW antenna [Fig. 1(c), A)] [73]. The antenna is
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mounted on a piezoelectric scanner to perform multiaxial
scans. The dichroic mirrors [Fig. 1(c), D1, and D2] filter the
excitation laser pulse and direct the fluorescence along the
collection arm of the confocal setup. Additionally, a 600-nm
long-pass filter [Fig. 1(c), F] in the collection arm is used
for spectral filtering. The optical initialization and readout
are assisted by an objective [Fig. 1(c), O], which delivers
and collects the light to and from the in-focus diamond sam-
ple containing shallow single NV centers. Laser pulsing is
achieved with a digitally modulated diode laser (modulation
bandwidth: 125 MHz). The MW control pulses are generated
by mixing the in-phase (I) and quadrature (Q) components
[Fig. 1(b)] with a carrier signal. The resulting pulse is sub-
sequently amplified and delivered to the confocal setup via
the strip-line antenna. For more details on the setup, see
Appendix A. In principle, the implementation of these mag-
netometry methods with NV centers is straightforward and
well understood. In practice, however, various factors may
affect the performance of these sensing schemes. For ex-
ample, custom-built MW antennas with unknown instrument
response functions are often used to deliver the control pulses.
In such cases, the control pulses delivered to the NV center
may slightly defer from their actual design. Additionally, for
shallow NV centers it is difficult to model all surface effects
with adequate precision. This lack of information a priori
makes it a challenge to accurately model the system. A closed-
loop optimization circumvents this issue.

IV. OPTIMIZATION METHODS

The sensing protocols described in Sec. II rely on the
efficiency of two types of control: readout and initialization
via the laser and spin manipulation via the MW field. Here,
two complementary optimization strategies are presented us-
ing the REDCRAB optimization suite. The first adapts the laser
pulse parameters (Sec. IV A) and the second the MW control
pulses (Sec. IV B). The cloud-based optimization incorporates
reevaluations according to the accuracy of the measurements
as well as restrictions of the parameters (see Sec. V), pulses,
and superparameters (see Sec. IV B) chosen to complement
the experimental hardware.

In both optimization steps, we first quantify the goal with
an FoM that can be measured in the experiment. Subsequently,
the controllable constant parameters and time-dependent con-
trols of the system are identified. The initialization and
readout are optimized with a direct search, while the MW
pulses are optimized via the dCRAB algorithm [27,57,58,64].

A. Parameter optimization for spin-state
initialization and readout

Strong spin polarization and spin-state-dependent fluores-
cence are fundamental to the readout of single NV centers.
These properties primarily originate from the transition rates
of the spin-preserving radiative and the nonradiative decay
channels between the NV energy levels [see Fig. 3(a)]. The
nonradiative intersystem crossing via the metastable state
does not preserve the spin state [74]. Figure 3(a) shows how
an NV, which is originally in ms = 0 or ±1, decays via path I
or II, respectively, after being excited by a green laser pulse

(λ = 520–530 nm). The excited ms = 0 state decays radia-
tively to the ground state, while the ms = ±1 state might take
the nonradiative route via path II. If the laser pulse is long
enough, all population ends up in the mS = 0 ground state.

Figure 3(b) shows the readout procedure. To obtain a con-
trast, a laser pulse first initializes the system to the ground
state ms = 0 via paths I and II. In the top part of Fig. 3(b)
no MW is applied (ms = 0 readout) and a second laser pulse
leads to a decay via path I. An intermediate MW pulse (ms =
±1 readout) can transfer the spin state to ms ± 1 via path III.
The subsequent laser pulse induces a decay via path II which
leads to a drop in fluorescence [Fig. 3(c)] because of the decay
via the long-lived metastable state. Hence, the photon count
allows differentiating the spin states during optical readout.

A simulation-based (open-loop) optimization for optical
spin-state initialization and readout can be done considering
the NV rate equations with experimentally obtained transition
rates [75]. Such methods may require specialized apparatus
for optical pulse shaping [76] and, in general, do not account
for experimental limitations. It is noteworthy that pulse width
induced polarization enhancement methods have been previ-
ously studied for improving the spin-state initialization using
short-laser pulses [77]. In comparison, closed-loop parameter
search offers straightforward enhancement. In the following,
we develop the method for an optical readout with laser pulses
of constant power and finite duration, subjecting to the lim-
itation of the setup. The photon shot noise is the primary
limitation to an efficient optical readout of the NV spin state.
Consequently, the statistical determination of the spin state
requires an averaged readout over a large number of experi-
mental repetitions. The spin-state readout fidelity F for such
probabilistic measurements is expressed in terms of the noise
parameter σR [10,78]:

1

F = σR ≈
√

1 + 2(R0 + R1)

(R0 − R1)2 , (1)

such that F = 1 at the spin-projection noise limit of the
sensitivity (see Appendix C). R1 (R0) is the total number of
collected photons from the readout of the spin state initialized
in ms = ±1 (ms = 0). Experimentally, the readout contrast C
is given by

C = R0 − R1

R0 + R1
. (2)

Its relation to F is given in Appendix C. Intrinsically, the con-
trast depends on several system properties and experimental
parameters,

C ≡ C[γi j,Lp,Ld ,�max, B⊥, Exy, T . . .], (3)

where γi j is the transition rate between levels i ↔ j, Lp is
the laser pulse intensity, Ld is the laser pulse duration, �max

corresponds to the maximum amplitude of the spin inversion
control pulse, B⊥ and Exy are off-axial magnetic and electric
field components at the position of the NV center, respec-
tively, and T is the ambient temperature. In addition, several
other factors, including crystal-field strain and charge-state
stability, may affect the fluorescence of the NV center and
ultimately influence the readout contrast. The majority of
the parameters in Eq. (3) depend on the system properties,
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FIG. 3. Initialization and readout of the NV spin state. (a) The energy-level structure of the NV center within the diamond band gap. The
transitions of an NV initially in the ms = 0 and ±1 ground state are denoted as path I and path II, respectively. Note that path II includes
a decay via the metastable state, making it slower. A resonant MW pulse may drive the ms = 0 ↔ ±1 ground-state transition (path III).
(b) Spin-state readout sequences. By sweeping the MW frequency ωMW this corresponds to a pulsed ODMR sequence. (c) The light curves
with dots show a typical readout signal for a 1-μs laser pulse for different initial spin states (blue: ms = 0, green: ms = ±1). The solid curves
indicate the optimized spin-state readout (see Sec. IV A). The shaded areas give the readout contrast [Eq. (2)] obtained with the 1-μs laser
pulse (Cinit, red) and the optimized laser pulse (Copt, striped). Ropt and Sopt indicate the optimized windows for the readout and saturation,
respectively. (d) Parameters for the optical readout optimization. Ri and Si correspond to the photon collection windows described in Eq. (5). A
spin-inverting rectangular MW pulse (inv) is used for the parameter optimization. Readout 0 (1) corresponds to the readout of the ms = 0 (±1)
spin states. After an initial laser pulse (init), each measurement is repeated N times to enhance the signal-to-noise ratio.

material characteristics, and ambient conditions that are gen-
erally not fully controllable. In practice, some of the system
properties can be characterized before the optimization of the
readout contrast. For example, the charge state of the NV cen-
ter can be determined from the emission spectrum [Fig. 2(b)].
Similarly, external factors such as crystal-field strain and tem-
perature directly influence the ZFS of the NV center. In this
regard, precharacterized single NV centers [Fig. 2(c)] with
ZFS ≈2.871 GHz, and stable photoluminescence that do not
exhibit charge state related blinking allow to fully exploit
the scope of laser pulse parameter optimization. (Note that
this does not rule out photochromism on short timescale.)
Likewise, a well-aligned static magnetic field BNV is a pre-
requisite for the optimizations performed in presence of a
magnetic bias field. It is noteworthy that photons originating
from NV0 can be filtered from the readout signal [Fig. 1(a)].
As a result, charge-state instability leads to blinking of the NV
fluorescence signal [79].

Other experimental parameters in Eq. (3) such as Lp and
Ld , directly influence the optically induced transitions, as
well as the charge-state stability [78,79]. In contrast, the effect
of the wait time tw between the initialization and readout

and spin manipulation pulses (shaded region between pulses
in [see Fig. 3(d)]) is more indirect. Hence, it is commonly
set to about 300 ns, which corresponds to the lifetime of the
metastable state [80]. Similarly, the photon collection window
Wro is often calculated in advance to obtain the best signal-
to-noise ration (SNR) for every readout [3]. Consequently,
Eq. (3) can be reduced to a simpler form based on the variables
that can be controlled experimentally:

C ∼ C[Lp,Ld ,Wro, tw,�max]. (4)

Although it is not straightforward to find an analytical
form to characterize the dependence of C on these parameters,
they can be directly adjusted in a closed-loop optimization on
the experiment. Figure 3 shows the two-shot scheme for the
contrast measurement used in the optimization routine. This
strategy is devised keeping in mind that the experimental setup
does not enable time-tagged photon counting. Each laser pulse
[readout 0 (1)] is divided into a spin-readout window R0 (R1),
and a spin-state saturation window S0 (S1). Their durations
are determined by the optimization parameters Ld and Wro. A
spin-inversion MW pulse flips the spin state between the laser
pulses. The FoM, which is minimized during the optimization,
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is given by

FoMRO = 1 − C̄

[
1 − var

(∣∣∣∣S0 − S1

S0 + S1

∣∣∣∣
)]

. (5)

Here, C̄ is the readout contrast averaged over N experimental
repetitions as shown in Fig. 3(d). In addition to maximizing
the readout contrast in the spin-readout windows, FoMRO

also ensures uniform spin-state initialization, as the optimized
value tends to minimize the variance in the photon counts
from the two spin states in the saturation windows (Fig. 3).
The closed-loop optimization of readout parameters is gener-
ally relevant for a variety of methods, such as readout based on
spin-to-charge-state conversion [78] and photoelectric read-
out [81], which inherently involves laser pulses. Furthermore,
the optimized readout can be integrated directly with MW-
free, all-optical magnetometry methods [82]. The standard
approach of obtaining the optimal readout parameters usually
requires multiple measurements, or otherwise time-tagged
photon counting. The closed-loop optimization approach pre-
sented reduces the measurement time that otherwise will
be required to manually optimize all the parameters under
consideration. This is further improved by reducing the mea-
surement to two readouts only for assessing Ri and Si.

B. Quantum optimal control for spin-state manipulation

An optimally initialized spin state and its efficient read-
out are two of the essential criteria for a practical quantum
sensor [4]. In addition, the spin state has to be controlled
accurately to implement a sensing protocol. Following parts
of the text describe the optimization of MW control pulses
for spin inversion and for a ( π

2 )x gate via the dCRAB algo-
rithm [27,57,58,64].

Before proceeding to the specifics of the optimization
schemes, we discuss the dynamical equations of the system to
introduce the basic concept of QOC. The system is described
by a constant drift Hamiltonian Hd , and control Hamiltonians
Hi

c, which are modulated by control pulses ui(t ):

H (t ) = Hd +
∑

i

H i
cui(t ) = h̄

2
[	σz + σxu1(t ) + σyu2(t )],

(6)
where the complete Hamiltonian H (t ) is given in the rotating-
wave approximation (RWA) with the detuning 	 = ωmw −
ωnv, the NV’s resonant frequency ωnv, the Pauli matri-
ces σi, and the controls u1(t ) = �(t ) cos[φ(t )] and u2(t ) =
�(t ) sin[φ(t )]. These controls correspond to the in-phase and
quadrature components of a MW drive, with Rabi frequency
�(t ) ∈ [0,�max] and phase φ(t ) applied for the duration tp.

The control objective for the MW pulses is to efficiently
transfer the initial spin state |�i〉 to the final state |� f 〉. Hence,
the FoM is defined as the state fidelity

Fp = | 〈� f |U (t ) |�i〉 |2, (7)

where U (t ) = T exp

[
− i

h̄

∫ tp

0
H (t )dt

]
, (8)

where T indicates a time-ordered exponential propagator. At
this point, the FoM is a functional of the control pulses. The
controls are subsequently parametrized by a set of Nset × M

FIG. 4. Restriction approaches. The unconstrained pulse may ei-
ther be cut off at the amplitude {−Amax, Amax} and time {0, tp} limits
(“cutoff approach”) or shifted and rescaled to fit within the available
window (“bandwidth-limited approach”).

basis elements f i(ωn; t ). Each element is defined by its su-
perparameter ωn, which is randomly selected from ωmin <

ωn < ωmax, where ωmin and ωmax are the minimum and max-
imum allowed values. The number of basis functions M per
superparameter depends on the basis. These superparameters
can be the frequencies of a set of trigonometric functions
(Fourier basis [58]; in this case ωmin and ωmax set the allowed
bandwidth of the control pulse) or the offsets for a set of step
functions (Sigmoid basis [68]). The resulting pulses take the
following form:

ui(t ) = ui
0(t ) +

Nset∑
n

M∑
i

An f i(ωn; t ). (9)

Here, ui
0(t ) represents the initial guess for the pulse.

Following the parametrization, the goal of the QOC routine
is to find the optimal values for the coefficients An, maximiz-
ing the FoM [Eq. (5)]. Especially in closed-loop optimization,
only a limited number of parameters can be optimized at a
given time. Therefore, additional steps are required to avoid
local optima. The dCRAB algorithm tackles this issue by
switching the set of basis elements every time the optimiza-
tion has converged under the given constraints [58]. Every
new optimization (superiteration) is started with the previous
optimum as an initial guess, i.e., ui

0(t ) = ui
opti(t ).

The optimizations are performed with both the Fourier and
Sigmoid bases separately. To ensure the pulse amplitude and
duration are limited, i.e., that the amplitude stays within an
upper and a lower limit and the pulse is zero at t = 0 and
t = tp, two different strategies are applied and illustrated in
Fig. 4. In the cutoff approach, the pulses are cut off at t = 0
and t = tp to limit the duration. Similarly, they are cut off at
the top and bottom to force the amplitude limits. Instead, the
bandwidth-limited approach involves rescaling the pulse to fit
within the amplitude limits, followed by multiplication with
a smooth window function like a flat-top Gaussian to avoid
discontinuities at initial and final time.
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In the cutoff approach (see Fig. 4), the Fourier basis is
expected to produce high-frequency components when the
optimization algorithm maximizes the pulse area. Conversely,
in the bandwidth-limited approach, the Fourier basis will
have difficulties to significantly expand the pulse area. At
the same time, the Sigmoid basis has the ability to exploit
the pulse area without producing high frequencies [68] when
combined with the bandwidth-limited approach. The inherent
smoothness offered by the Sigmoid basis (see Appendix B)
provides a particular advantage for frequency-sweep-based
spectroscopic measurements, where spurious harmonics are
to be avoided.

The first MW optimization presented here concerns the
spin-inversion pulse in the pulsed ODMR sequence (see
Fig. 3). The efficiency of the spin-state transfer is estimated
through the optical readout contrast C [Eq. (3)]. The previ-
ously obtained parameters for the laser-based initialization
and readout are used as the default for the MW control pulse
optimization experiments. To achieve robustness, the control
field amplitude variation is incorporated in the FoM by aver-
aging the contrast over a range of Rabi frequencies �max:

FoMpodmr = 1 − 1

Np

Np∑
k

(
Rk

0 − Rk
1

Rk
0 + Rk

1

)
, (10)

where Np is the total number of sampled �max and Rk
i are

the photon counts from the corresponding spin state collected
during readout 0 (1) (see Fig. 3). The goal of the optimization
is to minimize FoMpodmr.

The Ramsey protocol does not involve spin inversion, but
instead a ( π

2 )x gate. In the sensing procedure, this pulse plays
two roles: First, it maps the spin eigenstates to a superposition
state with a given phase. Second, it converts the phase back
to a spin population. Gates cannot be directly quantified using
the contrast. Instead, their quality is commonly quantified via
gate tomography, which requires additional state preparations
and related measurements. We develop a protocol to translate
the ( π

2 )x gate’s unitary properties into a readout contrast that
takes the same number of measurements as the evaluation of
the spin-state inversion. Figure 5 shows the scheme connect-
ing the pulse performance to the readout fluorescence contrast
C from two spin states. Similar to the case of pulsed ODMR,
the FoM is defined as

FoMram = 1 − 1

Np

Np∑
k

(Pk
0 − Pk

1

Pk
0 + Pk

1

)
, (11)

where Pk
i is the photon count for the kth amplitude value after

projection into spin state i. The photon counts Pk
i are related

to the spin transfer to the different states using the following
series of transformations:

U (tp) πx U (tp) �−→ P0,

U (tp) U (tp) �−→ P1,

where U (tp) is the parametrized unitary operator for the opti-
mized control pulse of duration tp, and πx denotes the unitary
transformation for the rectangular π pulse applied along the x

FIG. 5. Exemplary measurement protocol for the Ramsey se-
quence optimization. The spin is projected into ms = 0 and ms = ±1,
similarly to the spin-state measurement in Fig. 3(b). (a) ms = 0
state (|0〉) projection: a known refocusing πx gate (solid) is applied
between two optimized pulses U (tp) (shaded). (b) Exemplary Bloch
sphere representation of the process in (a). Red arrows indicate the
initial and final spin states, and dark blue lines denote the path of the
spin state. (c) In the absence of the intermediate πx pulse, the spin
state is ideally transferred to the ms = ±1 state (|1〉). (d) Exemplary
Bloch sphere representation of the scheme in (c).

axis. The maximization of the contrast ideally corresponds to
the following conditions:

|〈0|U (tp) πx U (tp)|0〉|2 = 1, (12)

|〈1|U (tp) U (tp)|0〉|2 = 1. (13)
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Here, |0〉 and |1〉 denote the two spin states of the system
under the two-level approximation: |0〉 is given by the ms = 0
state and |1〉 represents either ms = +1 or ms = −1 depend-
ing on the corresponding experiment specified in Sec. V. We
introduce the parametrization of the unitary transformation
generated by the control pulse as

U (tp) = exp

[
−i

∑
j

c jσ j

]
, (14)

with coefficients c j for j = {x, y, z}, and ĉ j = c j/c, with c =√
c2

x + c2
y + c2

z . Then, Eq. (13) implies

1 = sin2(2c)
(
ĉ2

x + ĉ2
y

)
(15)

and thus c = 1
2 ( π

2 + kπ ), for integer k, and cz = 0. Substitut-
ing this into Eq. (12) gives

1 = 4ĉ2
x sin2 c

[
cos2 c + ĉ2

z sin2 c
] = ĉ2

x , (16)

finally indicating that cx = c = 1
2 ( π

2 + kπ ), and hence cy = 0.
In other words, FoMram in Eq. (11) is minimized for a π

2 ro-
tation around the x axis (in the positive or negative direction):

Uopti(tp) = exp
[
− i

2

(π

2
+ kπ

)
σx

]
. (17)

V. EXPERIMENTAL RESULTS AND
SENSITIVITY ANALYSIS

A straightforward way to test the general applicability of
the optimization strategies discussed in the preceding sec-
tion is to apply them to different single NV centers and
compare the readout contrast enhancement on a case-specific
basis. In addition, the average sensitivities from the exper-
iment quantify the optimization benefits. The optimization
schemes from Sec. IV are implemented and compared in the
following section. First, we assess the improvements resulting
from optimized readout (OR) (Sec. V A) and the addition-
ally optimized spin-transfer pulses (Sec. V B) for the pulsed
ODMR method. Second, OR is applied with optimized control
pulses for the Ramsey protocol, and the results are discussed
in Sec. V C. Finally, the robustness of the pulses is tested
over a range varying from 100% to 10% of the maximum
control power. This variation is artificially introduced in the
experiment by changing the power at the MW source.

A. Initialization and readout

Experimental restrictions are directly included in the
closed-loop optimization of the initialization and readout pro-
cess by limiting the optimization parameters. The bounds on
the parameter set {Lp,Ld ,Wro, tw} are given as

Lp ∈ [2, 40] (mW),

Ld ∈ [300, 2000] (ns),

0.25 Ld �Wro � 0.75 Ld (ns),

and tw ∈ [0, 1000] (ns).

TABLE I. Optimized parameters for spin-state readout contrast
with single NV centers. Experiments with NV1 are performed at the
ZFS, whereas NV2 and NV3 related experiments are performed with
a bias field of 12 mT.

L opt
p L opt

d W opt
ro topt

w

Identifier (mW) (ns) (ns) (ns) Ref.

NV1 21 585 260 470 Fig. 6
NV2 17 488 250 270 Fig. 7a

NV3 16 552 385 260 Fig. 8,
9–11b

aPulse optimization restriction via the cutoff approach.
bPulse optimization restriction via the bandwidth-limited approach.

Limits on Lp correspond to the available source laser power.
The incident laser power experienced by the NV center lies
between 0.05 and 1 mW [Fig. 2(b)]. However, as the instru-
ment values are used as a parameter in the optimization, they
are the ones referenced throughout the text. The initial guess
for the optimization is chosen to be {Lp � Psat, 1000 ns,
450 ns, 300 ns}, where Psat is the saturation laser power for
the single emitter. In cases where the saturation limit can-
not be reached with the available laser intensity, the initial
guess is obtained by considering the saturation curve to iden-
tify the approximate laser intensity with the most favorable
signal-to-background ratio. Some of the readout optimization
results are summarized in Table I. As a general observation,
the optimized laser pulses are shorter than the corresponding
initial guesses, while the tw values remain almost unchanged
after the optimization. Moreover, reduction of the measure-
ment time improves the overall sensitivity of the NV center
[Eq. (C5)]. Figure 3(c) shows the photoluminescence behavior
of one of the NV centers involved in the experiment (Table I,
NV3). The collected signal reflects the improvement in the
average readout contrast after the optimization.

The optimized laser parameters are tested by combining
them with a standard pulsed ODMR sequence with rectan-
gular spin-inversion pulses (pulse duration of 57 ns). Their
readout contrast is quantified as C̄ = 1 − min[Nph], where Nph

is the normalized photon count (see Appendix C for details).
Figure 6 shows a comparison between the measurement with
and without optimized parameters (zero bias field, Table I,
NV2). The optimized parameters account for a 33% improve-
ment in peak contrast. This result can be improved even
further by also optimizing the spin-inversion pulses.

B. Pulsed ODMR measurements with optimized MW pulses

The spin-inversion pulse that is part of the pulsed ODMR
protocol provides a target for further optimization on top of
the optimized optical readout. In this regard, we investigate
the additional improvement by optimizing the pulses under a
bias field BNV to emulate a spin resonance sensing scenario.
The FoM is calculated by averaging the contrast over a set of
Np = 5 measurements [see Eq. (10)] leading to control pulses
in the range of 4%–100% of the maximum control power (or,
equivalently, 20%–100% of the maximum control amplitude
�max). The initial guess resembles a standard rectangular π
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FIG. 6. Pulsed ODMR at ZFS with optimized parameters using
a rectangular MW π pulse of the duration of 57 ns. The experiment
with optimized laser parameters exhibits an improved readout con-
trast C̄ of about 0.33 (blue) in comparison to the initial guess with a
contrast of about 0.25 (red).

pulse, whose length is determined by observing Rabi oscilla-
tions.

Figure 7 shows two maps representing the normalized
count obtained with two optimized MW pulses. In this ex-
ample, the laser pulses were preoptimized according to the
method described in Sec. V A, and the ms = 0 ↔ +1 tran-
sition is used for the optimization as well as the assessment
via pulsed ODMR. The MW pulses are optimized according
to Eq. (10) at the center frequency of 3.22 GHz. The pulse
corresponding to the left is optimized with the Fourier basis,

FIG. 7. Comparison between two optimized spin-inversion
pulses in presence of a bias field BNV = 12 mT (Table I, NV2). The
left (right) side shows the experimental results from a pulse opti-
mized with the Sigmoid (Fourier) basis. (Top) Normalized counts Nph

over a range of �max and drive frequencies ωmw. (Bottom) Average
normalized count N̄ph over all �max for the optimized pulse (solid)
and initial guess (blue, dotted). The spectra of the pulses (dashed)
are convoluted with the NV’s natural emission line and fitted to the
average counts.

FIG. 8. Pulsed ODMR in presence of a bias magnetic field
(BNV ≈ 12 mT, NV3 from Table I) with optimized laser parameters
and MW pulses. Following the results from Fig. 7 the optimization
was done with the Sigmoid basis, using the bandwidth-limited re-
striction approach. The data show the improvement in contrast with
each step of the optimization. The initial contrast for the resonance
peaks is about 0.22 (initial guess, red), which is further improved to
about 0.24 with optimized laser parameters (blue). The MW pulse
optimized in the Sigmoid basis on top improves the contrast to about
0.30 (green). The solid lines show the Gaussian fits for the respective
data (see Appendix C).

while the right pulse is optimized with the Sigmoid basis, both
with a pulse duration of 200 ns. Both pulses exhibit robust-
ness with respect to the amplitude variations, improving the
contrast compared to the initial guess. However, the Sigmoid
basis pulse is spectrally narrow, while the Fourier pulse has a
distinct sideband. The spectral shape of the pulses can explain
these features. The Fourier basis contains high-frequency ele-
ments caused by the cutoff limitation (see Fig. 4), which the
Sigmoid basis avoided. The small off-resonant area addressed
by the Sigmoid basis covers only a fraction of the Fourier
basis’ sideband and is significantly weaker. This is illustrated
in the average plot at the bottom.

To test the general applicability of this method for gener-
ating bandwidth-limited control pulses, similar optimization
and pulsed ODMR experiments are performed with a different
NV center (Table I, NV3), this time using the ms = 0 ↔ −1
transition, and the bandwidth-limited approach (Fig. 4). The
results are shown in Fig. 8. Here, a readout contrast of about
0.24 is obtained with optimized laser parameters (pulse du-
ration of 134 ns, obtained from observing Rabi oscillations).
The Sigmoid pulse (pulse duration of 200 ns) enhances the
readout contrast further to about 0.30. Pulsed ODMR experi-
ments with different peak control power are performed to test
the robustness of the control pulse. The readout contrast and
full width at half-maximum (FWHM) of the resonance profile
are obtained by fitting the data with a Gaussian profile [see
Eq. (C6)].

Figure 9 shows the achievable average sensitivity η of the
pulsed ODMR method. It depends on the resonance profile,
its FWHM, contrast, and the measurement time involved in
the experiment [see Eq. (C5)]. In addition, the spin-projection
noise sets a lower limit to η. The full optimization, including
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FIG. 9. Comparison of pulsed ODMR measurements with opti-
mized and standard spin-state inversion pulses (NV3 from Table I).
Specifically, the robustness against amplitude variation is shown for
pulses optimized in the Sigmoid basis. From top to bottom, the con-
trast, and FWHM of the resonance peaks as well as the corresponding
average sensitivity η are shown. All results are obtained with differ-
ent amplitude variations. The red curves indicate the initial guess.
Blue curves correspond to the experiments performed with optimized
spin-readout parameters. The green curves show the results for the
experiments using optimized MW pulses. The dashed line in the
bottom plot shows the ceiling for the η of 1 μT Hz− 1

2 .

the laser parameters and the robust Sigmoid pulse, leads to
a sub-μT Hz− 1

2 average sensitivity considering up to almost
83% variation in the control power (see Appendix C for details
on the sensitivity calculation). The lack of straightforward
interpretability of solutions lies in the nature of QOC. Still,
it is notable that the Sigmoid pulse’s FWHM is broader for
lower �, possibly hinting at the algorithm compensating for
the reduced coverage of the hyperfine lines in that regime.

Off-axial magnetic field components lead to spin mixing,
reducing the readout contrast [82]. This effect becomes ap-
parent when comparing the contrast at ZFS (Fig. 6) and in
presence of an external magnetic field (Fig. 8). The degree
of spin mixing and its effects on the transition rates cannot
be straightforwardly simulated for the presented experiments.
Using closed-loop optimization of the laser pulse parameters
allows to nevertheless incorporate such effects into the FoM.

Up to this point, all three NV centers from Table I were
investigated. As the improvements are of the same order of
magnitude, only NV3 is considered in the following without
loss of generality. The Ramsey sensing method, which is

FIG. 10. Optimized Ramsey measurements. The top plot shows
the measurements performed at peak drive power with rectangular
control pulses (blue) as well as optimized pulses in the Fourier basis
(black) and Sigmoid basis (green). The optimized pulses exhibit
almost double the contrast in comparison to the rectangular control
pulse, with a similar precession frequency corresponding to the hy-
perfine levels of the transition. The length of the rectangular π

2 pulse
is determined by performing Rabi measurements, and in this case
is 67 ns. The bottom plot shows the variation in readout contrast
with respect to the change in relative control power of the control
pulse. The performance of the robust optimized pulses surpasses the
rectangular control pulse over the entire range of tested control power
(90% variation).

addressed next, fulfills a similar role to the pulsed ODMR
sequence and offers better sensitivities towards external dc
magnetic fields [2,5,7] (see Appendix C).

C. Ramsey measurement

The Ramsey method is a type of interference measurement
for dc magnetic fields. As discussed in Sec. II it consists of
two π

2 pulses and offers a higher sensitivity in comparison
to the ODMR methods. It should be noted that previous op-
timizations for D-Ramsey pulse sequences with NV centers
were performed in an open-loop scheme using a cooperative
design [13]. Our results are obtained through a closed-loop
optimization and directly quantified on the setup. The π

2
pulses are optimized via assessment of the contrast for a range
of drive amplitudes [see Eq. (11)] via the bandwidth-limited
approach discussed in Sec. IV B (see Fig. 4). The initial
guess resembles a standard rectangular π

2 pulse, whose length
is determined by observing Rabi oscillations. The resulting
interference fringes are shown in Fig. 10. This optimization
is carried out in presence of a bias external magnetic field
(BNV = 12 mT) and on resonance with the ms = 0 ↔ −1
transition. The fringe visibility is enhanced from 0.15 to about
0.24 with the Fourier basis pulse, and to about 0.25 with the
Sigmoid basis pulse using the maximum control amplitude
(pulse duration of 100 ns). The fringe visibility is directly
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FIG. 11. Comparison of Ramsey sequences with standard and
optimized MW π

2 pulses. All measurements are performed with opti-
mized laser pulses for the readout and the optimizations were carried
out with the amplitude-robust FoM from Eq. (11). The performance
of the pulses optimized with the Fourier (black) and Sigmoid (green)
basis is compared to the rectangular control pulse (blue) over a
range of drive detunings 	. This range is equivalent to a variation
of 0.35 mT in the external magnetic field. The upper panel shows
the readout contrast C̄. The respective T ∗

2 values are displayed in the
middle panel. The bottom panel shows the resulting η. The sensitivity
calculation is discussed in Appendix C.

related to the readout contrast. An improvement in the readout
contrast leads to a proportional improvement in the sensitivity
of the sensor [see Eq. (C7)].

The performance of the optimized pulses is further tested
by performing Ramsey measurements with different drive
frequencies in the vicinity of the spin-transition frequency.
These detunings correspond to a range of fields that could
be measured in a sensing setup. The resulting readout sig-
nal summed over repeated iterations of the experiment is
assessed for average sensitivity [10] η of the NV center. The
sensitivity of the Ramsey sequence depends on the readout
contrast and the dephasing time during the measurements (see
Appendix C). Figure 11 shows the readout contrasts, the T ∗

2
times, and the average sensitivities obtained by a series of
Ramsey measurements. The Fourier pulse displays a constant
readout contrast in the frequency range of ±10 MHz. This
range in the frequency corresponds to around ±0.35 mT of
variation in BNV. In comparison, the Sigmoid pulse shows a
marginally better C̄ around the resonance frequency but varies
strongly for different detunings. The frequency components
of the pulse depend on the pulse shape (see Appendix B).
Here, the spectrum of the Sigmoid pulse contains minima at a
detuning of approximately ±5 MHz (Fig. 11). From a control

perspective, such frequency selective applications are attrac-
tive for spectral hole burning [83] and quantum logic gates
for superconducting qubits [84]. The T ∗

2 time is comparatively
lower on resonance than off resonance for all pulses. This is
due to the destructive interference of the hyperfine transition
associated with the spin resonance [85]. Readout contrast
enhancement inherently involves strong contributions from all
the hyperfine transitions, resulting in a tradeoff between C̄ and
T ∗

2 . The measurements with the Fourier pulse exhibit a robust
η of less than 65 nT Hz− 1

2 . These levels of sensitivities are
on par with the ones reported for single NV-based diamond
scanning probes [86–88].

The method from this section could be generalized to re-
place the spin-refocusing π pulse in other sensing methods.
This would require applying the optimized π

2 pulses twice,
using a strategy similar to the one discussed in Sec. IV B.
Such refocusing pulses form the main building block for ac
magnetic field sensing [6].

VI. CONCLUSION

The optimizations in this work focused on three essential
parts of quantum sensing with NV centers: optical spin-state
readout, population inversion, and π

2 pulses. All three were
improved for sensing methods with single NV centers, consid-
ering control power variations of up to 90%. Such robustness
enables the sensing of larger microstructures by increasing
the explorable sample area and makes the pulses more robust
against experimental drift over time. The resulting protocols
are realized by replacing the building blocks of common
laser and MW-based schemes with optimized equivalents. The
optimizations are based on a set of figures of merit which
are directly measurable via contrast using a varying MW
power. The feedback-based approach inherently takes exper-
imental imperfections and unknown system parameters into
account. Initially, we optimized the optical readout and initial-
ization process, improving the spin-readout contrast by 32%
in comparison to the standard protocol. Moreover, addition-
ally optimizing the spin-inversion pulse in a pulsed ODMR
protocol allowed for an overall contrast improvement by 36%
leading to sub-μT Hz− 1

2 sensitivity that is maintained over a
large range of MW amplitudes. Such robust excitation pulses
lead to a large interrogation volume. Especially, for ensembles
of NV centers this results in improved readout counts for a
larger area and, in turn, enhanced sensitivity [5]. To main-
tain frequency sensitivity, different optimization bases were
explored. The Sigmoid basis leads to spin transfer within a
limited bandwidth envelope, reducing the off-resonant exci-
tation. Additionally, we obtained an optimized π

2 pulse for
Ramsey measurements, enhancing the fringe contrast by 67%
with respect to the square pulse with preoptimized optical
readout at maximum control power. Consequently, we ob-
tained a twofold enhancement in the average sensitivities,
ranging below 100 nT Hz− 1

2 over a set of induced bias field
strengths. While we applied the optimization to shallow NV
centers, the approach is straightforwardly applicable to other
NV-based systems like diamond scanning probes and NV
ensembles used for wide-field imaging where similar control
robustness features are required.

013107-11



NIMBA OSHNIK et al. PHYSICAL REVIEW A 106, 013107 (2022)

ACKNOWLEDGMENTS

We thank A. Marshall, F. Motzoi, R. Nelz, S. Z. Ahmed, T.
Reisser, and M. Rossignolo for their insights and suggestions.
We furthermore thank T. Reisser for his assistance with the
REDCRAB software suite. This work has received funding from
the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Grant Agreement
No. 765267 (QuSCo) and under the Grant Agreement No.
820394 (ASTERIQS).

N.O. and E.N. planned the experiments. P.R., N.O., and
M.M. planned the optimization strategies and worked to facil-
itate the remote optimization. N.O. designed and performed
the experiments and analyzed the data. T.C., S.M., E.N., and
M.M. supervised the project. All the authors discussed the
results and contributed to the manuscript.

APPENDIX A: EXPERIMENTAL SETUP

All the measurements were carried out on a custom-
built confocal setup, with excitation wavelength of 520 nm
(Swabian instruments, DL nSec, PE 520) and objective
numerical aperture of 0.8 (Olympus, LMPLFLN100X). Re-
jection of the out-of-focus fluorescence signal was achieved
by using single-mode optical fibers (Thorlabs, SM450, and
SM600) at the excitation and detection arm of the confocal
microscope. Further, contributions from the NV 0 charge state
were blocked with a spectral filter (Thorlabs, FEL0600, Long-
pass 600 nm) in the detection arm. Fluorescence signal from
the single NVs was detected with a single-photon-counting
module (APD, Excelitas, SPCM-AQRH-14, quantum effi-
ciency ≈68%) and the acquired data were logged with
a data acquisition card (National Instruments, PCIe-6323).
Second-order intensity correlation measurements were per-
formed with a Hanbury Brown–Twiss setup attached to a
time-resolved counting device (PicoQuant, PicoHarp 300).
The fluorescence signal was filtered and analyzed with a
spectrometer (SP-2500, Princeton Instruments) to ensure the
charge-state stability in the diamond sample. The MW con-
trol pulses were generated with IQ mixing with the MW
signal generator source (Tektronix 4104A, IF bandwidth of
400 MHz). The in-phase and quadrature components were
obtained with an arbitrary waveform generator (AWG, Tabor
1204 A, 2.3 GSa s−1). Control pulses were delivered to the
diamond sample with a custom-built �-shaped antenna [73]
after amplification (ZHL-16W-43-S+, Mini-Circuits, typ.
+45 dB). Channel synchronization was ensured using a sync
device (Swabian Instruments, Pulse Streamer 8/2) to trigger
the diode laser, AWG, MW source, APD count window, and
the data acquisition device. The sample along with the MW
antenna was mounted onto a piezoscanner [Physik Instru-
mente (PI), P-611.3O] to perform the confocal scans and
address individual NV centers. The remote connection to
the optimization server was obtained via a combination of
MATLAB (remote system) and Python (REDCRABGUI) based
control programs.

APPENDIX B: RANDOM BASES FOR
DCRAB OPTIMIZATION

In the dCRAB algorithm, random bases are used whose
elements can be defined through a superparameter ω which

stays constant throughout the optimization. In this work, we
have used two different bases, referred to as the Fourier and
the Sigmoid basis. They differ in their shape and properties.

The Fourier basis is most commonly used with dCRAB. It
consists of M = 2 out-of-phase trigonometric elements with
frequency 0 � ω � ωmax:

f 1
Fourier(ω; t ) = sin(ωt ), f 2

Fourier(ω; t ) = cos(ωt ). (B1)

The Sigmoid basis [68] consists of sigmoid functions (M = 1)
with an offset of εσ � ω � tp − εσ . ε represents an offset
factor. The basis always includes one element at ω = εσ

which is optimized in every superiteration to ensure the pulse
length is constant [i.e., ui(t = 0) = ui(t = tp) = 0]. For the
same reason, an element is added automatically with ω =
tp − εσ and amplitude A = ∑N

n An:

fSigmoid(ω; t ) = 1√
2πσ

∫ t

0
e− 1

2 ( τ−ω
σ

)2
dτ. (B2)

They both have different properties. In general, the Fourier
basis is bandwidth limited through the upper limit for ω. The
Sigmoid basis is bandwidth limited due to the limited rise time
defined by σ . However, in both cases higher-frequency terms
may be introduced through cutoffs (i.e., cutoffs in the time
domain or amplitude domain).

It should also be noted that the basis choice determines
which shapes are complex, and which are simple to produce.
While the Fourier basis produces oscillations with few basis
elements, the Sigmoid basis produces approximately square
pulses, without cutoffs.

APPENDIX C: SENSITIVITY CALCULATION

NV-center-based sensing is fundamentally limited by the
spin-projection limit [70]. This limit can be expressed as

ηsp = h̄

SgeμB

1√
tm

, (C1)

where h̄ is the reduced Planck’s constant, ge is the Landé
factor, μB is the Bohr magneton, and tm is the measurement
time. In addition, optical readout processors are subjected
to photon shot noise that further adheres the sensitivity. For
the averaged readout process discussed in Sec. I, Eq. (1), the
readout fidelity can be equivalently written as

F =
√

1 + 1

C̄2R̄
. (C2)

C̄ is the average readout contrast between the two spin states
of the system and R̄ is the average count rate. Further, an
overhead cost is always involved in an experimental scenario.
Really long spin initialization and readout duration deterio-
rates the overall sensitivity of the sensor; this can be expressed
as a scaling factor for the sensitivity

κexp =
√

tm + 2 × ti
tm

, (C3)

under the assumption that the initialization and readout du-
ration are equal (ti). Finally, for dc magnetometry methods,
the dehpasing time T ∗

2 further limits the sensitivity; this can
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be expressed the decoherence function of the T ∗
2 -limited

processes,

fd = e
( tm

T ∗
2

)m

, (C4)

where m is the order of decoherence. For spectroscopic mea-
surement around the NV resonance peaks, the sensitivity
depends on the resonance profile itself [5]. In case of Gaussian
resonance profiles for the pulsed ODMR measurements, the
overall sensitivity can be computed as

ηpo = P
1

γnv

σ f

C̄
√

R̄

√
Tπ + tm. (C5)

Here, σ f is the resonance peak FWHM, γnv = geμB

h̄ is the gy-
romagnetic ratio of the NV spin, and Tπ is the pulse duration.
The factor P relates to the shape of the resonance, for a
Gaussian profile P = √ e

8 ln2 [66]. For shorthand notation,
the measurement time is assumed to involve the overhead
experimental time tm = tw + 2 × ti. The relevant parameters
for the sensitivity calculation in Sec. V were obtained by
fitting the normalized count with the following function:

Npo
ph ( f ) = R̄ × [

1 − C̄ × e− 1
2 ( f − f0

	 f )2]
, (C6)

where f0 is the resonance peak, the normalized counts are cal-
culated by dividing the data with the baseline counts (counts
away from the resonance, where no spin transfer occurs).
For a Gaussian profile, σ f = 2

√
2 ln 2 × 	 f . It is noteworthy

that for pulsed ODMR measurements at low MW power, T ∗
2

limit becomes relevant and has to be considered for sensitivity
calculations; the reader is advised to refer to Ref. [66] for
more details.

The average sensitivity for the Ramsey sequence based
methods can be expressed under the T ∗

2 limit as

ηRa = 1

C̄γnvτ
exp

[(
τ

T ∗
2

)m]√
τ + tm. (C7)

The free induction decay of the Ramsey fringes for single
NV centers highlights the hyperfine structure originating from
the electron-nuclear spin coupling. Likewise, the related nor-
malized readout counts can be fitted with a sum of the three
precessing hyperfine transitions,

NRa
ph (t ) = R̄

[
1 +

(
C̄ × e−(τ/T ∗

2 )m
3∑
i

Ai cos (2πνit + φi )

)]
,

(C8)
where νi and φi are the precession frequency and phase corre-
sponding to the hyperfine transitions. The values for νi depend
on the detuning of the drive with respect to the transitions in
an external bias field (see Fig. 11). The sensitivities in Fig. 11
are obtained at τ = 0.5 × T ∗

2 . The normalized readout count
in this case is obtained by dividing the data with the ms = 0
readout count.
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