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A B S T R A C T   

The failure of emission control systems in industrial processes undergoing emission regulations can cause severe 
harm to the environment. In this context, safety engineering principles can be applied to analyze process de
viations and identify suitable safety barriers to mitigate harmful emissions during critical events. However, the 
selection, design, and assessment of proper safety barriers may be complex due to several contingencies such as 
the inability to perform extensive field tests on systems under strict emission regulations. In this study, an 
approach is proposed to couple conventional hazard identification techniques with a digital model of a flue gas 
treatment system to support the identification and performance assessment of safety barriers for emission con
trol. Resilience analysis is used to evaluate the behavior of the most relevant safety barrier options, selected 
through a screening with conventional hazard identification tools. Barriers are simulated using the digital model 
of the system, gathering key information for their design and evaluation, and overcoming the limitations to field 
tests at the real plant. The methodology is illustrated with reference to acid gas removal in waste-to-energy 
facilities, a relevant example of an emission control system that is typically exposed to significant process 
deviations.   

1. Introduction 

Several industrial processes have the potential to cause significant 
harm to the environment if their routine emissions to air and water are 
not minimized thanks to the application of proper treatment systems. In 
analogy with the definition of safety-critical systems in the field of safety 
engineering (Daintith and Wright, 2008; Knight, 2002; Maurya and 
Kumar, 2020), these systems can be defined environmentally critical 
systems, as their failure or malfunction may result in an unacceptable 
environmental damage. 

Environmentally critical systems in the field of emission reduction 
need to exhibit: i) high performance, often corresponding to > 90% 
pollutant removal efficiency (e.g. see the Best Available Techniques 
reference documents of the European IPPC Bureau (European Com
mission, 2020)), and ii) high availability, according to the continuous 
operation of the plants on which they are installed. 

Flue gas cleaning in waste-to-energy (WtE) plants represents a rele
vant example of such systems. WtE facilities are subject to some of the 
more stringent emission standards among industrial sectors (Dal Pozzo 
et al., 2023c; Van Caneghem et al., 2019) for a variety of pollutants, 
including nitrogen oxides (NOX), acid pollutants such as hydrogen 
chloride (HCl) and sulfur dioxide (SO2), and trace elements such as 
mercury (Hg). In Europe continuous emission measurement at stack is 
prescribed for these pollutants (European Commission, 2020). There
fore, WtE flue gas treatment (FGT) systems have to meet low emission 
levels in continuous operation, typically in presence of high fluctuations 
of the pollutant concentrations in the raw flue gas, as a consequence of 
the wide variety over time of the composition of the waste fed to the 
plant (Dal Pozzo et al., 2016). 

In this context, the system is required to perform adequately during 
normal operating conditions and/or in the presence of external and in
ternal disturbances. Actually, deviations caused by sudden variations in 
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the composition of the waste feed or by malfunctions in FGT components 
can lead to a loss of control of pollutant emissions, which may result in 
exceeding the emission limit values (ELV). Therefore, it is critical to 
ensure that FGT systems are robust against unwanted events, thus 
safeguarding WtE systems with respect to the risk of environmental 
damage deriving from ELVs exceedance. However, specific methodolo
gies aimed at assessing and managing such risk are still missing. 

The chemical and process industry has developed and consolidated 
risk management techniques based on extensive experience in managing 
hazardous substances and safety-critical operating conditions (Khan 
et al., 2015). Many of these techniques have become routine in risk 
management and have been included in standards and guidelines 
(Delvosalle et al., 2006; International Organization for Standardization, 
2019, 2018). Nevertheless, these methods are not specifically conceived 
to evaluate and improve environmentally critical systems, and their 
application to such systems is not straightforward. As an example, the 
conventional approach towards the analysis and assessment of the 
environmental performance of FGT systems in current industrial prac
tice is highly empirical and is based on extensive test run campaigns at 
the plant, which have a critical limitation in the aforementioned need 
for continuous compliance with strict emission limits. Thus, an alter
native perspective is required to address the systematic assessment of 
critical events that may undermine the performance of FGT in WtE 
systems. 

Approaching the study of environmentally critical systems from a 
process safety standpoint, the loss of control of pollutant emissions may 
be considered a top event leading to the exceedance of the ELVs, caused 
by a set of initiating events (e.g., failures of technical systems). A Bow- 
Tie diagram may be used to represent such critical scenarios (CCPS and 
Energy Institute, 2018). Bow-tie diagrams are graphical tools including 
the causes (i.e., initiating events, on the left side of the diagram), the top 
event (in the center), and the consequences (on the right side of the 
diagram) of critical scenarios. Physical and non-physical measures 
intended to mitigate, prevent, or control such critical scenarios may be 
considered safety barriers (Sklet, 2006) and are usually represented in 
Bow-Tie Diagrams. A schematic representation of a Bow-Tie diagram is 
shown in Fig. 1. 

Safety barriers play a key role in ensuring the safety of process op
erations in safety-critical systems (Liu, 2020), thus may have an 
important role as well in the safe operation of environmentally critical 
systems. Several studies address the role and performance assessment of 
safety barriers in safety-critical systems (e.g. see Landucci et al., 2015 
and Misuri et al., 2021). However, to the best of the authors’ knowledge, 
there is no attempt to specifically address the estimation of safety barrier 
performance in environmentally critical systems, such as FGT plants. 
Actually, the analysis of the relevant literature, further discussed in the 
following (see Section 2), highlights two substantial gaps concerning 
safety barrier evaluation in environmentally critical systems. Firstly, 

there is little (if any) use of well-established risk management tech
niques derived from other industrial sectors with extensive experience in 
risk management (e.g., the chemical and process industry). Secondly, 
the advent of digitalization and digital technologies allows the devel
opment of dynamic and inherently updatable models that may be used 
for assessing the performance of safety barriers. Yet, such models are 
hardly used in the field of environmental risk management. 

In order to address the gaps evidenced above, the present study aims 
at presenting a specific innovative methodology combining conven
tional hazard identification techniques with a digital model of a FGT 
process in order to identify, simulate, and evaluate safety barriers that 
may prevent or mitigate excessive emissions in case of process de
viations. In the proposed methodology, hazard identification ap
proaches are used to screen possible process deviations and identify the 
most critical scenarios, which are then simulated using the digital model 
of the system with or without the application of safety barriers consid
ered for installation. Resilience analysis is then performed to obtain a 
dynamic measure of the barrier performance under different conditions 
and barrier configurations. The methodology is demonstrated by its 
application to a representative case study, addressing the acid gas 
removal in a WtE facility. Although the detailed procedure required for 
the application of some steps of the methodology is governed by the 
specific features of the case-study considered, the overall approach and 
the structure of the methodology have a general validity, allowing its 
application to other environmentally critical systems, aiming at the 
assessment of the effectiveness of safety barriers and the performance 
tuning of scalable safety barriers. 

The remainder of this paper is organized as follows. Section 2 out
lines the state of the art of safety barrier performance assessment in 
relation to dynamic risk assessment (DRA) and resilience engineering, 
which is the starting point of the developed methodology. Section 3 
presents the innovative methodology developed, in combination with its 
application to the case-study. The reference FGT facility used to test the 
approach is described in Section 4. Results are presented in Section 5 
and discussed in Section 6, which also highlights the limitations of the 
study and provides suggestions for future developments. Finally, con
clusions are drawn in Section 7. 

2. Safety barrier assessment in the perspective of DRA and 
resilience engineering 

Regardless of the specific field of application, most contributions 
estimate the performance of a safety barrier based on a set of indicators, 
such as barrier effectiveness and availability (Sklet, 2006). The effec
tiveness of a safety barrier represents its “ability to perform a safety 
function for a duration, in a non-degraded mode and in specified con
ditions” (De Dianous et al., 2004), while the availability represents the 
ability to perform its function while needed. Several studies focused on 

Fig. 1. A Bow-Tie diagram.  
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estimating the performance of safety barriers (Liu, 2020). For example, 
Landucci et al. (2015) proposed a method for the quantification of the 
effectiveness and availability of safety barriers during domino scenarios 
triggered by fire. The study was further refined by Bucelli et al. (2018) to 
consider the influence of harsh climate conditions in offshore facilities. 
Misuri et al. (2021) investigated the impact of Natural Hazards Trig
gering Technological Accidents (Natech) on barrier performance and 
proposed a method to modify the Probability of Failure on Demand of 
safety barriers to account for the effect of natural disasters. However, 
formal techniques treat safety barriers as static objects, with constant 
effectiveness and availability values. Such a static perspective cannot 
capture the dynamic features of the processes involved (e.g., degrada
tion, aging, overlooked hazards). In fact, most canonical methods in risk 
management are not designed to be easily updatable (Paltrinieri and 
Khan, 2020), which implies their inability to reflect the evolving 
real-world risk. The inherently static nature of conventional Risk 
Assessment methods has been often criticized by academics and prac
titioners, and is of specific concern in some environmentally critical 
systems, as WtE, which are inherently exposed to relevant modifications 
of operating conditions in time. Moreover, the advancements in indus
trial automation and robotics have increased the complexity and inter
connectedness of industrial plants (Villa et al., 2016). In an attempt to 
overcome these limitations, methods for safety barrier assessment have 
been directed towards the so-called Dynamic Risk Analysis (DRA), 
which deals with the development of methods that can provide the 
update of risk figures considering the variations in the performance of 
safety-critical systems, such as the control and alarm systems, safety 
barriers, and maintenance activities (Khan et al., 2016). In the context of 
DRA, safety barriers are no longer considered static units but dynamic 
entities, that interact with and are affected by a dynamic environment, 
and whose performance varies over time due to changes in internal and 
external conditions (Bubbico et al., 2020). Therefore, DRA aims to 
define methods and frameworks that are inherently updatable in order 
to consider new information and capture unsafe operating conditions 
among highly connected systems. A survey of existing literature in
dicates that there are only a few DRA methodologies that specifically 
address the dynamics of safety barriers. For instance, Han et al. (2019) 
employed Bayesian Networks to model the failure rate of safety barriers. 
They utilized historical failure data to establish a prior distribution for 
the barrier failure rate, which was eventually updated as new data 
emerged. Similarly, Sarvestani et al. (2021) applied Bayesian reasoning 
to assess the risks associated with LPG accidents. Also, Zeng et al. (2020) 
employed Bayesian Networks to trace the spatial-temporal progression 
of fire-related domino effects, integrating the influence of safety barriers 
directly into the network structure. However, such approaches often 
necessitate a significant amount of data, in particular concering system 
failures, for network calibration. Given the infrequent occurrence of 
such events, obtaining these data is challenging. Furthermore, expert 
elicitation is commonly used to determine probability distributions, 
introducing an additional layer of uncertainty. 

To the best of the authors’ knowledge, there has not been a dedicated 
study addressing the dynamic evaluation of barrier effectiveness within 
environmentally critical facilities. In this context, resilience engineering 
has gained significant importance among safety scientists, motivated by 
the need to manage risk in increasingly complex systems (Bergström 
et al., 2015). Similarly to DRA, resilience analysis focuses on capturing 
risk variability due to component failures, external disturbances, and/or 
dysfunctional interactions among system components (Leveson et al., 
2006). However, resilience puts more emphasis on the intrinsic ability of 
a system to “adjust its functioning prior to, during, or following changes 
and disturbances, so that it can sustain required operations under both 
expected and unexpected conditions” (Hollnagel et al., 2011). That is, 
resilience engineering approaches system safety from a slightly different 
perspective, which focuses on how systems absorb sudden disturbances, 
recover after disruptive events, and adapt to new conditions while 
maintaining acceptable performance (Yarveisy et al., 2020). Several 

studies have focused on resilience analysis to address safety of complex 
socio-technical systems (Patriarca et al., 2018). However, only a few 
contributions leverage resilience engineering to evaluate the perfor
mance of safety barriers (Bai et al., 2022; Sun et al., 2021; Thieme and 
Utne, 2017). In addition, no study has been proposed to address the 
safety of environmentally critical systems from a resilience perspective. 

DRA and resilience analysis rely on updatable models that can (i) 
grasp the system dynamics and (ii) consider the effects of unsafe in
teractions. However, the increasing complexity and interconnectedness 
of industrial plants prevent the development of rigorous modeling. For 
example, it is challenging to describe the dynamics of the acid gas 
neutralization mechanism occurring in an FGT plant through first 
principles due to the complexity of the phenomena involved (e.g., 
convection, diffusion in a solid porous media, reaction kinetics, ther
modynamic equilibria) and other external and internal factors that are 
difficult to control and monitor (e.g., thickness and reactivity of the filter 
cake, the composition of the flue gas, changes in the sorbent structure) 
(Antonioni et al., 2016; Dal Pozzo et al., 2018b). In this context, the 
emergence of digitalization in process industry can provide tools and 
methods to overcome such limitation (Kockmann, 2019). Thanks to the 
wealth of data typically available from plant sensors and measurement 
devices, it is possible to derive digital models of the pollutant removal 
processes of varying degree of complexity that can be used for process 
optimization purposes. Reliable data-driven models of different opera
tions in the WtE flue gas cleaning can be developed from representative 
datasets of past performance of the plant (Magnanelli et al., 2020; Pozzo 
et al., 2018) or compact test protocols (Bacci Di Capaci et al., 2022). Dal 
Pozzo et al. (2021) demonstrated how the use of a properly calibrated 
digital model reproducing the behavior of a real FGT system enables an 
extensive testing of alternative control strategies in a virtual environ
ment. The final application of the optimized control strategy tuned via 
the digital model to the real plant showed a significant reduction 
compared to the default control logic of the plant. The approach allowed 
to achieve such process control optimization with a minimal need for 
test runs at the real plant. 

Therefore, based on the above analysis of the relevant literature, the 
method developed in the present study introduces a dynamic evaluation 
of the barrier performance, allowing its update based on new data and 
knowledge becoming available during process operation. Moreover, a 
specific approach based on a digital model of the FGT system is devel
oped to allow testing the limits of system performance in a virtual 
environment, limiting the use of full-scale test-runs that may lead to 
hazardous conditions when approaching critical emission values. 
Finally, resilience analysis is applied to obtain a dynamic measure of the 
barrier performance. 

3. Methodology 

The approach proposed in this study is composed of six steps, which 
are outlined in Fig. 2 together with their inputs and outputs. The 
methodology relies on the integration between advanced risk manage
ment tools (e.g., hazard identification techniques) and innovative 
modeling methods (e.g., data-driven regression models). The former are 
used to define a set of critical scenarios and additional safety barriers 
that may prevent or mitigate such critical events. The latter allow the 
simulation of critical scenarios and of safety barrier performance 
without the need for field tests or first principles models. A detailed 
description of each step included in the methodology is given in the 
following. For the sake of clarity, the specific steps of the methodology 
addressing digital model development and safety barrier modeling are 
developed addressing the features of FGT systems in WtE, for which a 
case-study will be discussed in the following. 

3.1. Process layout definition and data collection 

In this step, relevant information on the process considered must be 
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collected and stored. The minimum set of data includes the following: 

1. Process Flow Diagrams (PFD) and Piping and Instrumentation Dia
grams (P&ID);  

2. Parameters of the control loops;  
3. Process data collected during different operating conditions. 

PFD and P&ID are required to determine the process layout and the 
control strategy. 

When considering a typical FGT section, this includes filters (i.e., 
fabric filters or electrostatic precipitators), reactors (e.g., spray driers, 
scrubbers, in-line reactors), injection devices (e.g., screw feeders), and 
measurement devices (e.g., thermocouples, flow meters, gas analyzers). 
An overview of the most used techniques for the reduction of acid gases 
is reported in Section 2.5.4 of the Best Available Techniques (BAT) 
Reference Document for Waste Incineration (European Commission, 
2019). 

In addition, it is critical to determine the control strategy adopted to 
regulate the injection of sorbent (e.g., feedback, feedforward, mixed 
hybrid control strategies). After the identification of the control strate
gies, the design parameters of controllers and actuators must be 
collected. That is, input-output models or, alternatively, transfer func
tions of controllers and actuators must be defined in terms of mathe
matical structure and parameters. This information may be provided by 

the plant personnel or may be available in technical manuals. 
Finally, process data from various operating conditions must be 

collected and stored. These data are required to build the data-driven 
model of the acid gas reduction mechanism. Therefore, it is critical to 
ensure that data are closely related to the reaction dynamics. With 
reference to Fig. 3, representing a general scheme of a FGT, the mini
mum set of process data may include:  

• The concentration of acid gases in the flue gas entering the system 
(stream number 1 Fig. 3), namely Cacid,in.  

• The concentration of acid gases in the clean gas leaving the system 
(stream number 3 in Fig. 3), namely Cacid,out .  

• The mass flow rate of the sorbent (stream number 2 in Fig. 3), namely 
ṁsorbent . 

Data come in the form of time series representing the evolution of 
process variables with time and may be stored in a matrix-like database 
D, whose columns represent process variables and rows indicate time 
instants. 

It is worth mentioning that the type and number of process variables 
available for collection and the total amount of observations largely 
depend on the specific application. Actually, different plants have 
different sensors and measuring points. However, the process variables 
mentioned above should be easy to obtain in most facilities (directly or 

Fig. 2. Overview of the methodology.  

N. Tamascelli et al.                                                                                                                                                                                                                             



Process Safety and Environmental Protection 181 (2024) 294–311

298

derived from other measured variables). 
The data collection process aims to capture the plant behavior during 

various operative conditions, including normal operations, distur
bances, and malfunctions. Thus, the dataset D should encompass a wide 
range of values for the process variables, maximizing information con
tent. It is thus crucial to adequately capture the variability and diversity 
of the process conditions to enable an accurate and robust model 
development. Sufficiently representative time-series should be avail
able, in the range of weeks up to month, depending on the features of the 
plant. Actually, most distributed control systems nowadays store long 
time series of process data (up to several years), thus providing sufficient 
information for the implementation of the method. 

Furthermore, process data should be sufficiently granular to allow a 
thorough investigation of the dynamics involved in the processes. An 
adequate level of granularity is essential to capture accurately the 
intricate temporal variations and interactions within the system. A 
minimum granularity, in terms of sampling time, of 1 min is usually 
adequate to ensure that the data capture the necessary temporal reso
lution, enabling a detailed analysis of the processes’ dynamics and 
facilitating accurate modeling. 

3.2. Development of a base plant model 

The base plant model (M ) is a digital model of system of concern. In 
the present study, the FGT section of a WtE was considered. The purpose 
of the model is to mimic the plant dynamics in terms of (i) control logic 
and actuators and (ii) acid gas reduction. In other words, the model 
takes as an input the concentration of acid gases in the flue gas at time t 
(i.e., Cacid,in(t)), and returns the concentration of acidic compounds in 
the clean gas at time t+1 (i.e., Cacid,out(t+1)): 

Cacid,out(t + 1) = M
(
Cacid,in(t)

)
(1) 

The digital model comprises several sub-models that mimic a specific 
plant function. For example, there may be sub-models to replicate the 
controller behavior, measuring instruments, the reaction dynamics, and 
so forth. The number and nature of the sub-models largely depend on the 
specific plant under consideration. The analysis of PFDs and P&IDs is 
essential to define the structure of M . In most plants, the digital model 
comprises at least three sub-models:  

• The sub-model g that mimics the actuator;  
• The sub-model f that mimics the controller action;  
• The sub-model h that mimics the reaction dynamics. 

In this case, Eq. (1) may be written as follows. 

Cacid,out(t + 1) = h
(
g(f (t) ),Cacid,in(t)

)
(2)  

Where f(t) represents the controller signal at time t, and g(f(t) ) indicates 
the manipulated variable at time t (e.g., ṁsorbent(t)). 

Data collected in step 1 of Fig. 2 allow the rigorous modeling of 
actuators and controllers. However, modeling the reaction dynamics 

through first principles is challenging. A viable solution to model the 
reaction mechanism is to rely on data-driven methods. Here, the idea is 
to leverage plant data collected in step 1 in Fig. 2 to build a data-driven 
model of the acid gas reduction mechanism. This model may take as an 
input (i) the concentration of acid gases entering the system and (ii) the 
sorbent flow rate, and return the concentration of acidic compounds in 
the clean gas leaving the system. 

The problem described in Eq. (2) belongs to the vast area of time- 
series forecasting (Box et al., 2015). Therefore, h may be considered a 
regression model that takes a set of observations as an input and returns 
the value of a target variable. The selection of the model h is a critical 
step to ensure adequate performance (Emmert-Streib and Dehmer, 
2019). However, a complete overview of available models and model 
selection techniques is unfeasible considering the vastity of the topic. 
The reader might refer to the literature on system identification (Ljung, 
2010, 1999) and data mining (Kotu and Deshpande, 2019; Torres et al., 
2020) to explore different modeling strategies. 

Regardless of the specific model, the development of h involves at 
least two steps: training and evaluation. Firstly, the dataset D (i.e., 
process data collected in step 1 of Fig. 2) is split into two parts, namely 

Dt and De, such that D =

⃒
⃒
⃒
⃒
Dt
De

⃒
⃒
⃒
⃒. Dt is used to train the model while De is 

used in the evaluation phase. Typically, Dt contains 80% of the obser
vations in D. Also, Dt may be conceptually divided into two parts. The 
first part (Xt) comprises the inputs of the model (i.e., Cacid,in(t) and 
ṁsorbent), the second part (Yt) comprises the variable that must be pre
dicted (i.e., Cacid,out(t+1)), such that Dt = |Xt Yt |. The same applies to De. 

Secondly, the model is trained. Training involves the optimization of 
the model’s internal parameters (θ) to minimize a loss function (l ). 

θ̂ = argmin
θ

[l (θ,Dtrain) ] (3) 

Where θ̂ represents the optimized model’s parameters. Some widely 
used loss functions include the Sum of Squared Residuals (SSR), the 
Mean Squared Error (MSE), Mean Absolute Error (MAE), Hubert Loss, 
and Log-cosh loss (Wang et al., 2022). As an example, if SSR is used, the 
loss function is: 

l (θ,Dtrain) =
∑N

i=1
(yt(t + 1) − h(xt(t), θ ) )2 (4) 

Where yt(t+1)ϵYt, N represents the number of observations in Dt, 
and xt(t) ∈ Xt. 

After training, the performance of the model must be evaluated using 
a new set of data. To this end, the model is used to perform predictions 
on the observations included in De. Eventually, performance indicators 
are calculated to quantify the prediction performance. For example, the 
Root Mean Squared Error (RMSE) may be calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
M
∑M

i=1
(ye(t + 1) − h(xe(t), θ̂ ) )

2

√

(5)  

Where, ye(t+1)ϵYe, M represents the number of observations in De, and 
xe(t) ∈ Xe. 

A user-defined acceptance criterion may be defined to discriminate 
between acceptable and non-acceptable performance. For example, if 
the RMSE is smaller than a threshold, the model h may be considered 
adequate to simulate the reaction dynamics. 

It is worth mentioning that the procedure described above is inten
ded to be a quick overview of the steps required to train and evaluate the 
model. It is not meant to be the best strategy. For example, the so-called 
holdout method is described above to keep the description short. The 
reader may adopt more advanced evaluation methods, such as holdout 
with validation or cross-validation (Raschka, 2018). Also, Eq. (2) as
sumes that the input to the data-driven model are inlet concentration of 
acid gases and sorbent mass flow rate. Nevertheless, the method may be 
promptly adapted to consider more input data, such as the flue gas 
temperature, the flue gas volumetric flow rate, the pressure drop across 

Flue gas 
treatment
section

1 3

2

̇

,

̇

,

̇

Fig. 3. General schematization of a flue gas treatment section for acid 
gas removal. 
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the filters, and so forth. 

3.3. Identification of critical scenarios and additional safety barriers 

The FGT section is analyzed to identify (i) critical scenarios and (ii) 
recommendations for additional safety barriers. In this context, critical 
scenarios are events that have the potential to cause a significant in
crease in the acid gas concentration downstream of the treatment sec
tion. In other words, the analysis aims at answering the following 
questions: 

1. Which critical events have the potential to cause a significant in
crease in acidic compounds in the clean gas leaving the treatment 
section (stream 3 in Fig. 3)?  

2. Which additional safety barriers may prevent or mitigate critical 
events? 

Traditional hazard identification techniques, such as HazOp, HazId, 
analysis of historical data, what-if analysis, and brainstorming (Mannan, 
2005), may be used to answer these questions. Data collected in step 1 in 
Fig. 2 (e.g., PFD, P&ID) and the operational experience of plant 
personnel are the starting point of the analysis. 

The selection of the actual hazard identification technique to be 
applied is guided by several factors, such as time constraints, objectives 
of the analysis, and the required level of detail (International Organi
zation for Standardization, 2019; Mannan, 2005). Structured techniques 
(e.g., HazOp) provide more information and a deeper understanding of 
the hazards. On the other hand, unstructured methods (e.g., brain
storming) are faster and cheaper, but a higher level of expertise may be 
required to ensure the quality and completeness of results. 

Often, the combined use of multiple hazard identification techniques 
leads to a more comprehensive risk identification (International Orga
nization for Standardization, 2019). However, regardless of the specific 
techniques adopted, the results of the analysis should provide:  

• A list of critical events, along with their causes and consequences on 
acid gas emission at stack;  

• A list of recommended safety barriers. 

Results may be condensed in a bow-tie diagram to provide a concise 
visual representation of critical events and safety barriers (CCPS and 
Energy Institute, 2018). The top event may be formulated as a “signifi
cant increase in the acidic compound concentration in the clean gas”. 
Among the end-point events on the right-end part of the diagram 
(consequences) specific possible outcomes of the top event should be 
listed (e.g., “half-hourly emission limit values exceeded”), while the 
leftmost part shows the causes of the top event. Recommended safety 
barriers should be included in the bow-tie to clarify their role in pre
venting or mitigating the critical event. 

3.4. Base model upgrade 

The base plant model developed in step 2 of Fig. 2 is designed to 
mimic the plant response during normal operating conditions. There
fore, modifications may be needed to simulate the effect of critical 
events and additional safety barriers identified (step 3 in Fig. 2). 

Depending on the nature and extent of modifications, there are two 
viable solutions to update the base plant model. These include:  

1. First principles modeling;  
2. Data-driven modeling using data from test-runs. 

If the modifications are associated with well-known systems where 
first principle models are available, it is possible to employ rigorous 
modeling techniques to incorporate the behavior of critical events and 
safety barriers. For example, if a critical event involves the failure of a 

control loop, the equations governing the controller can be modified to 
account for the faulty behavior. 

However, when the effect of critical events and additional safety 
barriers is uncertain and cannot be accurately described using rigorous 
models, data-driven methods may be used. Data from different facilities 
that have experienced similar failures or implemented similar safety 
barriers may be used to this aim. Clearly enough, if limited data are 
available, carrying out specific test runs on pilot facilities or on the 
actual plant may be considered as an alternative in case the safe oper
ation of the system may be granted. The reader is referred to previous 
studies (Bacci Di Capaci et al., 2022; Dal Pozzo et al., 2021) for details 
and discussion on the design of data collection campaigns for WtE flue 
gas cleaning systems. 

Regardless of the particular updating procedure, the simulation of 
critical events and safety barriers necessitates the modification of 
existing sub-models or the development of new sub-models. This process 
enables the creation of an upgraded model, denoted as M ′′, that can (i) 
simulate the effect of the critical events on the original gas treatment 
system and (ii) simulate the system response after the installation of all 
(or part of) the recommended safety barriers. 

3.5. Simulation of critical scenarios and safety barriers 

The upgraded model M ′′ is used to simulate the critical events 
identified in step 3 of the methodology (see step 5 in Fig. 2). Two distinct 
simulation runs are performed. 

The first run aims at evaluating the response of the original gas 
treatment system during critical scenarios. That is, all the barrier sub- 
models are excluded in this first run of simulations. In this phase, each 
critical event identified in step 3 of Fig. 2 is simulated to obtain the 
trends of Cacid,out(t) and ṁsorbent(t), describing the original plant response 
in the presence of critical disturbances. This first set of simulations is 
used as a benchmark to evaluate the improvements due to the imple
mentation of the additional safety barriers. 

The second group of simulations focuses on the system response after 
the installation of the safety barriers identified in step 3 of the procedure 
(see Fig. 2). To this end, the bow-ties produced are analyzed to identify 
relevant safety barriers for each critical event considered. Safety barriers 
are selected based on their ability to affect the operation of the specific 
critical event under consideration. As a result, a set of safety barriers is 
selected for each critical event. The upgraded plant model is then used to 
simulate the effect of safety barriers considering that only part of the 
barriers may be active during a critical event. That is, if a critical event is 
associated with a set of N safety barriers, the number of simulations 
required is 2N − 1. In each simulation, the model returns Cacid,out(t) and 
ṁsorbent(t), which are used to quantify the improvements due to the 
implementation of the safety barriers. 

3.6. Evaluation and comparison of safety barriers 

The output of the simulations provides a dynamic picture of the 
system behavior with different barrier configurations and during various 
critical events. These results can be used to evaluate the effectiveness of 
safety barriers, in both absolute and relative terms. In this context, the 
general definition of effectiveness introduced in Section 2 has to be 
declined for the specific problem of emission control as the ability of a 
safety barrier to ensure that the system complies with ELV. A set of in
dicators is built to evaluate the barrier effectiveness and allow for a 
quantitative comparison of alternatives. Resilience analysis is used to 
quantify the ability of the system to withstand external disturbances and 
to evaluate the improvements resulting from the installation of addi
tional safety barriers. 

Following the generic definition of resilience provided by Hollnagel 
et al. (2010), the resilience of the gas treatment system may be defined 
as its ability to fulfill its purpose in a variety of adverse conditions. In the 
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specific context of acid gas removal, the purpose of the system is to 
comply with ELV, and the adverse conditions refer to the critical scenarios 
identified in step 3 of the method (see Fig. 2). 

The literature offers many examples of quantitative resilience met
rics (Hosseini et al., 2016). Most of them rely on a time-dependent 
function φ(t) that reflects the performance of the system. This perfor
mance function (also called quality function) ranges between zero and 
one. The performance is zero if the system is in a completely degraded 
state or, in other words, if it cannot fulfill its purpose. On the contrary, if 
the system performs as expected, the performance is one. 

After a critical event, the system performance degrades, reaches a 
minimum, and eventually increases as mitigative actions restore normal 
operations, as exemplified in Fig. 4. 

The mathematical formulation of the performance metric depends on 
the problem under assessment. The performance of the treatment system 
with respect to the acid compound i (i.e., φi(t)) may be a user-defined 
function that satisfies the following requirements:  

• φi(t) = 0 if the half-hourly concentration of i exceeds the ELV; 
• φi(t) = 1 if the absolute deviation between the half-hourly concen

tration of i and the controller setpoint does not exceed 10%. 

The user can choose the type of function expressing the performance 
based on the problem requirements. The criteria for the selection of 
performance functions are discussed extensively elsewhere (Hosseini 
et al., 2016; Tran et al., 2017). In the case-study introduced in the 
following, an exponential function was used to penalize large deviations 
from the controller setpoint (see Section 4). 

Given the performance, the so-called Resilience Loss (RL) can be 
used to quantify the loss of resilience caused by a critical event. 

RLi =

∫ tf

te
[1 − φi(t) ]dt (6)  

Where RLi indicates the Resilience Loss with respect to the acidic com
pound i, te represents the time of occurrence of the critical event, and tf is 
the recovery time, as indicated in Fig. 4. The Resilience Loss ranges 
between zero and (tf − te). Values close to zero indicate that the system 
has not been significantly affected by the critical event. 

A performance function and a Resilience Loss can be calculated for 
each acid gas considered and each combination of critical scenarios and 
safety barriers. The performance metric φi(t) reflects the system dy
namics during the critical scenarios, while RL represents a quantitative 
indicator that reflects the system capacity to withstand internal or 
external disturbances. The comparison of φi(t) and RLi among alterna
tive configurations and to the benchmark simulations allows a quanti
tative comparison between alternative process configurations and the 
identification of the best-performing safety barriers. 

It is worth mentioning that other relevant features of the safety 
barriers, namely their availability and level of confidence, which are 
related to the reliability and availability of mechanical components and 
not to their process performance, are considered out of scope of the 
present analysis. 

4. Case study 

A full-scale case study was defined to demonstrate the application of 
the methodology and the potential use of the results obtained. The case 
study concerns an acid gas removal stage of the FGT section of Municipal 
Solid Waste Incinerator located in northern Italy. 

In WtE operation, the concentrations of hydrogen chloride (HCl) are 
typically higher of at least an order of magnitude than those of SO2 and 
HF (Dal Pozzo et al., 2023a). Hence, for the sake of simplicity, in the 
case-study only HCl removal will be considered, since in the current 
practice fulfilling the ELV of HCl is more critical. 

A process flow diagram of the specific FGT system considered in the 

case-study is reported in Fig. 5. As shown in the Fig. 5, the flue gas 
(stream 1 in Fig. 5) enters an entrained flow-reactor where a solid sor
bent (hydrated lime - stream 9) is injected into the flue gas. The 
entrained-flow stream of gas and solids (stream 2) enters the bag filter F- 
01, where solids (stream 4) are removed from the clean gas (stream 3). 
HCl in the gas stream is neutralized according to the following reaction: 

2HCl+Ca(OH)2 ↔ CaCl2 + 2H2O (7) 

The gas-solid reaction takes place in the entrained flow reactor (R- 
01) and in the cake formed on the filter bags (F-01). 

The sorbent mass flow rate is controlled by means of a simple feed
back control loop. Specifically, a PI controller (AIC 02) is used to 
regulate the speed of the feeder motors (M) based on the concentration 
of acidic compounds in the clean gas leaving the system (stream 3). Two 
screw feeders are installed in parallel. During normal operations, only 
one of the two screw feeders operates (T-01), while the other is used as a 
backup during maintenance or in case of failure of the main feeder. Low- 
speed alarms (SAL) are installed to detect a blockage or failure of the 
feeder, allowing a swift start-up of the backup feeder by the control 
room operator. The configuration shown in Fig. 5 is among the solutions 
most frequently installed for acid gas removal in European incinerators 
according to recent surveys (Beylot et al., 2018; Dal Pozzo et al., 2018a) 
and is listed among the BAT for acid gas treatment (European Com
mission, 2020). Thus, the case-study introduced is highly representative 
of the current industrial practice. 

The methodology outlined in Section 3 was applied to the analysis of 
the case study. First, the relevant documentation concerning the selected 
facility was collected, as indicated in step 1 of the methodology (see 
Fig. 2). Specifically, the plant personnel provided PFDs, P&IDs, Oper
ating and Control Philosophy, and details on the controller and actuator 
parameters. Furthermore, a data collection campaign was designed and 
performed to extract relevant process data from the plant Distributed 
Control System (DCS). In particular, the following process variables 
were collected with a sampling interval of 30 s:  

• Volumetric flow rate, temperature, and HCl concentration of the flue 
gas from the furnace (stream 1 in Fig. 5); 

Fig. 4. Typical behavior of the FGT system following a critical event.  
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• Volumetric flow rate, temperature, and HCl concentration of the 
clean gas (stream 3 in Fig. 5);  

• Mass flow rate of the sorbent (stream 9 in Fig. 5). 

A total of four days of observations were collected and stored in 
tabular format. The collected data were selected to maximize the in
formation stored in data, ensuring the adequacy and significance of the 
collected data. Matlab Simulink was used to develop the base plant 
model. Fig. 6 shows the model structure as it appears in the simulation 
environment. Specific sub-models were developed for each of the 
equipment items present in the process flow diagram of the plant section 
considered, shown in Fig. 5. 

The input to the base plant model is the molar flow rate of HCl 
entering the gas treatment system (stream 1 in Fig. 6). The “DCS” block 
mimics the controller behavior (i.e., AIC-02 in Fig. 5), returning the 
controller command (signal 2 in Fig. 6) based on the outlet HCl con
centration (signal 5 in Fig. 6). The “Screw feeder” block mimics the 
actuator behavior. It converts the command from the controller into the 
sorbent mass feed rate injected in the reactor (stream 3 in Fig. 6). 
Finally, the “Reaction” block represents the data-driven model of the 
acid neutralization mechanism. Specifically, the model used in this 
study is a linear Autoregressive with Extra Input model (ARX). The 

“Reaction” block takes as an input the sorbent feed rate and the molar 
flow rate of HCl in the flue gas (stream 1 in Fig. 6), and returns the molar 
flow rate of HCl in the clean gas (stream 4 in Fig. 6), which is eventually 
converted into the concentration of HCl leaving the system (signal 5 in 
Fig. 6). Further details on the base plant model used in this study are 
reported elsewhere (Dal Pozzo et al., 2021). 

HazOp analysis has been used to identify critical events that may 
lead to a significant increase in HCl emissions and the safeguards and/or 
safety barriers to be installed. 

Although the list of critical events identified through the HazOp 
represents a detailed description of the potential hazards present in the 
system, some of them may not be credible or may have a marginal 
impact on HCl emissions. Provided that quantitative information on the 
causal analysis of FGT systems failure is unavailable in the open litera
ture, an expert elicitation procedure was adopted to complement the 
HazOp analysis and validate the most relevant process deviations. 
Expert surveys have been recognized in literature as a relevant tool for a 
preliminary semi-quantitative evaluation of hazards and related safety 
barriers (Argenti et al., 2017; Hokstada et al., 1998; Misuri et al., 2020). 
An ad-hoc survey was prepared and administered to a group of experts 
with heterogeneous and relevant backgrounds (WtE plant operators, 
technology suppliers, consultants, academics) that were invited to 

Fig. 5. Process Flow Diagram of the FGT system for acid gas removal considered in the case-study. Red, green, and blue streams respectively indicate the flue gas 
entering the FGT section, the sorbent feed, and the compressed air used to inject the sorbent. 

Fig. 6. Translation of the reference FGT system in Fig. 5 into the simulation environment. Items h, g, and f respectively indicate the submodels that mimic the 
reaction mechanism, the screw feeders, and the control logic. Dashed lines indicate signals and continuous lines represent process streams. 
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participate anonymously. Considering the specific process scheme in 
Fig. 5, the experts were asked about the likelihood that given process 
deviations could trigger a loss of control event, resulting in a temporary 
overrun of the emission setpoint at stack (sufficient or not to exceed the 
half-hour emission limit value for the plant). Next, they were asked 
about the likelihood that given prevention or mitigation measures could 
avoid such loss of control events. The experts were able to express their 
answers on a scale 1–5, corresponding to a verbal scale of likelihoods of 
occurrence from "Extremely unlikely" (i.e., 1) to "(Virtually) certain" (i. 
e., 5). The transcription of the questionnaire, along with general data 
collected on the background of survey participants, are reported in the 
Supplementary Material. The results of the survey supported the iden
tification of the critical scenarios and safety barriers considered for 
implementation, as discussed in Section 3.3. 

Following the identification of critical scenarios and safety barriers, 
the base plant model was upgraded (step 4 in Fig. 2), and simulations 
were performed to evaluate the system response with and without the 
recommended safety barriers (step 5 in Fig. 2). Specifically, two sets of 
simulations were executed utilizing the upgraded plant model. The first 
set of simulations models the behavior of the original FGT system during 
critical scenarios in the absence of any additional safety barriers. The 
second set of simulations replicates the system response to critical events 
after the installation of safety barriers. At the end of each simulation, the 
upgraded plant model returns CHCl,out(t) the concentration of HCl in the 
clean gas leaving the plant during different critical events and under 
different system configurations (i.e., with or without safety barriers). 

After the simulations, the results were analyzed to evaluate the 
consequences of the critical events and the benefits derived from the 
installation of safety barriers. Specifically, the following performance 
metric was used to assess the performance of the system selected for the 
case-study: 

φHCl =

{
1 if CHCl,out(t) ≤ 7.15 mgHCl

/
Nm3

A • exp
(
− B • CHCl,out(t)

)
if CHCl,out(t) > 7.15 mgHCl

/
Nm3

(8) 

Where CHCl,out(t) indicates the half-hourly HCl concentration at stack 
at time t, and 7.15 mgHCl/Nm3 represents the controller setpoint 
increased by 10% to allow a limited oscillation of the controlled vari
able. The parameters A and B have been estimated through least squares 
minimization with the following boundary conditions: φ(7.15) = 1 and 
φ(10) = 0, where 10 mgHCl/Nm3 represents the ELV. The fitting pro
cedure leads to A = 3.360 • 107and B = 2.424, which implies φ(10) =

1 • 10− 3. The formulation of the performance metric was inspired by the 
understanding that the system ability to sustain external disturbances 
diminishes quickly as the concentration of HCl approaches the ELV. 
Therefore, the performance metric is designed to degrade exponentially 
after CHCl,out(t) exceeds the allowed level of oscillations and to approach 

0 when CHCl,out(t) reaches the ELV. 
Based on the above defined performance function, the resilience was 

calculated for each simulated scenario using Eq. (6), enabling quanti
tative assessment and comparison of safety barriers. 

5. Results 

In the following, the application of the methodology outlined in 
Section 3 to the case study introduced in Section 4 is illustrated. 

5.1. Critical scenarios and safety barriers 

The results of HazOp analysis, used to identify critical events that 
may lead to a significant increase in HCl emissions and the safeguards 
and/or safety barriers to be installed, have been condensed into a bow- 
tie diagram, which is shown in Fig. 7. It is worth mentioning that the 
bow-tie has been simplified for visualization purposes. The complete 
bow tie is reported in Figure A1. 

The results of the expert survey are shown in Fig. 8. Specifically, 
Fig. 8.a reports the results related to the credibility of the critical events 
identified by the HazOp. 

It should be remarked that the interviewees generally considered 
resilient the system in Fig. 5, as only three process deviations (inlet HCl 
spike +200%, critical waste composition, and clogging of reactant 
transport line) were deemed likely to cause a temporary overrun of 
emission setpoint, and only a single deviation (clogging of reactant 
transport line) was considered likely to cause an overrun severe enough 
to exceed the half-hour ELV. Among process deviations related to inlet 
flue gas composition, spikes of HCl were considered significantly more 
likely. This finding is in agreement with the high HCl to SO2 ratio 
typically found in waste-to-energy flue gases (Dal Pozzo et al., 2016) and 
supports the assumption to consider only HCl in the assessment (see 
Section 4). The clogging of the reactant transport line was considered 
the most critical process deviation, followed by failure/blockage of the 
screw feeder. However, it is worth noticing that an obstruction of the 
screw feeder was identified by the experts as the most frequent failure 
experienced in these systems (see section S2 of the Supplementary 
Material). 

Combining the information coming from the HazOp analysis and the 
expert survey, two critical scenarios were selected for the analysis:  

• Critical scenario 1: spike in inlet HCl concentration;  
• Critical scenario 2: failure of the screw feeder for reactant delivery. 

The survey allowed gathering information also on the effectiveness 
of possible safety barriers in the critical loss of control of acid gas 
emission scenarios discussed above. As shown in Fig. 8, the experts were 

Fig. 7. Simplified bow-tie diagram of the reference FGT system considered in the case-study.  
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1.0 2.0 3.0 4.0 5.0

Inlet HCl spike (+100%)

Inlet HCl spike (+200%)

Inlet SO2 spike (+100%)

Inlet SO2 spike (+200%)

Insufficient waste mixing in waste pit

Critical waste composition

Clogging of reactant transport line

Failure/blockage of screw feeder

Failure of flue gas measurement system

Level (1 = least likely, 5 = most likely)

1.0 2.0 3.0 4.0 5.0

Implementation of safety logics

Intervention on fabric filter settings

Addition of reactant injection in the furnace

Recirculation of solid residues

Level (1 = least likely, 5 = most likely)

a)

b)

How likely is it to cause … ?
Temporary overrun of emission setpoint (exceeding half-hour ELV)
Temporary overrun of emission setpoint (not exceeding half-hour ELV)

How likely is it to reduce … ? Occurrence of loss of control events

Fig. 8. Results obtained from the expert survey concerning: a) the likelihood of the critical process deviations identified by HazOp to generate loss of control events; 
b) the likelihood of the listed safety barriers to mitigate loss of control events. Numerical scale (1− 5) to be interpreted as in section S2 of the Supplementary Material. 
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asked to evaluate a set of safety barriers, assessing their likelihood to 
reduce the occurrence of loss of control events and to reduce the con
sumption of reactant required to mitigate such events. The safety bar
riers considered in the survey are listed in Table 1. 

The first two safety barriers in Table 1 share the common rationale of 
increasing the residence time of the solid reactant in the system, hence 
inducing higher solid conversion and increasing HCl removal at equal 
reactant consumption (Chibante et al., 2010). Although these in
terventions can help avoiding an excessive consumption of reactants in 
the control of HCl emissions, the experts consider these systems scarcely 
effective in reducing the frequency of loss of control events. 

Higher scores in terms of likelihood to reduce the occurrence of loss 
of control events were given to measures that increase redundancy in the 
FGT system: addition of a pre-treatment HCl removal stage in the 
furnace (mean score 3.9), and implementation of safety logics (mean 
score 3.8). The former class of measures is aimed at controlling the ef
fects of high acid gas loads from waste combustion (e.g., critical scenario 
1 identified in Section 5.1), while the latter is mainly focused on miti
gating the effects of failures of system components (e.g., critical scenario 
2 identified in Section 5.1). Therefore, a safety barrier for each of the 
two classes of interventions was selected as an example for the 
simulation. 

In the case of critical scenario 1, HCl peaks from waste combustion 
can effectively be mitigated by furnace sorbent injection (Biganzoli 
et al., 2015). The injection of dolomitic lime in the furnace, a widely 
applied retrofit solution to improve FGT performance (Dal Pozzo et al., 
2023b), was considered for application. 

In the case of critical scenario 2, the installation of a safety logic for 
the automatic activation of the backup feeder by a low-speed alarm was 
considered to mitigate the possible failure of the main screw feeder of 
the solid sorbent. It was assumed that such configuration can activate 
the backup screw feeder in 15 s, compared to at least 5 min in case of a 
manual intervention by plant operators, which is considered as the base 
case. 

5.2. Base model upgrade 

As discussed in Section 3.4, some modifications were introduced in 
the base plant model described in Section 4 in order to simulate the 
critical events and the additional safety barriers. 

In critical scenario 1, a single pulse disturbance was added to signal 1 
in Fig. 6 to simulate the critical scenario. The pulse was considered to 

start 35 min after the beginning of the simulation, and to have a dura
tion of 15 min and an amplitude of 3300 mgHCl/Nm3, which represents a 
deviation of 5.5 times the average HCl concentration levels in the flue 
gas of the reference plant. 

As discussed above, a safety barrier consisting in dolomitic lime in
jection in the furnace was introduced in the model to control the HCl 
concentration in the flue gas entering the FGT system in the presence of 
HCl spikes. According to Dal Pozzo et al. (2020), the following corre
lation can be used to link the dolomitic sorbent feed rate and the cor
responding HCl conversion: 

χ =
SR1.38 − SR
SR1.38 − 1

(9) 

where χ is the conversion of HCl and SR is the Stochiometric Ratio, 
representing the ratio between the actual feed rate of dolomitic sorbent 
and its theoretical demand to achieve full HCl removal according to 
stoichiometry (Vehlow, 2015). The exponent in Eq. (9) is an empirical 
parameter derived from tests at WtE facilities (Dal Pozzo et al., 2020). 
This correlation can be used to obtain the final HCl concentration in the 
flue gas leaving the furnace after the activation of the dolomitic lime 
injection system. However, it does not reveal the dynamic of the phe
nomenon. Therefore, a simplified data-driven approach was followed to 
obtain the time trend of the HCl concentration in the flue gas after the 
activation of the safety barrier. Specifically, non-linear least squares 
were used to fit 4th-order polynomial functions to experimental data. 
These data consist of 10 experimental runs of dolomitic lime injection 
performed at different SR values (see Dal Pozzo et al., 2020). The 
following procedure was used to obtain the optimal fitting:  

1. Experimental data were divided into three distinct groups based on 
their average SR value. Selected SR values are SR = 1, SR = 1.8, and 
SR = 2.5.  

2. Experimental data were scaled in the range (0, 1) through min-max 
normalization. 

ĈHCl(t) =
CHCl(t) − min(CHCl(t) )

max(CHCl(t) ) − min(CHCl(t) )
(10)  

Table 1 
List of the safety barrier types considered in the survey.  

Type of safety barrier Description 

Intervention on fabric filter 
settings 

Increase of the maximum allowable pressure drop 
at the fabric filter. Effect: fabric filter cleaning is 
stopped, allowing longer residence time of the reactant 
on filter bags and a temporary increase of reactivity in 
the system. 

Recirculation of solid residues Re-injection upstream of the fabric filter of part of 
the process residues collected by the filter. Effect: 
solid process residues, partially unreacted, which are 
normally sent to disposal, are recirculated, increasing 
the overall sorbent-to-acid gas ratio in the system. 

Implementation of safety 
logics 

Implementation of improved safety logics and 
backup safety systems (e.g., safety logics activating 
start-up of backup elements). Effect: failure of any 
element in the control loop triggers the intervention of a 
backup system that maintain the required feed rate of 
sorbent: e.g., automatic activation of backup sorbent 
feeders in case of fault of the primary feed control loop. 

Addition of reactant injection 
in the furnace 

Pre-treatment of flue gas in an additional reaction 
stage upstream of the existing FGT system. Effect: 
reactant injection in an additional injection point 
upstream of the FGT system is activated, curtailing 
spikes of acid gases coming from the combustion 
chamber before they enter the FGT system.  

Fig. 9. Effect of the safety barrier considered (dolomitic lime injection) on the 
HCl concentration in critical event 1. The concentration of HCL considering two 
different configurations of safety barrier (SR 1.8 and SR 2.5) is compared to the 
baseline concentration in the absence of safety barriers. 
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Where CHCl(t) represents the HCl concentration in the flue gas 
leaving the furnace after the activation of the sorbent injection sys
tem, and ĈHCl(t) indicates the scaled concentration.  

3. Scaled experimental data that belong to the same SR group were used 
to fit 4th-order polynomial functions through non-linear least 
squares. 

ĈHCl(t) = a • t4 + b • t3 + c • t2 + d • t + e (11)  

where a,b, c,d, and e represent the function parameters. 
The fitting procedure led to the parameters shown in Table A1, while 

the resulting fittings of experimental data is shown in Figure A2 in Ap
pendix 2. Now, the following equations are available: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CHCl(t) − min(CHCl(t) )
max(CHCl(t) ) − min(CHCl(t) )

= a • t4 + b • t3 + c • t2 + d • t + e

SR1.38 − SR
SR1.38 − 1

= 1 −
Cf

C0

(12)  

where Cf is the final HCl concentration and C0 is the initial concentra
tion. It is worth noting that the second equation is Eq. (9). Considering 
that in a simulation SR is user-defined, the parameters a, b, c, d, and e are 
known. Also, assuming that C0 = max(CHCl(t) ) represents the HCl con
centration when the furnace injection system starts and Cf =

min(CHCl(t) ) indicates the HCl concentration when the injection system 
stops, Eq. (12) can be used to calculate CHCl(t) and, therefore, to model 
the barrier dynamics. 

Fig. 9 shows the effect of the activation of dolomitic lime injection on 
critical event 1 (a 15-minute-long spike of HCl). The red curve in the 
figure (i.e., SR = 0) represents the HCl concentration in the flue gas 
entering the FGT system during critical scenario 1 when no safety barrier 
is activated. The orange and green lines show the system behavior after 
the installation of the safety barrier, which is activated two minutes after 
the beginning of the peak and stays active until the end of the distur
bance. Two different barrier configurations were investigated: SR = 1.8 
(orange line) and SR = 2.5 (green line). 

With respect to critical event 2, the failure of the screw feeder was 
simulated as a period of variable duration in which the sorbent mass 
flow rate (stream 3 in Fig. 6) is set to 0 kg/h. This is achieved by 
modifying the sorbent mass flow rate as follows: 

ṁsorbent(t) =

{
ṁsorbent(t) if t < tf ∨ t > tb

0 if tf ≤ t ≤ tb
(13)  

where tf = 45 min indicates the time of failure and tr represents the time 
of activation of the backup screw feeder. As mentioned in Section 5.1, in 
the base case it was assumed that the activation of the backup feeder is 
manual. A time window of 5 min (tb = tf + 300 s) seems plausible for 
operators to acknowledge the alarm, interpret the situation, and take 
action. 

The overall effect of the specific safety barrier identified for this 
event (automatic activation of the backup feeder) is to reduce the time 
required to activate the backup screw feeder. This behavior can be 
simulated by reducing tb in eq. (13). A response time of 15 s was deemed 
sufficient for the Safety Instrumented System to activate the backup 
feeder by plant personnel and instrumentation experts (tb = tf + 15 s) 
when the safety barrier is present. 

5.3. Simulation of critical scenarios 

Two sets of simulations were performed, as mentioned in Section 3.5. 
The first group of simulations evaluates the response of the original FGT 
system during critical scenarios (i.e., with no additional safety barrier). 
The second group of simulations aims to assess the system response after 
installing the safety barriers. 

The results of the simulations of the first critical scenario and safety 
barrier are shown in Fig. 10a. The red line represents the HCl concen
tration in the clean gas leaving the original FGT system during the first 
critical event (i.e., HCl peak). The orange and green lines indicate the 
response of the system in case of activation of the dolomitic lime 
injection. 

The system performance in the second critical scenario with and 
without considering the safety barrier is shown in Fig. 10b. Also in this 
case, the red line represents the response of the original system, while 
the green line indicates the system response with automatic activation of 
the backup screw feeder. 

5.4. Assessment and comparison of safety barriers 

In order to allow the qualitative and quantitative comparison of al
ternatives, the results of the simulations were used to compute the 

Fig. 10. Simulation of critical scenarios with and without safety barriers: a) critical scenario 1 with or without dolomitic lime injection, b) critical scenario 2 with or 
without automatic activation of the backup screw feeder. 
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resilience indicators defined in Section 3.6: the performance metric 
(φ(t)) and the Resilience Loss (RL). 

The time-trend of the performance indicator for the first critical 
event and safety barrier is shown in Fig. 11a. The red line represents the 
performance of the original system, and the orange and green lines 
indicate the performance after the installation of the dolomitic lime 
injection. 

Similarly, the results of the second critical event and safety barrier 
are shown in Fig. 11b. It is worth mentioning that in critical event 2 the 
performance of the original system (i.e., the red curve in Fig. 11b), 
defined by Eq.(8), drops to 10− 60, with HCl concentrations significantly 
higher the ELVs. In order to increase the readability of the plot in 
Fig. 11b, the lower limit of the y-axis was set at 10− 5. The values 
calculated for the Resilience Loss in each scenario are summarized in  
Table 2. 

6. Discussion 

In several industrial applications, the current practice concerning the 
optimization of full-scale industrial processes is highly empirical and 
based on test-runs. However, as discussed above, this approach could 
hardly be applied to investigate the system performance in the vicinity 
of emission limits due to the risk of exceeding emission limits during the 
tests and to the negative consequences related to such events. As shown 
in Sections 5.3 and 5.4, the use of a digital model combined to hazard 
identification techniques allowed the identification and dynamic simu
lation of critical events and, more importantly, the performance 
assessment of safety barriers. In particular, the results obtained show the 
possibility of simulating the dynamic behavior of environmentally 
critical systems with and without safety barriers, providing a quantita
tive feedback on the increase in the operability, environmental safety 
and resilience of the system deriving from the installation of such 

barriers. Thus, the proposed approach can offer to plant managers, 
control room operators, and safety practitioners a crucial support in the 
decision-making process for the installation of safety barriers. 

When considering the specific results obtained in the case-study, it is 
clear that in the case of the first critical event identified, as shown in 
Fig. 11a, the original system cannot withstand the deviations consid
ered. Actually, the performance (red line) decreases rapidly after the 
critical event and reaches a minimum of 2•10− 4, which indicates that 
the system could not comply with the ELVs. The performance curves 
obtained at SR = 1.8 (orange) and SR = 2.5 (green) show that a safety 
barrier consisting in a dolomitic sorbent injection system in the furnace 
has the potential to mitigate the first critical scenario. In fact, the min
imum performance increases if larger SRs are used. Also, the safety 
barrier ensures that the minimum performance occurs earlier, which 
indicates a faster recovery. However, the results also show that a sto
chiometric ratio equal to 1.8 (orange line) is insufficient to avoid 
exceeding emission limits. Indeed, the system performance briefly 
crosses the threshold of 1•10-3− 3 and reaches a minimum of 8.57•10− 4. 
On the contrary, the system performance obtained with SR equal to 2.5 
(green line) reaches a minimum of 5•10− 3, which implies that the 
emission limit has never been exceeded. This finding confirms that the 
proposed approach can not only evaluate the dynamic response of safety 
barriers, but also guide the optimal tuning of their configuration. It 
should also be remarked that carrying out test-runs at the existing fa
cility to explore system behavior in the conditions addressed would have 
been hardly feasible, since compliance to ELVs during tests is not 
granted. 

Regarding the second critical scenario, the original system undergoes 
a complete degradation of performance during the whole critical event 
(red line in Fig. 11b). On the contrary, the automatic startup of the 
backup feeder ensures a minimum performance of 6•10− 3, which gua
rantees compliance with the ELVs. 

The analysis of the performance metrics (Fig. 11) shows that the 
proposed safety barriers can effectively mitigate the critical scenarios 
considered in the case-study carried out. The Resilience Loss may be 
used to quantify the improvements brought by the additional safety 
barriers considered for implementation. Table 2 reveals that the dolo
mitic lime injection increases the system resilience by 21% (SR = 1.8), 
and by 33% (SR = 2.5) respectively when considering the first critical 
scenario. Similarly, the second safety barrier improves system resilience 
by 76%. It must be stressed these results do not suggest that the second 
safety barrier should be preferred over the first one. Actually, each safety 

Fig. 11. System performance as defined in Eq. (8) for a) critical scenario 1 with or without dolomitic lime injection and b) critical scenario 2 with or without 
automatic activation of the backup screw feeder. Dashed threshold line corresponds to ELV HCl concentration. In panel (b), the values of performance for the manual 
case fall below the lower limit for y-axis was set at 10− 5 to allow readability. 

Table 2 
Resilience loss for the two critical scenarios with and without safety barriers.  

Critical scenario Safety barrier RL [s] 

1 No  1651 
1 Dolomitic lime injection (SR=1.8)  1302 
1 Dolomitic lime injection (SR=2.5)  1103 
2 No  2072 
2 Automatic backup feeder  487  
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barrier is installed to deal with a specific event, which means that the 
second safety barrier does not affect the first critical scenario and vice 
versa. Performance comparison of design alternatives should be limited 
to those referring to the same critical event. 

It is also important to mention some limitations of the proposed 
approach that need to be considered. Firstly, it is evident that the pro
posed approach, being based on data-driven models, specifically ad
dresses the retrofitting of existing plants, rather than the design of new 
plants. Nonetheless, even when considering the case-study, the potential 
relevance of the method emerges, in spite of this limitation. Actually, in 
the framework of rapidly evolving regulations on emission control 
worldwide (Huang et al., 2021; Van Caneghem et al., 2019), existing 
WtE facilities need to increase the performance of their FGT systems in 
terms of both removal efficiency and reliability. 

Secondly, the proposed approach addresses specifically the quanti
fication of the effectiveness of the safety barrier. In addition to effec
tiveness, the assessment of safety barriers should take into account other 
criteria, namely response time, availability and level of confidence (de 
Dianous and Fievez, 2006). The response time, intended as the duration 
between the deployment of the safety barrier and the complete 
achievement of its safety function (de Dianous and Fievez, 2006), can be 
estimated from the results of the simulations (see again Fig. 11). The 
time between the detection of the ELV exceedance and the activation of 
the barrier is a required input of the simulations and, as discussed in 
Section 5.2, it can be obtained from tests (as in the case of dolomitic lime 
injection) or from operating experience (as in the case of the backup 
screw feeder). The time between the activation of the barrier and the full 
achievement of its safety function is an output of the simulations, as they 
are dynamic by nature and trace the evolution of barrier effectiveness 
over time. Conversely, aspects related to the level of confidence and the 
availability of the barrier are not assessed in the proposed approach, 
since they are associated with inherent properties and maintenance 
strategies of the barrier components and not with the effect of the safety 
barrier on the functionality of the FGT system, which is the key mech
anism addressed by the simulations. 

Thirdly, in the proposed approach, the evaluation of safety barriers is 
approached solely from an environmental perspective, while economic 
aspects have been disregarded in the case study. This choice aimed to 
demonstrate the feasibility and usefulness of the approach without 
introducing additional complexity. However, economic aspects must be 
considered when evaluating alternatives. For example, the user may 
combine performance and resilience assessment with cost-benefit anal
ysis or more comprehensive techniques such as Life Cycle Assessment 
(LCA) (International Organization for Standardization, 2006). Alterna
tively, further studies may focus on improving the performance metric 
proposed in Eq. (8) to consider the costs associated with a particular 
process configuration. 

Lastly, in the case-study a single barrier was considered for each 
critical event. On the one hand, a more realistic approach would be to 
consider and compare different safety barriers, from the safety, envi
ronmental and economic perspective. On the other hand, considering a 
single barrier provides a straightforward application of the methodology 
to different critical scenarios. Thus, since the intent of the case study is to 
provide a full-scale notional application of the methodology, the latter 
approach was privileged. Nevertheless, the approach developed and the 
specific models may be used as well to address the comparison and se
lection of safety barriers in a more comprehensive decision-making 
framework. 

All in all, the application of the methodology demonstrated the 

possibilities arising from the integration between hazard identification 
techniques (e.g., HazOp and Bow-Tie analysis) and advanced simulation 
tools (i.e., dynamic modeling and resilience analysis) in the context of 
environmental risk management. The proposed framework is flexible 
and different choices in terms of both risk identification and process 
modeling can be adopted, also depending on the characteristics of the 
reference system and the related data availability. 

Moreover, the analysis of the case study suggests that the dynamic 
modeling of critical events and evaluation of safety barriers through 
resilience analysis offers an interesting opportunity to improve envi
ronmental risk management. The approach goes beyond the static view 
of safety barriers (i.e., effective-not effective, and characterized by a 
context-independent Probability of Failure) towards a dynamic vision of 
the risk, where the effectiveness of safety barriers is closely linked to the 
dynamics of the underlying phenomena. The methodology fits perfectly 
in a Dynamic Risk Management framework since it is inherently 
updatable and can be reiterated to account for changes in the environ
ment (e.g., changes in process conditions or plant layout) (Grøtan and 
Paltrinieri, 2016) and to incorporate new information as they become 
available (e.g., considering new critical events as more knowledge is 
accessible) (Paltrinieri et al., 2014). 

7. Conclusions 

The approach described in this study offers a comprehensive and 
structured framework for the dynamic evaluation of safety barriers in 
environmentally critical facilities based on digital modelling. The 
method is based on a pre-defined flowcharts of activities, covering most 
of the risk management phases, from the identification of critical sce
narios to the evaluation of the system response. In addition, the method 
is sufficiently generic to allow some flexibility (e.g., with respect to 
modeling techniques and tools) in order to be adapted to diverse needs. 
The approach has several advantages and novelty elements, such as the 
focus on environmental risk management from a safety engineering 
perspective (which is often disregarded in the literature) and the inte
gration between traditional risk management techniques and modern 
data-driven models, which allows the definition and simulation of crit
ical scenarios and safety barriers that would be impossible to evaluate 
through first-principles or field tests. Furthermore, the methodology 
requires a relatively small set of data, which is often promptly available 
in most gas treatment facilities. In addition, the use of resilience analysis 
for the dynamic evaluation of safety barriers and the intrinsic updat
ability of the approach are further elements of novelty that contribute to 
dynamic risk management. The method has been tested on a full-scale 
real life industrial case study to demonstrate its feasibility and effec
tiveness. The results – which appear informative, yet easy to interpret – 
allow qualitative and quantitative evaluation and comparison of safety 
barriers. In the context of growing attention to environmental issues and 
widespread digitalization of production processes, this study suggests 
that data-driven models may effectively support traditional risk man
agement approaches to improve environmental safety and accomplish 
tasks that are impractical or impossible to perform through first 
principles. 
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Appendix 1. Results of the HazOp analysis 

The full results of the HazOp Analysis are condensed in the bow-tie diagram below.  
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Appendix 2. Supporting information on furnace sorbent injection  

Table A1 
Fitting parameters for different SR groups.  

Group a b c d e 

SR∼1 -3.09 × 10− 7 5.99 × 10− 5 -2.46 × 10− 3 -9.71 × 10− 4 9.83 × 10− 1 

SR∼1.8 -1.68 × 10− 6 1.33 × 10− 4 -2.50 × 10− 3 -3.16 × 10− 2 1.01 × 100 

SR∼2.5 -4.41 × 10− 7 -5.08 × 10− 5 5.60 × 10− 3 -1.37 × 10− 1 1.07 × 100 

Fig A2. Experimental data and fitting curves for SR~1 (a), SR~1.8 (b), SR~2.5 (c). Experimental runs are named xx_yy(zzz), where xx represents the day of 
collection, yy indicates the month, and zzz indicates the dolomitic sorbent feed rate in kg/h. The coefficient of determination of the fitting functions (R2) is displayed 
in the upper right corner. 

Appendix C. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.psep.2023.11.021. 
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