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1 Introduction

Understanding supersymmetric effective field theories (EFT) from string compactifications
is key in order to determine most of the relevant physical implications of these frameworks.
These EFTs are only known approximately, and corrections to leading order effects play an
important role for the most pressing questions such as moduli stabilisation and inflation
from string theory.
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These effects correspond to non-perturbative contributions to the superpotential W , and
perturbative and non-perturbative corrections to the Kähler potential K, both in the α′ and
string-loop expansions. These corrections to K and W modify the standard F -term part of
the scalar potential which comes from the square of the auxiliary fields at order F 2. However,
there are also higher derivative F 4 corrections to the scalar potential. In the type IIB case,
they have an explicit linear dependence on the two-cycle volume moduli ti, i = 1, . . . , h1,1,
and the overall volume V of the Calabi-Yau (CY) threefold X [1–3]:

VF 4 = γ

V4

h1,1∑
i=1

Πiti , (1.1)

where γ is a computable constant (independent of Kähler moduli) and Πi =
∫
X c2 ∧ D̂i with

c2 the CY second Chern-class and D̂i a basis of harmonic (1,1)-forms dual to the divisors Di.
In terms of this basis, the Kähler form J can be written as J = tiD̂i.

The relevance of the corrections (1.1) is manifest especially for determining the structure
of the scalar potential since, due to the no-scale property, the leading order, tree-level,
contribution vanishes, and therefore a combination of subleading corrections has to be
considered. However, these higher-derivative corrections are naturally subdominant compared
with the leading order α′3 correction at order F 2 that scales with the volume as Vα′3 ≃
|W0|2/V3. In this sense they should not substantially modify moduli stabilisation mechanisms
such as KKLT and the Large Volume Scenario (LVS). However, they can play a crucial role for:

1. Lifting flat directions which are not stabilised at leading LVS order [2, 3];

2. Modifying slow-roll conditions needed for inflationary scenarios where the leading order
effects leave an almost flat direction for the inflaton field.

In this article we will concentrate on the second item, and find under which topological
conditions these higher derivative corrections vanish. For cases where they are instead non-
zero, we will numerically estimate the largest value of their prefactor γ which does not ruin the
flatness of the inflationary potential of different inflation models derived in the LVS framework
such as blow-up inflation [4–6], fibre inflation [7–14] and poly-instanton inflation [15–19].

Using the Kreuzer-Skarke database of four-dimensional reflexive polytopes [20] and their
triangulated CY database [21], we present scanning results for a set of divisor topologies
corresponding to CY threefolds with 1 ≤ h1,1 ≤ 5. These divisor topologies are relevant
for various phenomenological purposes in LVS models. For inflationary model building,
this includes, for example: (i) the (diagonal) del Pezzo divisors needed for generating non-
perturbative superpotential corrections useful for blow-up inflation, (ii) the K3-fibration
structure relevant for fibre inflation, and (iii) the so-called ‘Wilson’ divisors which are
relevant for realising poly-instanton inflation. In addition, we present a class of divisors
which have vanishing Π.

In this article we present general classes of divisor topologies which are relevant for
making such corrections naturally vanish for the inflaton direction. In particular, we find
that blow-up inflation is protected against such higher derivative corrections if the inflaton
corresponds to the volume of a dP3 divisor, i.e. a del Pezzo surface of degree six. Fibre
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inflation is instead shielded if the inflaton is the volume of a T4-divisor, while poly-instanton
inflation is naturally safe only for the inflaton being the volume of a so-called ‘Wilson’ divisor
(W ), i.e. a rigid divisor with a Wilson line and h1,1(W ) = 2. We present an explicit CY
orientifold setting for each of these three classes of models. Moreover, we find that there
are additional divisor topologies for which such F 4 corrections vanish.

For generic topologies with non-vanishing Π, we perform a numerical estimate of the
effect of these F 4 corrections on inflation, paying particular attention to the study of reheating
from moduli decay to determine the exact number of efoldings of inflation which is relevant
to match observations. We find that higher derivative α′3 effects do not substantially change
the conclusions of fibre, blow-up and poly-instanton inflationary scenarios, therefore making
those scenarios more robust under these corrections.

This article is organised as follows: section 2 presents a brief review of LVS moduli
stabilisation and the role of divisor topologies in LVS phenomenology. Subsequently we
present a classification of the divisor topologies relevant for taming higher derivative F 4

corrections in section 3. Section 4 discusses instead potential candidate CYs for realising
global embeddings of blow-up inflation and the effect of F 4 corrections on these models. The
analysis of higher derivative corrections to LVS inflation models is continued in section 5
which is devoted to fibre inflation, and in section 6 which focuses on poly-instanton inflation.
Finally, we summarise our results and present our conclusions in section 7.

2 Divisor topologies in LVS

In this section we present a brief review of the role of divisor topologies in the context of the
LVS scheme of moduli stabilisation. It has been well established that some divisor topologies
play a central role in LVS model building. These are, for example, del Pezzo (dP) and
K3 surfaces. Such studies and suitable CY scans have been presented at several different
occasions with different sets of interests [21–30], and we recollect some of the ingredients
from [25, 31] which are relevant for the present work.

2.1 Generic LVS scalar potential

In the standard approach of moduli stabilisation in 4D type IIB effective supergravity models,
one follows a so-called two-step strategy. In the first step, the axio-dilaton S and the complex
structure moduli Uα are stabilised by the superpotential Wflux induced by background 3-form
fluxes (F3, H3). This flux-dependent superpotential can fix all complex structure moduli and
the axio-dilaton supersymmetrically at leading order by enforcing:

DUαWflux = DSWflux = 0 . (2.1)

After fixing S and the U -moduli, the flux superpotential can effectively be considered as
constant: W0 = ⟨Wflux⟩. At this leading order, the Kähler moduli Ti remain flat due to the
no-scale cancellation. Using non-perturbative effects is one of the possibilities to fix these
moduli. In this context, if we assume n non-perturbative contributions to W which can be
generated by using rigid divisors, such as shrinkable dP 4-cycles, or by rigidifying non-rigid
divisors using magnetic fluxes [32–34], the superpotential takes the following form:

W =W0 +
n∑
i=1

Ai e
−ai Ti , (2.2)
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where:
Ti = τi + iθi with τi =

1
2

∫
Di

J ∧ J and θi =
∫
Di

C4 . (2.3)

For the current work we consider CY orientifolds with trivial odd sector in the (1, 1)-
cohomology and subsequently orientifold-odd moduli are absent in our analysis (interested
readers may refer to [28, 35, 36]). Note that in (2.2) there is no sum in the exponents (ai Ti),
and summations are to be understood only when upper indices are contracted with lower
indices; otherwise we will write an explicit sum as in (2.2). We will suppose that, out of
h1,1

+ = h1,1 Kähler moduli, only the first n appear in W , i.e. i = 1, . . . , n ≤ h1,1
+ .

The Kähler potential including α′3 corrections takes the form [37]:

K = − ln
[
−i
∫

Ω (Uα) ∧ Ω̄ (Ūα)
]
− ln

(
S + S̄

)
− 2 ln

V (Ti + T̄i) +
ξ

2

(
S + S̄

2

)3/2
 ,

where Ω denotes the nowhere vanishing holomorphic 3-form which depends on the complex-
structure moduli, while V denotes the CY volume which receives α′3 corrections through
ξ = −χ(X) ζ(3)

2 (2π)3 where χ(X) is the CY Euler characteristic and ζ(3) ≃ 1.202.
Assuming that S and the U -moduli are stabilised as in (2.1), considering a superpotential

given by (2.2) and an α′3-corrected Kähler potential given by (2.1), one arrives at the
following master formula for the scalar potential [31]:

V = Vα′3 + Vnp1 + Vnp2 , (2.4)

where (defining ξ̂ ≡ ξg
−3/2
s with gs = ⟨Re(S)⟩−1):

Vα′3 = eK
3 ξ̂(V2 + 7V ξ̂ + ξ̂2)
(V − ξ̂)(2V + ξ̂)2

|W0|2 , (2.5)

Vnp1 = eK
n∑
i=1

2 |W0| |Ai| e−aiτi cos(ai θi + ϕ0 − ϕi)

×
[(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(ai τi) +

3 ξ̂(V2 + 7V ξ̂ + ξ̂2)
(V − ξ̂)(2V + ξ̂)2

]
,

Vnp2 = eK
n∑
i=1

n∑
j=1

|Ai| |Aj | e−(aiτi+ajτj) cos(ai θi − aj θj − ϕi + ϕi)

×
[
−4
(
V + ξ̂

2

)
(kijk tk) ai aj +

4V − ξ̂

(V − ξ̂)
(ai τi) (aj τj)

+ (4V2 + V ξ̂ + 4 ξ̂2)
(V − ξ̂)(2V + ξ̂)

(ai τi + aj τj) +
3 ξ̂(V2 + 7V ξ̂ + ξ̂2)
(V − ξ̂)(2V + ξ̂)2

]
,

where we have introduced phases into the parameters as W0 = |W0| eiϕ0 and Ai = |Ai| eiϕi .
The good thing about the master formula (2.5) is the fact that it determines the complete
form of V simply by specifying topological quantities such as the intersection numbers kijk,
the CY Euler number and the number n of non-perturbative contributions to W .
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Note that Vα′3 vanishes for ξ̂ = 0 and reproduces the standard no-scale structure in the
absence of a T -dependent non-perturbative W . On the other hand, for very large volume
V ≫ ξ̂, this term takes the standard form which plays a crucial rôle in LVS models [38]:

Vα′3 ≃
(
gs e

Kcs

2V2

)
3 ξ̂ |W0|2

4V . (2.6)

Let us also stress that Vα′3 depends only on the overall volume V, while Vnp1 depends on V
and the 4-cycle moduli τi (with the additional dependence on the axions θi). Hence these
two contributions to V could be minimised by taking derivatives with respect to V and
(h1,1 − 1) 4-cycle moduli. However Vnp2 depends on the quantity kijk t

k which in general
cannot be inverted to be expressed as an explicit function of the τi’s. It has been observed
that using the master formula (2.5) one can efficiently perform moduli stabilisation in terms
of the 2-cycle moduli ti as shown in [31, 39].

For example, considering h1,1 = 2, n = 1 and ξ̂ > 0 in the master formula (2.5) along
with using the large volume limit, one can immediately read-off the following three terms:

V ≃ gs e
Kcs

2

[3 ξ̂ |W0|2

4V3 + 4a1τ1|W0||A1|
V2 e−a1τ1 cos (a1θ1 + ϕ0 − ϕ1) (2.7)

− 4a2
1|A1|2k111t1

V
e−2a1τ1

]
.

If the CY X has a Swiss-cheese form, one can find a basis of divisors such that the only
non-zero intersection numbers are k111 and k222. This leads to the relation t1 = −

√
2τ1/k111,

where the minus sign is dictated from the Kähler cone conditions as the divisor D1 in this
Swiss-cheese CY is an exceptional 4-cycle. Using this in (2.7) one gets [38]:1

V ≃ gs e
Kcs

2

(
βα′

V3 + βnp1
τ1
V2 e

−a1τ1 cos (a1θ1 + ϕ0 − ϕ1) + βnp2

√
τ1
V

e−2a1τ1

)
, (2.8)

with:
βα′ = 3ξ̂|W0|2

4 , βnp1 = 4a1|W0||A1| , βnp2 = 4a2
1|A1|2

√
2k111 . (2.9)

2.2 Scanning results for LVS divisor topologies

Let us start by briefly reviewing the generic methodology for analysing the divisor topologies
which is widely adopted for scanning useful CY geometries suitable for phenomenology, e.g.
see [25, 29]. Subsequently we will continue following the same in our current analysis. The
main idea is to consider the CY threefolds arising from the four-dimensional reflexive polytopes
listed in the Kreuzer-Skarke (KS) database [20], and classify the divisors based on their
relevance for phenomenological model building aiming at explicit orientifold constructions.
For that purpose, we rather have a very nice collection of the various topological data
of CY threefolds available in the database of [21] which can be directly used for further
analysis. In this regard, table 1 presents the number of (favorable) polytopes along with
the corresponding (favorable) triangulations and (favorable) geometries for a given h1,1(X)
in the range 1 ≤ h1,1(X) ≤ 5.

1Ref. [31] has shown that LVS moduli fixing can be realised also for generic cases where the CY threefold
does not have a Swiss-cheese structure.
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h1,1 Polytopes Favorable Triangs. Favorable Geometries Favorable
Polytopes Triangs. Geoms.

1 5 5 5 5 5 5
2 36 36 48 48 39 39
3 244 243 569 568 306 305
4 1197 1185 5398 5380 2014 2000
5 4990 4897 57132 56796 13635 13494

Table 1. Number of (favourable) triangulations and (favourable) distinct CY geometries arising from
the (favourable) polytopes listed in the Kreuzer-Skarke database.

For a given CY geometry, the main focus is limited to:

• looking at the topology of the so-called ‘coordinate divisors’ Di which are defined
through setting the toric coordinates to zero, i.e. xi = 0. This means that there is
a possibility of missing a huge number of divisors, e.g. those which could arise via
considering some linear combinations of the coordinate divisors, and some of such may
have interesting properties. However, it is hard to make an exhaustive analysis including
all the effective divisors of a given CY threefold.

• focusing on scans using ‘favourable’ triangulations (Triang∗) and ‘favourable’ geometries
(Geom∗) for a given polytope. This could be justified in the sense that for non-
favourable CY threefolds, the number of toric divisors in the basis is less than h1,1(X),
and subsequently there is always at least one coordinate divisor which is non-smooth,
and one usually excludes such spaces from the scan. However, the number of such CY
geometries is almost negligible in the sense that there are just 1, 14 and 141 for h1,1(X)
being 3, 4 and 5 respectively.

The role of divisor topologies in the LVS context can be appreciated by noting that the
Swiss-cheese structure of the CY volume can be correlated with the presence of del Pezzo
(dPn) divisors Ds. These dPn divisors are defined for 0 ≤ n ≤ 8 having degree d = 9− n and
h1,1 = 1+n, such that dP0 is a P2 and the remaining 8 del Pezzo’s are obtained by blowing up
eight generic points inside P2. It turns out that they satisfy the following two conditions [22]:∫

X
D3
s = ksss > 0 ,

∫
X
D2
s Di ≤ 0 ∀ i ̸= s . (2.10)

Here the self-triple-intersection number ksss corresponds to the degree of the del Pezzo 4-cycle
dPn where ksss = 9 − n > 0, which is always positive as n ≤ 8 for del Pezzo surfaces. In
addition, one imposes the so-called ‘diagonality’ condition on such a del Pezzo divisor Ds

via the following relation satisfied by the triple intersection numbers [22, 24]:

ksss ksij = kssi kssj ∀ i, j. (2.11)

It turns out that whenever this diagonality condition is satisfied, there exists a basis of
coordinates divisors such that the volume of each of the 4-cycles Ds becomes a complete-
square quantity as illustrated from the following relations:

τs =
1
2 ksijt

i tj = 1
2 ksss

kssi kssjt
i tj = 1

2 ksss

(
kssi t

i
)2

. (2.12)
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h1,1 Poly∗ Geom∗ ddP0 dF0 ddPn ddP6 ddP7 ddP8 nLVS
(nCY) 1 ≤ n ≤ 5 (ddPn ≥ 1)

1 5 5 0 0 0 0 0 0 0
2 36 39 9 2 0 2 4 5 22
3 243 305 59 16 0 17 40 39 132
4 1185 2000 372 144 0 109 277 157 750
5 4897 13494 2410 944 0 624 827 407 4104

Table 2. Number of CY geometries with a ‘diagonal’ del Pezzo divisor suitable for LVS. Here we
have extended the notation to denote a P2 surface as ddP0 and a diagonal P1 × P1 surface as dF0.

Subsequently what happens is that one can always shrink such a ‘diagonal’ del Pezzo ddPn

to a point-like singularity by squeezing it along a single direction. A systematic analysis on
counting the CY geometries which could support (standard) LVS models, in the sense of
having at least one diagonal del Pezzo divisor, has been performed in [25] and the results are
summarised in table 2. Moreover, it is worth mentioning that the scanning result presented
in table 2 is quite peculiar in the sense that for all the CY threefolds with h1,1 ≤ 5, one
does not have any example having a ‘diagonal’ dPn divisor for 1 ≤ n ≤ 5, which has been
subsequently conjectured to be true for all the CY geometries arising from the KS database.

Let us mention that the classification of CY geometries relevant for LVS as presented in
table 2 corresponds to having a ‘standard’ LVS in the sense of having at least one ‘diagonal’
del Pezzo divisor in a Swiss-cheese like model. However, it has been found in some cases that
one can still have alternative moduli stabilisation schemes realising an exponentially large
CY volume, e.g. using the underlying symmetries of the CY threefold in the presence of a
non-diagonal del Pezzo [31], and in the framework of the so-called perturbative LVS [40–43].

3 Topological taming of F 4 corrections

In addition to the α′3 correction (2.6) derived in [37], generically there can be many other
perturbative corrections to the 4D effective scalar potential induced from various sources
(see [44, 45] for a classification of potential contributions at different orders in α′ exploiting
higher dimensional rescaling symmetries and F-theory techniques). One such effect is given
by F 4 corrections which cannot be captured by the two-derivative ansatz for the Kähler and
superpotentials. In this section we shall discuss the topological taming of such corrections
in the context of LVS inflationary model building.

3.1 F 4 corrections to the scalar potential

The higher derivative F 4 contributions to the scalar potential for a generic CY orientifold
compactification take the following simple form [1]:

VF 4 = −
(
eKcs gs
8π

)2
λ |W0|4

g
3/2
s V4

h1,1∑
i=1

Πi ti ≡
γ

V4

h1,1∑
i=1

Πi ti, (3.1)

where the topological quantities Πi are given by:

Πi =
∫
X
c2(X) ∧ D̂i , (3.2)

– 7 –



J
H
E
P
0
2
(
2
0
2
4
)
1
1
5

and λ is an unknown combinatorial factor which in the single modulus case is rather small
in absolute value [46]:

λ = −11
24

ζ(3)
(2π)4 = −3.5 · 10−4 . (3.3)

Its value is not known for h1,1 > 1 but we expect it to remain small, in analogy with the
h1,1 = 1 case. In fact, one can argue that the factor ζ(3)/(2π)4 in λ is expected to be always
present for generic models with several Kähler moduli as well. This is because the coupling
tensor Ti j kl appearing in this correction through the following higher derivative piece [1]:

VF 4 = −e2K T i jklDiW DjW DkW DlW , (3.4)

can be schematically written as:

Ti j kl =
c

V8/3
ζ(3)Z
g

3/2
s

, (3.5)

where c can be considered as some combinatorial factor, which for example, in the single
modulus case turns out to be 11/384 [46], and:

Z = (2π)2
∫
X
c2(X) ∧ J , (3.6)

where we stress that we are working with the convention ℓs = (2π)
√
α′ = 1. Subsequently,

we have

Ti j kl = c
ζ(3)

(2π)4 V8/3 g
3/2
s

∫
X
c2(X) ∧ J . (3.7)

Note that the V−8/3 factor in the above expression cancels off with a V8/3 contribution
coming from 4 inverse Kähler metric factors needed to raise the 4 indices of the coupling
tensor Ti j kl to go to (3.4).

Here, let us mention that the higher derivative F 4 correction under consideration ap-
pears at α′3 order, like the BBHL-correction [37], and both are induced at string tree-level,
resulting in a factor of g−3/2

s . For explicitness, let us also note that the leading order BBHL
correction [37] appearing at the two-derivative level takes the following form:2

Vα′3 =
(
eKcs gs
8π

)
3 ξ |W0|2

4 g3/2
s V3

, ξ = −ζ(3)χ(X)
2 (2π)3 . (3.8)

Now, comparing these two α′ corrections one finds that:

VF 4

Vα′3
= c̃

(
gs
8π

)
eKcs |W0|2

(
Πi ti
χ(X)V

)
, (3.9)

where c̃ is some combinatorial factor, which for the case of a single Kähler modulus is

c̃ = 11
9(2π) ≃ 0.2 . (3.10)

2In this regard, it may be worth noticing that the original result [37] has been obtained with the convention
(2πα′) = 1 which removes the (2π)−3 factor from the denominator of the ξ̂ parameter.
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One can observe that each factors in (3.9) can be of a magnitude less than one in typical
models. For example, demanding large complex-structure limit in order to ignore instanton
effects can typically result in having eKcs ∼ 0.01 [34], the string coupling gs needs to be small
and the CY volume large to trust the low-energy EFT, and the ratios between Πi’s and χ(X)
are typically of O(1) [29]. Having these aspects in mind, it is very natural to anticipate that
higher-derivative F 4 effects are subdominant as compared to the two-derivative corrections.
Note that (3.1) can also be rewritten as:

VF 4 = −Vα′3

√
gs

3π

(
λ

ξ

) h1,1∑
i=1

Πi
(
m3/2

M
(i)
KK

)2

(3.11)

where the gravitino mass is:

m2
3/2 =

(
gs
8π

) |W0|2

V2 M2
p , (3.12)

and M
(i)
KK is the Kaluza-Klein scale associated to the i-th divisor:

(
M

(i)
KK

)2
= M2

s

ti
=

√
gs

4π
M2
p

tiV
. (3.13)

In the above equation we have used the relation between the string scale and the Planck
mass in the convention where Vs = V g3/2

s (with Vs the volume in string frame and V the
volume in Einstein frame):

M2
s = 1

(2π)2α′ =
√
gs
M2
p

4πV . (3.14)

Note that (3.11) makes clear that VF 4 is an O(F 4) correction since Vα′3 is an O(F 2) effect
and [47]:

(
m3/2
MKK

)2
∼ g

|F |2

M2
KK

≪ 1 , (3.15)

where g ∼ MKK/Mp ∼ V−2/3 ≪ 1 is the coupling of heavy KK modes to light states.

3.2 Classifying divisors with vanishing F 4 terms

Two important quantities characterising the topology of a divisor D are the Euler characteristic
χ(D) and the holomorphic Euler characteristic (also known as arithmetic genus) χh(D) which
are given by the following useful relations [8, 48, 49]:

χ(D) ≡
4∑
i=0

(−1)i bi(D) =
∫
X
D̂ ∧

(
D̂ ∧ D̂ + c2(X)

)
, (3.16)

χh(D) ≡
2∑
i=0

(−1)i hi,0(D) = 1
12

∫
X
D̂ ∧

(
2 D̂ ∧ D̂ + c2(X)

)
, (3.17)
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where bi(D) and hi,0(D) are respectively the Betti and Hodge numbers of the divisor. Using
these two relations we find that Π(D) is related with the Euler characteristics and the
holomorphic Euler characteristic as follows:

Π(D) = χ(D)−
∫
X
D̂ ∧ D̂ ∧ D̂, Π(D) = 12χh(D)− 2

∫
X
D̂ ∧ D̂ ∧ D̂ , (3.18)

which also give another useful relation:

Π(D) = 2χ(D)− 12χh(D) . (3.19)

Therefore, the topological quantity Π(D) vanishes for a generic smooth divisor D if the
following simple relation holds,

Π(D) = 0 ⇐⇒ χ(D) = 6χh(D) . (3.20)

Now, using the relations χ(D) = 2h0,0 − 4h1,0 + 2h2,0 + h1,1 and χh(D) = h0,0 − h1,0 + h2,0,
we find another equivalent relation for vanishing Π(D):

h1,1(D) = 4h0,0(D)− 2h1,0(D) + 4h2,0(D) . (3.21)

Any divisor satisfying the vanishing Π relation (3.21) will be denoted as DΠ. After knowing
the topology of a generic divisor D, it is easy to check if h1,1 satisfies this condition or
equivalently χ = 6χh. To demonstrate it, let us quickly consider the following two examples:

T4 ≡

1
2 2

1 4 1
2 2

1

and K3 ≡

1
0 0

1 20 1
0 0

1

.

Now it is obvious that T4 has Π(T4) = 0 as it satisfies χ = 0 = 6χh. However, K3 has
Π(K3) = 24 and 6χh = 12 = χ/2. Alternatively, it can be also checked that the Hodge
number condition in (3.21) is satisfied for T4 but not for K3.

Therefore, we can generically formulate that a divisor D of a Calabi-Yau threefold having
the following Hodge Diamond results in a vanishing Π(D):

DΠ ≡

h0,0

h1,0 h1,0

h2,0 (
4h0,0 − 2h1,0 + 4h2,0) h2,0

h1,0 h1,0

h0,0

, (3.22)

and if we consider that the DΠ divisor is smooth and connected, then we have h0,0(DΠ) = 1.
Subsequently we can identify three different classes of vanishing Π divisors:
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1. dP3 divisors: for connected rigid 4-cycles with no Wilson lines we have h1,0(D) =
h2,0(D) = 0, and hence a vanishing Π(D) results in the following Hodge diamond:

DΠ ≡

1
0 0

0 4 0
0 0

1

≡ dPΠ . (3.23)

This topology corresponds to the dP surface of degree six, i.e. a dP3. Moreover, this
class of DΠ which singles out a dP3 surface, also includes the possibility of the ‘rigid
but not del Pezzo’ 4-cycle denoted as NdPn for n ≥ 9 [22]. These surfaces are blow-up
of line-like singularities and have similar Hodge diamonds as those of the usual dP
surfaces dPn defined for 0 ≤ n ≤ 8.

2. Wilson divisors: for connected rigid 4-cycles with Wilson lines we have h2,0(D) = 0
but h1,0(D) > 0, resulting in the following Hodge diamond for DΠ:

DΠ ≡

1
h1,0 h1,0

0
(
4− 2h1,0) 0

h1,0 h1,0

1

≡WΠ . (3.24)

Given that all Hodge numbers are non-negative integers, the only possibility compatible
with h1,1 ≥ 1 (to be able to a have a proper definition of the divisor volume) is h1,0 = 1
which, in turn, corresponds to h1,1 = 2. This is a so-called ‘Wilson’ divisor with
vanishing Π(W ) which we denote as WΠ. This WΠ divisor corresponds to a subclass of
‘Wilson’ divisors, characterised by the Hodge numbers h0,0 = h1,0 = 1 and arbitrary
h1,1, that have been introduced in [16] to support poly-instanton corrections.

3. Non-rigid divisors: now let us consider the third special class which can have
deformation divisors, i.e. h2,0(D) > 0. When the divisor does not admit any Wilson
line, i.e. h1,0(D) = 0, the Hodge diamond for DΠ simplifies to:

DΠ ≡

1
0 0

h2,0 (
4 + 4h2,0) h2,0

0 0
1

. (3.25)

To our knowledge, so far there are no known examples in the literature which have such
a topology. The simplest of its kind will have h2,0(D) = 1 and h1,1(D) = 8. In this
regard, it is worth mentioning that the topology of the so-called ‘Wilson’ divisors which
are P1 fibrations over T2s, has been argued to be useful in [50] and some years later it
was found to be the case while studying the generation of poly-instanton effects [16].
So it would be interesting to know if such non-rigid divisor topologies of vanishing
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Π exist in explicit CY constructions, and further if they could be useful for some
phenomenological applications.

The last possibility is to consider the most general situation with deformations and
Wilson lines, i.e. h2,0(D) > 0 and h1,0(D) > 0. As already mentioned, the simplest case
is T4 with h2,0(T4) = 1, h1,0(T4) = 2 and h1,0(T4) = 4 which however never shows up in
our search through the KS list, as well as more general divisors with both deformations
and Wilson lines.

Before coming to the scan of such divisor topologies of vanishing Π, let us mention a
theorem of [51, 52] which states that if the CY intersection polynomial is linear in the homology
class D̂f corresponding to a divisor Df , then the CY threefold has the structure of a K3 or
a T4 fibration over a P1 base. Noting the following relation for the self-triple-intersection
number of a generic smooth divisor D:

∫
X
D̂ ∧ D̂ ∧ D̂ = 12χh(D)− χ(D) , (3.26)

and subsequently demanding the absence of such cubics for Df in the CY intersection
polynomial, results in χ(D) = 12χh(D) or the following equivalent relation:

h1,1(Df ) = 10h0,0(Df )− 8h1,0(Df ) + 10h2,0(Df ) . (3.27)

This relation is clearly satisfied for K3 and T4 divisors, and can be satisfied for some other
possible topologies as well. For example, another non-rigid divisor for which the self-cubic-
intersection is zero is given by the following Hodge diamond:

SD ≡

1
0 0

2 30 2
0 0

1

, χ(SD) = 36, χh(SD) = 3 .

This is also a very well known surface frequently appearing in CY threefolds, e.g. it appears in
the famous Swiss-cheese CY threefold defined as a degree-18 hypersurface in WCP4[1, 1, 1, 6, 9]
where the divisors corresponding to the first three coordinates with charge 1 are such surfaces.

Moreover, interestingly one can see that for the ‘Wilson’ type divisor the relation in (3.27)
is indeed satisfied for h1,1(D) = 2 which is exactly something needed for the generation of poly-
instanton effects on top of having vanishing Π(D) as we have discussed before. In this regard,
let us also add that the simultaneous vanishing of Π(D) and D3

|X results in the vanishing of
χ(D) and χh(D) and vice-versa, and so, besides a particular type of ‘Wilson’ divisor, there
can be more such divisor topologies satisfying the following if and only if condition:

Π(D) = 0 =
∫
X
D̂ ∧ D̂ ∧ D̂ ⇐⇒ χ(D) = 0 = χh(D) . (3.28)
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h1,1 Poly∗ Geom∗ single two three four nLVS nLVS nLVS
(nCY) DΠ DΠ DΠ DΠ & 1 DΠ & 2 DΠ & 3 DΠ

1 5 5 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0
3 243 305 23 0 0 0 4 0 0
4 1185 2000 322 24 0 0 78 1 0
5 4897 13494 3306 495 27 1 732 104 1

Table 3. CY geometries with vanishing Π divisors and a ddPn to support LVS.

Thus, if a divisor D is connected and has Π(D) = 0 = D3
|X , then its Hodge diamond is:

DΠ ≡

1
1 + n 1 + n

n 2 + 2n n

1 + n 1 + n

1

≡ Dcubic
Π , (3.29)

where n is the number of possible deformations for the divisor D. For n = 0 this corresponds
to a WΠ divisor, and for n = 1 this corresponds to a T4. Although we are not aware of any such
examples with n ≥ 2, it would be interesting to know what topology they would correspond to.

3.3 Scan for divisors with vanishing F 4 terms

In this section we discuss the scanning results for divisors with Π = 0 using the favorable
CY geometries arising from the four-dimensional reflexive polytopes of the KS database [20]
and its pheno-friendly collection in [21]. As pointed out earlier, we will consider only the
‘coordinate divisors’ and the ‘favourable’ CY geometries listed in table 1. For finding divisors
with vanishing Π, we consider the following two different strategies in our scan:

1. One route is to directly compute Π by using the second Chern class of the CY threefold
and the intersection tensor available in the database [21].

2. A second route is to compute the divisor topology using cohomCalg [53, 54] and
subsequently to check the Hodge number condition (3.21), or the equivalent relation
χ(D) = 6χh(D), for vanishing Π.

Table 3 presents the scanning results for the number of CY geometries with vanishing Π
divisors, and their suitability for realising LVS models. On the other hand, table 4 and 5
show the same results split for the cases where the divisors with Π = 0 are respectively dPΠ
(i.e. dP3) and Wilson divisors WΠ. These distinct CY geometries and their scanning results
correspond to the favourable geometries arising from the favourable polytopes.

To appreciate the scanning results presented in table 3, 4 and 5 corresponding to all
CY threefolds with 1 ≤ h1,1(X) ≤ 5 in the KS database, let us make the following generic
observations:
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h1,1 Poly∗ Geom∗ At least Single Two Three nLVS nLVS nLVS
(nCY ) one dPΠ dPΠ dPΠ dPΠ & dPΠ & 1 dPΠ & 2 dPΠ

1 5 5 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0
3 243 305 4 4 0 0 0 0 0
4 1185 2000 143 134 9 0 16 16 0
5 4897 13494 2236 2035 197 4 336 290 46

Table 4. CY geometries with vanishing Π divisors of the type dPΠ ≡ dP3, and a ddPn for LVS.

h1,1 Poly∗ Geom∗ At least Single Two Three nLVS & nLVS & nLVS &
(nCY ) one WΠ WΠ WΠ WΠ 1 WΠ 2 WΠ 3 WΠ

1 5 5 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0
3 243 305 19 19 0 0 4 0 0
4 1185 2000 210 202 8 0 62 1 0
5 4897 13494 1764 1599 154 11 442 79 1

Table 5. CY geometries with vanishing Π divisors of the type WΠ, and a ddPn to support LVS.

• We do not find any CY threefold in the KS database which has a T4 divisor or any
divisor with vanishing Π(D) and h2,0(D) ̸= 0. The only possible vanishing Π divisors we
encountered in our scan are either a dP3 divisor or a Wilson divisor with h1,1(W ) = 2.
However, going beyond the coordinate divisors in an extended scan as compared to
ours may have more possibilities.

• For h1,1(X) = 1 and 2, there are no CY threefolds with a vanishing Π divisor.

• Although there are some dP3 divisors for CY threefolds with h1,1(X) = 3, 4 and 5, none
of them are diagonal in the sense of being shrinkable to a point by squeezing along a
single direction [24] — something in line with the conjecture of [25].

• There are no CY threefolds with h1,1(X) = 3 which have (at least) one diagonal dPn
and a (non-diagonal) dP3 with Π(dP3) = 0. Hence, in order to have a dP3 divisor
in LVS, we need CY threefolds with h1,1(X) ≥ 4. For h1,1(X) = 4 there are 16 CY
threefolds in the ‘favourable’ geometry which are suitable for LVS and feature a dP3.

• For h1,1(X) ≤ 4, there is only one CY geometry which can lead to LVS and has two
vanishing Π divisors which are of Wilson-type. Similarly, there is only one CY geometry
with a ddP for LVS and 3 vanishing Π divisors.

4 Blow-up inflation with F 4 corrections

The minimal LVS scheme of moduli stabilisation fixes the CY volume V along with a small
modulus τs controlling the volume of an exceptional del Pezzo divisor. Therefore any LVS
model with 3 or more Kähler moduli, h1,1 ≥ 3, can generically have flat directions at leading
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h1,1 Poly∗ Geom∗ nddP = 1 nddP = 2 nddP = 3 nddP = 4 nLVS Blow-up
(nCY) infl.

1 5 5 0 0 0 0 0 0
2 36 39 22 0 0 0 22 0
3 243 305 93 39 0 0 132 39
4 1185 2000 465 261 24 0 750 285
5 4897 13494 3128 857 106 13 4104 976

Table 6. Number of LVS CY geometries suitable for blow-up inflation.

order. These flat directions are promising inflaton candidates with a potential generated
at subleading order. Blow-up inflation [4] corresponds to the case where the inflationary
potential is generated by non-perturbative superpotential contributions. In this inflationary
scenario the inflaton is a (diagonal) del Pezzo divisor wrapped by an ED3-instanton or
supporting gaugino condensation. In addition, the CY has to feature at least one additional
ddPn divisor to realise LVS.

On these lines, we present the scanning results in table 6 corresponding to the number
of CY geometries nCY with their suitability for realising LVS along with resulting in the
standard blow-up inflationary potential, in the sense of having at least two ddP divisors, one
needed for supporting LVS and the other one for driving inflation.

4.1 Inflationary potential

The simplest blow-up inflation model is based on a two-hole Swiss-cheese CY threefold. Such
a CY threefold has two diagonal del Pezzo divisors, say D1 and D2, which after considering
an appropriate basis of divisors result in the following intersection polynomial:

I3 = I ′3(Di′) + k111D
3
1 + k222D

3
2 , for i′ ̸= {1, 2} , (4.1)

where I ′3(Di′) is such that D1 and D2 do not appear in this cubic polynomial. Further, k111
and k222 are the self-intersection numbers which are fixed by the degrees of the two del Pezzo
divisors, say dPn1 and dPn2 , as k111 = 9− n1 > 0 and k222 = 9− n2 > 0. This generically
provides the following expression for the volume form:

V = 1
6 ki

′j′k′ t
i′ tj

′
tk

′ + k111
6 (t1)3 + k222

6 (t2)3 , (4.2)

where the 2-cycle volume moduli ti′ are such that i′ ̸= {1, 2}. Subsequently, the volume can
be rewritten in terms of the 4-cycle volume moduli as:

V = f3/2(τi′)− β1 τ
3/2
1 − β2 τ

3/2
2 , (4.3)

where β1 = 1
3

√
2

k111
and β2 = 1

3

√
2

k222
. Furthermore, under our choice of the intersection

polynomial, τi′ does not depend on the del Pezzo volumes τ1 and τ2. Now we can simplify
things to the minimal three-field case with h1,1

+ = 3 by taking f3/2(ti
′) = 1

6 kbbb (tb)3 and using
the following relations between the 2-cycle moduli ti and the 4-cycle moduli τi:

tb =
√

2 τb
kbbb

, t1 = −
√

2 τ1
k111

, t2 = −
√

2 τ2
k222

. (4.4)
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The scalar potential of the minimal blow-up inflationary model [4, 6] can be reproduced
by the master formula (2.5) via simply setting h1,1

+ = 3, n = 2 and ξ̂ > 0, which leads to
the following leading order terms in the large volume limit:

V = eKcs

2s

[
3ξ̂|W0|2

4V3 +
2∑
i=1

4|W0||Ai|ai
V2 τi e

−aiτi cos(aiθi + ϕ0 − ϕi) (4.5)

−
2∑
i=1

2∑
j=1

4|Ai||Aj |aiaj
V

e−(aiτi+ajτj) cos(ajθj − aiθi − ϕj + ϕi)
( 3∑
k=1

kijktk

) .
Given that we are interested in a strong Swiss-cheese case where the only non-vanishing
intersection numbers are k111, k222 and k333, we have:

3∑
k=1

kiiktk = kiiiti = −
√
2 kiii τi for i = 1, 2 and

3∑
k=1

kijktk = 0 for i ̸= j .

Hence (4.5) reduces to the potential of known 3-moduli Swiss-cheese LVS models [4, 6]:

V = eKcs

2s

[
βα′

V3 +
2∑
i=1

(
βnp1,i

τi
V2 e

−aiτi cos(aiθi + ϕ0 − ϕi) + βnp2,i

√
τi
V

e−2aiτi

)]
,

with:
βα′ = 3ξ̂|W0|2

4 , βnp1,i = 4a1|W0||A1| , βnp2,i = 4a2
1|A1|2

√
2k111 . (4.6)

It has been found that such a scalar potential can drive inflation effectively by a single
field after two moduli are stabilised at their respective minimum [4]. In fact, a three-field
inflationary analysis has been also presented in [5, 6] ensuring that one can indeed have
trajectories which effectively correspond to a single field dynamics.

4.2 F 4 corrections

In this three-field blow-up inflation model, higher derivative F 4 corrections to the scalar
potential look like:3

VF 4 = γ

V4

(
Πb tb +Π1 t

1 +Π2 t
2
)

(4.7)

= γ

V4

(
Πb tb −Π1

√
2 τ1
k111

−Π2

√
2 τ2
k222

)

= γ

V4

(
Πb

( 6
kbbb

)1/3 (
V + β1 τ

3/2
1 + β2 τ

3/2
2

)1/3
−Π1

√
2 τ1
k111

−Π2

√
2 τ2
k222

)
,

where we have used the relations in (4.4). Assuming that inflation is driven by τ2, only
τ2-dependent corrections can spoil the flatness of the inflationary potential. The leading
correction is proportional to Π2 and scales as V−4, while a subdominant contribution propor-
tional to Πb would scale as V−14/3. It is interesting to note that this subleading correction

3Additional perturbative corrections can arise from string loops but we assume that these contributions
can be made negligible by either taking a small value of the string coupling or by appropriately small
flux-dependent coefficients.
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would be present even if Π2 = 0, as in the case where the corresponding dPn is a diagonal
dP3. As compared to the LVS potential, this inflaton-dependent F 4 correction is suppressed
by a factor of order V−5/3 ≪ 1. Moreover, the ideal situation to completely nullify higher
derivative F 4 corrections for blow-up inflation is to demand that:

Πb = Π2 = 0 . (4.8)

In this setting, making Πb zero by construction appears to be hard and very unlikely since we
have seen that vanishing Π divisors other than dP3 could possibly be either a T4 or a Wilson
divisor. However, for both divisors we have

∫
X D3 = 0 as they satisfy the condition (3.27)

that implies vanishing cubic self-intersections, and so they do not seem suitable to reproduce
the strong Swiss-cheese volume form that has been implicitly assumed in rewriting the scalar
potential pieces in (4.7). Moreover, we have not observed any other kind of vanishing Π
divisors in our scan involving the whole set of CY threefolds with h1,1 ≤ 5 in the KS database.4
Let us finally point out that a case with Πb = 0 cannot be entirely ruled out as we have seen
in a couple of non-generic situations that a non-fibred K3 surface can also appear as a ‘big’
divisor in a couple of strong Swiss-cheese CY threefolds, and so if there is a similar situation in
which a non-fibred T4 appears with a ddP divisor it could possibly make Πb identically zero.

4.3 Constraints on inflation

We are now going to study the effect of F 4 corrections in blow-up inflation, focusing on
the case where their coefficients are in general non-zero, as suggested by our scan. In this
analysis we shall follow the work of [55]. First of all, we will derive the value of the volume
to subsequently analyse the effect of the F 4 corrections to the inflationary dynamics.

We start from the potential described in (4.5), stabilise the axions and set eKcs/(2s) = 1,
obtaining:

VLVS =
2∑
i=1

(
8(aiAi)2√τi

3Vβi
e−2aiτi − 4aiAiW0τi

V2 e−aiτi

)
+ 3ξ̂W 2

0
4V3 , (4.9)

where the volume has been expressed as:

V = τ
3/2
b − β1τ

3/2
1 − β2τ

3/2
2 . (4.10)

The minimum condition of the LVS potential reads:

e−aiτi = Λi
V
√
τi , (4.11)

where the constants Λi are defined as:

Λi ≡
3|W0|
4

βi
ai|Ai|

. (4.12)

Moreover, since we want to find an approximate Minkowski vacuum, we add an uplifting
potential of the generic form:

Vup = D

V4/3 , (4.13)

4However recall that our scan is limited to coordinate divisors only, and so may miss some possibilities.
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where the value of D will be computed in the next paragraph. Lastly, the F 4 corrections
become:

VF 4 = γ

V4

Πb
(
V −

2∑
i=1

βiτ
3/2
i

)1/3

− 3
2∑
i=1

Πiβi
√
τi

 . (4.14)

4.3.1 Volume after inflation

We start by fixing in the LVS potential (4.9) the small moduli at their minimum given by (4.11):

VLVS = −3|W0|2

2V3

( 2∑
i=1

βiτ
3/2
i − ξ̂

2

)
. (4.15)

Defining ψ ≡ lnV, the minimum condition for τi can be approximated as:

τi =
1
ai

(ψ − ln Λi − ln√τi) ≃
1
ai

(ψ − ln Λi) , (4.16)

leading to:

V
(PI)

LVS = −3|W0|2

4 e−3ψ
[ 2∑
i=1

Pi (ψ − ln Λi)3/2 − ξ̂

]
, (4.17)

where Pi ≡ 2βia−3/2
i and the superscript (PI) indicates that we consider the ‘post inflation’

situation where all the moduli reach their minimum. Analogously, the uplifting term reads:

V (PI)
up = De−

4
3ψ , (4.18)

while the F 4 correction becomes:

V
(PI)
F 4 = γe−4ψ

Πb
(
eψ −

2∑
i=1

Pi (ψ − ln Λi)3/2
)1/3

− 3
2∑
i=1

ΠiPiai (ψ − ln Λi)1/2

 . (4.19)

The full post-inflationary potential for the field ψ is therefore:

VPI(ψ) = V
(PI)

LVS + V (PI)
up + V

(PI)
F 4 . (4.20)

We are now able to calculate the factor D in order to have a Minkowski minimum, by imposing:

V ′
PI(ψ̃) = VPI(ψ̃) = 0 , (4.21)

which gives:

D= 27|W0|2

20 e−
5
3 ψ̃
∑
i

Pi
(
ψ̃−lnΛi

)1/2
+δDF 4 , (4.22)

δDF 4 = γe−
8
3 ψ̃

[
Πb
(
eψ̃−

∑
i

Pi
(
ψ̃−lnΛi

)3/2
)1/3

−3
∑
i

ΠiPiai
(
ψ̃−lnΛi

)1/2

−Πb
3

eψ̃− 3
2
∑
iPi

(
ψ̃−lnΛi

)1/2

(
eψ̃−

∑
iPi

(
ψ̃−lnΛi

)3/2
)2/3 +

3
2
∑
i

ΠiPiai
(
ψ̃−lnΛi

)−1/2
]
, (4.23)
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where ψ̃ solves the following equation:
∑
i

Pi
(
ψ̃−lnΛi

)1/2
(
ψ̃−lnΛi−

9
10

)
−ξ̂+δψ̃F 4 =0 , (4.24)

δψ̃F 4 =− 4γ
5W 2

0
e−ψ̃

[
8Πb
3

(
eψ̃−

∑
i

Pi
(
ψ̃−lnΛi

)3/2
)1/3

−8
∑
i

ΠiPiai
(
ψ̃−lnΛi

)1/2

−Πb
3

eψ̃− 3
2
∑
iPi

(
ψ̃−lnΛi

)1/2

(
eψ̃−

∑
iPi

(
ψ̃−lnΛi

)3/2
)2/3 +

3
2
∑
i

ΠiPiai
(
ψ̃−lnΛi

)−1/2
]
, (4.25)

from which we obtain the post inflation volume VPI ≡ eψ̃.

4.3.2 Volume during inflation

We now move on to determine the value of the volume modulus during inflation. In order to
do so, we focus on the region in field space where the inflaton τ2 is away from its minimum.
In this region, the inflaton-dependent contribution to the volume potential becomes negligible
due to the large exponential suppression from (4.9). Hence, the inflationary potential for
the volume mode is given only by:

Vinf(ψ) = −3|W0|2

4 e−3ψ
[
P1 (ψ − ln Λ1)3/2 − ξ̂

]
+De−

4
3ψ , (4.26)

where we ignore F 4 corrections since the volume during inflation is bigger than the post-
inflationary one. At this point we can again minimise the ψ field to a value ψ̂, imposing
the vanishing of the first derivative:

P1
(
ψ̂ − ln Λ1

)1/2 [
2
(
ψ̂ − ln Λ1

)
− 1

]
− 2ξ̂ + 16

9|W0|2
Deψ̂ = 0 , (4.27)

and the volume during inflation is given as Vinf ≡ ϵψ.

4.3.3 Inflationary dynamics

During inflation all the moduli, except τ2, sit at their minimum, including the volume mode
which is located at V ≡ Vinf. From now on, we will drop the subscript and always refer
to the volume as the one during inflation, unless otherwise explicitly stated. The inflaton
potential with higher derivative effects reads:

V (τ2) = V0 −
4a2|A2||W0|

V2 τ2e
−a2τ2 + 8 a2

2 |A2|2
√
τ2

3Vβ2
e−2a2τ2 (4.28)

+ γ

V4

Πb
(
V − P1

(
ln V

Λ1

)3/2
− β2τ

3/2
2

)1/3

− 3
∑
i

Πiβi
√
τi

 ,
where the explicit definition of γ in terms of λ is

γ = − λ|W0|4

16π2g
3/2
s

. (4.29)
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Canonically normalising the inflaton field as:

τ2 =
(
⟨τ2⟩3/4 +

√
3V
4β2

ϕ

)4/3

, (4.30)

we find the inflaton effective potential:

V (ϕ) = V0 −
4a2|A2||W0|

V2

(√
3V
4β2

ϕ+ ⟨τ2⟩3/4
)4/3

e
−a2

(√
3V
4β2

ϕ+⟨τ2⟩3/4
)4/3

+ 8 a2
2 |A2|2

3Vβ2

(√
3V
4β2

ϕ+ ⟨τ2⟩3/4
)2/3

e
−2a2

(√
3V
4β2

ϕ+⟨τ2⟩3/4
)4/3

+ γ

V4

[
Πb

V − P1

(
ln V

Λ1

)3/2
− β2

(√
3V
4β2

ϕ+ ⟨τ2⟩3/4
)21/3

− 3Π2β2

(√
3V
4β2

ϕ+ ⟨τ2⟩3/4
)2/3

− 3Π1P1a1

(
ln V

Λ1

)1/2 ]
. (4.31)

To simplify the notation, we introduce:

A ≡ 4a2|A2| |W0|
V2 , B ≡ 8 a2

2|A2|2

3Vβ2
, C ≡ V − P1

(
ln V

Λ1

)3/2
, (4.32)

γ2 ≡ 3γΠ2β2
V4 , γb ≡

γΠb
V4 , α ≡

√
3V
4β2

, (4.33)

φ ≡
√

3V
4λ2

ϕ+ ⟨τ2⟩3/4 = αϕ+ ⟨τ2⟩3/4 , (4.34)

and we absorb the constant F 4 correction proportional to Π1 inside V0 as:

V0 → V0 −
3γΠ1P1a1

V4

(
ln V

Λ1

)1/2
. (4.35)

The potential therefore simplifies to:

V (φ) = V0 −Aφ4/3 e−a2 φ4/3 +Bφ3/2e−2a2φ4/3 + γb(C − β2 φ
2)1/3 − γ2φ

2/3 . (4.36)

Given that φ is different from the canonically normalised inflaton ϕ, we define the following
notation for differentiation:

f ′(φ) ≡ df(φ)
dϕ =

√
3V
4λ2

df(φ)
dφ ≡ αḟ(φ) , (4.37)

with the slow-roll parameters calculated as follows:

ϵ = 1
2

(
V ′

V

)2
= 1

2α
2
(
V̇

V

)2

and η = V ′′

V
= α2 V̈

V
. (4.38)
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The next step is to find the value of ϕ at the end of inflation, which we denote as ϕend,
where ϵ(ϕend) = 1. Moreover, the number of efoldings from horizon exit to the end of
inflation can be computed as:

Ne(ϕexit) =
∫ ϕexit

ϕend

dϕ√
2ϵ

=
∫ φexit

φend

dφ
α
√
2ϵ
. (4.39)

This value has to match the number of efoldings of inflation Ne computed from the study of
the post-inflationary evolution which we will perform in the next section, i.e. ϕexit is fixed
by requiring Ne(ϕexit) = Ne. The observed amplitude of the density perturbations has to be
matched at ϕexit, which typically fixes V ∼ 105−6. The predictions for the main cosmological
observable are then be inferred as follows:

ns = 1 + 2η(ϕexit)− 6ϵ(ϕexit) and r = 16ϵ(ϕexit) . (4.40)

4.3.4 Reheating

In order to make predictions that can be confronted with actual data, we need to derive
the number of efoldings of inflation which, in turn, are determined by the dynamics of the
reheating epoch. Assuming that the Standard Model is realised on a stack of D7-branes,
a crucial term in the low-energy Lagrangian to understand reheating is the loop-enhanced
coupling of the volume mode to the Standard Model Higgs h which reads [56]:

L ⊂ cloop
m2

3/2
Mp

ϕbh
2 , (4.41)

where cloop is a 1-loop factor and ϕb the canonically normalised volume modulus. Two
different scenarios for reheating can arise depending on the presence or absence of a stack
of D7-branes wrapped around the inflaton del Pezzo divisor:

• No D7s wrapped around the inflaton: the inflaton τ2 is not wrapped by any D7
stack and the Standard Model is realised on D7-branes wrapped around the blow-up
mode τ1. This case has been studied in [56]. The volume mode, despite being the
lightest modulus, decays before the inflaton due to the loop-enhanced coupling (4.41).
Reheating is therefore caused by the decay of the inflaton which occurs with a width:

Γτ2 ≃ 1
V
m3
τ2

M2
p

≃ Mp

V4 , (4.42)

leading to a matter dominated epoch after inflation which lasts for the following number
of efoldings:

Nτ2 = 2
3 ln

(
Hinf
Γτ2

)
= 5

3 lnV . (4.43)

Thus, the total number of efoldings for inflation is given by:

Ne = 57 + 1
4 ln r − 1

4Nτ2 ≃ 50− 1
4Nτ2 = 50− 5

12 lnV , (4.44)

where we have focused on typical values of the tensor-to-scalar ratio for blow-up inflation
around r ∼ 10−10. Thus, due to the long epoch of inflaton domination before reheating,
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the total number of required efoldings can be considerably reduced, resulting in a
potential tension with the observed value of the spectral index, as we will point out
in the next section. Note that the inflaton decay into bulk axions can lead to an
overproduction of dark radiation which is however avoided by the large inflaton decay
width into Standard Model gauge bosons, resulting in ∆Neff ≃ 0.13 [56].

• D7s wrapped around the inflaton: the inflaton is wrapped by a D7 stack which
can be either the Standard Model or a hidden sector. These different cases have been
analysed in [57–59]. The localisation of gauge degrees of freedom on the inflaton divisor
increases the inflaton decay width, so that the last modulus to decay is the volume
mode. However the naive estimate of the number of efoldings of the matter epoch
dominated by the oscillation of V is reduced due to the enhanced Higgs coupling (4.41).
The early universe history is then given by a first matter dominated epoch driven by
the inflaton which features now an enhanced decay rate:

Γτ2 ≃ V
m3
τ2

M2
p

≃ Mp

V2 . (4.45)

Hence the number of efoldings of inflaton domination is given by:

Nτ2 = 2
3 ln

(
Hinf
Γτ2

)
= 1

3 lnV . (4.46)

The volume mode starts oscillating during the inflaton dominated epoch. Redshifting
both as matter, the ratio of the energy densities of the inflaton and the volume mode
remains constant from the start of the volume oscillations to the inflaton decay:

θ2 ≡ ρτb

ρτ2

∣∣∣∣
osc

= ρτb

ρτ2

∣∣∣∣
dec,τ2

≪ 1 , (4.47)

since the energy density after inflation is dominated by the inflaton. Assuming that the
inflaton dumps all its energy into radiation when it decays, we can estimate:

ρτb

ργ

∣∣∣∣
dec

= θ2 . (4.48)

The radiation dominated era after the inflaton decay ends when ργ becomes comparable
to ρτb

, which occurs when:

ργ

∣∣∣∣
dec,τ2

(
adec,τ2

aeq

)4

= ρτb

∣∣∣∣
dec,τ2

(
adec,τ2

aeq

)3

⇒ adec,τ2 = aeq θ
2 , (4.49)

giving the dilution at equality:

ρeq = ργ

∣∣∣∣
dec
θ8 . (4.50)

Moreover, the Hubble scale at the inflaton decay is given by:

Hdec,τ2 = Hinf e
− 3

2Nτ2 , (4.51)
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allowing us to calculate the Hubble scale at radiation-volume equality:

Heq = Hdec,τ2 θ
4 = Hinf e

− 3
2Nτ2 θ4 . (4.52)

Using the fact that the decay rate of the volume mode is:

Γτb
≃ c2

loop

(
m3/2
mτb

)4 m3
τb

M2
p

≃ c2
loop

Mp

V5/2 , (4.53)

we can now estimate the number of efoldings of the matter epoch dominated by volume
mode as:

Nτb
= ln

(
adec,τb

aeq

)
≃ 2

3 ln
(
Heq
Γτb

)
≃ 2

3 lnV −Nτ2 , (4.54)

where we considered θ4c−2
loop ∼ O(1). Therefore, the total number of efoldings of inflation

becomes:

Ne = 57 + 1
4 ln r − 1

4Nτ2 −
1
4Nτb

≃ 50− 1
4Nτ2 −

1
4Nτb

≃ 50− 1
6 lnV . (4.55)

Note that this estimate gives a longer period of inflation with respect to the scenario
where the inflaton is not wrapped by any D7 stack, even if there are two epochs of
modulus domination. The reason is that both epochs, when summed together, last less
that the single epoch of inflaton domination of the case with no D7-branes wrapped
around the inflaton. As we shall see, this results in a better agreement with the observed
value of the scalar spectral index. Lastly, we stress that the loop-enhanced volume
mode coupling to the Higgs sector suppresses the production of axionic dark radiation.
As stressed above, this coupling is however effective only when the Standard Model
lives on D7-branes since it becomes negligible in sequestered scenarios where the visible
sectors is localised on D3-branes at dP singularities. In this case the volume would
decay into Higgs degrees of freedom via a Giudice-Masiero coupling [14, 60, 61] and
a smaller decay width Γτb

∼ Mp/V9/2 that would make the number of efoldings of
inflation much shorter.

4.4 Numerical examples

4.4.1 No D7s wrapped around the inflaton

To quantitatively study the effect of higher derivative corrections, let us consider an explicit
example characterised by the following choice of parameters:

W0 gs ξ a1 a2 A1 A2 β1 β2

0.1 0.13 0.1357 2π 2π 0.2 3.4× 10−7 0.4725 0.01

For simplicity, we fix Π1 = Πb = 0 and the model is studied by varying Π2 and λ. Let us
stress that this assumption does not affect the main result since the leading F 4 correction is
the one proportional to Π2. Figure 1 shows the plot of the uncorrected inflationary potential
(gray line) which is compared with the corrected potential obtained by setting Π2 = −1
and choosing λ ∼ O(10−4 − 10−3).
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Figure 1. Potential of blow-up inflation with Π2 = −1 and different values of λ. The difference
between the corrections is visible in the zoomed region with ϕ ∈ [0.004; 0.005].

Figure 2. Spectral index for different values of λ. The field at horizon exit is given in table 7.

Knowing the explicit expression of the potential, we determine the spectral index (shown
in figure 2 as function of ϕ) and, by integration, the number of efoldings. In this scenario the
inflaton is the longest-living particle and the number of efoldings to consider for inflation
is Ne = 45.34. Given the relations (4.44) and (4.39), we find the value of the field at
horizon exit ϕexit, and then the value of the spectral index ns(ϕexit) which is reported in
table 7 for each value of λ.

In order for ns(ϕexit) to be compatible with Planck measurements [62]:

ns = 0.9649± 0.0042 (68% CL) , (4.56)
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|λ| ϕexit ns As

0 4.494899× 10−3 0.956386 2.11146× 10−9

1.0× 10−4 4.95668× 10−3 0.958164 1.94664× 10−9

4.0× 10−4 4.98039× 10−3 0.963219 1.53505× 10−9

8.0× 10−4 5.01349× 10−3 0.969316 1.13485× 10−9

1.2× 10−3 5.04829× 10−3 0.974691 8.53024× 10−10

Table 7. Values of the inflaton at horizon exit ϕexit, the spectral index ns and the amplitude of the
scalar perturbations As for different choices of λ.

we need to require |λ| ≲ 1.1×10−3 for compatibility within 2σ. This bound might be satisfied
by actual multi-field models since, as can be seen from (3.3), the single-field case features
|λ| = 3.5 · 10−4 and, as already explained, we expect a similar suppression to persist also
in the case with several moduli.

By comparing in table 7 the λ = 0 case with the cases with non-zero λ, it is clear
that F 4 corrections are a welcome effect, if |λ| is not too large, since they can increase the
spectral index improving the matching with CMB data. This is indeed the case when Π2
is negative, as we have chosen. On the other hand, when Π2 is positive, higher derivative
α′3 corrections would induce negative corrections to ns that would make the comparison
with actual data worse. Such analysis therefore suggests that geometries with negative Π2
would be preferred in the context of blow-up inflation.

4.4.2 D7s wrapped around the inflaton

Let us now consider the scenario where the inflaton is wrapped by a stack of N D7-branes
supporting a gauge theory that undergoes gaugino condensation. As illustrative examples,
we choose the following parameters:

W0 gs ξ a1 a2 A1 A2 β1 β2

0.1 0.13 0.1357 2π 2π/N 0.19 3.4× 10−7 ≃ 0.5 0.01

Considering N = 2, 3, 5, the total number of efoldings is now given by Ne = 47.90 for
N = 2, Ne = 47.93 for N = 3, and Ne = 48.02 for N = 5. Repeating the same procedure
as before for Π2 = −1, we find the results shown in table 8.

Due to a larger number of efoldings with respect to the case where the inflaton is
not wrapped by any D7-stack, now the prediction for the spectral index falls within 2σ of
the observed value also for λ = 0. Non-zero values of λ can improve the agreement with
observations if |λ| < |λ|max where:

N = 2 N = 3 N = 5
|λ|max 3.48× 10−3 7.15× 10−3 1.82× 10−2

In this case, given the larger number of efoldings, geometries with positive Π2 can also
be viable even if the corrections to the spectral index would be negative. Imposing again
accordance with (4.56) at 2σ level for Π2 = 1, we would obtain for example |λ|max = 2.29×10−4

for N = 2.
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N |λ| ϕexit ns As

N = 2

0 8.55743× 10−3 0.957692 2.20009× 10−9

1.0× 10−3 8.59968× 10−3 0.962656 1.73612× 10−9

2.0× 10−3 8.64364× 10−3 0.967233 1.38248× 10−9

3.0× 10−3 8.68932× 10−3 0.971425 1.11088× 10−9

4.0× 10−3 8.73669× 10−3 0.975239 9.00672× 10−10

N = 3

0 1.22049× 10−2 0.957679 2.28554× 10−9

2.0× 10−3 1.22649× 10−2 0.96252 1.81483× 10−9

4.0× 10−3 1.23273× 10−2 0.966995 1.45345× 10−9

6.0× 10−2 1.23921× 10−2 0.971106 1.174× 10−9

8.0× 10−3 1.24593× 10−2 0.97486 9.56344× 10−10

N = 5

0 1.78617× 10−2 0.957678 2.14345× 10−9

5.0× 10−3 1.7953× 10−2 0.962446 1.70842× 10−9

1.0× 10−2 1.80479× 10−2 0.966862 1.37293× 10−9

1.5× 10−2 1.81464× 10−3 0.970927 1.11241× 10−9

2.0× 10−2 1.82484× 10−2 0.974647 9.08706× 10−10

Table 8. Values of the inflaton at horizon exit ϕexit, the spectral index ns and the amplitude of the
scalar perturbations As for different choices of λ and N = 2, 3, 5.

h1,1 Poly∗ Geom∗ nLVS K3 fibred nLVS with K3 fib. nLVS with
(nCY) CY (fibre inflation) K3 fib. & DΠ

1 5 5 0 0 0 0
2 36 39 22 10 0 0
3 243 305 132 136 43 0
4 1185 2000 750 865 171 28
5 4897 13494 4104 5970 951 179

Table 9. Number of LVS CY geometries suitable for fibre inflation.

5 Fibre inflation with F 4 corrections

Similarly to blow-up inflation, the minimal version of fibre inflation [7–14] involves also three
Kähler moduli: two of them are stabilised via the standard LVS procedure and the remaining
one can serve as an inflaton candidate in the presence of perturbative corrections to the Kähler
potential. However, fiber inflation requires a different geometry from the one of blow-up
inflation since one needs CY threefolds which are K3 fibrations over a P1 base. The simplest
model requires the addition of a blow-up mode such that the volume can be expressed as:

V = 1
6
(
k111(t1)3 + 3k233t

2(t3)2
)
= α

(√
τ2τ3 − τ

3/2
1

)
. (5.1)

The requirement of having a K3 fibred CY threefold with at least a ddPn divisor for LVS
moduli stabilisation is quite restrictive. The corresponding scanning results for the number
of CY geometries suitable for realising fibre inflation are presented in table 9.
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It is worth mentioning that the scanning results presented in table 9 are consistent with
the previous scans performed in [8, 22]. To be more specific, the number of distinct K3
fibred CY geometries supporting LVS was found in [8] to be 43 for h1,1 = 3, and ref. [22]
claimed that the number of polytopes giving K3 fibred CY threefolds with h1,1 = 4 and at
least one diagonal del Pezzo ddPn divisor is 158.

5.1 Inflationary potential

The leading order scalar potential of fibre inflation turns out to be:

V (V, τ1) = a2
1|A1|2

√
τ1
V

e−2a1τ1 − a1 |A1| |W0|
τ1
V
e−a1τ1 + ξ |W0|2

g
3/2
s V3

, (5.2)

with a flat direction in the (τ2, τ3) plane which plays the role of the inflaton (the proper
canonically normalised inflationary direction orthogonal to the volume mode is given by
the ratio between τ2 and τ3). The inflaton potential is generated by subdominant string
loop corrections:

δVO(V−10/3)(τ2) =
(
g2
s

A

τ2
1
− B

V√τ2
+ g2

s

Cτ2
V2

)
|W0|2

V2 , (5.3)

where A,B,C are flux-dependent coefficients that are expected to be of O(1). The minimum
of this potential is approximately located at:

⟨τ2⟩ ≃ g4/3
s

(4A
B

)2/3
⟨V⟩2/3 . (5.4)

Writing the canonically normalised inflaton field ϕ as:

τ2 = ⟨τ2⟩ e
2ϕ̂√

3 ≃ g4/3
s

(4A
B

)2/3
⟨V⟩2/3 e

2ϕ̂√
3 , (5.5)

where ϕ̂ is the shift with respect to the minimum, i.e. ϕ = ⟨ϕ⟩+ ϕ̂, the potential (5.3) becomes:

Vinf(ϕ̂) = V0
[
3− 4e−ϕ̂/

√
3 + e−4ϕ̂/

√
3 +R

(
e2ϕ̂/

√
3 − 1

)]
, (5.6)

where (introducing a proper normalisation factor gs/(8π) from dimensional reduction):

V0 ≡ g
1/3
s |W0|2A
8π ⟨V⟩10/3

(
B

4A

)4/3
and R ≡ 16g4

s

AC

B2 ≪ 1 . (5.7)

Note that we added in (5.6) an uplifting term to obtain a Minkowski vacuum. The slow-roll
parameters derived from the inflationary potential look like:

ϵ(ϕ̂) = 2
3

(
2e−ϕ̂/

√
3 − 2e−4ϕ̂/

√
3 +Re2ϕ̂/

√
3
)2

(
3−R+ e−4ϕ̂/

√
3 − 4e−ϕ̂/

√
3 +Re2ϕ̂/

√
3
)2 , (5.8)

η(ϕ̂) = 4
3

4e−4ϕ̂/
√

3 − e−ϕ̂/
√

3 +Re2ϕ̂/
√

3(
3−R+ e−4ϕ̂/

√
3 − 4e−ϕ̂/

√
3 +Re2ϕ̂/

√
3
) , (5.9)
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and the number of efoldings is:

Ne(ϕ̂exit) =
∫ ϕ̂exit

ϕ̂end

1√
2ϵ(ϕ̂)

≃
∫ ϕ̂exit

ϕ̂end

(
3− 4e−ϕ̂/

√
3 +Re2ϕ̂/

√
3
)

(
2e−ϕ̂/

√
3 +Re2ϕ̂/

√
3
) , (5.10)

where ϕ̂end and ϕ̂exit are respectively the values of the inflaton at the end of inflation and
at horizon exit.

5.2 F 4 corrections

Explicit CY examples of fibre inflation with chiral matter have been presented in [10] that
has already stressed the importance to control F 4 corrections to the inflationary potential
since they could spoil its flatness. This is in particular true for K3 fibred CY geometries
since Π(K3) = 24, and so the coefficient of F 4 effects is non-zero. On the other hand, the
theorem of [51, 52] allows in principle also for CY threefolds that are T4 fibrations over a
P1 base. This case would be more promising to tame F 4 corrections since their coefficient
would vanish due to Π(T4) = 0. However, in our scan for CY threefolds in the KS database
we did not find any example with a T4 divisor. Thus, in what follows we shall perform a
numerical analysis of fibre inflation with non-zero F 4 terms to study in detail the effect of
these corrections on the inflationary dynamics.

Case 1: a single K3 fibre. The minimal fibre inflation case is a three field model based
on a CY threefold that features a K3-fibration structure with a diagonal del Pezzo divisor.
Considering an appropriate basis of divisors, the intersection polynomial can be brought
to the following form:

I3 = k111D
3
1 + k233D2D

2
3 . (5.11)

As the D2 divisor appears linearly, from the theorem of [51, 52], this CY threefold is guaranteed
to be a K3 or T4 fibration over a P1 base. Furthermore, the triple-intersection number k111 is
related to the degree of the del Pezzo divisor D1 = dPn as k111 = 9− n, while k233 counts
the intersections of the K3 surface D2 with D3. This leads to the following volume form:

V = k111
6 (t1)3 + k233

2 t2 (t3)2 = β2
√
τ2 τ3 − β1 τ

3/2
1 , (5.12)

where β1 = 1
3

√
2

k111
and β2 = 1√

2 k233
, and the 2-cycle moduli ti are related to the 4-cycle

moduli τi as follows:

t1 = −
√

2 τ1
k111

, t2 = τ3√
2 k233 τ2

, t3 =
√

2 τ2
k233

. (5.13)

The higher derivative α′3 corrections can be written as:

VF 4 = γ

V4

(
Π1 t

1 +Π2 t
2 +Π3 t

3
)

= γ

V4

[
Π3

√
2 τ2
k233

+Π2

(
V
τ2

+ 1
3

√
2
k111

τ
3/2
1
τ2

)
−Π1

√
2 τ1
k111

]
. (5.14)
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In the inflationary regime, V is kept constant at its minimum while τ2 is at large values
away from its minimum, as can be seen from (5.5) for ϕ̂ > 0. Thus, the leading order term
in (5.14) is the one proportional to Π3. Therefore, a leading order protection of the fibre
inflation model can be guaranteed by demanding a geometry with Π3 = 0. However, the
subleading contribution proportional to Π2 would still induce an inflaton-dependent correction
that might be dangerous. The ideal situation to completely remove higher derivative F 4

corrections to fibre inflaton is therefore characterised by:

Π2 = Π3 = 0 , (5.15)

where, as pointed out above, Π2 would vanish for T4 fibred CY threefolds. Interestingly, such
CY examples with T4 divisors have been found in the CICY database, without however any
ddP for LVS [28]. It is also true that all K3 fibred CY threefolds do not satisfy Π2 = 0.

Case 2: multiple K3 fibres. More generically, fibre inflation could be realised also in
CY threefolds which admit multiple K3 or T4 fibrations together with at least a diagonal
del Pezzo divisor. The corresponding intersection polynomial would look like (see [10] for
explicit CY examples):

I3 = k111D
3
1 + k234D2D3D4 . (5.16)

As the divisors D2, D3 and D4 all appear linearly, from the theorem of [51, 52], this CY
threefold is guaranteed to have three K3 or T4 fibrations over a P1 base. As before, D1 is a
diagonal dPn divisor with k111 = 9 − n > 0. The volume form becomes:

V = k111
6 (t1)3 + k234 t

2 t3 t4 = β2
√
τ2 τ3 τ4 − β1 τ

3/2
1 , (5.17)

where β1 = 1
3

√
2

k111
and β2 = 1√

k234
, and the 2-cycle moduli ti are related to the 4-cycle

moduli τi as:

t1 = −
√

2 τ1
k111

, t2 =
√
τ3 τ4√
k234 τ2

, t3 =
√
τ2 τ4√
k234 τ3

, t4 =
√
τ2 τ3√
k234 τ4

. (5.18)

This case features two flat directions which can be parametrised by τ2 and τ2. Moreover,
the higher derivative F 4 corrections take the form:

VF 4 = γ

V4

(
Π1 t

1 +Π2 t
2 +Π3 t

3 +Π4 t
4
)

= γ

V4 (V + β1 τ
3/2
1 )

(
Π2
τ2

+ Π3
τ3

+ Π4 τ2 τ3

β2 (V + β1 τ
3/2
1 )2

)
−Π1

γ

V4

√
2 τ1
k111

. (5.19)

In the explicit model of [10], non-zero gauge fluxes generate chiral matter and a moduli-
dependent Fayet-Iliopoulos term which lifts one flat direction, stabilising τ3 ∝ τ2. After
performing this substitution in (5.19), this potential scales as the one in the single field
case given by (5.14). Interestingly, ref. [10] noticed that, in the absence of winding string
loop corrections, F 4 effects can also help to generate a post-inflationary minimum. Note
finally that if all the divisors corresponding to the CY multi-fibre structure are T4, the F 4

terms would be absent. However, incorporating a diagonal del Pezzo within a T4-fibred
CY is yet to be constructed (e.g. see [28]).
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5.3 Constraints on inflation

Let us focus on the simplest realisation of fibre inflation, and add the dominant F 4 correc-
tions (5.14) to the leading inflationary potential (5.6). The total inflaton-dependent potential
takes therefore the form:

Vinf(ϕ̂) = V0
[
e−4ϕ̂/

√
3 − 4e−ϕ̂/

√
3 + 3 +R

(
e2ϕ̂/

√
3 − 1

)
−R2 e

−2ϕ̂/
√

3 −R3 e
ϕ̂/

√
3
]
, (5.20)

where R is given by (5.7) while R2 and R3 are defined as:

R2 ≡ |W0|2

(4π)2Ag
3/2
s

λΠ2
V

≪ 1 and R3 ≡
4 |W0|2

√
gs

B

λΠ3
V

≪ 1 . (5.21)

Note that the most dangerous term that could potentially spoil the flatness of the inflationary
plateau is the one proportional to R3 since it multiplies a positive exponential. The term
proportional to R2 is instead harmless since it multiplies a negative exponential.

As we have seen for blow-up inflation, the study of reheating after the end of inflation is
crucial to determine the number of efoldings of inflation which are needed to make robust
predictions for the main cosmological observables. Reheating for fibre inflation with the
Standard Model on D7-branes has been studied in [11], while ref. [14] analysed the case where
the visible sector is realised on D3-branes. In both cases, a radiation dominated universe
is realised from the perturbative decay of the inflaton after the end of inflation. In what
follows we shall focus on the D7-brane case and include the loop-induced coupling between the
inflaton and the Standard Model Higgs, similarly to volume-Higgs coupling found in [56]. The
relevant term in the low-energy Lagrangian is the Higgs mass term which can be expanded as:

m2
hh

2 = m2
3/2

[
c0 + cloop ln

(
MKK

m3/2

)]
h2 , (5.22)

where ln
(
MKK/m3/2

)
∝ lnV. Using the fact that [63]:

V = ⟨V⟩ (1 + κϕ̂) , (5.23)

with κ ∼ ⟨V⟩−1/3, the Higgs mass term (5.22) generates a coupling between ϕ̂ and h that
leads to the following decay rate:

Γϕ→hh ≃
c2

loop
V2/3

m4
3/2

M2
pminf

≃
c2

loop
V2/3

(
m3/2
minf

)4
Γϕ→γγ . (5.24)

It is then easy to realise that the inflaton decay width into Higgses is larger than the one
into gauge bosons for V ≫ 1 since:

Γϕ→hh

Γϕ→γγ
≃ (cloopV)2 ≫ 1 . (5.25)

The number of efoldings of inflation is then determined as:

Ne ≃ 56− 1
3 ln

(
minf
Trh

)
, (5.26)
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Figure 3. Potential of fibre inflation with F 4 corrections with Π3 = 1 and different values of λ.

where the reheating temperature Trh scales as:

Trh ≃
√
Γϕ→hhMp . (5.27)

Substituting this expression in (5.26), and using (5.24), we finally find:

Ne ≃ 53 + 1
6 ln

[
1 +

c2
loop
V2/3

(
m3/2
minf

)4
]
. (5.28)

This is the number of efoldings of inflation used in the next section for the analysis of the
inflationary dynamics in some illustrative numerical examples.

5.4 Numerical examples

Let us now perform a quantitative study of the effect of higher derivative α′3 corrections
to fibre inflation for reasonable choices of the underlying parameters. In order to match
observations, we follow the best-fit analysis of [13] and set R = 4.8 × 10−6, which can be
obtained by choosing:

A = 1 , B = 8 , C = 0.19 . (5.29)

Moreover, given that D2 is a K3 divisor, we fix Π2 = 24, while we leave Π3 and λ as free
parameters that we constrain from phenomenological data.

Figure 3 shows the potential of fibre inflation with F 4 corrections corresponding to
Π3 = 1 and different negative values of λ.

As for blow-up inflation, we find numerically the range of values of λ which are compatible
with observations. In table 10 we show the values for the spectral index evaluated at horizon
exit, with Ne = 53.81 fixed from (5.28), for Π3 = 1 and different values of λ. In order to
reproduce the best-fit value of the scalar spectral index [13, 62]:

ns = 0.9696+0.0010
−0.0026 (5.30)
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Figure 4. Spectral index for different values of λ in fibre inflation. The value of the inflaton at
horizon exit is given in table 10.

|λ| ϕexit ns As

0 5.91328 0.97049 2.13082× 10−9

0.1× 10−3 5.93005 0.970657 2.09702× 10−9

0.4× 10−3 5.98203 0.971207 1.99576× 10−9

0.7× 10−3 5.88793 0.97178 1.90293× 10−9

1.0× 10−3 5.93552 0.972399 1.81416× 10−9

Table 10. Values of the inflaton at horizon exit ϕexit, the spectral index ns and the amplitude of the
scalar perturbations As for different choices of λ in fibre inflation.

the numerical coefficient λ has to respect the bound |λ| ≲ 6.1 × 10−4, which seems again
compatible with the single-field result (3.3) that gives |λ| = 3.5 · 10−4.

6 Poly-instanton inflation with F 4 corrections

Let us finally analyse higher derivative α′3 corrections to poly-instanton inflation, focusing
on its simplest realisation based on a three-field LVS model [15, 17]. This model involves
exponentially suppressed corrections appearing on top of the usual non-perturbative superpo-
tential effects arising from E3-instantons or gaugino condensation wrapping suitable rigid
cycles of the CY threefold. In this three-field model, two Kähler moduli correspond to the
volumes of the ‘big’ and ‘small’ 4-cycles (namely Db and Ds) of a typical Swiss-cheese CY
threefold, while the third modulus controls the volume of a Wilson divisor Dw which is a
P1 fibration over T2 [16]. Moreover, such a divisor has the following Hodge numbers for a
specific choice of involution: h2,0(Dw) = 0 and h0,0(Dw) = h1,0(Dw) = h1,0

+ (Dw) = 1. For
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this model one can consider the following intersection polynomial:

I3 = ksssD
3
s + ksswD

2
s Dw + kswwDsD

2
w + kbbbD

3
b , (6.1)

where, as argued earlier, the self triple-intersection number of the Wilson divisor is zero,
i.e. kwww = 0. This is because Wilson divisors are of the kind given in (3.29) for n = 0.
We also have selected a basis of divisors where the large four-cycle Db does not mix with
the other two divisors to keep a strong Swiss-cheese structure. This leads to the following
form of the CY volume:

V = kbbb
6 (tb)3 + ksss

6 (ts)3 + kssw
2 (ts)2 tw + ksww

2 ts (tw)2 , (6.2)

which subsequently gives to the following 4-cycle volumes:

τb =
1
2 kbbb (t

b)2, τs =
1
2 ksss

(
(ts)2 + 2 kssw

ksss
(ts)2 + ksww

ksss
(tw)2

)
,

τw = 1
2
(
kssw (ts)2 + 2 ksww ts tw

)
. (6.3)

Now it is clear that in order for the ‘small’ divisor to be diagonal, the above intersection
numbers have to satisfy the following relation:

ksss = ±kssw = ksww , (6.4)

which is indeed the case when the divisor basis is appropriately chosen in the way we have
described above. This leads to the following expression of the CY volume:

V = βb τ
3/2
b − βs τ

3/2
s − βs (τs ∓ τw)3/2 , (6.5)

where βs = 1
3

√
2

ksss
and βb = 1

3

√
2
kbbb

, and the 4-cycle volumes τs, τw and τb are given by:

τb =
1
2 kbbb (t

b)2, τs =
1
2 ksss (t

s ± tw)2, τw = ±1
2 ksss (t

s ± 2 tw) . (6.6)

The ± sign is decided by the Kähler cone conditions, like for example in the case of Ds

being a del Pezzo divisor where the corresponding two-cycle in the Kähler form J satisfies
ts < 0 in an appropriate diagonal basis. Looking at explicit CY examples [16], the sign is
fixed through the Kähler cone conditions such that ksss = −kssw = ksww, leading to the
following peculiar structure of the volume form [16]:

V = βb τ
3/2
b − βs τ

3/2
s − βs (τs + τw)3/2 , (6.7)

τb =
1
2 kbbb (t

b)2, τs =
1
2 ksss (t

s − tw)2, τw = −1
2 ksss (t

s − 2 tw) .

6.1 Divisor topologies for poly-instanton inflation

In principle, one should be able to fit the requirements for poly-instanton inflation on top
of having LVS in a setup with three Kähler moduli. Indeed we find that there are four CY
threefold geometries with h1,1(X) = 3 in the KS database which have exactly one Wilson
divisors and a P2 divisor. However, as mentioned in [16], in order to avoid all vector-like zero
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h1,1 Poly∗ Geom∗ Single Two Three nLVS nLVS & W nLVS & WΠ
(nCY) W W W (poly-inst.) (topol. tamed)

1 5 5 0 0 0 0 0 0
2 36 39 0 0 0 22 0 0
3 243 305 19 0 0 132 4 4
4 1185 2000 221 8 0 750 75 63
5 4897 13494 1874 217 43 4104 660 522

Table 11. Number of LVS CY geometries suitable for poly-instanton inflation. Here W denotes a
generic Wilson divisors, while WΠ a Wilson divisor with Π = 0.

h1,1 Poly∗ Geom∗ at least single two three at least single two three
one W W W W one WΠ WΠ WΠ WΠ

1 5 5 0 0 0 0 0 0 0 0
2 36 39 0 0 0 0 0 0 0 0
3 243 305 19 19 0 0 19 19 0 0
4 1185 2000 229 221 8 0 210 202 8 0
5 4897 13494 2134 1874 217 43 1764 1599 154 11

Table 12. CY geometries with Wilson divisors W and vanishing Π Wilson divisors WΠ without
demanding a diagonal del Pezzo divisor.

modes to have poly-instanton effects, one should ensure that the rigid divisors wrapped by
the ED3-instantons, should have some orientifold-odd (1, 1)-cycles which are trivial in the CY
threefold. Given that P2 has a single (1, 1)-cycle, it would certainly not have such additional
two-cycles which could be orientifold-odd and then trivial in the CY threefold. Hence one
has to look for CY examples with h1,1(X) = 4 for a viable model of poly-instanton inflation
as presented in [16, 17]. In this regard, we present the classification of all CY geometries
relevant for LVS poly-instanton inflation in table 11.

Let us stress that in all our scans we have only focused on the minimal requirements to
realise explicit global constructions of LVS inflationary models. However, every model has to
be engineered in a specific way on top of fulfilling the first order topological requirements,
as we do. For example, merely having a K3-fibred CY threefold with a diagonal del Pezzo
for LVS does not guarantee a viable fibre inflation model until one ensures that string loop
corrections can appropriately generate the right form of the scalar potential after choosing
some concrete brane setups.

As a side remark, let us recall that for having poly-instanton corrections to the superpo-
tential one needs to find a Wilson divisor W with h2,0(W ) = 0 and h0,0(W ) = h1,0(W ) =
h1,0

+ (W ) = 1 for some specific choice of involution, without any restriction on h1,1(W ) [16].
On these lines, a different type of ‘Wilson’ divisor suitable for poly-instanton corrections has
been presented in [18], which has h1,1(W ) = 4 instead of 2, and so it has a non-vanishing Π.
As we will discuss in a moment, this means that any poly-instanton inflation model developed
with such an example would not have leading order protection against higher-derivative F 4

corrections for the inflaton direction τw. Table 11 and 12 show the existence of several Wilson
divisors which fail to have vanishing Π since they have h1,1(W ) ̸= 2.
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6.2 Comments on F 4 corrections

The higher-derivative F 4 corrections to the potential of poly-instanton inflation can be
written as:

VF 4 = γ

V4

(
Πb tb +Πs ts +Πw tw

)
(6.8)

= γ

V4

[
Πb

( 6
kbbb

)1/3 (
V + βs τ

3/2
s + βs (τs + τw)3/2

)1/3

−Πs

√
2 τs
ksss

−Πw

√
2 (τs + τw)

ksss

]
,

where we have used:

tb =
√

2 τb
kbbb

, ts = −
√

2
ksss

(√
τs +

√
τs + τw

)
, tw = −

√
2
ksss

√
τs + τw . (6.9)

Now we know that for our Wilson divisor case, Πw = 0, and so the last term in (6.8)
automatically vanishes. This gives at least a leading order protection for the potential of
the inflaton modulus τw after stabilising the V and τs moduli through LVS. However the
τw-dependent term proportional to Πb would still induce a subleading inflaton-dependent
correction that scales as V−14/3. As compared to the LVS potential, this F 4 correction
is suppressed by a V−5/3 factor which for V ≫ 1 should be small enough to preserve the
predictions of poly-instanton inflation studied in [17, 19, 64]. Interestingly, we have found
that F 4 corrections to poly-instanton inflation can be topologically tamed, unlike the case
of blow-up inflation. In fact, the topological taming of higher derivative corrections to
blow-up inflation would require the inflaton to be the volume of a diagonal dP3 divisor
which, according to the conjecture formulated in [25], is however very unlikely to exist in
CY threefolds from the KS database.

7 Summary and conclusions

In this article we presented a general discussion of the quantitative effect of higher derivative
F 4 corrections to the scalar potential of type IIB flux compactifications. In particular, we
discussed the topological taming of these corrections which a priori might appear to have
an important impact on well-established LVS models of inflation such as blow-up inflation,
fibre inflation and poly-instanton inflation.

These F 4 corrections are not captured by the two-derivative approach where the scalar
potential is computed from the Kähler potential and the superpotential, since they directly
arise from the dimensional reduction of 10D higher derivative terms. In addition, such a
contribution to the effective 4D scalar potential turns out to be directly proportional to
topological quantities, Πi, which are defined in terms of the second Chern class of the CY
threefold and the (1,1)-form dual to a given divisor Di. The fact that these higher derivative
F 4 terms have topological coefficients has allowed us to perform a detailed classification
of all possible divisor topologies with Π = 0 that would lead to a topological taming of
these corrections. In particular, we have found that the divisors with vanishing Π satisfy
χ(D) = 6χh(D) which is also equivalent to the following relation among their Hodge numbers:
h1,1(D) = 4h0,0(D) − 2h1,0(D) + 4h2,0(D). In order to illustrate our classification, we
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presented some concrete topologies with Π = 0 which are already familiar in the literature.
These are, for example, the 4-torus T4, the del Pezzo surface of degree-6 dP3, and the
so-called ‘Wilson’ divisor with h1,1(W ) = 2.

In search of seeking for divisors of vanishing Π, we investigated all (coordinate) divisor
topologies of the CY geometries arising from the 4D reflexive polytopes of the Kreuzer-Skarke
database. This corresponds to scanning the Hodge numbers of around 140000 divisors
corresponding to roughly 16000 distinct CY geometries with 1 ≤ h1,1(X) ≤ 5. In our detailed
analysis, we have found only two types of divisors of vanishing Π: the dP3 surface and the
‘Wilson’ divisor with h1,1(W ) = 2.

In addition to presenting the scanning results for classifying the divisors of vanishing
Π, we have also presented a classification of CY geometries suitable to realise LVS moduli
stabilisation and three different inflationary models, namely blow-up inflation, fibre inflation
and poly-instanton inflation. Subsequently, we studied numerically the effect of F 4 corrections
on these inflation models in the generic case where the inflaton is not a divisor with vanishing
Π. In this regards, we performed a detailed analysis of the post-inflationary evolution to
determine the exact number of efoldings of inflation to make contact with actual CMB data.
When the coefficients of the F 4 corrections are non-zero, we found that they generically
do not spoil the predictions for the main cosmological observables. A crucial help comes
from the (2π)−4 suppression factor present in (3.3) which gives the coefficient of higher
derivative corrections for the h1,1(X) = 1 case. However, we argued that this suppression
factor should be universally present in all F 4 corrections of the kind presented in this work,
even for cases with h1,1(X) > 1.

Let us finally mention that our detailed numerical analysis shows that all the three LVS
inflationary models, namely blow-up inflation, fibre inflation and poly-instanton inflation,
turn out to be robust and stable against higher derivative α′3 corrections, even for the cases
when such effects are not completely absent thanks to appropriate divisor topologies in the
underlying CY orientifold construction. In some cases, like in blow-up inflation, we have
even found that such corrections can help to improve the agreement with CMB data of the
prediction of the scalar spectral index.

It is however important to stress that these are not the only corrections which can spoil
the flatness of LVS inflationary potentials. To make these models more robust, one should
study in detail the effect of additional corrections, like for example string loop corrections to
the potential of blow-up and poly-instanton inflation. In this paper, we have assumed that
these corrections can be made negligible by considering values of the string coupling which
are small enough, or tiny flux-dependent coefficients. However, this assumption definitely
needs a deeper analysis since in LVS the overall volume is exponentially dependent on the
string coupling, and V during inflation is fixed by the requirement of matching the observed
value of the amplitude of the primordial density perturbations. Therefore taking very small
values of gs to tame string loops might lead to a volume which is too large to match As.
We leave this interesting analysis for future work.
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