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TRANSPLANTATION
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of mortality in childrenQ1
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KEY PO INT S

•Higher gut microbiota
diversity before
transplantation
correlates with better
overall survival and
lower acute GVHD
incidence.

• In pediatric patients,
higher pretransplant
diversity is associated
with higher abundance
of short-chain fatty
acid–producing taxa.

The correlation existing between gut microbiota diversity and survival after allogeneic
hematopoietic stem cell transplantation (allo-HSCT) has so far been studied in adults.
Pediatric studies question whether this association applies to children as well. Stool
samples from a multicenter cohort of 90 pediatric allo-HSCT recipients were analyzed
using 16S ribosomal RNA amplicon sequencing to profile the gut microbiota and estimate
diversity with the Shannon index. A global-to-local networking approach was used to
characterize the ecological structure of the gut microbiota. Patients were stratified into
higher- and lower-diversity groups at 2 time points: before transplantation and at
neutrophil engraftment. The higher-diversity group before transplantation exhibited
a higher probability of overall survival (88.9 ± 5.7 standard error [SE] vs 62.7 ± 8.2 SE;
P = .011) and lower incidence of grade 2 to 4 (20.0 ± 6.0 SE vs 44.4 ± 7.4 SE; P = .017) and
grade 3 to 4 acute graft-versus-host disease (aGVHD) (2.2 ± 2.2 SE vs 20.0 ± 6.0 SE;
P = .007). No significant difference in relapse-free survival was observed between the 2
groups (80.0 ± 6.0 SE vs 55.4 ± 10.8 SE; P = .091). The higher-diversity group was

characterized by higher relative abundances of potentially health-related microbial families, such as Ruminococcaceae
and Oscillospiraceae. In contrast, the lower-diversity group showed an overabundance of Enterococcaceae and
Enterobacteriaceae. Network analysis detected short-chain fatty acid producers, such as Blautia, Faecalibacterium,
Roseburia, and Bacteroides, as keystones in the higher-diversity group. Enterococcus, Escherichia-Shigella, and
Enterobacter were instead the keystones detected in the lower-diversity group. These results indicate that gut
microbiota diversity and composition before transplantation correlate with survival and with the likelihood of
developing aGVHDQ7 .

Introduction
AllogeneicQ8 hematopoietic stem cell transplantation (allo-HSCT)
is a potentially curative treatment for many pediatric hemato-
logic malignancies and for a variety of nonmalignant dis-
eases.1,2 Nevertheless, transplant-related mortality (TRM) due
to associated complications, including acute graft-versus-host
disease (aGVHD) and infections, limits therapeutic benefits.3,4

During allo-HSCT, the patients’ gut microbiota (GM) is

severely injured because of a combination of factors, including
conditioning regimen, antibiotic exposure, and dietary
changes.5,6 This alteration, the so-called dysbiosis, is charac-
terized by a dramatic decrease in alfa diversity, a shift in beta
diversity, a loss of health-associated commensals, and an
expansion of potentially pathogenic bacteria.7 Recently, data
from adult multicenter cohorts have linked a lower alfa diversity
at the time of neutrophil engraftment with a higher mortality
risk Q9.8,9 The relative abundance of specific bacterial taxa was also
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associated with clinical outcomes, such as Enterococcus
expansion, which correlated with higher aGVHD-related mor-
tality,10 whereas increased amounts of Blautia were associated
with reduced aGVHD lethality.11 Moreover, the pretransplant
GM profile of patients was shown to differ from that of healthy
controls because of prior treatments and the disease itself,12

and it was significantly correlated with several clinical out-
comes.9,13-18 Therefore, GM alterations before allo-HSCT may
as well be implicated in the genesis of transplant-related com-
plications. In the pediatric allo-HSCT setting, fewer studies have
examined the correlation between GM configuration at
different time points during transplantation and clinical out-
comes,17-23 and data on the relationship between GM and
mortality have not been published yet. The GM of children
differs from that of adults, and this accounts for the need for
specific pediatric studies on the GM–and–allo-HSCT relation-
ship.24-26 Although the burden of allo-HSCT complications,
such as aGVHD and TRM, is lower than that observed in
adults,27-31 the risk is still significant, with most fatal events
being attributable to organ failure and infections.32,33 Further-
more, the long-term impact of complications may be dramatic
in children.34 In this scenario, we aimed to evaluate, in a
multicenter cohort of pediatric allo-HSCT recipients, the asso-
ciation between GM diversity and clinical outcomes before allo-
HSCT and at neutrophil engraftment, particularly focusing on
overall survival (OS) rates, incidence of relapse, and aGVHD.

Methods
Patients and specimen collection
Pediatric patients undergoing allo-HSCT for any indication were
enrolled in single- and multicenter protocols for stool collection,
coordinated by the IRCCS Azienda Ospedaliero-Universitaria di
Bologna (Bologna, Italy). The participating centers were the
University Hospital of Bologna, Italy; the University Hospital of
Pavia, Italy; the Bambino Gesù Children’s Hospital of Rome,
Italy; the University Hospital of Verona, Italy; and the University
Hospital of Wroclaw, Poland. Stool samples were collected
following different sampling protocols from 2013 to 2020, as
specified in previously published studies,26,35,36 in which 1
pretransplant sample and several postallo-HSCT samples were
collected for each patient. In the analysis of this work, only
patients with a stool sample available both before allo-HSCT
and at neutrophil engraftment were included, for a total of 90
patients and 180 fecal samples. The protocols were approved
by the Ethics Committee CE-AVEC Emilia-Romagna, Italy
(reference number 19/2013/U/Tess) and by the institutional
review board of each participating center. Written informed
consent was obtained from all participants/legal guardians by
the treating physicians. The study was conducted in accordance
with the Declaration of Helsinki and the European data pro-
tection regulation.

GM analysis
Details of the methods used for DNA extraction, 16S ribosomal
RNA (rRNA) amplicon sequencing, and data processing were
previously reported.35-37 In brief, V3-V4 hypervariable regions
of the 16S rRNA gene were amplified, purified, and sequenced
on an Illumina MiSeq platform using the 2 × 250 bp paired-end
protocol, following the manufacturer’s instructions (Illumina,
San Diego, CA). For this work, raw sequencing data were

gathered from public repositories, and sequences were filtered
based on the length and assembled using PANDASeq.38

Quality filtering and read binning into amplicon sequence var-
iants (ASVs) were achieved by implementing DADA239 in the
QIIME 2 pipeline.40 Taxonomic classification of ASVs was per-
formed using the hybrid method implementing VSEARCH and a
q2-classifier against the SILVA 138.1 database.41,42 Raw ASV
count tables were processed to apply correction for any bias
caused by the fact that the sequences were generated in
different sequencing runs over the years (yet all at the same
center in Bologna). Accordingly, we implemented the Com-
Bat43 function from the sva R package version 3.46.044 to apply
correction for biases relative to the batch covariate of the
sequencing run for each group of samples taken from the
different studies. All the subsequent analyses made use of
the derived bias-adjusted data. Alfa diversity was then esti-
mated with the Shannon index, and beta diversity was deter-
mined using the Bray-Curtis distances with the qiime diversity
module. Samples were categorized into higher- and lower-
diversity groups before allo-HSCT and at neutrophil engraft-
ment separately, based on the median of Shannon diversity
values of the overall cohort at the corresponding time point, as
recently done in a large-scale multicenter study of adult
patients who underwent allo-HSCT.9

Networking analysis
GM networks were first built separately for pre–allo-HSCT and
neutrophil engraftment time points. Correlation networks were
based on Spearman correlation tests performed with the “rcorr”
function from the Hmisc R package at the genus-level relative
abundance table filtered for genera with at least 0.3% relative
abundance in at least 5% of samples at the time point under
investigation.45 Only significant (P < .05) correlations were
considered further, and the resulting matrices were used for
computing modularity and cohesion values (ie, the ratio of
negative to positive cohesions [N:P ratio] and total cohesion
[TC]) according to previous studies.46,47 Briefly, modularity
quantifies the connection between and within modules,
measuring whether the modules are more independent (high
modularity) or connected, based on the concept that the impact
of an external stressor on a node (ie, genus) is likely to affect
only the members of its module. Therefore, the higher the
modularity, the lower the spread of the stressor effect in the
community. TC represents network complexity, considering
both positive and negative cohesions, and therefore reflects the
global cohesive density of the community. In contrast, the N:P
ratio quantifies the extent to which the ecosystem is allowed to
exhibit negative interactions; under stress conditions, such
interactions are crushed by environmental pressure, and the
ecosystem is forced to rely mainly on cooperative interac-
tions.46-48 Network adjacency structures from correlation data
were obtained with the igraph R package version 1.3.4.49

Network modularity was computed using “igraph,” and the
modules were detected by implementing a statistical
mechanics spin-glass model and simulated annealing with the
following additional parameters: “update.rule = simple,”
“implementation = neg,” and “spins = 200.”50 Microbial
keystone taxa were detected implementing a brute leave-1-out
approach, as previously proposed,48,51 removing each taxon at
a time, recomputing the network, and evaluating the ones
causing the highest reduction of the TC value. Network plots
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were obtained from a global network, that is, a network
computed considering all 180 samples together, and plotted
with Cytoscape 3.9.1.52 Node size was set proportional to the
overabundance of that genus in the considered group (higher
vs lower diversity, either pre–allo-HSCT or at neutrophil
engraftment) and computed as the average relative abundance
of the taxon in that group divided by the average relative
abundance of the taxon across the entire data set. Additionally,
edge width was plotted proportionally to the corresponding
computed Spearman ρ.

Outcomes and statistical analysis
The primary end point was OS. Secondary end points were
incidence of relapse, relapse-free survival, TRM, cumulative
incidence of all grade aGVHD, grade 2 to 4 aGVHD, grade 3 to
4 aGVHD, gut aGVHD, and bloodstream infections (BSIs). TRM
was defined as death from causes unrelated to the underlying
disease. aGVHD was diagnosed and graded according to
Glucksberg criteria.53 Neutrophil engraftment was defined as
the first of 3 consecutive days with an absolute neutrophil
count ≥ 0.5 × 109/L. For the analysis of clinical primary and
secondary outcomes, patients were stratified into higher- and
lower-diversity groups before allo-HSCT and at neutrophil
engraftment, as described earlier. The probability of OS and
relapse-free survival was calculated with the Kaplan-Meier
method, and groups were compared using log-rank analysis.
Relapse, aGVHD, BSI, and TRM were calculated as cumulative
incidence, and groups were compared using the Gray test. The
association between GM diversity and clinical outcomes was
calculated with Cox proportional hazards univariate and multi-
variate models (adjusted by age, graft source, donor type,
intensity of conditioning regimen, center, and disease type).
Spearman correlation was used to investigate the association
between GM diversity and patient age. Wilcoxon rank-sum test
and Fisher exact test were used to compare continuous and
categorical clinical and GM features, respectively. The Shapiro-
Wilk test was used to test the normality of the data. Student t
test was used to compare the means of normal distributions;
otherwise, the Mann-Whitney test was used. Welch analysis of
variance test was used to evaluate the difference in means
among 3 groups when variances were not homogeneous.
Tukey multiple comparison test was used to compare contin-
uous variables for different centers. A compositional analysis
with phylogenetic classification at the family and genus level
was then performed between the higher- and lower-diversity
groups, as well as among those patients who did develop
aGVHD and those who did not, using Wilcoxon rank-sum tests
to assess significant differences in relative taxon abundances.
Permutational analysis of variance with pseudo-F ratio (Adonis
Permanova from “vegan” R package54) was used to test data
separation54 from Bray-Curtis distance matrices, and the t-
distributed stochastic neighbor embedding (t-SNE) algorithm
for dimensionality reduction from the “Rtsne” R package55 was
used to visualize the distribution of genus-level GM profiles in
relation to a given variable. Regarding the analysis of the impact
of antibiotics on GM diversity and the relative abundance of the
Enterobacteriaceae and Enterococcaceae families, pre–allo-
HSCT exposure was considered evaluable if it occurred within
30 days before admission and at least for 3 days at least. Pre-
engraftment exposure was considered evaluable if the anti-
biotic was administered for at least 3 days before the collection

of the stool sample at engraftment. All GM statistical analyses
were conducted in R56 and graphical representations were
produced using the ggplot2 R package,57 whereas survival and
cumulative incidence analyses were conducted using SPSS (IBM
Corp, 2016. IBM SPSS Statistics for Windows, version 24.0.
Armonk, NY: IBM Corp) and NCSS (NCSS 12 Statistical Software
[2018]). NCSS, LLC. Kaysville, UT). Analyses on the antibiotic
exposure were conducted using GraphPad Prism 9 (GraphPad
Prism version 9.5.1 for Mac, GraphPad Software, San Diego,
CA). All P values were corrected for multiple comparisons using
the Benjamini-Hochberg false discovery rate method; P < .05
was considered statistically significant, whereas P < .1 was
considered a trend.

Results
Characteristics of patients
A total of 90 patients from previous studies35-37 had a stool
sample available both before allo-HSCT and at neutrophil
engraftment, for a total of 180 stool samples included in this
work. A mean of 26 973 (± 5873 standard deviation) high-
quality 16S rRNA gene sequences was obtained per sample.
The clinical characteristics of the patients included in the study
are reported in Table 1. The temporal distribution of the sam-
ples for each patient is shown in Figure 1. The median days of
sampling were 7.00 ± 0.40 (SE of the mean) before transplant
and 19.00 ± 0.92 after HSCT at neutrophil engraftment.

Association between alfa diversity and clinical
outcomes
To assess the relationship between GM diversity and clinical
outcomes, alfa diversity was analyzed both before trans-
plantation and at the time of neutrophil engraftment. GM
diversity significantly decreased from before allo-HSCT to
neutrophil engraftment in the whole cohort (P < .0001) as well
as in all participating centers (P ≤ .01) (supplemental Figure 1,
available on the Blood website). Comparison of diversity among
centers revealed no differences either before allo-HSCT or at
neutrophil engraftment (P ≥ .14). Additionally, GM diversity
correlated significantly with age (Spearman ρ ≥ 0.36; P ≤ .0019;
supplemental Figure 2), being lower in patients ≤3 years before
and after allo-HSCT (P = .002 and P = .013, respectively)
(supplemental Figure 3). The median Shannon diversity value of
GM before allo-HSCT and at neutrophil engraftment, used to
stratify patients into the 2 groups, was 4.04 and 2.86, respec-
tively. supplemental Tables 1 and 2 show the clinical charac-
teristics of patients in the 2 groups for both time points; no
significant differences were found in the variables considered,
with the exceptions of the center for groups based on pre–allo-
HSCT diversity and patient age for groups based on diversity at
neutrophil engraftment (P ≤ .011). Association of clinical vari-
ables with OS did not show significant results (P ≥ .09;
supplemental Table 3). Focusing on the relationship between
GM diversity before allo-HSCT and clinical outcomes, the OS
significantly differed between groups (P = .011), with patients
with higher diversity showing a higher OS than those with less
diversity (hazard ratio, 0.29; 95% confidence interval, 0.11-0.80;
Figure 2A). This association was confirmed by a multivariate
Cox proportional-hazards analysis adjusted for age, graft
source, donor type, intensity of conditioning regimen, center,
the and type of disease (hazard ratio, 0.26; 95% confidence

MICROBIAL DIVERSITY PREDICTS MORTALITY IN CHILDREN XXX 2023 | VOLUME ▪, NUMBER ▪ 3

FLA 5.6.0 DTD � BLOOD1725_proof � 17 August 2023 � 8:28 am � ce

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362



interval, 0.09-0.75; supplemental Table 4). The estimated OS at
52 months after allo-HSCT was 88.9 ± 5.7 (standard error [SE])
and 62.7 ± 8.2 (SE) for the higher- and lower-diversity groups,
respectively (Figure 2A). There were no statistically significant
differences between the higher- and lower-diversity groups in
the cumulative incidence of relapse (13.3 ± 5.1 [SE] vs 24.4 ±
6.4 [SE]; P = .1) and relapse-free survival (80.0 ± 6.0 [SE] vs
55.4 ± 10.8 [SE]; P = .091; supplemental Figure 4). The cumu-
lative incidence of grade 2 to 4 aGVHD (20.0 ± 6.0 [SE] vs
44.4 ± 7.4 [SE]; P = .017) as well as the incidence of grade 3 to 4
aGVHD (2.2 ± 2.2 [SE] vs 20.0 ± 6.0 [SE]; P = .007) was signif-
icantly lower in the higher-diversity groupQ10 than in the lower-
diversity group, (Figure 2B). Patients with higher diversity
showed a trend toward lower gut aGVHD (11.1 ± 4.7 [SE] vs
24.4 ± 6.4 [SE]; P = .098), whereas no differences were found
between the groups in terms of BSI (23.8 ± 6.6 [SE] vs 20.9 ± 6.2
[SE]; P = .735) and TRM (8.9 ± 4.2 [SE] vs 15.6 ± 6.2 [SE]; P =
.473; supplemental Figure 4). An analysis of aGVHD-related
mortality was not performed because of the low number of
deaths due to this complication. The results of the univariate
and multivariate Cox proportional hazards analysis for all vari-
ables considered are shown in supplemental Table 4. As for GM
diversity at neutrophil engraftment, no significant differences in
outcomes were found between the higher- and lower-diversity
groups in terms of OS, relapse-free survival, grade 2 to 4 and

3 to 4 aGVHD, gut aGVHD, BSI, and TRM (supplemental
Figure 5; supplemental Table 5).

GM composition across transplant stages
Differences in pre–allo-HSCT GM composition were visualized
using t-SNE plots generated from genus-level relative abun-
dance data. Color coding of the t-SNE projections according to
the Shannon index of alfa diversity highlighted a large central
cluster of high-diversity samples, with an outer rim consisting
mostly of lower-diversity projections (Figure 3A). A significant
separation between the higher- and lower-diversity groups was,
indeed, found using Adonis Permanova on Bray-Curtis distance
matrices (P = .001). Color coding based on patient survival
outcome showed a colocalization of lower-diversity samples
and fatalities (Figure 3B), with GM configurations tending to
separate based on outcome (alive vs dead; P = .052). Pre–allo-
HSCT alfa diversity was, indeed, significantly higher in patients
who had a favorable survival outcome (Figure 4A). In terms of
the most abundant genus (Figure 3C), several of the lower-
diversity samples were characterized by a higher relative
abundance of Escherichia-Shigella, Enterococcus, Entero-
bacter, and Streptococcus. Furthermore, the GM profiles were
segregated based on the occurrence of aGVHD (P = .006),
especially with grade 3 to 4 Q11aGVHD tending to colocalize with
the lower-diversity samples as well as with the presence of

Table 1. Clinical characteristics of patients included in the study

Characteristics
Overall
(N = 90)

Bologna
(N =Q25 50)

Wroclaw
(N = 13)

Verona
(N = 15)

Rome
(N = 5)

Pavia
(N = 7)

Age at allo-HSCT, y (± SD) 9.0 ± 5.5 10.0 ± 5.6 7.2 ± 4.1 8.0 ± 5.3 8.8 ± 7.9 8.1 ± 6.3

Male sex, n (%) 53 (59) 29 (58) 11 (85) 6 (40) 1 (20) 6 (86)

Disease, n (%)

Acute lymphoblastic leukemia 33 (37) 19 (38) 5 (38) 6 (40) 3 (60) 0 (0)

Acute myeloid leukemia 19 (21) 14 (28) 0 (0) 2 (13) 1 (20) 2 (29)

Non-Hodgkin lymphoma 2 (2) 2 (4) 0 (0) 0 (0) 0 (0) 0 (0)

MDS or JMML 10 (11) 7 (14) 2 (15) 1 (7) 0 (0) 0 (0)

Nonmalignant disease 26 (29) 8 (16) 6 (49) 6 (40) 1 (20) 5 (71)

Type of donor (%)

Unrelated 55 (61) 30 (60) 8 (62) 13 (87) 1 (20) 3 (43)

HLA-haploidentical relative 18 (20) 10 (20) 2 (15) 0 (0) 3 (60) 3 (43)

Identical sibling 17 (19) 10 (20) 3 (23) 2 (13) 1 (20) 1 (14)

Stem cell source (%)

Bone marrow 68 (76) 47 (94) 5 (38) 10 (67) 2 (49) 4 (57)

PBSC 21 (23) 3 (6) 8 (62) 4 (27) 3 (60) 3 (43)

Cord blood 1 (1) 0 (0) 0 (0) 1 (7) 0 (0) 0 (0)

Intensity of conditioning (%)

Ablative 83 (92) 49 (98) 10 (77) 12 (80) 5 (100) 7 (100)

Reduced intensity 7 (8) 1 (2) 3 (23) 3 (20) 0 (0) 0 (0)

Follow-up of survivors, mo

Median 52.4 55.4 23 39.2 78.5 79.4

Interquartile range 26.3-79.0 24.0-78.5 22.8-24.0 24.0-33.0 78.0-79.0 78.5-80.0

JMML, juvenile myelomonocytic leukemia; MDS, myelodysplastic syndrome; PBSC, peripheral blood stem cell; SD, standard deviation.
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Streptococcus and Bacteroides, but not Blautia, as the most
abundant taxa (Figure 3D). In addition, it is noteworthy that the
results of the univariate Cox proportional hazards analysis
confirm the previously reported link between GM composition
and aGVHD onset.7,35 Finally, pre–allo-HSCT samples from all
centers were evenly distributed across the different t-SNE
clusters, confirming the absence of transplant center-specific
effects (P = .592; Figure 3E).

From a compositional point of view, the higher-diversity group
before transplantation was characterized by higher relative
abundances of the families Oscillospiraceae, Bacteroidaceae,
Rikenellaceae, Ruminococcaceae, Prevotellaceae, Coriobacter-
iaceae, Christensenellaceae, and Tannerellaceae (P < .01;
Figure 4B). Conversely, the lower-diversity group showed an
overabundance of Enterococcaceae and Enterobacteriaceae
(P < .05). Going down Q12to the genus level, the GM of the higher-
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Figure 1. Temporal distribution of the samples from the
multicenter pediatric allo-HSCT cohort analyzed in this
study.Q26Q27 Each point in the graph represents 1 of 180 fecal
samples for the 90 patients included in this study, sampled
before transplantation and at neutrophil engraftment.
Samples are plotted based on the time relative to allo-
HSCT (day 0) on the horizontal axis. The colorQ28 code is
based on alfa diversity as measured by the Shannon index.
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diversity group was characterized by higher proportions of
Bacteroides, Dorea, Parabacteroides, Alistipes, Collinsella,
Coprococcus, Roseburia, Faecalibacterium, Blautia, and mem-
bers of the Christensenellaceae R-7 group, (Ruminococcus)
torques group, and (Eubacterium) coprostanoligenes group
(P < .05). In contrast, the lower-diversity group was found to be
particularly enriched in Escherichia-Shigella and Enterococcus
(P < .05), confirming the t-SNE observations (Figure 4C).

Regarding antibiotic administration before admission, the
median antibiotic exposure was significantly longer in the
lower-diversity group (P = .028; supplemental Figure 6A).
Moreover, in the whole cohort, pre–allo-HSCT antibiotic ther-
apy resulted in a significant reduction in alfa diversity (P = .043;
supplemental Figure 6B).

With regard to the analysis performed on samples collected at
the time of neutrophil engraftment, significant separation
between the higher- and lower-diversity groups was detected
using Adonis Permanova on Bray-Curtis distance matrices (P =
.013), but neither genus-level, composition-derived t-SNE rep-
resentations, nor pairwise Adonis testing, nor Wilcoxon tests of
raw alfa diversity values revealed any strong association
between GM diversity at this time point and OS (supplemental
Figures 7 and 8A-B). Nevertheless, several compositional dif-
ferences at both the family and genus levels were found at
neutrophil engraftment, stratifying based on higher vs lower
diversity (supplemental Figure 7B-C). In particular, the higher-
diversity group showed higher levels of Lachnospiraceae,
Ruminococcaceae, Eggerthellaceae, Erysipelotrichaceae, Tan-
nerellaceae, Christensenellaceae, and Bacteroidaceae (P < .05)
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Figure 3. Pretransplant GM and outcomes in pediatric
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represents a stool sample from a single patient, and the
axes (t-SNE1 and t-SNE2) have arbitrary units. The more
similar the samples are in microbiota composition, the
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and a trend toward lower levels of Enterococcaceae (P = .05). At
the genus level, engraftment samples with higher diversity were
enriched in Lachnoclostridium, Subdoligranulum, Para-
bacteroides, and Bacteroides as well as members of the
Christensenellaceae R-7 group (P < .05). On the contrary,
relative abundances of Enterococcus tended to be higher in the
lower-diversity group (P = .05).

Regarding aGVHD, it was not found to be associated with alfa
diversity either before transplantation or at neutrophil engraft-
ment (supplemental Figures 8D and 9). However, higher pre–
allo-HSCT relative abundances of Blautia and Ruminococcus (P
≤ .05) appeared to be protective against the subsequent

aGVHD development, in line with the available literature.35

Such taxonomic signatures were more pronounced, specif-
ically, when looking at grade 3 to 4 aGVHD, the occurrence of
which was also associated with higher pre–allo-HSCT pro-
portions of Streptococcus, Actinomyces, Lacticaseibacillus,
Rothia, and members of the (Ruminococcus) gnavus group (P ≤

.05). No GM taxonomic signatures related to the onset of grade
1 to 2 or 3 to 4 GVHD were detected at neutrophil engraftment.

Regarding antibiotic administration at the pre-engraftment
period of time (ie, from HSCT to engraftment), it was
found that patients receiving glycopeptides were enriched
with Enterococcaceae (P = .004) but not Enterobacteriaceae
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Figure 4. GM diversity and composition before allo-HSCT. (A) Boxplots showing the distribution of alfa diversity estimated with the Shannon index according to patient
outcome (alive vs dead). Significant differences in the GM composition at the family (B) and genus (C) level between the higher- and lower-diversity groups. false discovery
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(P = .391) in the stool samples collected at engraftment
(supplemental Figure 6C). In contrast, the relative abundance of
Enterococcaceae was higher in patients receiving piperacillin-
tazobactam or meropenem compared with those receiving
cefepime or ceftazidime (P = .024; supplemental Figure 6D).

Network analysis
Finally, we explored the GM networks of the higher- and lower-
diversity groups before allo-HSCT and at neutrophil engraftment,
using a correlation networking approach, as previously
reported.48 Before allo-HSCT, the GM network of patients
belonging to the lower-diversity group showed Enterococcus,
Escherichia-Shigella, Enterobacter, and the (Ruminococcus)
gnavus group as keystone taxa (see “Methods”), whereas Bac-
teroides, Blautia, Faecalibacterium, and Roseburia were detec-
ted for the higher-diversity group. Overall, we detected 5
modules, which were clearly differently populated in the 2
diversity groups (Figure 5A-B). The lower-diversity group showed
enrichment in network module 2, particularly represented by
Enterococcus, Escherichia-Shigella, Rothia, Enterobacter, Anae-
rococcus, and Klebsiella, and module 5, with Pseudomonas,
Anaerobacillus, Bacillus, Proteus, and Acinetobacter. In contrast,
the network layout of the higher-diversity group hardly popu-
lated these modules, with the overall configuration particularly
upheld by modules 1, 3, and 4 containing several short-chain
fatty acid (SCFA) producers, as previously outlined (ie, Bacter-
oides, Coprococcus, Roseburia, Oscillospira, Faecalibacterium,
Ruminococcus, and Eubacterium spp), as well as many other gut
commensals, with their abundances evenly distributed across
modules and nodes. As for network modularity and cohesion
before transplantation (ie, N:P ratio and TC), a considerable
reduction in all parameters was found in the lower-diversity
group (Figure 5C). At the time of neutrophil engraftment,
several keystones were maintained, namely Bacteroides in the
GM network of patients with higher diversity, and Enterococcus
and Escherichia-Shigella in that of patients with lower diversity
(supplemental Figure 10). Again, the modularity and N:P ratio
were notably reduced in the lower-diversity group, whereas TC
showed similar values between groups.

Discussion
To the best of our knowledge, we present the first evidence of
an association between pretransplantation lower GM diversity
and a poorer outcome in children undergoing allo-HSCT.
Moreover, this analysis also involved the largest pediatric
cohort studied for GM composition during the allo-HSCT
period published to date.

Higher GM diversity before transplantation, but not at the time of
neutrophil engraftment, correlated with a better probability of OS
and a lower cumulative incidence of grade 2 to 4 and grade 3 to 4
aGVHD. Our data partly differ from those reported in adults,
whose diversity both before and after transplantation (ie, at
neutrophil engraftment) was significantly related to transplant
outcomes.9 In particular, Peled et al observed that lower GM
diversity at the time of neutrophil engraftment predicted poor OS
and correlated with higher risks of TRM and death attributable to

aGVHD in 2 independent cohorts.9 Higher diversity in the pre–
allo-HSCT period was associated with increased OS and reduced
TRM in only 1 cohort. Therefore, the finding that pretransplant
GM features may predict allo-HSCT outcomes is consistent
between pediatric and adult cohorts. However, our data differ
from those of adults on the predictive nature of posttransplant
GM composition. This finding may be due to age-related varia-
tion in the GM and possibly to the different abilities of the GM to
withstand external stressors between adults and children. Chil-
dren, in general, have significantly lower GM diversity, higher
relative abundances of Bacteroides and Bifidobacterium spp, and
lower relative abundances of Blautia than adults.24,58 Functional
properties of the GM also vary based on age, with a predomi-
nance of catabolic over biosynthetic pathways in the pediatric
period.58 In addition, children’s GM is more plastic and malleable
to modification through environmental factors, undergoing larger
shifts when exposed to external stressor.24 Considering these
different ecological properties compared with those in adults, we
hypothesize that allo-HSCT–induced dysbiosis in the pediatric
setting may imply loss of age-related GM signatures, including
alfa diversity, with high interpatient variability. We have previously
reported that pediatric patients are particularly prone to lose age-
specific GM signatures during allo-HSCT, probably in an indi-
vidual manner,7 in line with the so-called Anna Karenina principle,
stating that each dysbiotic GM is dysbiotic in its own way.59

Interestingly, the higher-diversity group before allo-HSCT
exhibited favorable GM compositional features, namely higher
relative abundances of SCFA producers, such as Blautia, Rose-
buria, Faecalibacterium, Bacteroides, Coprococcus, and Para-
bacteroides.60-67 SCFAs have a pivotal trophic effect on the
intestinal epithelial barrier, being an energy source for enter-
ocytes and increasing the gene expression of tight-junction
proteins and mucins,68,69 and play a crucial role in the cross
talk between GM and host immune cells.70,71 Higher proportions
of butyrate-producing species and increased SCFA production
were linked, in several cohorts, to a lower incidence and severity
of transplant-related complications, mainly aGVHD and viral
infections.18,72-77 The higher-diversity group also showed
increased relative abundances of members of the (Eubacterium)
coprostanoligenes group, generally known for its metabolic asset
capable of bio-transforming cholesterol into coprostanol, influ-
encing host fat metabolism, which may be a focus in future
metagenomic studies.78,79 In contrast, the lower-diversity group
was characterized by the families Enterobacteriaceae, which
includes many facultative aerobic pathobionts, and Entero-
coccus. Both these taxa were associated with a higher risk of
bacteremia and viremia as well as increased aGVHD-related
mortality10 in pediatric allo-HSCT recipients.18,80

The reconstruction of GM networks allowed us to detect sig-
nificant differences between the higher- and lower-diversity
groups in terms of network topology and network properties,
which can be linked to potential ecological interactions within
GM communities. In particular, the GM of the lower-diversity
group before transplantation lacked modularity and stability
and showed less competitive interactions (indicated by a lower
N:P ratio), thus being more fragile, less resilient, and likely

Figure 5 (continued) showing overabundance ≥1.4 were displayed. Labels were displayed only for genera showing an overabundance of at least 1.5. The 5 different modules
detected according to a statistical mechanics spin-glass model and simulated annealing are noted with labels. (B) Values of computed network features (ie, modularity, N:P
ratio, and TC Q30).
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unable to maintain eubiotic cross talk with the host during and
after allo-HSCT. By contrast, the ecosystem found in the higher-
diversity GM group was more modular and robust. Moreover,
this ecosystem was held up by the presence of SCFA producers
as keystone taxa (ie, Blautia, Bacteroides, Faecalibacterium, and
Roseburia), all of which are well-known components of a healthy
child GM.81,82

In conclusion, our findings underscore the importance of pre-
transplant GM diversity and compositional structure in influ-
encing allo-HSCT–related clinical outcomes in the pediatric
setting. In particular, our data emphasize the importance of an
overall healthy network, rather than the abundance of specific
families or genera, in preventing complications and unfavorable
outcomes.

Our study has some limitations. First, the different clinical
practices of the participating centers resulted in a heteroge-
neous cohort encompassing several diseases, conditioning
regimens, and transplant practices. Second, although it is the
largest pediatric cohort to date, the sample size is still small and
not comparable with what is available for adults. Moreover, the
age range is wide, including both infants and older children,
whose GM likely follows different ecological rulesQ13 . Large-scale
multicenter cohort studies are needed to fully uncover the
clinical significance of the age-related GM configuration in
determining patient outcomes. Furthermore, more frequent
and longer sampling may enable the implementation of addi-
tional approaches, such as that proposed by Raman et al,83 to
efficiently detect a so-called ecogroup, that is, an ensemble of
taxa that act as a core microbiota during the whole process,
whose presence and functionality might provide further insights
to the dynamics occurring during transplantation. This
ecogroup would most likely include SCFA producers, which
could act not only as markers of a healthy ecosystem but also as
drivers of favorable associations. Unlike in the cohort of Peled
et al,9 in our cohort, we were unable to define a significant
relationship with a specific cause of death, probably because of
the relatively low number of events.

Although our study provides novel and important information
regarding GM in pediatric allo-HSCT recipients, many questions
remain unanswered. For instance, our study, like most of the
published ones, characterizes the GM only from a composi-
tional point of view. Functional modifications with meta-
genomics sequencing and metabolomics should be addressed
along with the clinical implications. Moreover, this information
should be integrated with other GM components, namely fungi
and viruses, whose roles are not fully understood yet. Our study
also defines opportunities for GM-targeted therapeutics in
children, such as nutritional modulation or even fecal micro-
biota transplantation.84 In particular, our results provide infor-
mation regarding the best timeframe to act in order to improve
the GM configuration and, in cascade, transplant outcomes,
which was found to be the one before allo-HSCT, unlike the
adult counterpart. Importantly, this increases the possibility of
preventing GM injury starting from the diagnosis of the onco-
logical or hematologic disease. Early personalized precision
interventions could therefore be proposed to patients based on
their GM composition. However, their safety and effectiveness
should be specifically addressed in interventional studies in
pediatric allo-HSCT recipients. Furthermore, the lower GM

diversity and the higher relative abundance of Enterococcaceae
observed in pre–allo-HSCT samples of patients receiving anti-
biotics (especially glycopeptides) suggest that antibiotic-
sparing strategies in this key timeframe could contribute to
maintaining eubiosis.

Conclusions
To our knowledge, this is the first study demonstrating an
association between GM diversity before transplantation and
OS in children given allo-HSCT. In addition, we found signifi-
cant associations between higher pretransplant diversity and
the presence of SCFA-producing taxa, as well as a network
structure with higher modularity and plasticity. GM modulation
during this critical time window related to allo-HSCT could,
therefore, possibly influence patients’ prognosis.66,67
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