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A B S T R A C T   

Introduction: Gross total resection (GTR), Biochemical Remission (BR) and restitution of a priorly disrupted 
hypothalamus pituitary axis (new improvement, IMP) are important factors in pituitary adenoma (PA) resection 
surgery. Prediction of these metrics using simple and preoperatively available data might help improve patient 
care and contribute to a more personalized medicine. 
Research question: This study aims to develop machine learning models predicting GTR, BR, and IMP in PA 
resection surgery, using preoperatively available data. 
Material and methods: With data from patients undergoing endoscopic transsphenoidal surgery for PAs machine 
learning models for prediction of GTR, BR and IMP were developed and externally validated. Development was 
carried out on a registry from Bologna, Italy while external validation was conducted using patient data from 
Zurich, Switzerland. 
Results: The model development cohort consisted of 1203 patients. GTR was achieved in 207 (17.2%, 945 
(78.6%) missing), BR in 173 (14.4%, 992 (82.5%) missing) and IMP in 208 (17.3%, 167 (13.9%) missing) cases. 
In the external validation cohort 206 patients were included and GTR was achieved in 121 (58.7%, 32 (15.5%) 
missing), BR in 46 (22.3%, 145 (70.4%) missing) and IMP in 42 (20.4%, 7 (3.4%) missing) cases. The AUC at 
external validation amounted to 0.72 (95% CI: 0.63–0.80) for GTR, 0.69 (0.52–0.83) for BR, as well as 0.82 
(0.76–0.89) for IMP. 
Discussion and conclusion: All models showed adequate generalizability, performing similarly in training and 
external validation, confirming the possible potentials of machine learning in helping to adapt surgical therapy to 
the individual patient.   

1. Introduction 

Pituitary adenomas (PA) constitute for roughly 15% of intracranial 

tumors and can be resected by transsphenoidal surgery (TSS) in the 
majority of cases (Thapar et al., 2001). TSS has been adopted as the ‘gold 
standard’ approach due to its minimal invasiveness with concomitant 
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low morbidity and mortality (Kanter et al., 2005). 
Many variables play a role in determining surgical and endocrino

logical outcomes of pituitary surgery, which have been analyzed in 
several publications (Lobatto et al., 2018; Zhou et al., 2017; Braileanu 
et al., 2019; Hensen et al., 1999). This burdens the clinicians with a 
multitude of variables to consider in surgical decision-making. In times 
when “big data” is easily accessible, machine learning (ML) – at least in 
theory – promises the ability to integrate all of these factors to better 
guide clinicians based on the individual characteristics of the patient 
(Obermeyer and Emanuel, 2016; Stumpo et al., 2022). 

Using ML to predict the likelihood of endocrinological endpoints, 
such as biochemical remission (BR) or the restitution of a priorly dis
rupted hypothalamus pituitary (HP) axis (new improvement, IMP) as 
well as gross total resection (GTR) from simple preoperative data would 
be beneficial for clinicians and patients by leading to improved clinical 
decision-making and therefore improve patient outcome. 

To date, none of the clinical prediction models for pituitary surgery 
outcomes have been externally validated (Stumpo et al., 2022). External 
validation is a critical step in evaluating the applicability of any model 
before introduction into clinical practice as internal validation and 
resampling techniques only allow for a very limited conclusion of the 
ultimate performance on new patients (generalization) (Collins et al., 
2014). Therefore, we aimed to create externally validated, clinically 
applicable prediction models for anticipation of the beforementioned 
outcomes after TSS for PAs. 

2. Methods 

2.1. Overview 

Prediction model development was carried out using data of patients 
that were treated with endoscopic TSS by the Department of Neuro
surgery, IRCCS Institute of Neurological Sciences of Bologna. The 
models were trained to predict GTR, BR, and IMP respectively. External 
validation of the trained models was subsequently performed with pa
tient data provided by the Department of Neurosurgery, University 
Hospital Zurich. In this study we adhere to methodology described in a 
previous publication but apply it to additional new data. (Zanier et al., 
2021). All examinations were conducted adhering to the principles of 
transparent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD) (Collins et al., 2015). 

2.2. Ethical considerations 

Patient data were treated according to the ethical standards of the 
Declaration of Helsinki and its amendments as approved by our insti
tutional committee (Cantonal Ethics Committee Zürich, KEK St-V-Nr, 
2015-0242) and the interhospital Ethical Committee of Bologna City 
(protocol CE17143, February 2018). 

2.3. Data sources 

This study was conducted using data from two centers, one of which 
was used for model training while data from the other center was 
applied to externally validate all models. Patients who underwent 
endoscopic TSS surgery for PA during the timeframe of August 1998 to 
January 2020 in Bologna as well as from July 2013 to May 2020 in 
Zurich were included in this study. All pre- and postoperative assess
ments as well as intraoperative procedures were carried out as specified 
in earlier publications (Maldaner et al., 2018; Serra et al., 2016). All 
patients included had to have information available for at least one of 
the three outcome measures and patients that underwent transcranial or 
combined procedures were excluded. 

2.4. Outcomes 

Classification machine learning models were trained for the predic
tion of GTR, BR and IMP as endpoints. GTR was strictly defined as an 
extent of resection of 100 The evaluation of the extent of resection was 
based on MRI images captured three months after the surgery and was 
conducted by a board-certified neurosurgeon with significant knowl
edge in pituitary imaging in collaboration with an experienced neuro
radiologist. Furthermore, BR was defined as reduction of hormonal 
levels back into reference ranges, while IMP was defined as the resto
ration of one or more previously disrupted hypothalamus-pituitary axes 
into normal reference range of the respective hormones as specified by 
international guidelines (Giustina et al., 2020). Note that when calcu
lating BR and IMP, additional treatment modalities such as medical and 
radiation therapy were taken into account. This is because withholding 
these essential treatments would be unethical. 

2.5. Input variables 

Gender, age, adenoma phenotype, Hardy score (sellar, suprasellar 
and parasellar) (Hardy and Vezina, 1976), Knosp classification (Knosp 
et al., 1993), number of disrupted hypothalamus-pituitary axes, preop
erative level of TSH, GNRH and ACTH, nasoseptal flap and fascial 
reconstruction were selected as input variables. (Hardy and Vezina, 
1976; Knosp et al., 1993). Both the neurosurgeon as well as the neuro
radiologist independently assessed Knosp and Hardy scores based on the 
last preoperative MRI. 

2.6. Model development 

As previously described the prediction models were derived using 
data from Bologna and then externally validated on patient data from 
Zurich. Both datasets were shuffled randomly before being checked for 
equal class distribution. In a next step recursive feature elimination was 
applied to all initially available variables in order to arrive at a sparse 
model (Staartjes et al., 2022). In terms of model architecture, we applied 
support vector machines (SVMs), Random Forests (RFs) and Bagged 
Classification and Regression Trees (CARTs). The models were then 
trained and selected based on the area under the receiver operating 
curve (AUC) through 10 iterations of 10-fold cross validation. In parallel 
to this we also trained a k-nearest neighbour (KNN) algorithm, which 
allowed for any current and future imputation of missing data (Batista 
and Monard, 2003). Since our models are capable of providing contin
uous probabilities, we binarized the results based on the closest-to-(0, 
1)-criterion in order for model performance evaluations (Perkins and 
Schisterman, 2006). To evaluate discrimination, several metrics were 
employed, including the area under the curve (AUC), accuracy, sensi
tivity, specificity, positive predictive value (PPV), and negative predic
tive value (NPV). Nonparametric 95% confidence intervals (CI) of these 
metrics were computed. We also evaluated model calibration using the 
calibration curve intercept and slope. Finally variable importance was 
computed for each of the models in a universal AUC-based approach 
before being scaled from 0 to 100 (Kuhn, 2008). We carried out all our 
examinations using R version 4.0.2 (R Core Team, 2017). 

3. Results 

3.1. Patient characteristics 

Overall, 1203 patients from Bologna were used in training the 
models, among whom 576 (47.9%) were male. The mean age amounted 
to 50.62 ± 16.05. GTR was accomplished in 207 (17.2%, 945 (78.6%) 
missing) and BR in 173 (14.4%, 992 (82.5%) missing) patients. IMP 
occurred in 208 (17.3%, 167 (13.9%) missing) cases. The external 
validation cohort (Zurich) consisted of 206 patients with mean age of 
55.67 ± 16.80, 115 (55.8%) of them being male. IMP was recorded in 42 
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(20.4%, 7 (3.4%) missing) patients while GTR and BR was achieved for 
121 (58.7%, 32 (15.5%) missing) and 46 (22.3%, 145 (70.4%) missing) 
patients respectively in the external validation group. An overview of 
the patient characteristics is given in Table 1. 

3.2. Model performance 

An overview of model performances, including calibration metrics 

and training performance, is supplied in Table 2 and the related cali
bration plots are provided in Fig. 1. 

3.3. Gross total resection (GTR) 

In external validation, the Random Forest model used to predict GTR 
yielded an AUC of 0.72 (0.63–0.80). The sensitivity and the specificity 
amounted to 0.41 (0.32–0.51) and 0.83 (0.72–0.92), respectively. A 
positive predictive value (PPV) of 0.85 (0.75–0.93) was reached. 

3.4. Biochemical remission (BR) 

On the external validation cohort, the BR prediction model (Support 
Vector Machine) achieved an AUC of 0.69 (0.52–0.83). Sensitivity and a 
specificity amounted to 0.30 (0.18–0.43) and 0.93 (0.78–1.00) respec
tively. A PPV of 0.93 (0.79–1.00) was obtained. 

3.5. Improvement of one or more HP axes (IMP) 

During external validation the bagged CART model trained to predict 
IMP attained an AUC of 0.82 (0.76–0.89), whereas sensitivity reached 
0.88 (0.78–0.97) and a specificity of 0.72 (0.65–0.79) was registered. A 
NPV of 0.96 (0.92–0.99) was achieved. 

3.6. Variable importance 

Fig. 2 and Table 3 provide a synopsis of the variable importances for 
each of the developed models. Knosp classification and patient age 
contributed most to the prediction of GTR, while a preoperative deficit 
of ACTH and TSH contributed most to the prediction of BR. Lastly, the 
number of disrupted hypothalamus-pituitary axes and GNRH deficit had 
the greatest influence on prediction of improvement of one or more HP 
axes (IMP). 

3.7. Deployment 

We integrated our prediction models into a complimentary web 
application accessible at https://neurosurgery.shinyapps.io/pituicalc. 

4. Discussion 

With multicenter data of over 250 to 1200 patients, depending on the 
model, we developed and rigorously externally validated clinical pre
diction models that demonstrated moderate ability to predict GTR, BR 
and IMP following TSS for PA. Calibration performance was adequate. 
Although generalizable models were derived, their added value in 
clinical practice needs to be critically evaluated and their performance 
compared to that of human experts. 

Surgical and especially endocrinological outcomes after pituitary 
surgery are notoriously hard to predict preoperatively (Sorba et al., 
2021; Fatemi et al., 2008; Dhandapani et al., 2016). Currently, physi
cians approach questions like “How likely is it that you can remove the 
tumor completely?” by citing numbers derived from case series in the 
literature or from their own case series. However, this can hardly be 
considered “precision medicine”. Existing approaches to make predic
tion of surgical and endocrinological outcomes more individualized 
include the use of classifications, e.g., the Knosp classification or the 
Zurich Pituitary score for GTR, to stratify patients into large groups with 
different risk-benefit profiles (Knosp et al., 1993; Serra et al., 2018). 
Still, this does not allow any statement of each particular patient’s 
risk-benefit profile and can hardly be considered precise on an indi
vidual level. It is exactly here that clinical prediction models – including 
ML techniques – have promised improvements by integrating relatively 
complex sets of variables, enabling personalized predictions for each 
individual patient (Obermeyer and Emanuel, 2016; Stumpo et al., 
2022). In some cases, models have even been shown to outperform 

Table 1 
Patient characteristics and incidence of outcomes.  

Variable Cohort  

Development (n =
1203) 

External Validation 
(n = 206) 

Male gender, n (%) 576 (47.9%) 115 (55.8%) 
No. missing 1 (0.1%) 1 (0.5%) 

Age [yrs.] Mean ± SD 50.62 ± 16.05 55.67 ± 16.80 
No. missing 0 (0.0%) 0 (0.0%) 

Phenotype, n (%) 
NFPA 306 (25.4%) 141 (68.4%) 
ACTH-secreting 167 (13.9%) 6 (2.9%) 
GH-secreting 315 (26.2%) 42 (20.4%) 
PRL-secreting 158 (13.1%) 13 (6.3%) 
FSH-secreting 235 (19.5%) 0 (0.0%) 
TSH-secreting 10 (0.8%) 1 (0.5%) 
Plurihormonal 12 (1.0%) 3 (1.5%) 
No. missing 0 (0.0%) 6 (2.9%) 

Hardy sellar, n (%) 1064 (88.4%) 198 (96.1%) 
Grade 1 195 (16.2%) 25 (12.1%) 
Grade 2 687 (57.1%) 59 (28.6%) 
Grade 3 154 (12.8%) 23 (11.2%) 
Grade 4 28 (2.3%) 91 (44.2%) 
No. missing 3 (0.2%) 6 (2.9%) 

Hardy suprasellar, n (%) 867 (72.1%) 161 (78.2%) 
Grade A 624 (51.9%) 50 (24.3%) 
Grade B 205 (17.0%) 71 (34.5%) 
Grade C 38 (3.2%) 40 (19.4%) 
No. missing 1 (0.1%) 7 (3.4%) 

Hardy parasellar, n (%) 189 (15.7%) 57 (27.7%) 
Grade D 21 (1.7%) 4 (1.9%) 
Grade E 168 (14.0%) 53 (25.7%) 
No. missing 2 (0.2%) 5 (2.4%) 

Knosp classification, n (%) 558 (46.4%) 171 (83.0%) 
Grade 1 206 (17.1%) 49 (23.8%) 
Grade 2 156 (13.0%) 61 (29.6%) 
Grade 3 143 (11.9%) 46 (22.3%) 
Grade 4 53 (4.4%) 15 (7.3%) 
No. missing 2 (0.2%) 3 (1.5%) 

Number of disrupted hypothalamus 
pituitary axes Mean ± SD 

0.74 ± 1.09 0.81 ± 1.02 

No. missing 310 (25.8%) 0 (0.0%) 
Fascial reconstruction, n (%) 29 (2.4%) 30 (14.6%) 

No. missing 705 (58.5%) 5 (2.4%) 
Nasoseptal flap reconstruction, n (%) 5 (0.4%) 9 (4.4%) 

No. missing 705 (58.5%) 0 (0.0%) 
Preop. TSH deficiency, n (%) 163 (13.5%) 66 (32.0%) 

No. missing 311 (25.9%) 0 (0.0%) 
Preop. ACTH deficiency, n (%) 138 (11.5%) 49 (23.8%) 

No. missing 478 (39.7%) 0 (0.0%) 
Preop. GNRH deficiency, n (%) 346 (28.8%) 51 (24.8%) 

No. missing 0 (0.0%) 0 (0.0%)  

Outcome Cohort  

Development (n =
1203) 

External Validation (n =
206) 

Gross total resection, n (%) 207 (17.2%) 121 (58.7%) 
No. missing 945 (78.6%) 32 (15.5%) 

Biochemical remission, n 
(%) 

173 (14.4%) 46 (22.3%) 

No. missing 992 (82.5%) 145 (70.4%) 
New improvement, n (%) 208 (17.3%) 42 (20.4%) 

No. missing 167 (13.9%) 7 (3.4%) 

SD, standard deviation; IQR, interquartile range; NFPA, non-functioning pitui
tary adenoma; ACTH, adrenocorticotropic hormone; GH, growth hormone; PRL, 
prolactin, FSH follicle stimulating hormone; TSH, thyroid stimulating hormone. 

O. Zanier et al.                                                                                                                                                                                                                                  

https://neurosurgery.shinyapps.io/pituicalc


Brain and Spine 3 (2023) 102668

4

human medical experts (Senders et al., 2018). Nevertheless, some fac
tors obviously cannot be accounted for by any model or would simply be 
too cumbersome to collect, thus preventing efficient clinical use. Clinical 
prediction models should therefore be considered merely as assistive 
tools that may aid in physicians’ decision-making process, but should 
never replace the literature, imaging, and medical expertise. 

Using data from a single center and externally validating our models 
on data from a separate center, we have generated clinical prediction 
models for GTR, BR and IMP. A specific goal of our study was to keep the 

amount and the complexity of preoperative variables required as inputs 
to a clinically applicable minimum. On one hand inclusion of actual 
medical imaging files or sophisticated measurement methods might in
crease predictive performance but on the other hand this would likely 
preclude any wide-spread clinical application. 

Predicting endocrinological outcomes or GTR is only an initial step 
that shows the potentials machine learning offers and its potential 
impact on clinical decision making. Important complicating factors like 
pituitary apoplexy could be included into the prediction models or risks 

Table 2 
Quantitative evaluation of discrimination and calibration of the prediction models.  

Outcome Gross total resection Biochemical Remission New Improvement 

Type of model Random Forest Support Vector Machine Bagged CART 

Metric Development (n =
285) 

External Validation (n =
174) 

Development (n =
211) 

External Validation (n =
61) 

Development (n =
1036) 

External Validation (n =
199) 

Discrimination 
AUC 0.68 (0.65–0.71) 0.72 (0.63–0.80) 0.74 (0.71–0.77) 0.69 (0.52–0.83) 0.94 (0.93–0.94) 0.82 (0.76–0.89) 
Accuracy 0.68 (0.66–0.70) 0.54 (0.47–0.61) 0.65 (0.63–0.67) 0.46 (0.33–0.59) 0.88 (0.88–0.89) 0.75 (0.69–0.81) 
Sensitivity 0.70 (0.68–0.72) 0.41 (0.32–0.51) 0.63 (0.61–0.65) 0.30 (0.18–0.43) 0.95 (0.94–0.96) 0.88 (0.78–0.97) 
Specificity 0.59 (0.55–0.63) 0.83 (0.72–0.92) 0.73 (0.68–0.77) 0.93 (0.78–1.00) 0.87 (0.86–0.88) 0.72 (0.65–0.79) 
PPV 0.87 (0.86–0.89) 0.85 (0.75–0.93) 0.91 (0.90–0.93) 0.93 (0.79–1.00) 0.64 (0.63–0.66) 0.46 (0.35–0.57) 
NPV 0.33 (0.30–0.36) 0.38 (0.29–0.47) 0.30 (0.27–0.33) 0.30 (0.17–0.45) 0.99 (0.98–0.99) 0.96 (0.92–0.99) 
F1 Score 0.42 0.52 0.43 0.46 0.92 0.82 

Calibration 
Intercept 0.43 (0.31–0.55) 0.35 (− 0.02 – 0.73) 1.46 (1.33 – 1-58) 1.75 (1.11–2.38) − 0.25 (− 0.36 to 

− 0.14) 
− 0.64 (− 1.16 to − 0.13) 

Slope 0.38 (0.33–0.44) 0.65 (0.37–0.94) 0.74 (0.71–0.77) 0.65 (0.04–1.27) 0.28 (0.23–0.33) 0.60 (0.10–1.10) 
Threshold 0.75 0.61 0.10 

Metrics are presented along with their 95% confidence intervals derived using bootstrapping. 
AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; CART, classification and regression trees. 

Fig. 1. Calibration curves of the prediction models during training (A) and external validation (B). Within each row, gross total resection (GTR) is shown to the left, 
followed by biochemical remission (BR) in the middle and improvements (IMP) on the right side. The predicted probabilities for the outcomes are distributed into 
five equally sized groups and contrasted with the observed frequencies of the outcomes. Calibration intercept and slope are then calculated. A perfectly calibrated 
model has a calibration intercept of 0 and slope of 1. The calibration intercept is influenced by the frequency of the outcome of interest in a certain population. 
Metrics are provided with bootstrapped 95% confidence intervals. 
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of postoperative complications like transient hyponatremia, a primary 
cause for recurrent hospitalization after TSS PA resection, could be 
predicted (Zoli et al., 2016, 2017). To date these still are immensely 
difficult to foresee, but the power of machine learning to deduct simple 
information out of complex data might help with the management of 
such complications. 

The performance measures obtained at external validation show that 
predicting postoperative results based on simple preoperative data is 
quite challenging. Nonetheless, our models predicted the outcomes 
mentioned above with acceptable calibration and adequate 
discrimination. 

There have been previous attempts to derive prediction models for 
outcomes after pituitary surgery. However, to the best of the authors’ 
knowledge, almost none of the models for outcomes after surgery for PA 
have been externally validated. Only two externally validated prediction 
models exist, but these are targeted only towards surgery for GH- 
secreting PA. Qiao et al. (2021) predicted early BR after surgery in pa
tients with acromegaly, with externally validated AUCs of 0.77–0.85. 
Likewise, we previously (Zanier et al., 2021) predicted BR, cerebrospinal 
fluid leaks, and GTR with AUCs of 0.63–0.77 at external validation. 
Compared to these studies our model performances lie within a similar 
range. While these two models are the only ones externally validated, 
indeed, multiple models without external validation have been pub
lished for pituitary surgery in general. Stumpo et al. (2022) recently 
reviewed the literature on machine learning in pituitary surgery. A 
model developed by Hollon et al. (2018) demonstrated AUCs ranging 
between 0.80 and 0.85 based on internal validation. Fan et al. (2019) 
used radiomic data to predict BR among hormone-secreting adenomas 
demonstrating an internal validation AUC of 0.81. Staartjes et al., 2018, 
2019 demonstrated that neural networks classified GTR likelihood more 
accurately than the Knosp classification or a logistic regression model 
with an internally validated AUC of 0.87 and that even intraoperative 
cerebrospinal fluid leaks can be predicted with comparable 
performance. 

Without external validation, achieving relatively good performance 

in cross-validation or in a held-out internal validation cohort is fairly 
straightforward, but this does not in any way imply a similar model 
performance when applied on other cohorts (Staartjes and Kernbach, 
2020). 

The performance of human experts in predicting these outcomes has 
not yet been evaluated systematically, but it is likely to be inferior to the 
performance measures observed in this study. In other domains of 
neurosurgery, it has been shown that e.g., new neurological deficits or 
outcomes after spine surgery are only poorly predicted by neurosur
geons (Sagberg et al., 2017). Compared to current approaches, our 
models are at least able to provide an objective benchmark of expected 
outcomes on an individual level. Such objective benchmarks can be 
useful when comparing quality between centers, when evaluating sci
entific research, or simply as a “second opinion”. In patient cases where 
the indication to undergo surgery is not as clear cut, a model predicting a 
rather high chance of GTR and BR might be of help in strengthening the 
decision to lead through with surgical intervention. In contrast to that, 
prediction of a low chance of GTR, also considering other established 
sources of information, might lead to changes surgical indications. 
Taking these points into account, we do not recommend using clinical 
prediction models as decisive components of clinical decision making on 
their own. 

Our models have been integrated into a free available web applica
tion. We encourage physicians to attempt implementation into clinical 
practice taking however into account the developmental stage and 
limitations of the models. 

5. Limitations 

There are limitations arising from any prediction model, including 
the ones we built in this study: Countless immeasurable and measurable 
factors such as surgeon experience, caseload, postoperative manage
ment protocols, and others limit the generalizability of any parsimo
nious prediction model (Sorba et al., 2021; Barker et al., 2003). This 
means that our models are perhaps ill-suited for institutions that use 

Fig. 2. Variable importance based on AUC for the three models, with importance values scaled from 0 to 100. Gross Total Resection (A), Biochemical Remission (B), 
and New Improvements (C). 
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wholly different treatment and postoperative management methods and 
may give erroneous results. Furthermore, if the input data fall outside 
the range of data which the model was trained on, it will unlikely pro
vide accurate information (extrapolation). 

Despite having externally validated our models, which shows that 
they are already generalizable, a multicenter training dataset could help 
to drastically improve generalizability of our predictive models due to 
factors such as the ones mentioned previously. The availability of more 
data preoperatively, such as sodium and potassium concentrations, pe
ripheral hormone levels or surrogates like the fT4/TSH quotient, could 
also improve performance, but collecting and entering more data into 
the web-application may be cumbersome. 

While the Knosp and Hardy scores are still commonly determined in 
clinical practice, they have a rather low interrater reliability for inter
mediate scores (Mooney et al., 2017a, 2017b). Inclusion of simpler and 
more dependable scoring systems could potentially lead to additional 
enhancements in model performance. 

Finally, although our cohort included a very decent amount of over 
1200 PA patients - one of the largest cohorts in current literature – due to 
its retrospective nature, this study encompasses a significant number of 
patients with missing information for some of the outcomes. In that 
respect, a higher number of training samples would likely further 
improve model performance and should be considered in the future 
development. 

6. Conclusion 

Based on a large cohort of patients with PAs, prediction of GTR, BR 
and IMP was feasible with moderate to good performance at external 
validation, thereby confirming generalizability. Although outcomes 
after pituitary surgery, especially endocrinological outcomes, are hard 
to predict, based on our results the role of clinical prediction models as 
assistive tools in surgical decision making can be reinforced. 
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