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ABSTRACT
Recent studies show how geomorphic descriptors, retrieved from digital elevation models (DEMs), can be 
used for flood hazard mapping. As they strictly depend on the accuracy of the input DEMs and reference 
flood hazard maps used for training, DEM-based flood hazard models may display severe inconsistencies. 
Our study shows the application of two advanced DEM-based models to a large study area, and presents 
two main innovative points. First, the delicate tasks of appropriately selecting the input DEM and flood 
hazard map are specifically addressed with newly defined methods. Second, the ability of DEM-based 
models to exploit their natural features to enhance flood hazard mapping over the study region is 
investigated. Our results show (a) the benefits of considering multiple geomorphic descriptors, (b) the 
potential of DEM-based models for completing the information of imperfect reference flood hazard 
maps, and (c) the advantages of continuous representation of hazard over binary flood maps.

ARTICLE HISTORY 
Received 16 May 2023  
Accepted 19 September 2023  

EDITOR 
K. Soulis 

ASSOCIATE EDITOR 
(not assigned)

KEYWORDS 
geomorphic index; DEM; 
remote sensing; inundation 
scenario; machine learning; 
Italy

1 Introduction

Several studies show that damages caused by inundation 
events are steadily increasing worldwide (e.g. Jongman et al.  
2014). This is due to multiple reasons, as population growth 
and the urbanization phenomenon are strictly linked to the 
exposure and vulnerability components of flood risk 
(Domeneghetti et al. 2015, Requena et al. 2017), while climate 
change can locally increase flood occurrence (see e.g. Sharma 
et al. 2018, Koutsoyiannis 2020).

In recent years, research on flood hazard and risk mod
elling has proposed data-driven, simplified methods, that 
aim to avoid using computationally expensive hydrodynamic 
models that require large amounts of data (Sampson et al.  
2015). Data-driven methods make use of geomorphic 
descriptors that are easily retrievable from digital elevation 
models (DEMs), and some available flood-hazard reference 
information (i.e. flood hazard maps from hydraulic models 
or records of historical events). After a training phase (i.e. 
model calibration) based on the reference maps, the model 
links the geomorphic descriptors to the flood hazard. Thus, 
the model can be efficiently applied to any area where a 
DEM is available and the relationship between flood hazard 
and descriptors is assumed to be the same. Nowadays, 
several DEM-based approaches are reported in the literature, 
using geomorphic descriptors in univariate (Noman et al.  

2001, Manfreda et al. 2014, 2015, Samela et al. 2017, 
Manfreda and Samela 2019) and multivariate models, either 
alone (Gnecco et al. 2017, Marchesini et al. 2021, NOAA 
Office of Water Prediction 2023) or combined with non- 
geomorphic information (Wang et al. 2015, Arabameri et al.  
2019, Costache et al. 2020, Faridani et al. 2020).

Indeed, the availability of input DEMs and reference flood 
hazard maps for the application of DEM-based methods is 
rapidly increasing. The steady evolution of remote sensing 
techniques allows the production of a variety of DEMs with 
different data acquisition methods, resolution and vertical 
accuracy. Meanwhile, there is a large array of flood hazard 
maps that are based on different modelling techniques, that 
have varying resolution and accuracy. Nevertheless, the relia
bility of the flood-hazard maps and the accuracy of the DEMs 
is variable and geographically heterogeneous, and thus, effec
tively selecting the most appropriate datasets is not straightfor
ward (Tavares da Costa et al. 2019, Lindersson et al. 2021).

The present research shows the application, comparison 
and discussion of two DEM-based models for flood-hazard 
mapping, one univariate (i.e. a single DEM-based geomorphic 
index is used) and one multivariate (a variety of indices is used; 
see also Magnini et al. 2022). We select Italy as the study area, 
given its remarkable variability of hydrological, climatic, and 
geomorphological characteristics.

CONTACT Andrea Magnini andrea.magnini@unibo.it Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, 
Via Aurelio Saffi, Bologna 40131, Italy

HYDROLOGICAL SCIENCES JOURNAL                 
2023, VOL. 68, NO. 16, 2388–2403 
https://doi.org/10.1080/02626667.2023.2269909

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The 
terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0002-0704-1759
http://orcid.org/0000-0002-9857-738X
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02626667.2023.2269909&domain=pdf&date_stamp=2023-12-05


The initial phase of our study consists of the analysis of the 
available datasets for selecting the most appropriate input 
DEM and reference flood-hazard map. For both, an effective 
framework for the selection is proposed, exploiting EU-Hydro 
(Gallaun et al. 2019) as the reference river network. Second, as 
a baseline model we develop a univariate DEM-based flood 
hazard model using the geomorphic flood index (GFI; see 
Manfreda et al. 2014). For the multivariate model, we consider 
six geomorphic descriptors, which we identified based on a 
literature review (e.g. Manfreda et al. 2015), and we combine 
them to model flood hazard through a decision tree classifier 
(see e.g. Magnini et al. 2022). After the calibration over specific 
fractions of the study area, the two models are applied to the 
whole region. Finally, we validate both models by referring to 
independent information (i.e. datasets that were not used for 
training or calibrating the DEM-based models). Specifically, 
this consists of three inundation extents produced by the same 
number of recent flood events and delineated on the basis of 
remote sensing data (local validation), as well as a synthetic 
inundation scenario generated as the envelope of several levee- 
breaching simulations along a 300 km branch of the major 
Italian river by means of a two-dimensional (2D) hydrody
namic numerical model.

The methods adopted for setting up the models are inspired 
by previous literature (see e.g. Tavares da Costa et al. 2019, 
Magnini et al. 2022), but the nature and goal of our application 
and discussion are new. Differently from what has been done 
in relevant previous studies (see e.g. Tavares da Costa et al.  
2020, Magnini et al. 2022), we do not limit our assessment of 
models’ performance to the similarity of their output to the 
target flood map in test areas that differ from training ones. 
Instead, we perform a detailed assessment of flood DEM-based 
susceptibility maps in areas where the calibration flood map 
may be inhomogeneous or inaccurate – which is a common 
situation in practice. This is done by referring to validation 
sources (e.g. detailed output of hydrodynamic model runs) 
that are an alternative to the available target flood maps. The 
main research question here is whether a trained DEM-based 
flood hazard map may resolve heterogeneities and inconsis
tencies that are present in the target flood map used for 
training.

Usually, DEM-based methods are used at large scales to 
obtain binary maps, which delineate the maximum flood 
extent associated with a given return period, and they are 
considered auxiliary tools of the more accurate hydraulic 
models. However, by nature DEM-based flood hazard mod
els can efficiently handle secondary river networks (see e.g. 
Nardi et al. 2019) and can produce a spatially continuous 
and highly homogeneous characterization of flood hazard. 
Some authors (e.g. Costache et al. 2020, Avand et al. 2022, 
Deroliya et al. 2022) exploited multivariate DEM-based 
approaches for a spatially continuous estimation of flood 
susceptibility. Nevertheless, their models were calibrated on 
a number of independent inundation events, instead of a 
coherent flood hazard map with a given return period. In 
the present study, we investigate the unexplored potential of 
these features of DEM-based approaches for enhancing the 
flood hazard information with respect to pre-existing cali
bration maps covering the whole study area. The univariate 

and multivariate models are compared and discussed in 
great detail: we consider not only the classical binary outputs 
(i.e. maps distinguishing flood-prone and non-flood-prone 
areas) but also the spatially continuous characterization of 
flood hazard naturally offered by geomorphic methods (e.g. 
the values of GFI over the entire study area). This enables us 
to further explore the reasons for the models’ performance 
and discuss a better way to exploit their potential. Moreover, 
the presentation of a baseline reference framework to 
address the selection of the most appropriate DEM and 
reference hazard map is an innovative and useful element 
for future studies on the topic.

The paper is organized as follows: Section 2 describes the 
set-up of the DEM-based models. Section 3 presents the study 
area, evaluation metrics and validation datasets. The methods 
for the selection of the input DEM and target flood hazard map 
are described in Sections 4 and 5, respectively. Section 6 shows 
the results for the selection of DEM and reference hazard map, 
the application of the models to the study area and their 
validation. In Section 7, the methods and results are discussed.

2 Methods for DEM-based modelling

The univariate and multivariate DEM-based models are set up 
with open-source software (Van Rossum et al. 1995, Tarboton  
2003, Pedregosa et al. 2011, GRASS Development Team, 2019) 
using the same input DEM and target flood hazard map, but 
different calibration (or training) strategies. These methods are 
described below.

2.1 Univariate DEM-based flood hazard modelling

The univariate DEM-based model is set up according to the 
methods described in the literature (e.g. Tavares da Costa et al.  
2019), which consist of three consecutive phases: (1) computa
tion of the selected geomorphic index (the GFI in this case); (2) 
definition of a calibration area that includes only the pixels 
close to the river network; and (3) calibration of the model – 
that is, finding the best threshold value for fitting the target 
flood hazard map.

We select the GFI [-], as according to reliable scientific 
publications (e.g. Manfreda et al. 2015, Samela et al. 2017) it 
is one of the most efficient DEM-based flood hazard modelling 
methods. It is defined as follows: 

where hr ≊ bAr
n (in metres); Ar is the contributing area in the 

hydrologically nearest stream section, and coefficient b and 
exponent n can be appropriately estimated via calibration or 
taken from the literature (Nardi et al. 2006). The height above 
the nearest drainage (HAND) is defined as the vertical differ
ence (in metres) between a given cell and the closest cell 
belonging to the river network (Rennó et al. 2008). The latter 
is the first cell of the river network encountered along the flow 
direction.

The calibration area is defined with a fixed 200 m buffer 
zone around the flood-prone areas of the target hazard map. 
This method allows an easy and efficient selection of the pixels 
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of the domain that are close to the main river network and that 
are appropriate to successfully train the model (Gnecco et al.  
2017, Tavares da Costa et al. 2019, Marchesini et al. 2021, 
Magnini et al. 2022). The 200 m buffer has been adopted 
based on some preliminary sensitivity analysis.

The calibration of the model consists of two phases: first, 
the geographical domain is divided into hydro-climatic dis
tricts; second, for each in turn, the best threshold for the GFI is 
sought by means of optimization of the true skill statistic (TSS; 
see Youden 1950) objective function (see Equation 2). 

where TP, TN, FP, FN represent the number of true positive, 
true negative, false positive and false negative cases, respec
tively. Pixels whose GFI value is higher than the threshold are 
identified as susceptible to floods.

2.2 Multivariate DEM-based flood hazard modelling

In our study, multivariate DEM-based flood hazard model
ling strictly relies on the methods adopted by Magnini et 
al. (2022). First, geomorphic descriptors of the study area 
are retrieved from a selected DEM. Second, a calibration 
area is defined with a 2 km buffer radius (based on 
Magnini et al. 2022) around the target flood-prone areas 
(see Section 2.1). Third, a decision tree is trained within 
the calibration area and, finally, it is applied to the whole 
domain (i.e. even areas outside of the 2 km buffer) to 
produce a final flood susceptibility map. Since the nature 
of the multivariate model is very different from the uni
variate one (see Section 2.1), it should not be surprising 
that the optimal buffer distance is different in the two 
cases.

We consider six of the seven geomorphic descriptors 
adopted by Magnini et al. (2022). The descriptor that has 
been discarded (i.e. the modified topographic index, see 
Manfreda et al. 2008) is the one with the lowest influence 
in the models of Magnini et al. (2022), while the others 
are very common in the literature (e.g. Manfreda et al.  
2015, Samela et al. 2017, Khosravi et al. 2018) and provide 
a rather complete description of the topography and 
hydrology of the study area:

(1) Elevation of the ground surface [m];
(2) Local slope (tan(β)) [-], estimated for each cell as the 

maximum slope among the eight possible flow direc
tions and computed as the ratio between the vertical 
and the horizontal differences;

(3) Horizontal distance from the nearest stream (D), 
defined as the length [m] of the path that hydrologically 
connects each cell to the nearest cell of the river 
network;

(4) The abovementioned HAND [m] (see Section 2.1);
(5) The abovementioned GFI [-] (see Section 2.1);
(6) An alternative version of the GFI, hereinafter referred 

to as the local geomorphic flood index (LGFI) [-], 
defined as in Equation (3). 

where the water depth hl is computed as for the hr [m] for the 
GFI, but with reference to the contributing area of the con
sidered pixel instead of the one of the nearest river section.

Decision trees are supervised machine learning techni
ques very commonly used for modelling hydraulic pro
cesses (Mosavi et al. 2018). They consist of hierarchical 
structures in which the input dataset is successively split 
into sub-groups according to some fixed attributes. Each of 
the final sub-groups is associated with a certain probability 
(or p value) of assuming a specific value of the output 
variable; if a threshold is assigned to the p value, a classi
fication is obtained (for more details, see Hastie et al.  
2009). In this study, the threshold is 0.5, as the default 
value. The versatility, simplicity and interpretability of 
decision trees make them very useful tools to solve differ
ent types of problems.

3 Application

The present section describes the study area, the metrics 
adopted to evaluate the results, and the validation datasets.

3.1 The study area: Italy

The selected study area consists of the whole Italian penin
sula and islands, that amounts to approximately 301 × 103 

km2 (see Fig. 1). The overall extent and the large variety of 
geographical and climatic conditions make Italy an interest
ing and complex study area for large-scale flood-hazard 
modelling. In fact, the length of the peninsula and mostly 
mountainous hinterland make the climate highly diverse, 
ranging from humid sub-tropical to humid continental and 
oceanic (see e.g. climate classification in Cui et al. 2021). The 
Alps extend from the northwest to the northeast, and are the 
highest mountain range (i.e. with 12 peaks higher than 
3500 m a.s.l., and the highest peak at 4809 m a.s.l.). The 
Apennines stretch from north to south along almost the 
whole peninsula (i.e. about 1300 km) and have lower peaks 
compared to the Alps (i.e. the highest peak is 2900 m a.s.l.). 
The largest plain, located in the north, is the floodplain of 
the Po River, which is the main river in Italy (∼650 km in 
length, with a discharge of ∼1500 m3/s).

Italy is an interesting case study for flood modelling, as a 
large portion of its territory is subject to floods: 5.4% has a high 
probability hazard, which corresponds to 2.4 million people 
exposed; while 14% has a low probability hazard, correspond
ing to 12.2 million people (Trigila et al. 2021).

3.2 Performance metrics for binary tests

We use several performance metrics that vary between 0 and 1, 
where 1 is the optimal value: TSS (see Equation 2), accuracy 
(ACC), precision (or predicted positive value, PPV), recall (or 
true positive ratio, TPR), and the harmonic mean of precision 
and recall (F1). All of them depend on TP, TN, FP and FN 
(already defined in Section 2.1): 
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3.3 Validation datasets

After being trained (i.e. calibrated) in the calibration areas (i.e. 
200 m and 2 km buffer areas, as described in Section 2), the 
DEM-based models are applied to the whole study region (i.e. 
even outside the buffer areas). The validation is performed by 

comparing the model outputs with new information, consist
ing of two types of datasets: (1) three inundation maps deli
neated from satellite data, and (2) one envelope flood hazard 
map obtained from the merger of several 2D hydrodynamic 
simulations. These all are associated with a return period that 
is approximately the same as, or lower than the reference flood 
hazard map. Based on the return period and the location, 
which corresponds to one of the most flood-susceptible areas 
in Italy, the four datasets can be adopted for an effective 
validation.

Concerning the first validation dataset, two recent flood events 
are selected: the inundation event that occurred between 19 and 
24 October 2019 in Alessandria Province (AL, Piedmont region), 
and the one that occurred between 15 and 19 November 2019 in 
Bologna province (BO, Emilia-Romagna region). These events 
are described by three Sentinel-1 synthetic aperture radar (SAR) 
images; the corresponding inundation extents are delineated, 
within the present study, through an expressly developed change 
detection method, partially derived from Canty (2019), and 

Figure 1. EU-DEM (i.e. European DEM, Garcia 2015) in Italy (top left panel); validation datasets: inundation maps associated with events (a) AL21/10/19, (b) BO20/11/19, 
and (c) BO21/11/19; catastrophic inundation scenario along the middle lower portion of the Po River in terms of maximum simulated water depths (d).
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successfully validated with ground truth data. Finally, three inun
dation maps, named AL 21/10/19, BO 20/11/19 and BO 21/11/19, 
are obtained and used for the validation of the target and mod
elled flood maps (see panels (a–c) of Fig. 1).

The second validation dataset consists of a single flood 
hazard map obtained from a series of simulations run with 
the 2D hydrodynamic model LISFLOOD-FP (Bates and De 
Roo 2000, Neal et al. 2012, Shustikova et al. 2020). The flood 
hazard map with 50 m horizontal resolution was produced by 
merging 42 model simulations into one map (i.e. each simula
tion is associated with a return period higher than 200 years 
but lower than 500 years; see e.g. Domeneghetti et al. 2015). 
Each simulation represents hypothetical levee breaches on 
both banks of the river (21 on the right bank and 21 on the 
left bank; see panel (d) of Fig. 1).

4 Analysis of available DEMs

Nowadays, DEMs can be developed from a variety of surveying 
techniques, each characterized by specific advantages and dis
advantages. Above all, the onset of modern satellite remote 
sensing techniques allowed the creation of freely distributed 
DEMs with global or semi-global coverage. However, the 
accuracy of the DEMs is often affected by inevitable errors 
associated with the techniques and algorithms used for creat
ing the DEMs, and the characteristics of the terrain, such as 
morphology and land cover (Mukherjee et al. 2013, Thomas et 
al. 2014). Producers of global and national DEMs carry out 
quality assessments on their products, yet usually, only the 
global root mean square error (RMSE; see Equation 9) is 
provided as a measure of accuracy, which gives no information 
about the accuracy over specific areas of interest or geomor
phological contexts. Thus, choosing the right terrain model for 
a study can be difficult without performing a specific data 
quality analysis (Thomas et al. 2014, Patel et al. 2016, 
Florinsky et al. 2018, Tavares da Costa et al. 2019).

For this reason, seven DEMs with a spatial resolution finer 
than 100 m, obtained with various techniques and covering the 
whole of Italy, are here considered and assessed. They are: 
SRTMGL1 (i.e. Shuttle Radar Topography Mission Global 
30m, see Rodríguez et al. 2006, Farr et al. 2007), ASTER 
GDEM (i.e. Advanced Spaceborne Thermal Emission and 
Reflection Radiometer Global Digital Elevation Model, see 
(Tachikawa et al. 2011, Abrams 2016, Gesch et al. 2016), 
ALOS (i.e. Advanced Land Observing Satellite) AW3D30 (i.e. 
ALOS World 3D 30m, see Tadono et al. 2016, Takaku and 
Tadono 2017), TINITALY (i.e. Triangular Irregular Network 
Italy, see Favalli 2004, Tarquini et al. 2012), EU-DEM (i.e. 
European DEM, Bashfield and Keim 2011, Tøttrup 2014, 
Garcia 2015), HydroSHEDS DEM (Lehner and Grill 2013) and 
MERIT (i.e. Multi-Error-Removed Improved-Terrain) DEM 
(Yamazaki et al. 2017). The spatial resolution of these DEMs 
is: 1 arc second (≈ 30 m) for STRMGL1, ASTER GDEM and 
ALOS AW3D30; 10 m for TINITALY; 25 m for EU-DEM and 3 
arc second (≈ 90 m) for HydroSHEDS DEM and MERIT DEM.

The seven DEMs are tested over three areas of interest (see 
top left of Fig. 1), each with different morphological and land- 
cover characteristics. These are, from north to south, 
Valsugana (a valley in a predominantly mountainous region 

in northern Italy), the territory of Bologna Municipality and 
surroundings (an area characterized by flatland, hills and 
urban zones), and the territory of Rimini and surroundings 
(a coastal urban area on the Adriatic Sea). In these areas, the 
national DEMs are compared with the high-resolution DEMs 
obtained by the airborne LiDAR surveys performed for the 
Special Remote Sensing Plan (see Costabile 2010), carried out 
by the Italian Ministry of the Environment and for Protection 
of the Land and Sea, which we assume here as ground truth. 
These reference DEMs have slightly different characteristics 
for each area of interest, with the resolution varying in a 1–2 m 
range, and vertical accuracy being between 15 and 30 cm. A 
series of tests are carried out to evaluate the vertical accuracy of 
the DEMs in respect to the reference LiDAR for the three 
areas, considering different terrain slopes (i.e. <5°, 5–10°, 10– 
30° and >30°), land cover types (i.e. urban, forest, low vegeta
tion and crop fields, bare land) and HAND values (i.e. HAND 
< 3 m and HAND < 5 m). When performing these tests, the 
LiDAR datasets are resampled to the resolution of the tested 
DEM with a bilinear method. It consists of computing each 
pixel of the output file as the weighted average of the four 
closest pixels of the input (Netravali and Hasskell 1995).

In addition to the vertical accuracy, hydraulic consistency is 
also evaluated by comparing the topographic wetness index (or 
TWI, see Beven and Kirkby 1979) with the EU-Hydro photo- 
interpreted river network dataset (Gallaun et al. 2019), made 
available by the Copernicus Programme from the European 
Union (https://www.copernicus.eu/en). This choice is derived 
from preliminary analyses, which pointed out the strong agree
ment between the EU-Hydro dataset and the actual Italian stream 
network. The TWI (see Equation 8) is directly computed from 
the DEMs via the specific catchment area (SCA, defined as the 
contributing area per unit width of contour, in metres), which 
represents the tendency of a pixel to receive water, and the slope 
φ, which represents the tendency to drain. Thus, it is strongly 
related to the water flow direction (Mattivi et al. 2019) and can be 
used as a qualitative evaluation of hydraulic consistency. 

The vertical accuracy of the models is obtained by computing 
the residuals, e(x,y), between the two DEMs (i.e. e(x,y) = f ’(x,y) 
– f(x,y), where f’(x,y) is the surface of the DEM under analysis 
and f(x,y) is the surface of the reference DEM). We refer to 
widely used performance metrics to quantify the accuracy of 
each DEM; in particular, we consider the linear error with 90% 
confidence (LE90), and the RMSE (Equation 9). 

where N is the sample size – in this case, the number of pixels 
of the reference geographical area.

5 Analysis of available reference flood-hazard maps

In recent years, the large demand for reliable flood hazard maps 
of different scale (e.g. national, continental, global) has acceler
ated the development of various flood modelling methods and 
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frameworks (e.g. Yamazaki et al. 2011, Pappenberger et al. 2012, 
Winsemius et al. 2013, Sampson et al. 2015, Dottori et al. 2016). 
As a result, plenty of flood hazard maps are available, but the 
comparison of different large-scale models is not straightfor
ward (Ward et al. 2015, Trigg et al. 2016, Lindersson et al. 2021), 
making the selection of a target map critical.

Here, we consider the two hazard maps used by Magnini et 
al. (2022) and we compare them in Italy based on their capil
larity in representing flood hazard along the national river 
network. Indeed, having target flood hazard information for 
a greater number of minor streams, which have lower accu
mulation area, can lead to more effective training of DEM- 
based models (e.g. see Magnini et al. 2022). The first map is the 
European-scale map made available by the European Joint 
Research Centre (JRC; see Alfieri et al. 2014), with a 500-year 
return period and 100 m resolution, that was developed as a 
component of the Copernicus European Flood Awareness 
System (EFAS, www.efas.eu). This map results from a cascad
ing model simulation approach, which is composed of a dis
tributed hydrological model for derivation of peak flows and 
flood hydrographs with selected return period, and 2D 
hydraulic simulations for a large number of river sections 
with source area larger than 500 km2.

The second map is provided by the Italian Institute for 
Environmental Protection and Research (ISPRA; see ISPRA  
2018) to fulfil the EU Floods Directive of the European 
Commission (2007/60/EC). It refers to a return period of 
about 500 years and is the merger of different hazard maps 
produced by local authorities. Resulting from local maps 
obtained with different methodologies, the ISPRA flood 
hazard map has notable heterogeneity: detailed flood hazard 
mapping characterizes some regions (e.g. see the northwestern 
region of Fig. 2), while mapping is sparser in others (e.g. see 
the northeastern portion of the study area in Fig. 2).

The evaluation of these two maps is carried out by con
sidering the overlap with the EU-Hydro river network at a 
national scale, that is selected as reference (as for the DEM 
selection phase). Two steps are needed: first, the EU-Hydro 
shapefile is converted to a raster file with the same resolution 
and dimension of the considered hazard map. Second, we 
compute the ratio between the number of flood-prone pixels 
falling on the river network and the total number of river- 
network pixels. This is done separately for the different 
Strahler orders, and is used as a measure of capillarity and 
completeness of the target datasets for training DEM-based 
flood hazard models.

Figure 2. ISPRA (i.e. Istituto Superiore per la Protezione e Ricerca Ambientale) flood hazard map with 500-year return period (shaded light blue); in black: lakes and 
major rivers (Strahler order ≥ 5), from the EU-Hydro dataset (© European Union, Copernicus Land Monitoring Service 2021, European Environment Agency (EEA)). The 
six Italian administrative regions mentioned in Section 7.1 are outlined in red.
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6 Results and validation

6.1 Results for DEM selection

Metrics for the evaluation of the vertical accuracy of the consid
ered DEMs (i.e. RMSE and LE90; see Section 4) in the test areas (i. 
e. Valsugana, Bologna and Rimini, from north to south in Fig. 1) 
are computed with reference to the LiDAR measurements (see 
Section 4) and reported in Table 1. The three DEMs with the 
lowest errors are TINITALY, SRTM and MERIT for Valsugana; 
SRTM, HydroSHEDS, and MERIT for Bologna; and EU-DEM, 
HydroSHEDS and MERIT for Rimini. It can be noted also that 
the vertical accuracy for EU-DEM and SRTM is very similar in 
Bologna. Metrics computed for the different terrain slopes, land 
cover types and HAND values are not reported for the sake of 
brevity, as they confirm what is seen in Table 1.

The analysis of TWI clearly shows that the hydraulic con
sistency of TINITALY is very low, while the other DEMs have 
similar performance. Thus, TWI is useful to exclude inap
propriate DEMs, but not for numerically ranking the best 
ones. For the sake of brevity, a detailed example of only the 
comparison between TINITALY and EU-DEM within the 
Bologna test area is shown (Fig. 3).

Given the combination of good performance in flat areas 
(i.e. Bologna and Rimini), the good hydraulic consistency, 
and the good resolution, the EU-DEM is selected as the most 

appropriate DEM for the present study. This decision is also 
supported by the nature of the EU-DEM, which was pro
duced by hydraulic conditioning on the EU-Hydro river net
work (Bashfield and Keim 2011), the same dataset largely 
used for analysing the results of the present study.

6.2 Results for selection of reference flood hazard map

Quantification of the agreement between the considered flood 
hazard maps (i.e. the ISPRA and JRC maps) and the EU-Hydro 
river network over the study area is reported in Table 2. It is 
evident that flood-prone areas comprise a much higher por
tion of the river network in the ISPRA map than in the JRC 
map. This advantage is more significant for stream segments 
with lower Strahler orders, which is taken as evidence that, due 
to the threshold source area of 500 km2, the JRC map neglects a 
significative number of minor streams. As a result, the ISPRA 
map is selected as the target flood hazard map.

6.3 Reproduction of target hazard maps

Panels (a) and (c) of Fig. 4 represent the standardized GFI (i.e. 
rescaled GFI values so that the maximum is equal to 1 – the 
highest susceptibility of being flooded, and the minimum is 
equal to 0 – the lowest susceptibility), and the p value 

Table 1. Metrics for vertical accuracy of the considered DEMs. Higher values (corresponding to 
worse accuracy) are marked with darker coloured cells.

Valsugana Bologna Rimini
DEM

Resolu on
[m]

RMSE
[m]

LE90
[m]

RMSE
[m]

LE90
[m]

RMSE
[m]

LE90
[m]

TINITALY 10 8.236 12.141 4.511 6.475 2.832 4.412
EU-DEM 25 18.722 26.865 3.968 6.091 2.041 3.185
SRTM 30 15.764 21.083 3.203 4.665 2.239 3.537

ASTGTM 30 16.621 24.577 6.769 9.885 5.683 8.917
AW3D30 30 12.93 20.597 5.264 8.329 2.967 4.431

HydroSHEDS 90 30.166 44.597 3.355 4.549 2.108 3.362
MERIT 90 15.043 21.955 3.466 4.598 1.98 3.074

Figure 3. Focus on part of the Bologna test area. TWI (i.e. Topographic Wetness Index) computed from (a) TINITALY and (b) EU-DEM; the river network from the EU- 
Hydro dataset is marked in red (© European Union, Copernicus Land Monitoring Service 2021, European Environment Agency (EEA)).
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computed by the decision tree (varying from 1, the highest 
probability for a pixel to be classified as “floodable,” and 0, the 
lowest probability; see Section 2.2). These are the starting 

points from which the univariate and multivariate models 
derive their binary output maps (panels (b) and (d), respec
tively, of Fig. 4). Both figures show strong similarity between 

Table 2. Percentage of overlap between the EU-Hydro river network and the considered reference flood hazard 
maps (i.e. the one from ISPRA - Istituto Superiore per la Protezione e Ricerca Ambientale, and the one from JRC - 
Joint Research Center). A darker colour means a higher percentage, which in turn means better agreement 
between the two datasets.

Strahler order
1 2 3 4 5 6 7 8

Overlap with 
ISPRA map 10.30% 23.10% 37.60% 51.70% 64.80% 58.10% 99.60% 97.50%

Overlap with 
JRC map 0.02% 2.90% 3.20% 14.70% 58.80% 69.40% 90.60% 91.40%

Figure 4. Output of DEM-based models. Univariate model: (a) standardized GFI (i.e. Geomorphic Flood Index) values (red scale); (b) binary flood hazard map (black). 
Multivariate model: (c) p value (red scale); (d) binary flood hazard map (black). In (b) and (c), blue shading represents the target ISPRA hazard map; dark blue shading 
identifies areas of overlap between the target and model maps.
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the target and the output maps (i.e. dark blue areas in panels 
(b) and (d) of Fig. 4), which is particularly evident for the 
multivariate model.

Table 3 reports the performance metrics of the two DEM- 
based binary maps. It is evident that the multivariate method 
(second line) leads to better metrics (except for the TPR), but 
the difference from the univariate one (first line) is low, sug
gesting that the two binary outputs are very similar.

An additional evaluation is performed by computing the 
overlap between the flood-prone areas of the DEM-based 
binary maps and the EU-Hydro river network (Table 4), as 
was done for the selection of the reference ISPRA map (Section 
7.2). The univariate model detects flood susceptibility on a 
significantly higher portion of the river network than in the 
ISPRA map. The exception is Strahler order 8, where the 
overlap drops to 70.72%, suggesting inaccuracy of the model. 
The increase in the overlap for the multivariate model is lower 
but still significant for Strahler orders from 3 to 6. For the 
others, the percentage of flood-prone areas over the river net
work is substantially the same as in the reference ISPRA map.

6.4 Validation against historical inundations and 
envelope flood hazard map

In Table 5 the agreement between the DEM-based models and 
the validation maps is shown, by means of the overlapping 
flood-susceptible areas. Considering the inundation maps (see 
the first three sections, from the left, in Table 5), it is evident 
that the output map from the multivariate model has the low
est agreement with the validation dataset. However, with the 

exception of the AL 21/10/19 event, which is more poorly 
represented in all the maps, the overlapping percentage is 
always more than 85%. Differently, the envelope validation 
map has higher agreement with the multivariate model (i.e. 
94.45%) than with the univariate (77.19%).

Regarding the values assumed by the standardized GFI and 
the multivariate p value over the areas detected by the valida
tion maps (Fig. 5), higher median values of the latter are 
observed (i.e. p value higher than 0.6, vs. standardized GFI 
lower than 0.4). It is again evident here that the event that 
occurred in Alessandria is more critical to model than the one 
in Bologna, as both the p value and the standardized GFI are 
partially under the classification threshold over the area.

The continuous indices and binary output maps of the 
DEM-based models can be better examined with a specific 
focus on the validation areas of the AL 21/20/19 event and 
the synthetic scenario (illustrative examples in Figs. 6 and 7, 
respectively). From this analysis, two points emerge: (1) the 
multivariate model leads to discontinuous floodplain delinea
tion, while sharp floodplain boundaries are produced by the 
univariate one (panels (a–c) of Figs. 6 and 7); and (2) the 
multivariate model is more efficient in characterizing flood 
hazard outside the main river network (panels (d) and (e) of 
Figs. 6 and 7).

7 Discussion

7.1 Selection of the input DEM

On the importance of the selection of the appropriate DEM 
for calibrating a DEM-based flood hazard model, several 
studies have already been carried out (e.g. Tavares da Costa 
et al. 2019). Here, a framework for performing this opera
tion is given. The method presented is valuable as it con
siders several characteristics of the DEMs: vertical 
accuracy, hydraulic consistency and resolution. In fact, 
even if the vertical accuracy is the simplest way to evaluate 
a DEM, the calibration of a DEM-based model requires also 

Table 3. Performance metrics for the DEM-based hazard maps computed for 
testing pixels located inside a 200 m buffer area around the target flood hazard 
map. The highest and lowest values for each column are marked in bold and 
italic, respectively.

Model TSS ACC PPV TPR F1

Univariate 0.528 0.762 0.830 0.754 0.790
Multivariate 0.596 0.781 0.905 0.705 0.792

Table 4. Percentage of overlap between the EU-Hydro river network, reference ISPRA flood hazard and binary 
outputs from DEM-based models. A darker colour means a higher percentage (see Table 2).

Strahler order
1 2 3 4 5 6 7 8

Overlap with ISPRA 
map 10.30% 23.10% 37.60% 51.70% 64.80% 58.10% 99.60% 97.50%

Overlap with 
univariate map 40.60% 69.70% 82.81% 91.05% 92.14% 84.64% 98.61% 70.72%

Overlap with 
mul!variate map 9.38% 22.03% 45.43% 71.41% 78.84% 73.64% 95.77% 95.95%

Table 5. Overlap between binary flood hazard maps (target: reference flood hazard map, ISPRA; univariate: GFI DEM-based model; multivariate: decision tree DEM- 
based model) and validation maps (i.e. observed inundation extents retrieved from satellite data, inundation scenario from 2D hydrodynamic modelling). The highest 
and lowest values for each column are marked in bold and italic, respectively.

Observed inundation events

Synthetic inundation scenarioAL 21/10/19 BO 20/11/19 BO 21/11/19

Model Overlap area [km2] % Overlap area [km2] % Overlap area [km2] % Overlap area [km2] %

Target 16.16 76.79 37.43 98.59 14.93 99.60 3347.62 99.72
Univariate 14.63 69.51 33.52 88.30 14.46 96.43 2591.19 77.19
Multivariate 12.06 57.30 33.09 87.17 13.25 88.36 3170.73 94.45
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good reliability of the river network extracted. Also, a DEM 
with higher vertical accuracy in flat areas, where the flood 
hazard is generally more difficult to estimate, has to be 
preferred over one with higher accuracy in mountainous 
contexts.

Indeed, one of the critical aspects of the proposed 
method is that some ground-truth data for evaluating 
vertical accuracy of DEMs may not be available. In this 
case, the selection should be based not only on the hor
izontal resolution but also on the hydraulic consistency. 
As an example, the river network or some geomorphic 
descriptors can be derived from the considered DEMs and 
compared with a reference river network (see Tavares da 
Costa et al. 2019). Alternatively, studies showing that a 
specific DEM has good performance over the target area 
can be followed.

7.2 Selection of the reference flood hazard map

An objective evaluation of the most appropriate reference 
flood hazard map is very difficult, as each map has its own 
advantages and weaknesses (see Section 5). In this study, a 
framework for quantitative selection is given.

We are aware that the coverage of river network extent and 
the accuracy of flood hazard estimation are two extremely 
different concepts. However, it is evident that in the case of 
the present study, there are several areas of Italy where the 
minor streams are susceptible to floods with a return period of 
500 years according to the ISPRA map (see e.g. the extreme 
northwestern spot of Italy), while in JRC modelling they are 
not. Thus, it is reasonable to assume that these minor streams 
are accurately modelled in the ISPRA map, and that they do 
not appear as flood-susceptible in the JRC map due to the 
source area threshold (see Section 5). Thus, evaluating the 
portion of modelled river network that is covered by flood- 
prone areas can be an effective way to quantify the 

comprehensiveness of the hydraulic modelling, and is used 
here as a selection method for the reference hazard map.

This approach can be suitable for large study areas, as in the 
present study, but for medium- to small-scale applications 
other aspects of the reference maps should also be considered 
(e.g. the way hydraulic structures were modelled). Finally, the 
proposed method requires a river network dataset to be avail
able to assume as reference, which should be rather feasible, 
thanks to open-source online resources such as EU-Hydro. 
Nevertheless, in a case where no dataset is available, a user- 
defined river network can be obtained by manual extraction 
from satellite data.

7.3 DEM-based modelling

The discussion of the DEM-based models is divided into two 
parts: (1) the comparison between univariate and multivariate 
modelling; and (2) the comparison between two possible ways 
to define flood susceptibility: binary mapping (floodplain deli
neation) and spatially continuous representation (flood hazard 
characterization).

7.3.1 Univariate vs multivariate modelling
When comparing the binary maps obtained across the entire 
study area (Table 3), the multivariate model achieves slightly 
better metrics than the univariate one. Focusing on smaller 
scales (i.e. single inundation events), the univariate model 
performs slightly better (Table 5, Observed inundation events). 
However, the univariate model produces a significantly worse 
prediction of the inundation scenario at the river branch scale 
(Table 5, Synthetic inundation scenario). On one hand, better 
overlap between inundation events and the univariate binary 
map confirms the validity of GFI. In fact, while its computa
tion is straightforward, its accuracy for inundation susceptibil
ity can be locally very significant. In particular, this is true 
when the thresholding is performed through a watershed-wise 

Figure 5. Box plot of standardized GFI (univariate model, light grey) and p value (multivariate model, dark grey) within the four inundated areas used in validation. Red 
lines indicate the thresholds for the decision tree classification (i.e. 0.5 at national level) and for the GFI classification (i.e. 0.265, 0.260, 0.249, 0.283 for AL 21/10/19, BO 
20/11/19, BO 21/11/19 and the 2D envelope area, in this order).
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strategy, as in this case. On the other hand, the multivariate 
model trained nationwide shows higher accuracy in reprodu
cing large inundation scenarios obtained through hydrody
namic modelling (Fig. 7). This is a clear indication that 
considering a variety of morphological descriptors as opposed 
to a single index leads to a better delineation of the envelope of 
all possible inundation events, which is the true objective of 
geomorphic floodplain delineation (on this point, see also the 
dark blue areas in panels (b) and (d) of Fig. 4).

Numerous discontinuities (i.e. isolated non-floodable pixels 
or small pixel clusters in floodable areas and vice versa) can be 
identified in the multivariate binary map (upper right corner 
of Figs. 6 and 7) by looking at specific areas in more detail. 
These discontinuities result from the combination of the p 
value thresholding (p value = 0.5) that is required in the 
production of a binary map, with the nature of an approach 
based on decision trees. In fact, as this multivariate approach is 
pixel-based, it does not explicitly enforce spatial coherence of 
the output. These isolated pixels are responsible for the lower 
metrics obtained while validating the multivariate flood- 
hazard map against the inundated areas for specific flood 
events (see the columns titled “Observed inundation events” 
in Table 5). In contrast, discontinuities are not present in the 
univariate flood-hazard map, due to the hydrological topologic 
consistence that characterizes GFI. In fact, the contributing 
area increases and the elevation above the nearest river-pixel 
decreases moving downstream, implying a monotonic increase 

of GFI in the same direction. Nevertheless, the GFI’s local 
descriptiveness of the actual susceptibility of a pixel of being 
inundated may vary from region to region. Thus, relying only 
on GFI can lead to improved accuracy in mountainous areas 
and upper river segments (panel (b) in Fig. 6), and simulta
neously to very significant and spatially broad inconsistencies 
in large predominantly flat areas (see e.g. the area north to the 
Po River in panel (b) of Fig. 7). These findings are in line with 
the literature, where consistency of univariate models is found 
to be higher in floodplain areas unaltered by humans (e.g. 
Nardi et al. 2018) and influenced by river stream order 
(Annis et al. 2019).

Finally, the increase in the extension of flood-prone areas in 
the DEM-based outputs with respect to the reference ISPRA 
map should be discussed. This is a major task, as no method 
exists to evaluate geomorphic-based flood hazard information 
where no reference is available from hydraulic models. 
However, it is quite reasonable to expect areas close to rivers 
to be flood-susceptible when considering a 500-year return 
period (see also Section 7.2); thus, the overlap between the 
flood-prone areas and the river network is considered in the 
present study. At a national scale, only the overlap for the 
DEM-based outputs can be compared with the one for the 
reference map (Table 4), while at a regional scale, the JRC map 
can also be used (Table 6). In fact, in some regions the JRC has 
a greater overlap with the EU-Hydro river network than the 
ISPRA map, showing inconsistencies of the latter. In these 

Figure 6. (a–c) Comparison of the floodable area (black) according to the target flood hazard, and DEM-based binary outputs with observed inundated areas (blue); (d, 
e) standardized GFI values and p value (colour scale) compared with inundated areas (blue) for the AL 21/10/19 event.
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regions (Fig. 2), the overlap values for the DEM-based models 
and JRC map are very similar, and both are higher than those 
of the ISPRA map (Table 6). This shows that geomorphic 
approaches can effectively use the reference information col
lected elsewhere to accurately predict flood susceptibility 
where an exact reference is not available. Globally (Table 4), 
it is possible to consider as an advantage the increase in overlap 
for high Strahler orders (i.e. 3, 4, 5 and 6) observed for the 
multivariate model, as it represents an advance with respect to 
the probable inaccuracy of the reference ISPRA map. In con
trast, the huge overlap for minor streams (i.e. Strahler orders 1, 
2 and 3) for the univariate model should be considered with 
suspicion. These findings seem to confirm that DEM-based 
models can be useful to complete flood hazard information 
where it is already available, but with some inconsistencies (see 
also Lindersson et al. 2021).

7.3.2 Floodplain delineation vs flood hazard 
characterization
To conclude, concerning the informativeness of a binary geo
morphological flood hazard modelling, as opposed to a con
tinuous representation of flood hazard, it is worth comparing 
the standardized GFI values and the corresponding p values 
from the multivariate approach. By looking at panels (a) and 
(c) of Fig. 4, and panels (e) and (f) of Figs. 6 and 7, all adopting 
the same colour scale, it is possible to observe that both the 
indices assume higher values in floodplains and with greater 
river proximity, correctly estimating flood susceptibility in the 
entire spatial domain. However, the differences in the strength 
of the regional patterns produced by the two modelling 
approaches are rather striking. On one hand, the p values 
show a smooth and gradual decrease moving further away 
from the river network, and higher values in floodplains 

relative to standardized GFI values. On the other hand, very 
high standardized GFI values can be found in well-defined 
areas and very close to the river network. Then, the univariate 
flood susceptibility decreases rather abruptly when moving 
from the river network to its immediate proximity, having an 
overall variability between ~0.2 and 0.0 from a river floodplain 
to a mountain peak. This is confirmed by the box plots of Fig. 
5, showing that the inundated areas of the studied flood events 
are characterized by lower standardized GFI values and nar
rower ranges relative to the p values associated with the multi
variate model. An additional confirmation is the low GFI 
thresholds (red lines in Fig. 5) obtained in calibration for the 
four considered areas, and the corresponding wider flood
plains delineated through the univariate flood hazard model.

The above considerations can support a more efficient and 
effective use of DEM-based flood hazard modelling products. In 
fact, most of the scientific literature focuses on the capability of 
these models to reproduce binary target flood-hazard maps. 
However, these models produce a great deal of information on 
susceptibility to inundation that is mostly lost if binary mapping, 
which we could also refer to as “floodplain delineation,” is pre
ferred to a continuous representation of flood susceptibility, which 
instead is closer to a “flood hazard mapping” in the strict sense. 
Just a few studies (e.g. Costache et al. 2020, Avand et al. 2022, 
Deroliya et al. 2022) show the application of DEM-based 
approaches for obtaining spatially continuous flood-susceptibility 
maps, but their models are trained on a pool of single inundation 
events. Thus, their analyses do not extensively focus on the infor
mation gain with respect to floodplain delineation, and rather 
show how their approaches can combine sparse information 
into a coherent output. In contrast, we train our models on binary 
flood hazard maps, and examine how these methods can improve 
information on flood hazard maps that is already available.

Figure 7. Comparison between the envelope of the synthetic inundation scenario (transparent light blue) and binary flood hazard maps [(a) target map, (b) univariate 
model, and (c) multivariate model] and continuous flood-susceptibility indices [(d) standardized GFI of the univariate model, and (e) p value of the multivariate model].
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In this context, continuous representation of flood suscept
ibility can be used for the entire study domain, or limited to a 
buffer of delineated floodplains (i.e. binary maps), proving a 
graphical representation of the uncertainty of the binary map 
itself. Based on the outcomes of the present study, when a 
continuous spatial representation of flood hazard is consid
ered, a simple multivariate approach to geomorphic flood 
hazard modelling seems to be associated with much higher 
potential and informativeness of a univariate modelling adopt
ing a single, and yet very effective, morphological index.

Overall, the analyses above show the effectiveness of a new 
application of DEM-based models. So far, most of the literature 
describes how they can mimic pre-existing flood hazard maps 
(e.g. Manfreda et al. 2014, Nardi et al. 2018), derive spatially 
continuous estimation of flood susceptibility from multiple 
single measurements of inundation events (e.g. Costache et al.  
2020, Avand et al. 2022), or predict flood hazard over data- 
scarce regions (e.g. Magnini et al. 2022). Differently, we gave 
evidence that DEM-based modelling can be used for enhancing 
incomplete or inexact information contained in national target 
flood hazard maps. This is possible thanks to their natural 
capabilities to produce spatially homogeneous and continuous 
flood-susceptibility maps, which seem to gain robustness when 
using a variety of morphometric indices instead of a single one. 
So far, the main limitations of geomorphic approaches – in 
particular in coastal and flat areas, as observed by other authors 
(e.g. Lindersson et al. 2021) – remain unsolved. Also, evaluating 

the goodness of the additional information produced by DEM- 
based models with respect to the reference maps (e.g. minor 
streams) is very challenging. In these cases, appropriate use of 
global flood hazard maps and ancillary datasets (e.g. JRC flood 
maps and the EU-Hydro river network) can be resolutive.

8 Conclusions

Recent scientific literature reports on a number of simplified 
and efficient methods for flood hazard modelling that combine 
the topographic information contained in DEMs with that of 
selected reference flood hazard maps, and are therefore often 
referred to as DEM-based (e.g. Manfreda and Samela 2019). 
Several models have been investigated, relying on single geo
morphic descriptors (i.e. univariate models; see Noman et al.  
2001, Manfreda and Samela 2019) or selected blends of them 
(i.e. multivariate models; see Degiorgis et al. 2012, Marchesini 
et al. 2021, Magnini et al. 2022), that in some cases are com
bined with additional information which is not retrievable 
from DEMs (e.g. see Arabameri et al. 2019, Costache et al.  
2020). These methods are usually considered promising aux
iliary/complementary tools to the traditional 2D hydrody
namic models for mapping riverine flood hazard. Their 
accuracy is lower than that of 2D inundation models when 
considering complex geometries (e.g. hydraulic structures) or 
flood dynamics (e.g. breaches), and yet their straightforward 
implementation and low computational intensity make them 

Table 6. Percentage of overlap between the EU-Hydro river network, reference 
ISPRA flood hazard, JRC map, and binary outputs from DEM-based models. A 
darker colour means a higher percentage (see Table 2). Only regions and Strahler 
orders where overlap for JRC is significantly higher than for ISPRA are reported. 
When regions do not have rivers of Strahler order 6, values are missing.

Region Map
Strahler 

3
Strahler 

4
Strahler 

5
Strahler 

6

Tren�no-Alto 
Adige

ISPRA 3.34% 10.21% 16.38% 5.05%
JRC 5.92% 4.85% 46.32% 71.34%

Univariate 57.61% 73.46% 87.89% 92.46%
Mul�variate 16.08% 39.28% 52.47% 53.73%

Veneto

ISPRA 11.03% 4.37% 16.41% 20.50%
JRC 10.62% 3.37% 49.66% 55.44%

Univariate 54.46% 65.95% 72.71% 65.02%
Mul�variate 29.70% 48.05% 63.41% 59.13%

Marche

ISPRA 2.52% 2.21% 0.19%
JRC 3.16% 19.92% 47.55%

Univariate 87.47% 92.65% 92.73%
Mul�variate 60.39% 80.16% 74.62%

Lazio

ISPRA 14.78% 35.56% 76.87% 48.63%
JRC 4.90% 22.54% 79.57% 83.57%

Univariate 72.47% 86.91% 98.72% 91.30%
Mul�variate 48.41% 72.10% 90.69% 84.72%

Abruzzo

ISPRA 23.36% 34.12% 49.23% 66.34%
JRC 2.01% 5.65% 61.13% 87.04%

Univariate 74.03% 85.97% 92.59% 95.90%
Mul�variate 35.59% 64.65% 72.39% 89.31%

Sicily

ISPRA 10.17% 35.59% 19.18%
JRC 1.01% 16.90% 78.50%

Univariate 84.28% 93.31% 97.90%
Mul�variate 59.39% 82.19% 84.16%

2400 A. MAGNINI ET AL.



particularly suitable for application to large-scale and high- 
resolution domains (Nardi et al. 2019).

Our study builds on a large-scale application of 
advanced univariate and multivariate DEM-based models 
to present an in-depth discussion of their potential and 
main limitations. The univariate model relies only on the 
GFI (Manfreda et al. 2014), which is one of the most 
accurate and versatile indices (e.g. see Samela et al. 2017). 
The multivariate model uses a data-driven blend of various 
DEM-based indices, including GFI. We selected Italy as 
study area, due to its wide spectrum of morphological 
and hydrological conditions.

There are two main innovative elements in the present 
study. The first is an effective framework for selecting the 
appropriate input DEM and reference flood hazard map, 
relying on the open-source EU-Hydro river network data
set (Gallaun et al. 2019). In fact, these represent major 
tasks for successfully setting up DEM-based models (see 
Trigg et al. 2016, Tavares da Costa et al. 2019) that are not 
fully addressed in the literature. The second is that the 
models are applied to resolve heterogeneities and incon
sistencies of the same reference map used for training, 
instead of used in geographical extrapolation (e.g. 
Magnini et al. 2022). Thus, we analyse the ability of 
DEM-based models of handling the secondary river net
work, and producing spatially continuous and homoge
neous characterization of flood hazard. These advantages 
are naturally offered by these methods, but as of yet only 
partially exploited (e.g. see Deroliya et al. 2022), and not 
fully discussed. Accordingly, we validate the two models 
against independent information – that is, remotely sensed 
inundated areas during three different flood events, and a 
synthetic catastrophic inundation scenario obtained as the 
envelope of several 2D hydrodynamic simulations.

In brief, the discussion of our results points out five 
main conclusions: (1) a univariate DEM-based model can 
be rather accurate if a meaningful geomorphic descriptor is 
considered (e.g. GFI) and a good calibration strategy is 
adopted; (2) our multivariate approach proved to be 
more accurate than the selected univariate one in reprodu
cing the target information; (3) multivariate DEM-based 
models can be used to complete flood hazard information 
(with reasonable uncertainty) where the reference map is 
incomplete or inaccurate; (4) the spatially continuous 
representation of flood susceptibility (flood hazard map
ping) should always be preferred to a binary representation 
(floodplain delineation) as it provides a wealth of informa
tion, e.g. on the uncertainty and descriptiveness of the 
simplified DEM-based model; and (5) in the case where 
spatially continuous flood susceptibility maps are to be 
prepared, multivariate approaches (e.g. p value from a 
decision-tree classifier) seem to be preferable to univariate 
ones (e.g. GFI alone) due to their higher descriptiveness 
and information content.

In conclusion, we suggest a more effective use of national 
flood hazard maps obtained from DEM-based models: we 
should not limit the application of the model to mimicking 
the national target flood hazard maps, which are often hetero
geneous and inexact. Rather, we should exploit the training 

information contained in national target flood hazard maps to 
produce spatially homogeneous and continuous flood-suscept
ibility maps, possibly using a variety of morphometric indices 
instead of a single and very informative one (QGIS 
Development Team 2021).
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DEM; see Bashfield and Keim 2011) can be downloaded free of charge 
from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1. The 
other DEMs considered for the study are available at the following web
sites:SRTM: http://www2.jpl.nasa.gov/srtm/; ASTER GDEM: https://aster 
web.jpl.nasa.gov/gdem.asp; AW3D30: https://www.eorc.jaxa.jp/ALOS/en/ 
aw3d30/index.htm; TINITALY: http://tinitaly.pi.ingv.it/; EU-DEM: 
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitor 
ing-service-eu-dem; HydroSHEDS: https://www.hydrosheds.org/; MERIT 
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DEM: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/. The official 
flood hazard by the Italian Institute for Environmental Protection and 
Research (ISPRA; see ISPRA 2018) is freely provided at the website 
https://idrogeo.isprambiente.it/app/page/open-data.
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