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A B S T R A C T

Financing energy firms and catalyzing the energy transition are pivotal for achieving a sustainable future.
In this era of increasing environmental consciousness, banks are incorporating environmental considerations
into their credit rating methodologies, like the Partnership for Carbon Accounting Financial Guidelines. In the
meantime, the advent of digital tokens offers new avenues for energy token creation. This study establishes
a factor model as the fundamental framework for algorithmic energy tokens and employs gradient-boosting
tree regression to examine energy price drivers in Italy and Austria. The results underscore the heightened
motivation to invest in energy transition and security during periods of elevated energy prices. Conversely,
the drive to invest in clean energy sources diminishes when operational profits are low or energy security
must be maintained. This research elucidates on an innovative financing solution that handles these dynamics,
produces momentum, and focuses special emphasis on its potential for implementing environmental policies
by developing an algorithmic energy token mechanism based on environmental regulations and considerations.
1. Introduction

Historically, Gross Domestic Product (GDP) has been recognized as
a significant factor influencing global energy prices (see Asghar (2008)
and Soytas and Sari (2003)). However, it is essential to recognize
that mathematically there is a mutual effect between GDP and energy
prices, rather than a one-way dependency (as stated in Asghar (2008)
and Stern (2018)). Therefore, to maintain the economic affordability
of energy prices and promote faster development, authorities should
consider the physical availability and accessibility of energy supply
sources, as well as the long-term environmental and social sustainabil-
ity. A term that encapsulates all these parameters is ‘‘energy security’’
(see Axon and Darton (2021)). Nevertheless, the literature features
a substantial discussion on the definition of energy security, with a
noticeable lack of methodological development in frameworks for se-
lecting indicators and metrics (see Cherp and Jewell (2014)). Moreover,
a methodological gap in financing planned economic growth alongside
energy objectives, particularly within the European Union, exists and
is addressed in the following discussion.

Balancing economic ambitions with environmental targets requires
innovative financial mechanisms and strategic planning. Addressing
this methodological gap becomes imperative for the European Union to
successfully navigate the transition to a sustainable and secure energy
future. As a matter of fact the ongoing discussions in the literature
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and the identified methodological gaps highlight the evolving nature
of energy security as a critical aspect of global development.

Japan serves as a compelling example among the world’s largest
economies, having grappled with numerous energy insecurities, includ-
ing oil embargoes in the 1970s and the Fukushima nuclear accident
in March 2011. Subsequently, a plethora of articles have been pub-
lished addressing the crucial issue of energy security. To date, 34
conceptual models and 104 quantitative and qualitative methods have
been deliberated upon in scholarly discourse, reaching this cumulative
understanding by the year 2021 (see Esfahani et al. (2021)).

Moreover, in the past decade, the discourse on renewable and low-
carbon energy has introduced a new dimension to the conversation.
A 2022 article by Yousaf et al. (2022) sheds light on the asymme-
try and heterogeneity in the return connection between renewable
energy digital tokens and the fossil fuel market. This discovery im-
plies a heightened probability of contagion during periods of falling
or rising returns, thereby influencing risk management strategies for
investors in digital clean energy. Studies concentrating on specific
national economies, such as China (Ren et al., 2023), Morocco (Ainou
et al., 2023), and Turkey (Ertuğrul et al., 2022), further indicate a more
pronounced impact on government-owned carbon-intensive industries.
The introduction of secure renewable digital tokens into energy portfo-
lios emerges as a potential strategy to bolster green financing in these
contexts.
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Furthermore, additional research (Zeqiraj et al., 2020) underscores
the imperative of coupling stock market development with government
policies that champion innovation for energy efficiency, especially in
the dynamic landscape of rapidly advancing renewable energy tech-
nologies like solar and wind. This becomes particularly crucial when
constructing portfolios in extreme market conditions.

This study endeavors to bridge the existing gap by developing an
integrated energy digital token. It entails a thorough examination of
energy production, finance, and market economy aspects related to
energy security, categorized into internal and external factors. The pri-
mary objective is to formulate a theoretical framework that seamlessly
integrates all these components of energy security.

Traditionally, energy security models were employed by large,
government-owned fossil fuel enterprises, concentrating on achiev-
ing supply and demand equilibrium at an affordable price within
centralized supply systems (Proskuryakova, 2018). However, in re-
cent decades, the global economy, once heavily reliant on affordable
energy derived from hydrocarbons, is now shifting towards decen-
tralized (see Lei et al. (2022)) and more diversified energy security
due to escalating costs associated with climate change and geopo-
litical risks (Ahmad and Zhang, 2020). To ensure integrated energy
firms are held accountable for climate and social risks, various ap-
proaches have emerged in the past decade. Alongside carbon allowance
certificates, a noteworthy best practice that has garnered significant
attention among financial organizations, especially following the Paris
Climate Agreement, is the Partnership for Carbon Accounting Finan-
cials (PCAF) (PCAF, 2023) for Green House Gas (GHG) accounting and
reporting (website: PCAF). This initiative aims to enhance transparency
and accountability in tracking and reporting carbon emissions, reflect-
ing the growing importance of environmental considerations in the
financial sector.

In a new study conducted in 2021 by Ramsebner et al. (2021),
challenges related to the security of energy supply and economic fea-
sibility were thoroughly examined. Apart from the obstacles posed by
hybrid grid technology, the primary challenge identified was a crucial
factor termed as a ‘‘supportive market framework’’. In this context,
as all sources contribute to the production and transfer of energy
commodities, a need for a new economic framework arises to define
values based on the underlying resource or technology (see Duvignau
et al. (2021)).

Furthermore, a fundamental aspect of asset management involves
realizing the value of any asset by balancing financial, environmental,
and social costs and associated risks (55001, 2014). Despite the subjec-
tive nature of value, an economic perspective on the value of energy
commodities can be established by considering the life cycle cost (LCC)
of energy production assets, encompassing powerhouses of various
types such as solar, gas, nuclear, etc., as internal factors. Additionally,
macro-factors, assessed through a PESTEL (Political, Economic, Social,
Technological, Environmental, and Legal) analysis, play a significant
role as external factors (55002, 2021-2). Some scholars also advocate
for a more advanced version known as Life Cycle Investment (LCI)
(see Torres Farinha et al. (2020)). This approach provides a compre-
hensive view that considers the entire life cycle of energy production
assets and the broader macro-environmental factors influencing their
value.

In assessing external factors in the energy market, various indices
have been considered, including the S&P 500, representative of the
overall market, Geopolitical Risk Indices, Rotary rigs in operation as
indicators of demand, and the volume of natural gas stored under-
ground in the U.S., among others (Drachal, 2021; Herrera et al., 2019;
Panella et al., 2012; Yuhanis and Zuriani, 2015). Conversely, some
studies focused on the economic fundamentals of 33 countries, collec-
tively constituting 80% of the global economy. These economic factors
include output, inflation, interest rates, equity market performance, and
exchange rates (see Ferrari et al. (2021), Asghar (2008) and Halkos
2

and Tsirivis (2019)). Despite these diverse approaches, all prediction
models unanimously acknowledge that forecasting natural gas prices
consistently yields the lowest Mean Squared Error (MSE) values com-
pared to other energy commodities. One plausible explanation for this
phenomenon could be the inefficiency and limited regulatory control
over the natural gas supply (Fries, 2019). This highlights the unique
challenges and dynamics associated with predicting natural gas prices
in comparison to other energy commodities.

When examining internal factors affecting electricity prices, the
technology used in its production plays a crucial role. For instance,
a study conducted in 2022 in the Indian market utilized a non-linear
autoregressive distributed lag modeling framework. This investigation
revealed that while the impact of hydraulic technology production
shocks was deemed insignificant, renewable energy sources exhib-
ited an asymmetric effect on price dynamics. Specifically, weakened
electricity generation shocks (negative) had a more substantial and pro-
longed impact on wholesale electricity prices than oversupply (Nibedita
and Irfan, 2022). Similarly, in 2022, Moutinho et al. (2022a) conducted
a comparable study on the Iberian electricity market, utilizing an Au-
toregressive Distributed Lag (ARDL-ECM) method. They analyzed data
series representing the quantity of electricity offered by hydraulic, re-
newable (wind/solar), and thermal (coal/oil/gas/nuclear) technologies
against the wholesale electricity price series. Their findings demon-
strated stationary properties between these variables, affirming that
both technology and resources influence prices in both the short term
and the long run. Significance levels at 1% indicated that different
technologies may have either positive or negative effects on prices,
contingent upon legislation and the geological characteristics of the
states. Nevertheless, in the long run, renewable energy source technolo-
gies had a negative impact on energy prices. Likewise, another report,
analyzing the Iberian Electricity market using Markov-Switching Dy-
namic or Autoregressive Regression, disclosed that even carbon prices
significantly affect the probability of price transition (Moutinho et al.,
2022b). This underscores the intricate interplay between various fac-
tors, including technology choices, resource availability, and regulatory
frameworks, in shaping electricity prices.

Moreover, it is a fundamental reality that energy emerges as a prod-
uct of an intricate engineering process. In tandem, the operation of each
engineering system entails its own set of risks, quantified in financial
terms as Reliability, Availability, and Maintainability (RAM) (Al-Douri
et al., 2020). Notably, the risks associated with engineering (or physical
assets) and financial risks have been meticulously examined over time
and extensively documented (see Sutton (2010, 2015) and Cevasco
et al. (2021)). However, the interconnection between these two realms
has been overlooked. Thus, from a broad perspective, capital expen-
ditures, operational costs, and RAM risks in generating clean energy
can be regarded as internal factors, while market supply and demand
forces influenced by environmental, social, and geopolitical concerns
are deemed external factors.

In the past decade, the carbon price or allowances market has
emerged as a new and influential external factor within energy com-
modity portfolios. Allowances, along with their option and future con-
tracts, are actively traded on platforms such as the European Energy
Exchange and International Exchange. For instance, when there is
an upswing in energy demand accompanied by a decrease in coal
prices, energy enterprises may find coal economically viable and opt
for a long position on allowances to offset their emissions. While
this illustrates the functioning of the allowance market in response
to supply and demand dynamics, the complexity arising from the
diverse array of energy sources and varying potentials among different
companies makes predicting allowance market movements challenging.
In a study conducted in 2021 (Batten et al., 2021), it is discovered
that energy commodity prices, indicative of the supply/demand bal-
ance, account for only 12% of carbon price variations. Moreover, they
noted that ‘‘weather variables did not affect the carbon price except

for unanticipated temperature changes’’. This underscores the intricate
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and multifaceted nature of the carbon market, where numerous fac-
tors beyond traditional supply and demand dynamics contribute to its
fluctuations.

However, the dynamics of sustainable energy are influenced by a
complex interplay of factors. Carbon pricing, economic growth, and
trade openness serve as catalysts for promoting sustainable energy,
while energy demand, security concerns, and population growth act
as constraints (Ibrahiem and Hanafy, 2021). In 2022, a report by
Sohag et al. (2022) delved into the conditional and unconditional
volatility spillover of geopolitical risks (encompassing acts, threats,
narrow and broad measures) on green energy investments. Employing
cross-quantilogram and Quantile and Quantile (QQ) approaches, the
study revealed that these risks transmit positive shocks to bearish green
energy markets, yet bullish green energy investments react negatively.
Additionally, the energy market exhibits a long memory of geopolitical
risks, contrasting with conventional stock markets. Similarly, Yuhui Dai
et al. conducted a parallel investigation in 2022 (Wang et al., 2022),
exploring the influence of the war in Ukraine on various commodity
categories. Their findings indicated that elevated levels of return and
volatility spillovers in the commodity market correlate with height-
ened geopolitical risks. Notably, energy commodities become a net
transmitter of return spillover, amplifying volatility spillover on metals
and agricultural commodities from 35% to 85%. FX risk, as another
geopolitical-affected factor, can also impact energy commodity prices.

The impetus for renewable energy and the pursuit of net-zero
carbon emissions were anticipated to gain momentum amid global
disruptions in the energy markets and the war in Ukraine. Nevertheless,
the challenges associated with the energy transition are becoming
more pronounced as the global consensus on it solidifies (NA, 2022).
One prominent hurdle, amid the variable pace of technological ad-
vancement and application, is the reemergence of energy security as a
paramount requirement for nations and GDP growth. A swift abandon-
ment of fossil fuels appears more idealistic than realistic and is poised
to cause economic disruptions (see Stern (2018)).

Since the advent of Web 3.0 in 2020, numerous energy tokens
have been developed and openly traded, aiming to assist energy en-
terprises in addressing business challenges associated with the energy
transition (Wang and Su, 2020). Among these tokens, one of the most
successful, although yet to demonstrate tangible results on the market,
is the Energy Web Token.1 Conversely, the cryptocurrency industry has
encountered a significant obstacle in its journey toward achieving net-
zero goals, due to its substantial environmental footprint resulting from
the energy-intensive mining process. A pivotal moment prompting the
industry to confront this challenge head-on was the Ethereum merge,
an event that unfolded in September 2022. This transformative step
resolved the colossal power demand associated with Ethereum mining,
leading to a remarkable 99.84% reduction in electricity consumption,
equivalent to the annual power needs of Austria. This achievement
was realized by transitioning from the blockchain’s ‘‘Proof-of-Work’’
(PoW) mining mechanism to an alternative approach known as ‘‘Proof-
of-Stake’’ (PoS) (Gawusu et al., 2022). For energy tokens, which can
subsequently be converted into currencies, stakeholders play a crucial
role and can include commissions from legal authorities and energy
enterprises. Nevertheless, firms operating on the supply side of energy
liberal markets stand to benefit from the reward collection through
mining, thereby contributing to financing initiatives for the energy
transition (Mehdinejad et al., 2022).

In summary, alongside green bonds and investment campaigns,
investors are increasingly incorporating the benefits of digital FinTech
into energy security, transition, and sustainability financing (Gawusu
et al., 2022). This trend has given rise to energy blockchain-based
crypto price indexes like ‘‘ENCX’’ (see Gurrib (2019)). However, the

1 https://www.energyweb.org/.
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path forward is not entirely smooth and clear, encountering chal-
lenges stemming from technological infrastructure and legal issues (as
discussed in Yildizbasi (2021)). Addressing these concerns, a compre-
hensive report by Martin Fraenkel, the vice chairman of S&P Global
Platts, was published in 2018 (Global, 2018), leading to a substantial
increase in publications on blockchain technology in the energy sector
as a burgeoning research area (Wang and Su, 2020).

This research, once again, seeks to provide a sample analysis of
the theoretical foundation of an algorithmic energy token and its
practical implementation through historical data analysis, exploring
its potential to expedite sustainable energy transition. In Section 2, a
linear regression factor model is introduced to explain energy prices,
drawing on the discussed price drivers. This model is rooted in the
engineering definition of energy production Life Cycle Analysis (LCA)
and asset management standards. Building upon this foundation, the
fabrication of an energy token, inversely related to energy prices, is
conceptualized. Moving forward to Section 4, the practicality of this
approach is discussed for Italy and Austria, based on collected data
and the methodology outlined in Section 3. In essence, the conclusive
section serves as a compass, guiding stakeholders, policymakers, and
industry participants toward informed decisions that align with the
broader goals of energy security, transition, and sustainability. Through
a comprehensive examination of causality and the practical application
of algorithmic energy tokens, the research strives to contribute valuable
insights to the ongoing discourse on shaping a cleaner, more resilient
energy future.

2. Model description and economical theory

As was pointed out in the introduction, the determination of energy
prices involves considering both internal factors related to life cycle
investment parameters, such as initial investment costs, operational
expenses, maintenance and repair costs, and the expected lifespan of
energy assets; and external factors associated with asset management
parameters.

On the other hand, external factors encompass the broader asset
management parameters that impact energy prices. These parameters
can include market dynamics, government policies and regulations, as
well as environmental considerations. Therefore, by defining 𝑃𝐸𝐶 as
price of energy commodity, we can express the relationship as follows:

𝑃𝐸𝐶 =

[

𝛽1 ⋅
𝑇
∑

𝑡
(𝐶𝐴𝑃𝑒𝑥 + 𝑂𝑃𝑒𝑥) + 𝛽2 ⋅

𝑇
∑

𝑡
𝑅𝐴𝑀𝑒𝑥

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Intrinsic factors

+

[

𝛽3 ⋅
𝑇
∑

𝑡
𝑅𝐼𝑆𝑒𝑥

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Extrinsic factors

(1)

he equation states the associated expenses to a batch of energy gen-
rated during a time period from t to T, where 𝐶𝐴𝑃𝑒𝑥 and 𝑂𝑃𝑒𝑥 are
he firm’s capital investments and operating expenditures, respectively.
𝐴𝑀𝑒𝑥 is a hybrid spending of capital and operational categories to

mprove production reliability and product availability. 𝑅𝐼𝑆𝑒𝑥 com-
rises the external risks associated with energy production, i.e. environ-
ental and geopolitical risks. Since the costs of these risks are imposed

hrough legislation such as carbon allowance or political sanctions, they
ay also be called legal risks. Eq. (1) can be regarded as a fundamental

actor model for energy prices, and in order to achieve a balanced
quation, it is necessary to identify all the influencing factors (indexes)
nd their corresponding lagged time series. Yet, as pointed out in the in-
roduction, developing an accurate and precise model is a challenge for
inancial researchers and commodity traders. Certainly, by focusing on
he energy price trend and allowing for an acceptable marginal error, it
s possible to derive a negatively correlated energy token from Eq. (1).

Moreover, when considering end-user energy prices, Eq. (1) is most
ffective for electricity. In this context, the distribution price, assum-
ng an existing distribution grid and solely network maintenance, is

https://www.energyweb.org/
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added as a percentage of the power transmitted (network services).
Conversely, for physical energy commodities such as oil and gas, the
pricing becomes more intricate, encompassing cost of carry (CoC)
items, namely Storage, Carry, Lease or opportunity cost, and Conve-
nience yield. However, all the 𝛽s in Eq. (1), will have positive attributes
as the higher the expenses the higher production costs and hence final
price. RAMex also shows a positive relationship, as expenditures here
represent the risk. The higher the risk and costs of maintainability (like
wind turbines) lower availability times and reliability of continuous
production. Although the OPex and RAMex may show similar expenses
and correlation, the former often covers the periodical costs of con-
sumable parts maintenance, whereas latter is a cost–benefit analysis of
reactive to preventive maintenance (Govil, 1984).

The energy transition to clean sources, requires capital investments
in solar and wind farms, as is with carbon capturing technologies.
Also reducing the GHG emission, oil spills, and incident frequencies
resulting to environmental damage needs preventive and reliability
centered maintenance in the form of RAMex. As a result, in current
circumstances, integrated oil and gas firms seek to raise their prod-
uct pricing in order to meet specific demands of climate protection
frameworks, gain the budget they need, or improve their credit scores
for loans and bonds as their profit margins and future cash flows
inflate. Whereas in a digital economy environment, a new energy
token can be a safe financing mechanism to lessen the energy prices.
In this framework, considering an inverse relationship, when energy
product prices increase, digital token (credit) value diminishes, and
vice versa. Considering 𝑉𝐸𝑇 as value of energy token, to develop a
negative correlated energy token based on a linear regression factor
model, we may set up the following dependencies:

𝑉𝐸𝑇 ∝ 1
𝑃𝐸𝐶

𝑟𝑃 = ln
(

𝑃𝐸𝐶 (𝑡 + 1)
𝑃𝐸𝐶 (𝑡)

)

𝑉 = ln
(

𝑉𝐸𝑇 (𝑡 + 1)
𝑉𝐸𝑇 (𝑡)

)

where 𝑟𝑃 is the continuous return of energy commodity price move-
ments and 𝑟𝑉 is the continuous return of energy token price action,
that are a logarithmic difference of 𝑃𝐸𝐶 as the energy commodity price
and 𝑉𝐸𝑇 as the value of energy token at times (𝑡+1) and (𝑡). Ultimately,
we observe that a negative return correlation holds, i.e.

𝑖𝑓 𝑃𝐸𝐶 (𝑡 + 1) > 𝑃𝐸𝐶 (𝑡) ⇒ 𝑉𝐸𝑇 (𝑡 + 1) < 𝑉𝐸𝑇 (𝑡) ⇒ 𝑟𝑃 = −𝑟𝑉

Returns are normally stationary factors and are employed here just
to demonstrate the negative economic correlation by inverting the
features. Thus, in order to ensure consistency, the model takes into
account only prices and continuous non-stationary factors by utilizing
comparable factors from the energy commodity price 𝑃𝐸𝐶 in Eq. (1) and
transforming it into an energy token 𝑉𝐸𝑇 with different coefficients, i.e.

𝑉𝐸𝑇 =
[

𝜁1 ⋅ (𝐶𝐴𝑃𝑒𝑥 + 𝑅𝐴𝑀𝑒𝑥) + 𝜁2 ⋅ (𝑃𝑟𝑜𝑓𝑖𝑡 − 𝑂𝑃𝑒𝑥)
]

+
[

𝜁3 ⋅ 𝐸𝑆𝑅 + 𝜁4 ⋅ 𝐺𝑃𝑅
] (2)

The above equation emphases again that the value of a digital
token 𝑉𝐸𝑇 in a specific market will depend on intrinsic (first square
bracket) and extrinsic (second square bracket) factors. The intrinsics
are a companies’ investment and energy production costs (𝐶𝐴𝑃𝑒𝑥
and 𝑂𝑃𝑒𝑥), reliability and availability of continuous and demand-
wise production (𝑅𝐴𝑀𝑒𝑥), and profit gains; while the extrinsics are
Environmental, social (𝐸𝑆𝑅) and geopolitical risks (𝐺𝑃𝑅). The impact
of commodity prices being the selling power of a firm is considered
within operating expenditures as profit. It is worth noting that Eq. (2) is
a straightforward linear equation that can be complicated by nonlinear
interactions, such as polynomial or logarithmic trends of the features.
4

However, in order to assess the precise non-linearity trend, the presence s
of a liquid, well-established, and government-backed energy token is
necessary. In any case, the decision tree model will capture any non-
linearity between dependent and explanatory factors in this study, but
the precise link cannot be shown.

The coefficients, which represent the sensitivities of the token’s
value to the aforementioned characteristics, may be calibrated using
market data. Nonetheless, the sign of the coefficients for the first and
two last terms represented by 𝜁1, 𝜁3, and 𝜁4 respectively, should be
positive. The first term can be called capitalization for energy security,
and the ESR and GRP factors can be considered the premiums for
sustainable energy production. Cost increases in either case should
provide firms with a return through inflated value of energy tokens
and mining authority, to obtain required finance. On the other hand,
𝜁2 should be negative to keep the energy affordable according to energy
security definition.

In a nutshell, the logic is that when a company capitalizes on its
growth and transitions to cleaner sources, or when it performs costly
preventive maintenance to reduce the possibility of oil spills or flaring
due to unplanned turnarounds by increasing production reliability, it
should be financed and gain greater stakes in mining token. When the
profit from high energy commodity prices surpasses the operational
expenses, the income capital becomes self-sufficient for supporting
energy portfolio expansion. When operating expenses exceed earnings,
resulting in a loss, the negative total scaled by negative 𝜁2 will have a
positive relationship with the token price.

In a comparable manner if external influences such as geopolitical
embargoes or environmental restrictions are imposed, the corporation
should be able to accumulate sufficient funds to budget for production
diversification, thus positive 𝜁3 and 𝜁4. However, this can be contro-
versial because, when external effects increase the production risk,
the supply line shifts to higher prices for the same demand quantity,
resulting in company gains as illustrated in Fig. 1. Therefore, 𝜁4 may
be negative in some occasions.

Nonetheless, according to micro-economic principles, when the
variable production costs like tax, environmental fines, emission cer-
tificates, or energy source prices (e.g. gas after the war in Ukraine)
increase, the market price also increases (energy security index de-
creases), and the resulted 𝛥𝑃1 brings more money for the energy
supplier, even more than the costs.2 Thus, in these situations, the profits
are still sufficient for self-financing (plow-back ratio) and diminishing
token value lessens the energy security. So better to keep 𝜁4 positive to
bring energy token profit as the financing source rather than product
price.

In contrast, when the economy is on the rise with growing GDP
figures, obviously more energy is required to produce more domestic
goods, so there would be more demand, but also more competition
and qualifications on the supply prices; then, considering the current
international atmosphere (climate change debates), companies face fi-
nancing challenges to increase production by investing in green energy
sources and get back to supply–demand equality (𝑄𝑒𝑞 , 𝑃𝑒𝑞) in Fig. 1.
This gap 𝛥𝑃2 can be covered by energy token returns and mining
rewards as a financing source.

3. Empirical analysis: a case study in Italy and Austria

3.1. Computational methodology

Embarking on the exploration of practical implications, we delve
into the introduction and justification of the theoretical formulation
outlined in Eq. (2). This step is essential to assess how the discussed

2 According to historical figures like the last quarter of 2022 after energy
anctions on Russia and unprecedented revenue figures by energy enterprises,
n such situations due to market agitation, the price spikes are in favor of
uppliers, implying higher profits.
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Fig. 1. Micro-economic supply and demand plot for energy commodities.
theory manifests in real-world scenarios, particularly within a specific
country and its energy firms. However, employing the empirical re-
gression factor model proposed in Eq. (2) posed challenges attributed
to data constraints, incompatibility issues, and temporal variations. In
response to these limitations, we pivoted towards the utilization of a
gradient boosting tree model. This alternative model, integrating both
national and international drivers, provides a robust framework for
scrutinizing energy basket prices in Italy and Austria.

Italy and Austria were selected due to their distinctive energy land-
scapes and portfolios, encompassing a diverse range of energy sources,
infrastructure, and energy policies. An exploration of energy security
in these nations promises valuable insights into the challenges and
opportunities they face in ensuring a secure and reliable energy supply.
Moreover, these countries represent varied European regions, each
characterized by unique energy dynamics and objectives, facilitating
a comprehensive understanding of energy security challenges at both
national and regional levels. Furthermore, their active engagement in
promoting renewable energy and striving to attain energy transition
goals adds an additional layer of significance to this study.

In terms of production costs, ENI and OMV, the integrated energy
corporations with the greatest market capitalizations in Italy and Aus-
tria, respectively, were chosen. The firms’ idiosyncratic data is best
provided quarterly, which has lower entropy (variance) than daily
commodity prices and GPR/ESG indices, resulting in poorer predictive
power for the regression technique. Still, quarterly or annualized data
can be used by decision tree models, but it lacks the granularity
required for a liquid daily token.

Furthermore, the model works well with missing (NaN) data and
captures nonlinear relationships. Hence, a gradient boosting tree by
means of HistGradientBoostingRegressor function from
sklearn.ensemble package in python were employed. The objec-
tive was to determine the optimal threshold values for binary separa-
tion of explanatory variables.

The reciprocal of energy basket prices (HICP3) normalized by its
base (100) in aforementioned countries and multiplied by 100, was
used as the supervised true value to train the model on a hypothet-
ical energy token value. The collection of explanatory variables are
listed in the next section. Then, using the python module train-
-test-split from sklearn.model-selection package, 30%

3 Harmonized Index of Consumer Prices.
5

of data along the time-line were chosen at random as test sample.
The Mean Square Error (MSE) function was employed to train the
model, while the Mean Absolute Percentage Error (MAPE) was used to
assess performance. Finally, the model parameters were optimized for
both models in Italy and Austria utilizing the gradient search function
GridSearchCV from sklearn.model-selection, resulted in a
learning rate of 0.001, a maximum depth of 2, a maximum number of
iterations of 5, a maximum number of leaf nodes of 2, and a minimum
number of permissible samples for each leaf of 20.

3.2. Data and preliminary analysis

Bloomberg Terminal, Refinitiv Workspace, and companies investor
relations reports were the sources of the data collected. Table 1 lists
economical, political and ESG indexes picked from the World Bank
database and Bloomberg.

Bloomberg country scores were used for the geopolitical risk in-
dexes, and the last six rows of Table 1 are from the Caldara and
Iacoviello GPR indexes,4 which are obtained by an automated text
search through the electronic archives of ten newspapers and tallying
the number of articles for each geopolitical event. The ACT subindex
counts terms linked to the categories of war beginning or escalation
and terror actions, whereas the THREAT subindex counts the words
connected to the categories of threats and military buildups. For the
eccentric energy production expenditures, the capital expenditures, and
operational income comprising operational costs and relevant profit
are extracted from ENI and OMV’s financial statements. Also, other
parameters such as ESG company score from Thomson Reuters, GHG
company emission from Bloomberg Terminal, and incident rate, oil
spill, and reserved product from the company Key Performance Indica-
tor (KPI) statements were added as explanatory features during model
training. Since the RAM indexes such as ‘‘percentage losses index’’ or
‘‘availability rank index’’ are inherited technical measures within the
company and are not published publicly, they were not introduced into
the model.

Energy prices as commodities, renewable generation, carbon al-
lowances and future certificates, and consumer energy basket were also
gathered from the Bloomberg and Eurostat terminals. Fig. 2 portrays

4 https://www.matteoiacoviello.com.

https://www.matteoiacoviello.com
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Fig. 2. Energy commodity historical prices plot.
Table 1
ESG and GPR indexes.

Index Description

ESG100P Euronext Eurozone 100 ESG (Dly.)
BWENVR Bloomberg World Environmental Control Index (Dly.)
RSSCITPR Bloomberg Country Risk Political Score for Italy (Qtly.)
RSSCITER Bloomberg Country Risk Economic Score for Italy (Qtly.)
RSSCITFR Bloomberg Country Risk Financial Score for Italy (Qtly.)
RSSCASPR Bloomberg Country Risk Political Score for Austria (Qtly.)
RSSCASER Bloomberg Country Risk Economic Score for Austria (Qtly.)
RSSCASFR Bloomberg Country Risk Financial Score for Austria (Qtly.)
WBENRUSR Russian Federation Adj. Savings: Annual NRDa (%GNIb)
WBENMEAR Middle East & North Africa Adj. savings: Annual NRD (%GNI)
WBENARBR Arab World Adj. savings: Annual NRD (%GNI)
WBENEUUR European Union Adj. savings: Annual NRD (%GNI)

AGGDEMU World Bank GDP per Capita Growth in Annual% European
Monetary Union

AGGDPIT World Bank GDP per Capita Growth in Annual% Italy
AGGDPAS World Bank GDP per Capita Growth in Annual% Austria

N10D Number of daily articles about conflicts (since 1985)
GPRD Daily GPR (Index: 1985:2019 = 100)
GPRD_ACT Daily GPR Acts (Index: 1985:2019 = 100)
GPRD_THREAT Daily GPR Threats (Index: 1985:2019 = 100)
GPRD_MA30 30 day moving average of Daily GPR
GPRD_MA7 7 day moving average of Daily GPR

a Natural Resources Depletion.
b Gross National Income.

historical prices over various time spans, while Fig. 3 illustrates their
correlations.

Fig. 2 depicts how crude oil (solid black line) and coal (dashed black
line) prices were in sync until the war in Ukraine, when coal prices
skyrocketed far beyond those of oil. Sweet oil, or Brent, followed the
crude oil trend, albeit on a smaller scale. As an oil derivative, gasoline
has followed the trend of oil prices. Natural gas (NG) is a different
story, as the universal commodity price, or Henry Hub, was typically
lower than the NG commodity price in the European market. However,
with the Nord-Stream pipelines, prices were expected to become more
aligned, with the NG commodity price in Europe reaching parity with
the international market in May 2020. Nonetheless, the war in Ukraine
6

caused the price of natural gas in Europe to skyrocket, reaching its
highest level since 2000 in late 2022 (EU.MU in Fig. 2 stands for
‘‘Europe Monetary Union’’ based on the European central bank monthly
reports).

Since the inception of European Emission certificates (EU-ICE), the
market experienced a failure during the credit crunch crisis in late
2007, but since then it has become a more liquid asset. In recent years,
these certificates have gained more attention due to multiple climate-
protection conferences around the world, and their prices now exceed
those of Brent crude oil. Two dotted cyclic clouds in Fig. 2 represent
electricity produced by wind and solar energy in Europe. Although
the production of wind and solar energy is highly volatile, these two
methods are complementary to each other. When solar energy is at
its peak, wind energy is at its lowest, and vice versa. However, since
their introduction in 2014, the amount of electricity produced by these
renewable methods has not increased as expected. While the amount
generated has increased by a factor of ten at some points, the volatility
range has also increased by the same factor.

Fig. 3 portrays the correlation between the prices of various energy
commodities. Kendall tau is the method used since it can handle non-
linearity and price ties in some commodities. As the heatmap shows,
most commodities have a positive correlation with each other, with the
exception of generated wind and solar energy and emission certificates,
which are slightly negatively correlated with fossil fuels. Thus carbon
allowances show a positive correlation around 0.4 with solar and wind
generated energy. On top of that, natural gas (NG) commodities have
a near-zero correlation to oil commodities. The energy customer price
index correlation to global natural gas prices is negative for Italy,
Austria, and Europe in general, but positive for European NG prices.

Furthermore, the causality test was carried out in Python using the
grangercausalitytests function from the statsmodels.tsa.
stattools package. The F-test is used in the context of this function
to test the significance of the lagged values of the explanatory variables
predicting the dependent variable. The null hypothesis 𝐻0 states that
the potential causal variable adds no explanatory power. As a result,
if the F-test 𝑝-value was less than 5%, 𝐻0 was rejected in favor of
the conclusion that there is statistically sufficient evidence that a time
series can be used to predict an energy price index. The primary issue
to consider was determining the appropriate amount of lags, and the
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Fig. 3. Kendall tau correlation matrix on energy commodity prices.
best results came after several trials with varying delays. The relevant
results are listed in brevity in table 3, appendix E.

Regarding the geopolitical risk, the GPRD with 5 days lag for light-
weight sweet oil and Brent Oil yielded p-values of 3.3% and 0.01%,
respectively. It also had an influence on the Gasoline commodity price
with a one-and-a-half month lag, with a p-value of 0.01 percent on the
null hypothesis. Natural Gas (NG) was a completely different story. The
Granger-effect from GPRD to Henry Hub prices in a 5 day lag resulted
in a p-value of 3.6%, whereas natural gas prices within Europe or global
NG commodities result in p-values below the significance level of 5%
in much longer lag periods of 3 months and one year, respectively;
the latter can be considered useless as news on changing prices does
not seem logical after a year. However, because NG prices in Europe
are synchronized quarterly, the three-month lag may be effective.
There was no statistically detectable Granger-cause relationship be-
tween geopolitical risk and renewable energy generation. The emission
certificates and geopolitical risk demonstrated mutual Granger-cause
only on future contracts on short lag times ranging from 5 to 15 days,
with p-values as low as 0.07 percent.

The Bloomberg World Environmental Control Index demonstrated
a Granger effect on oil commodity prices and natural gas commodities
in Europe or globally, with lag durations ranging from 15 to 45 days.
Natural resource depletion in Russia, the Middle East and North Africa,
the Arab world, and Europe had a statistically proven causal effect on
global natural gas commodity prices, but not in Europe. Except for
Russia, natural resource depletion has shown statistical causality for
crude oil over a two-month lag period. The significance and entropy of
idiosyncratic corporate data were not satisfactory to the computation
assumptions in the Granger-causality test given that accessible public
data cover a short time span and are published annually or at most
quarterly.
7

4. Results and discussion

4.1. Trained model as algorithm

Delving into the intricacies of our analysis, Figs. 4 and 5 serve
as visual representations of the forecasted values derived from the
decision tree models. These models, meticulously trained with similar
parameters, hone in on significant features intricately linked to the
energy price drivers within the contexts of both Italy and Austria. As we
scrutinize these figures, not only are we presented with the projected
values, but we also gain valuable insights through the accompanying
mean absolute percentage error. This metric provides a quantitative
measure of the accuracy and reliability of the models in predicting
energy prices in the selected countries. The specificity of our approach
in tailoring these models to the unique energy landscapes of Italy and
Austria ensures a focused examination of pertinent factors influencing
energy prices. By doing so, we aim to capture the nuanced dynamics of
each country’s energy market, contributing to a more comprehensive
understanding of the projected values. Thus, Figs. 4 and 5 stand as
instrumental visual aids, showcasing the effectiveness of our trained
models as algorithms that adeptly capture and project energy price
trends in the distinct environments of Italy and Austria.

The mean absolute percentage error for both the train and test
data is negligible, indicating a high level of accuracy in the predicted
values. The dependent variables, represented by 𝑌𝑝𝑟𝑒𝑑 and 𝑌𝑡𝑟𝑢𝑒, which
correspond to the fictional energy token values in our study, align
closely along the diagonal dashed line, indicating a perfect fit.

On the right sides of Figs. 4 and 5, the time series of energy
token values is plotted for Italy and Austria, respectively. A noticeable
overall downward trend can be observed in both cases, which can be
attributed to the effect of inflation and interest rates from 2000 until
February 2023. In this study, since the token value is mapped to energy
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Fig. 4. GBoost regression results on Italy historical energy data.
Fig. 5. GBoost regression results on Austria historical energy data.
basket prices, the general downward trend or negative drift is primarily
influenced by the impact of interest rates and inflation on the energy
Index of Consumer Prices ICP. However, in practice, this trend can be
addressed by removing the inflation impact, adjusting the valuation
to standard figures, and subsequently observing a positive trend influ-
enced by inflation, similar to other financial assets. Nevertheless, the
model used in this study effectively responds to the factors as explained
by the aforementioned theoretical principles.

The cyclic movements of the token value, which are driven by
the explanatory factors, are visualized using SHAP (Shapley Addi-
tive exPlanations) in this study, disregarding the overall trend. SHAP
provides insights into the contribution of each explanatory factor in
shaping the fluctuations of the token value over time. By analyzing the
SHAP values, we can understand the relative importance and impact of
different factors on the fluctuations observed in the token value.

To this end, the SHAP library in Python was employed to explain
the complex model created by gradient boosting trees. SHAP stands
for SHapely Additive exPlanations, and it prioritizes the relevance of
feature values in the model’s prediction capacity using game theory
mathematics and loses each feature step by step to measure its impact
on the dependent variable, as illustrated in Figs. 6 and 7.

In relation to the fictitious energy token value in Italy, Fig. 6
illustrates that the coal commodity price holds the highest priority. The
red dots, representing higher feature values, are positioned on the left
side of the model output diagram, indicating a negative correlation. The
subsequent influential factors include the natural gas price in Europe,
carbon allowance prices, crude oil, and Henry Hub NG, all showing
8

negative correlations. On the other hand, ENI’s GHG emission indicator,
Italy’s economic and financial risk exhibit positive correlations.

On average, the diagram indicates that Italy’s energy token value
would be more susceptible to changes in commodity prices rather
than the financial status of a single major energy company. Despite
ENI’s recent investments in renewable energy, the impact of renewable
energy generation in this particular scenario is negligible. Geopolitical
and environmental indices hold the least significance. This highlights
the importance of the proposed idea to establish an energy token
pegged to a well-defined algorithm based on ESG (Environmental,
Social, and Governance) policies. By doing so, authorities can seize the
opportunity in the cryptocurrency market, formulate regulations, and
introduce a national energy token. This approach aims to elevate the
average importance rank of environmental issues in energy production
while maintaining the same level of international geopolitical risk.

On the other hand, in Austria, its integrated energy corporation,
OMV, has a greater impact on token value. Fig. 7 illustrates that
as commodity prices, particularly gasoline, increase, the value of the
energy token decreases. Similarly to Italy, higher prices for emission
allowances have a noticeable effect on the token value, leading to a
decrease. This is because the authorities generate revenue from the
sale of carbon certificates and can reinvest the funds by providing
loans to companies that adhere to stringent energy transition plans.
Additionally, OMV’s ESG scores also play a role in influencing the token
value. In Austria, lower scores in ESG rankings result in an increase
in token value. This allows the firm to secure financing for necessary
improvements to enhance its ESG ranking and move closer to the
net-zero goal.
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Fig. 6. Shapely additive explanation of GBoost regression on Italy energy token.
The fourth rank for OMV’s operating income and its negative cor-
relation highlight the fundamental financing challenge discussed in
the Theory section. Following that, the influencing factors in Austria’s
decision tree model include energy commodity prices and the Russian
resource depletion index. Interestingly, unlike Italy, environmental fac-
tors hold a higher position in Austria’s model, indicating their relative
importance. However, geopolitical risk is still considered to be of lesser
significance compared to other factors.

4.2. Token application and trading mechanism

In addition to the exploration of the hypothetical token value model
in this study, it is noteworthy that there are real-time energy tokens
actively traded on the cryptocurrency market. Among these tokens,
Energy Web Token5 (EWT) holds particular relevance to the research
concept under discussion. Fig. 8 illustrates the linear or rank-based
correlation of the EWT price in EUR against energy commodity prices in
EUR, employing Pearson, Spearman, and Kendall correlations. Remark-
ably, all correlation figures boast p-values well below 5%, providing
statistical evidence of the existence of a negative correlation. This ob-
servation not only emphasizes the tangible application of energy tokens
in the real-time cryptocurrency market but also underscores the poten-
tial influence of energy commodity prices on the value of these tokens.
The negative correlation suggests that as energy commodity prices
fluctuate, there is a discernible impact on the value of the EWT token,
thereby establishing a dynamic relationship worth exploring further. As

5 https://www.energyweb.org.
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Table 2
Regression results of energy consumer price index on EWT.

Italy HICP
energy

Austria HICP
energy

Euro area MUICP
electricity gas & other fuels

EWT.EUR −0.45261 −0.4694 −0.4766
Adj. R-Sq 20.51% 22.07% 22.75%

we navigate the evolving landscape of cryptocurrency and energy mar-
kets, the insights drawn from this correlation analysis shed light on the
intricate interplay between energy token values and commodity prices.
This nuanced understanding is pivotal for investors, policymakers, and
industry stakeholders seeking to comprehend the broader implications
of energy token dynamics in the context of real-time trading.

Furthermore, a linear regression on EWT.EUR was computed to ex-
amine the impact of new digital energy token, EWT, and their financing
potential on the index of consumer prices in Italy, Austria, and Europe
in general, albeit it is new and in development phase. As shown in
Table 2, the coefficients for all of the equations are negative, associated
with the negative correlations desired. Since both the regressor and de-
pendent variables were standardized prior to regression, the ETW.EUR
coefficients are comparable and can represent the sensitivity of energy
price over EWT investment. The adjusted R-squared indicates that the
EWT digital token investment can explain approximately 21% of the
energy consumer prices on average. It is truly remarkable to elucidate
that as of the advent of Web 3.0 in 2020, and with a mere handful
of energy corporations as participants, nearly 21% of the variation in
HICP prices can be attributed to a recently developed energy token.

https://www.energyweb.org
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Fig. 7. Shapely additive explanation of GBoost regression on Austria energy token.
Fig. 8. Linear and Rank-based correlation between EWT and energy commodities.
In conclusion, the adoption of energy tokens as a financing mecha-
nism emerges as a viable solution to address the challenges confronting
energy suppliers, particularly those related to high debt burdens and
the slow transition to green energy. Energy tokens, complemented by
Proof-of-Stake mining technology, present a contemporary financing
tool capable of imparting the necessary momentum to businesses in
the energy sector. During periods characterized by economic growth
and heightened energy consumption, energy suppliers typically find
themselves as price takers. However, in instances where external fac-
tors, such as war and geopolitical issues, lead to surges in energy prices
and subsequent declines in the value of energy tokens, companies can
capitalize on elevated profit margins to fund their development plans.
This phenomenon was notably evident in the financial statements of
integrated oil and gas energy companies following the war in Ukraine
10
in 2022. In essence, energy tokens wield the potential to facilitate
the transition to green energy by furnishing energy companies with
a flexible and efficient financing option. This capability is crucial in
navigating the complexities of the energy market, ensuring adaptability
during periods of economic fluctuations and geopolitical uncertainties.

In addition, the circular economy concept can be applied to the en-
ergy transition by leveraging energy coins. When energy prices are high
and a company generates substantial profits, it can allocate a higher
portion of its earnings for reinvestment (plowback). Additionally, the
company can buy back energy coins from the market, increasing its
stake and involvement in the mining rewards system. During periods
when the company’s budget is tight or there is a need for additional
funds, it can either mine the energy coins it holds or sell them on
the market. This flexibility provides a source of liquidity and financial
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resources that can be utilized to support the company’s operations or
investment plans. The business cycles and circularity of profits in this
scenario are similar to the concept of share repurchase in the stock
market.

On the flip side, a pertinent question emerges: why should investors
consider purchasing energy tokens or coins? Let us consider the sce-
nario where an individual, factory owner, or institutional investor,
with inelastic exposure to energy prices, decides to invest in nationally
developed energy coins. In the event that the value of an energy
coin surges while energy commodity prices decline, investors stand
to realize profits, and all appears favorable. However, the scenario
takes a downturn when energy commodity prices experience a sharp
increase. Energy coins, given their inherent negative correlation, suffer
a significant loss in value, leading investors to face a challenging day
as they witness the depletion of their assets while grappling with
escalating energy bills.

Nevertheless, under the guidance of regulatory policies, the cycle
of energy token mining, short selling, and buyback can be adjusted to
market circumstances. This strategy facilitates also market access and
capitalization for households engaging in a micro-grid energy supply
and demand framework (Ramsebner et al., 2021).

Certainly, the concept of financing through decentralized tokens
holds significant potential benefits for energy producers and investors
looking to diversify their portfolios. Institutional investors, by incorpo-
rating energy coins into their portfolio, stand to gain from the potential
upside of energy token appreciation during periods of low commodity
prices. Simultaneously, this strategic inclusion serves as a hedge against
potential losses in other energy investments when commodity prices
experience an upswing. This diversification approach effectively miti-
gates overall risk exposure, bolstering the resilience and robustness of
the portfolio.

Moreover, the availability of digital coins pegged to commodity
prices provides a convenient and efficient way to access diversified
energy assets without the need for physical ownership or complex
trading mechanisms. It allows investors to participate in the energy
market and benefit from its potential growth while maintaining a level
of flexibility and liquidity.

In summary, while investing in energy coins may not be beneficial
to individual investors, institutional investors with energy portfolios
and energy producers may employ decentralized tokens tied to a factor
model algorithm to diversify their holdings and effectively manage
energy-related risks.

In addition to the imperative for regulatory frameworks in de-
centralized finance, there exists an opportunity to delve into more
sophisticated valuation algorithms. One notable approach is the adop-
tion of Reinforcement Learning (RL) algorithms. These algorithms have
the potential to establish a nuanced connection between the value of
an energy token and the aforementioned factors and market dynamics,
all while aligning with national and international policies.

In RL algorithms, specifically, the valuation technique is not reliant
on extensive data inputs but rather learns and adapts in response
to market movements. Assuming the current value as 𝑉 (𝑠), where 𝑠
represents the ‘‘state’’ in RL, the implemented agent within the energy
market factors makes decisions on the next value based on consid-
erations of both company-specific and national interests in order to
maximize rewards. The state transitions or variations in token value
in this context, denoted as s to s′, are limited to either increasing (↑) or
decreasing (↓). Consequently, the Bellman equation in the RL algorithm
can be expressed as follows:

𝑉 (𝑠) = 𝑚𝑎𝑥↑ 𝑜𝑟 ↓
(

𝑅(𝑠, 𝑎) + 𝛾𝑉 (𝑠′)
)

(3)

where 𝑅(𝑠, 𝑎) is the reward given to the agent as an incentive to follow
the policy within the algorithm, and the degree of it is based on the
current state s and the actions a it takes to move to state s′. Within this
11

equation, 𝛾 is the discount factor qualifying future token value.
In summary, within a Reinforcement Learning (RL) framework, the
significance of historical data availability and granularity is diminished.
Instead, token value transitions are guided by a comprehensive policy
that addresses both energy security and the imperative for a green
transition. This approach enables the token value to adapt and respond
to changing conditions, providing flexibility in the system. Effective
implementation of this algorithm and policy necessitates robust col-
laboration between blockchain companies and energy authorities at
the national level. This collaboration is particularly crucial during the
initial coin offering (ICO) stage, marking the introduction of the energy
token to the market. Through concerted efforts, these stakeholders can
ensure proper regulation, compliance with environmental standards,
and the establishment of a robust framework for the energy transition.
Such collaboration will enhance transparency, trust, and accountability
in the financing and implementation of sustainable energy projects.

5. Conclusion

This research pioneers an innovative approach to financing energy
transitions, steering away from conventional debt and equity methods.
It proposes the development of an algorithmic national energy currency
using blockchain technology, a concept explored within the unique
contexts of Italy and Austria. The examination is framed by their dis-
tinctive energy consumption patterns and the challenges arising from
the post-war landscape in Ukraine.

To discern the intricate dynamics influencing the proposed energy
token, the research employs a gradient-boosting decision tree regres-
sion model. This analytical tool scrutinizes relevant ESG and GPR
indices, commodity prices, and production KPIs. Notably, this model
adeptly captures non-linear relationships and adapts to missing data,
providing valuable insights into the significant features shaping token
value fluctuations.

The study uncovers that the value of the fabricated energy token is
adversely affected by the ascent of commodity and emission certificate
prices. Governments are presented with an opportunity to leverage
emissions allowance proceeds, steering corporations toward cleaner
energy sources. The introduction of a national energy token not only
emphasizes environmental controls but also maintains a steady level of
international geopolitical risk.

Zooming into the simulated scenarios in Italy and Austria, the
research elucidates a decline in the energy token’s value in response to
heightened commodity prices, notably for coal, crude oil, and natural
gas in Italy, and gasoline in Austria. Concurrently, elevated emission
certificate prices exert a substantial downward pressure on the token’s
value. It is noteworthy that in Austria, the influential role of the energy
firm OMV in determining energy basket prices and the hypothetical
energy token comes to the fore.

Delving into alternative financing avenues, the research under-
scores the role of cryptocurrencies, specifically those utilizing the Proof-
of-Stake methodology. This provides governments and international
policymakers with a lever to adjust token valuation by modifying
climate-related thresholds or coefficients within the underlying algo-
rithm. The adoption of energy tokens not only aligns with circular
cryptocurrency principles but also facilitates the integration of newly
developed PCAF guidelines, incorporating processes like mining and
buyback.

This comprehensive approach transcends financial insights, weaving
together strategic considerations and policy implications. In consid-
ering managerial implications, it is crucial for companies to remain
vigilant about the impact of commodity prices and emission certificate
costs on energy token values. This vigilance underscores the imperative
of aligning corporate strategies with environmental goals, emphasizing
the potential influence of emission allowances. This strategic alignment
becomes pivotal in navigating the evolving landscape of sustainable
energy financing.
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Policy implications extend beyond corporate strategies to authori-
ties, urging them to leverage emissions allowance proceeds as incen-
tives for corporations. This approach fosters a transition to cleaner
energy sources, placing governments in a pivotal role with the power
to adjust token valuations through policy decisions. This underscores
their regulatory influence in shaping the renewable energy landscape.
Corporations, as recipients of incentives tied to emissions allowances,
are strategically positioned to facilitate a smoother transition towards
sustainable energy practices. This symbiotic relationship aligns with
a broader global initiative for environmentally conscious practices,
showcasing the interconnectedness of economic development and en-
vironmental considerations.

Finally, investors and financial analysts, as key stakeholders, are
advised to factor in the influence of commodity prices and emission
certificate costs when assessing the value of energy tokens. Understand-
ing these dynamics becomes paramount in making informed investment
decisions within the evolving landscape of sustainable energy financ-
ing. This holistic understanding enhances their ability to navigate the
intricacies of the market and align investments with the principles of
environmental sustainability.

In essence, the research transcends traditional financial insights by
seamlessly integrating strategic and policy considerations. It presents
a comprehensive picture of how energy tokens can reshape financial
landscapes, acting as a bridge between economic development and
sustainable energy practices. The interconnected nature of these con-
siderations highlights the transformative potential of energy tokens in
fostering a more sustainable and environmentally conscious future.
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