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Asymmetric dynamic plastic response of stepped
plates

Jaan Lellep and Annely Mürk

Abstract. The dynamic plastic response of circular plates to asym-
metric loading is studied. An approximate theoretical procedure is de-
veloped for the evaluation of asymmetrical residual deflections. The
solution technique is based on the equality of the internal dissipation
and the external work, respectively. Maximal residual deflections are
defined for plates of piece-wise constant thickness.

1. Introduction

The investigation on the dynamic plastic behavior of circular plates sub-
jected to the impulsive and impact loadings got its start with papers by
Hopkins and Prager [3] also by Wang and Hopkins [15]. In [3, 15] the stress-
strain state of a circular plate was established in the case of material obeying
the Tresca yield condition and the associated flow law. Later these solutions
were extended to various external loadings, provided the behaviour of the
plate remains axi-symmetric (see Jones [4], Kaliszky [5], Nurick and Martin
[12], Stronge [14], Wierzbicki and Jones [16], Capurso [2], Lepik and Mróz
[11], Kaliszky and Lógó [6, 7]).

An approximate method for determination of residual deflections of circu-
lar plates made of an ideal rigid-plastic material was developed by Lellep and
Mürk [8, 9, 10] for plates subjected to asymmetrically distributed loadings.

In previous papers the case of impulsive loading [8], the rectangular pres-
sure pulse [9] and the exponentially decaying pressure [10] were studied. In
the current paper it is assumed that the plate is subjected to a concentrated
force with the decaying magnitude of general form, provided it is applied off
the centre of the plate.
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2. Problem formulation and internal dissipation

Let us study the residual deflections of a stepped circular plate of radius
R subjected to the asymmetric loading. Following the previous paper [10] it
is assumed that the plate is loaded by the concentrated force P applied at
the point O1 of the plate while

P (t) =

{
p g(t), t ∈ [0, t1],

0, t > t1.
(1)

Here t stands for time and t1 is a positive number whereas g(t) is a continuous
function of time t and p is a given constant. For the sake of simplicity we
shall study the case where t1 is relatively small in a greater detail.

Let the thickness of the plate be denoted by h = h(r, θ) where r and θ
stand for polar coordinates. It is assumed that the thickness of the plate is
piece-wise constant. Thus for r ∈ (rj , rj+1)

h = hj(θ), j = 1, . . . , n, (2)

and hj(θ) = const; 0 ≤ θ ≤ 2π. The equations

r = rj(θ), (3)

where rj (j = 1, . . . , n + 1) define the boundaries of closed regions where
r = const. Evidently, at the boundary of the plate r = rn+1(θ), where

rn+1(θ) = a cos θ +
√
R2 − a2 sin2 θ. (4)

Here a is the distance between O1 and the centre of the plate, and rn+1 ≤
R− a.

The previous works in the analysis of rigid-plastic circular plates subjected
to the dynamic loads have shown that the plates take the form of a cone if
the load belongs to the class of moderate loads (see Jones [4], Kaliszky [5],
Skrzypek and Hetnarski [13], Chakrabarty [1]). Thus, the transverse velocity
field can be presented as (see Figure 1)

Ẇ (r, θ, t) = Ẇ0(t)

(
1− r

rn+1(θ)

)
, (5)

provided the origin of coordinates is located at the point O1.
In (5), W stands for the vertical displacement and dot denotes the differ-

entiation with respect to time t; thus

Ẇ0 =
dW0

dt
. (6)

It is also useful to denote the differentiation with respect to θ by prime; for
instance

rj
′

=
drj
dθ

. (7)
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Figure 1. Geometry of the plate.

It was shown in the earlier papers (see Lellep and Mürk [8, 9, 10]) that
the internal energy dissipation corresponding to the velocity field (5) can be
calculated as

Ḋi = Ẇ0(t)
n∑
j=0

M0j

rj+1∫
rj

dr

2π∫
0

1

rn+1

(
1 +

(r
′
n+1)

2

r2n+1

)
dθ. (8)

Here
M0j =

σ0
4
h2j , (9)

where σ0 is the yield stress of the material.

3. Residual deflections of the plate

The power of the external forces including the concentrated force (1) and
the inertial forces due to the acceleration
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Ẅ = Ẅ0(t)

(
1− r

rn+1

)
, (10)

can be calculated as (see Jones [4], Lellep and Mürk [9, 10])

Ḋe = P0Ẇ0g(t)− µẆ0Ẅ0

n∑
j=0

2π∫
0

dθ

rj+1∫
rj

hj

(
1−

(r
′
n+1)

2

r2n+1

)2

rdr

−
2π∫
0

M0n

rn+1
dθ

(11)

for 0 < t ≤ t1, where µ stands for the density of the material of the plate.
Taking Ḋi = Ȧe one obtains for 0 ≤ t ≤ t1 that

Ẅ0 =
1

A

(
Ṗ0g(t)−B

)
, (12)

where

A = µ
n∑
j=0

2π∫
0

dθ

rj+1∫
rj

hj

(
1− r

rn+1

)2

rdr (13)

and

B =

2π∫
0

M0n

rn+1
dθ −

n∑
j=0

M0j

rj+1∫
rj

dθ

2π∫
0

(
1

rn+1
+

(r
′
n+1)

2

r3n+1

)
dr. (14)

It is worthwhile to mention that the relations (10)–(14) are applicable for
both, simply supported and clamped plates. However, in the case of simply
supported plates the last term in (11) and the first term in (14) must be
omitted. Thus, in the case of simply supported plates one has to take M0n =
0 in (11), (14) for determination of accelerations during the first stage of
motion. For the second stage of motion the acceleration

Ẅ1 = −B
A
. (15)

From (15) after integration one easily obtains

Ẇ1 = −B
A

(t− t1) + Ẇ0(t1) (16)

and

W1 = − B

2A
(t− t1)2 + Ẇ0(t1) (t− t1) +W0(t1). (17)

The motion of the plate ceases at the moment t = t2, where

t2 = t1 +
A

B
Ẇ0(t1). (18)
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According to (15)–(18) the maximal residual deflection

W1(t2) = W0(t1)

(
1 +

A

2B
W0(t1)

)
. (19)

The quantities Ẇ0(t1) and W0(t1) in (16)–(19) can be determined after

integration of (12) making use of the initial conditions W0(0) = 0, Ẇ0(0) = 0.

4. Numerical results

The results of calculations are presented for simply supported and clamped
plates in Figures 2–8, whereas g(t) = cosβt. In Figures 2–6 the maximal
residual deflections are plotted versus the load intensity, provided the plate is
exerted to the rectangular pressure loading of intensity p and of the duration
t1. Figure 2 corresponds to the plate of constant thickness, for β = 0.2,
a = 0.7R. It can be seen from Figure 2 that the residual deflection increases

Figure 2. Maximal permanent deflections of the plate of
constant thickness.

if the load intensity p increases. The residual deflections at the final instant
t2 are calculated numerically after the determination of quantities A and B.
It is assumed that

h =

{
h1, (x, y) ∈ D0,

h2, (x, y) /∈ D0,

where D0 is a circle with radius r1 < R − a and the centre at the point
O1. Figure 3 is associated with the simply supported plate and Figure 4
corresponds to the fully clamped plate, for β = 0.2, a = 0.7R, r1 = 0.2R
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and h2 = 0.8h1. It can be seen from Figure 2 and Figure 3 that the residual

Figure 3. Maximal permanent deflections of the simply sup-
ported plate (a = 0.7R).

Figure 4. Maximal permanent deflections of the fully
clamped plate (a = 0.7R).

deflections are smaller in the case of plate of constant thickness than for the
stepped plate, as might be expected.
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Figure 5. Maximal permanent deflections of the stepped
plate (r1 = 0.2R).

Figure 6. Maximal permanent deflections of the stepped
plate (r1 = 0.8R).

It can be seen from Figures 3–4 that the residual deflection increases if
the load intensity p increases, and the residual deflections are larger for the
simply supported plate.
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Figure 7. Maximal permanent residual deflections of simply
supported plate.

Figure 5 stands for the case of simply supported stepped plate, whereas
a = 0.1R, β = 0.2, r1 = 0.2R and h2 = 0.8h1. Comparing Figure 2 and
Figure 5 we can see more larger residual deflections for the case a = 0.1R,
as might be expected.

Figure 8. Maximal permanent residual deflections of
clamped plate.
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In Figure 6, the case of simply supported stepped plate for a = 0.1R,
β = 0.2, r1 = 0.8R and h2 = 0.8h1 is presented. It can be seen that
the residual deflections are smaller for the case of larger thickness of the
plate. The results of calculations of the maximal residual deflections of the
plate versus time t1 are presented in Figure 7 and Figure 8 for β = 0.2,
h2 = 0.8h1. Here the plates subjected to the concentrated force applied at
the distance a = 0.7R from the centre of the plate. It can be seen from the
figures that the permanent deflections of clamped plates are smaller than
those corresponding to simply supported plates.

5. Concluding remarks

An approximate theoretical method developed earlier is applied to the
circular plate subjected to the asymmetrically loaded circular plate clamped
at the edge. Numerical results are obtained for simply supported and fully
clamped circular plates of piece wise constant thickness subjected to the
concentrated loading intensity of which is a function of time.
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[6] S. Kaliszky and J. Lógó, Layout and shape optimization of elastoplastic discs with

bounds on deformation and displacement, Mech. Struct. Machines 30 (2002), 177–192.
DOI
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