
Learning Context Sensitive Languages with
LSTM Trained with Kalman Filters�

Felix A. Gers1, Juan Antonio Pérez-Ortiz2, Douglas Eck3, and
Jürgen Schmidhuber3

1 Mantik Bioinformatik GmbH, Neue Gruenstrasse 18, 10179 Berlin, Germany
2 DLSI, Universitat d’Alacant, E-03071 Alacant, Spain

3 IDSIA, Galleria 2, 6928 Manno, Switzerland

Abstract. Unlike traditional recurrent neural networks, the Long Short-
Term Memory (LSTM) model generalizes well when presented with train-
ing sequences derived from regular and also simple nonregular languages.
Our novel combination of LSTM and the decoupled extended Kalman
filter, however, learns even faster and generalizes even better, requiring
only the 10 shortest exemplars (n ≤ 10) of the context sensitive language
anbncn to deal correctly with values of n up to 1000 and more. Even when
we consider the relatively high update complexity per timestep, in many
cases the hybrid offers faster learning than LSTM by itself.

1 Introduction

Sentences of regular languages are recognizable by finite state automata having
obvious recurrent neural network (RNN) implementations. Most recent work on
language learning with RNNs has focused on them. Only few authors have tried
to teach RNNs to extract the rules of simple context free and context sensitive
languages (CFLs and CSLs) whose recognition requires the functional equivalent
of a potentially unlimited stack. Some previous RNNs even failed to learn small
CFL training sets [9]. Others succeeded at CFL and even small CSL training
sets [8,1], but failed to extract the general rules and did not generalize well on
substantially larger test sets.

The recent Long Short-Term Memory (LSTM) method [6] is the first network
that does not suffer from such generalization problems [4]. It clearly outperforms
traditional RNNs on all previous CFL and CSL benchmarks that we found in the
literature. Stacks of potentially unlimited size are automatically and naturally
implemented by linear units called constant error carousels (CECs).

In this article we focus on improving LSTM convergence time by using the
decoupled extended Kalman filter (DEKF) [7] learning algorithm. We compare
DEKF with the original gradient-descent algorithm when applied to the only
CSL ever tried with RNNs, namely, anbncn.
� Work supported by SNF grant 2100-49’144.96, Spanish Comisión Interministerial de

Ciencia y Tecnoloǵıa grant TIC2000-1599-C02-02, and Generalitat Valenciana grant
FPI-99-14-268.

This version of the article has been accepted for publication, after peer review but is not the Version of 
Record and does not reflect postacceptance improvements, or any corrections.
The Version of Record is available online at: https://doi.org/10.1007/3-540-46084-5_107
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use: 
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Gers, F.A., Pérez-Ortiz, J.A., Eck, D., Schmidhuber, J. (2002). Learning Context Sensitive Languages with 
LSTM Trained with Kalman Filters. In: Dorronsoro, J.R. (eds) Artificial Neural Networks — ICANN 2002. 
ICANN 2002. Lecture Notes in Computer Science, vol 2415. Springer, Berlin, Heidelberg.



2 Architecture and learning algorithms

Lack of space prohibits a complete description of LSTM [3,6]. In what follows,
we will limit ourselves to a brief overview. The basic unit of an LSTM network
is the memory block containing one or more memory cells and three adaptive,
multiplicative gating units shared by all cells in the block. Each memory cell
has at its core a recurrently self-connected linear unit called the constant error
carousel (CEC) whose activation is called the cell state. The CECs enforce con-
stant error flow and overcome a fundamental problem plaguing previous RNNs:
they prevent error signals from decaying quickly as they flow “back in time”.
The adaptive gates control input and output to the cells (input and output gate)
and learn to reset the cell’s state once its contents are no longer useful (forget
gate); peephole connections [4] allow gates direct access to the CEC states.

Output function derivatives in LSTM are computed in such a way as to
permit errors to flow untruncated only through the CECs. The CECs use their
linear counters to find long temporal dependencies in the signal, thus freeing the
rest of the network to learn other nonlinear aspects of the signal. The resulting
architecture is able to find relevant information separated by very long time lags,
allowing it to succeed where traditional RNNs fail.

Kalman Filters. All previous works on LSTM considered gradient descent as
learning algorithm, minimizing the usual mean squared error function. When
using gradient descent, the update complexity per time step and weight is O(1).
Due to lack of space, we provide only an overview of how DEKF is combined with
LSTM — for an in-depth treatment of Kalman filters, see [7,5]. Gradient descent
algorithms, such as the original LSTM training algorithm, are usually slow when
applied to time series because they depend on instantaneous estimations of the
gradient: the derivatives of the objective function only take into account the
distance between the current output and the corresponding target, using no
history information for weight updating. DEKF overcomes this limitation. It
considers training as an optimal filtering problem, recursively and efficiently
computing a solution to the least-squares problem. At any given time step, all
the information supplied to the network up until now is used, but only the results
from the previous step need to be stored. DEKF requires, among other things,
the computation of the output function derivatives, which are calculated in the
same way as in the gradient-descent LSTM. In addition, at every discrete time
step several matrix operations are performed, including the inversion of a square
matrix of size equal to the number of output neurons. Therefore, while original
LSTM is local in time and space, the combination DEKF-LSTM is not.

3 Experiments

The network sequentially observes exemplary symbol strings of the CSL anbncn

presented one symbol at a time. Following the traditional approach in the RNN
literature we formulate the task as a prediction task. At any given time step the



target is to predict the next symbol, including the end of string symbol T . When
more than one symbol can occur in the next step, all possible symbols have to be
predicted, and none of the others. A string is accepted when all predictions have
been correct; otherwise it is rejected. A system has learned a given language up
to string size n once it is able to correctly predict all strings with size ≤ n.

Network Topology and Parameters. The input units are fully connected to
a hidden layer consisting of 2 memory blocks with 1 cell each. The cell outputs
are fully connected to the cell inputs, to all gates, and to the output units, which
also have direct shortcut connections from the input units. The bias weights to
input gate, forget gate and output gate are initialized with −1.0, +2.0 and −2.0,
respectively (precise initialization is not critical here). All other weights are
initialized randomly in the range [−0.1, 0.1]. The cell’s input squashing function
is the identity function; the squashing function of the output units is a sigmoid
function with the range (−2, 2).

We use a network with 4 input and output units: symbols are encoded locally;
therefore a unit is needed for each symbol of the alphabet, and one additional
unit is required for T . +1 signifies that a symbol is set and −1 that it is not set;
the decision boundary for the network output is 0.0.

Training and Testing. Training and testing alternate: after 1000 training
sequences we freeze the weights and run a test. Training and test sets incorporate
all legal strings up to length 3n (only positive exemplars). Training is stopped
once all training sequences have been accepted. All results are averages over 10
independently trained networks with different weight initializations (the same
for each experiment). The generalization set is the largest accepted test set.

We study LSTM’s behavior in response to two kinds of training sets: a) with
n∈{1,.., N} and b) with n∈{N − 1, N}; we focus on N = 10 for the first case
and on N = 21 for the second one. For large values of N , case (b) is much harder
because there is no support from short (and easier to learn) strings. We test all
sets with n∈{L,..,M} and L∈{1,.., N − 1}, where M will be specified later.

In the case of gradient descent, weight changes are made after each sequence.
We apply either a constant learning rate or the momentum algorithm with mo-
mentum parameter 0.99. At most 107 training sequences are presented; we test
with M ∈{N,.., 500} (sequences of length ≤ 1500).

On the other hand, when using Kalman filters, the online nature of the basic
DEKF algorithm forces weights to be updated after each symbol presentation.
The parameters of the algorithm are set as follows (see [5] for details): the co-
variance matrix of the measurement noise is annealed from 100 to 1, and the
covariance matrix of artificial process noise is set to 0.005 (unless specified oth-
erwise). These values gave good results in preliminary experiments, but they are
not critical and there is a big range of values which result in similar learning per-
formance. The influence of the remaining parameter, the initial error covariance
matrix, will be studied later. The maximum of training sequences presented with
DEKF is 102; we test with M ∈{N,.., 10000} (sequences of length ≤ 30000).



Table 1. Results for CSL anbncn for training sets with n ranging from 1 to 10 and
from 20 to 21, with various (initial) learning rates (10−α) with and without momentum.
Showing (from left to right for each set): the average number of training sequences and
the percentage of correct solutions once the training set was learned

(1,.., 10) (20, 21)

Momentum Constant Momentum Constant

Train % Train % Train % Train %
α Seq Corr Seq Corr Seq Corr Seq Corr

[103] [103] [103] [103]

1 - 0 - 0 - 0 - 0

2 - 0 - 0 - 0 - 0

3 - 0 68 100 - 0 1170 30

4 20 90 351 100 - 0 7450 30

5 45 90 3562 100 127 20 1205 20

6 329 100 - 0 1506 20 - 0

7 3036 100 - 0 1366 10 - 0

4 Results

Previous Results. Chalup and Blair [2] reported that a simple recurrent net-
work trained with a hill-climbing algorithm can learn the training set for n ≤ 12,
but they did not give generalization results. Boden and Wiles [1] trained a se-
quential cascaded network with BPTT; for a training set with n∈{1,.., 10}, the
best networks generalized to n∈{1,.., 12} in 8% of the trials.

Gradient-Descent Results. When utilizing the original training algorithm,
LSTM learns both training sets and generalizes well. With a training set with
n∈{1,.., 10} the best generalization was n∈{1,.., 52} (the average generalization
was n ∈ {1,.., 28}). A training set with n ∈ {1,.., 40} was sufficient for perfect
generalization up to the tested maximum: n∈{1,.., 500}.

LSTM worked well for a wide range of learning rates (about three orders of
magnitude) — see Table 1. Use of the momentum algorithm clearly helped to
improve learning speed (allowing the same range for the initial learning rate).

DEKF-LSTM Results. The DEKF-LSTM combination significantly improves
the LSTM results. Very small training sets with n∈ {1,.., 10} are sufficient for
perfect generalization up to values of n ∈ {1,.., 2000} and more: one of the ex-
periments (δ = 102) gave a generalization set with n∈{1,.., 10000}. We ask the
reader to briefly reflect on what this means: after a short training phase the
system worked so robustly and precisely that it saw the difference between, say,
sequences a8888b8888c8888 and a8888b8888c8889.

With training set n∈{1,.., 10} and δ = 10 the average generalization set was
n ∈ {1,.., 434} (the best generalization was n ∈ {1,.., 2743}), whereas with the



Table 2. Results for CSL anbncn for training sets with n ranging from 1 to 10 and from
20 to 21, using DEKF with different initial values for elements of the error covariance
matrix, δ−1. Showing (from left to right, for each set): the average number of training
sequences (CPU time in relative units given in parenthesis; see text for details) and
the percentage of correct solutions until training set was learned

(1,.., 10) (20, 21)

δ = 10b Train % Train %
with b = Seq Corr Seq Corr

[103] [103]

−3 2 (46) 20 - 0

−2 2 (46) 80 4 (84) 90

−1 2 (46) 100 4 (84) 70

0 2 (46) 60 8 (168) 70

1 2 (46) 100 12 (252) 60

2 2 (46) 70 4 (84) 50

3 2 (46) 80 5 (105) 50

original training algorithm it was n∈{1,.., 28}. What is more, training is usually
completed after only 2·103 training strings, whereas the original algorithm needs
a much larger number of strings.

Table 2 shows the influence of the parameter δ, which is used to determine the
initial error covariance matrix in the Kalman filter. The rest of the parameters
are set as indicated before, except for the covariance matrix of artificial process
noise which is annealed from 0.005 to 10−6 for the training set with n being
either 20 or 21.

We observe that learning speed and accuracy (percentage of correct solutions)
are considerably improved (compare Table 1). The number of training sequences
is much smaller, and the percentage of successful solutions in the case of (20, 21)
is far greater.

However, DEKF-LSTM’s computational complexity per time step and weight
is much larger than original LSTM’s. To account for this we derived a relative
CPU time unit that corresponds to computation time for one epoch (i.e., 1000
sequence presentations) of LSTM training. This relative CPU time is shown
for DEKF-LSTM in parentheses in Table 2 and can be compared directly to
“number of training sequence” values in Table 1. A comparison of LSTM and
DEKF-LSTM using this relative measure reveals that the additional complexity
of DEKF-LSTM is largely compensated for by the smaller number of training
sequences needed for learning the training set. Compare, for example, the (20, 21)
case. DEKF with δ = 10−2 achieves 90% correct solutions in 84 relative CPU
units. This compares favorably with LSTM performance (see Table 1 for LSTM
figures).

A lesser problem of DEKF-LSTM is its occasional instability. Learning usu-
ally takes place in the beginning of the training phase or never at all. All failures
in Table 2 are due to this.



Analysis of the Network Solution. With both training approaches, the
network uses, in general, a combination of two counters, instantiated separately
in the two memory blocks. For example one counter would increase on the symbol
a and then decrease on the symbol b. By counting up with a slightly lower stepsize
than it counts down, such a device can identify when an equal number of a and
b symbols have been presented. At any time the occurrence of a c symbol would
cause the block to close its input gate and open its forget gate, emptying cell
contents. A second counter would do the same thing for symbols b and c. In this
case an equal number of b and c symbols would bring about the prediction of
sequence terminator T . In short, one memory block solves anbn while another
solves bncn. By working together they solve the much more difficult CSL task.

5 Conclusion

LSTM is the first RNN to generalize well on non-regular language benchmarks.
But by combining LSTM and DEKF we obtain a system that needs orders of
magnitude fewer training sequences and generalizes even better than standard
LSTM. The hybrid requires only training exemplars shorter than a11b11c11 to
extract the general rule of the CSL anbncn and to generalize correctly for all
sequences up to n = 1000 and beyond. We also verified that DEKF-LSTM is not
outperformed by LSTM on other traditional benchmarks involving continuous
data, where LSTM outperformed traditional RNNs [6,3]. This indicates that
DEKF-LSTM is not over-specialized on CSLs but represents a general advance.
The update complexity per training example, however, is worse than LSTM’s.

References

1. Boden, M., Wiles, J.: Context-free and context-sensitive dynamics in recurrent
neural networks. Connection Science 12, 3 (2000).

2. Chalup, S., Blair, A.: Hill climbing in recurrent neural networks for learning the
anbncn language. Proc. 6th Conf. on Neural Information Processing (1999) 508–
513.

3. Gers, F. A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Computation 12, 10 (2000) 2451–2471.

4. Gers, F. A., Schmidhuber, J.: LSTM recurrent networks learn simple context free
and context sensitive languages. IEEE Transactions on Neural Networks 12, 6
(2001) 1333–1340.

5. Haykin, S. (ed.): Kalman filtering and neural networks. Wiley (2001).
6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9,

8 (1997) 1735–1780.
7. Puskorius, G. V., Feldkamp, L. A.: Neurocontrol of nonlinear dynamical systems

with Kalman filter trained recurrent networks. IEEE Transactions on Neural Net-
works 5, 2 (1994) 279–297.

8. Rodriguez, P., Wiles, J., Elman, J.: A recurrent neural network that learns to
count. Connection Science 11, 1 (1999) 5–40.

9. Rodriguez, P., Wiles, J.: Recurrent neural networks can learn to implement symbol-
sensitive counting. Advances in Neural Information Processing Systems 10 (1998)
87–93. The MIT Press.


