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Abstract
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical 
research. However, some challenges are associated with these datasets, including variability in data distribution, data scarcity, 
and transfer learning issues when using models pre-trained from generic images. This work studies the effect of these chal-
lenges at the intra- and inter-domain level in few-shot learning scenarios with severe data imbalance. For this, we propose a 
methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data 
scarcity and distribution imbalance. Specifically, different initialization and data augmentation methods are analyzed, and 
four adaptations to Siamese networks of solutions to deal with imbalanced data are introduced, including data balancing and 
weighted loss, both separately and combined, and with a different balance of pairing ratios. Moreover, we also assess the 
inference process considering four classifiers, namely Histogram, kNN, SVM, and Random Forest. Evaluation is performed 
on three chest X-ray datasets with annotated cases of both positive and negative COVID-19 diagnoses. The accuracy of each 
technique proposed for the Siamese architecture is analyzed separately. The results are compared to those obtained using 
equivalent methods on a state-of-the-art CNN, achieving an average F1 improvement of up to 3.6%, and up to 5.6% of F1 for 
intra-domain cases. We conclude that the introduced techniques offer promising improvements over the baseline in almost 
all cases and that the technique selection may vary depending on the amount of data available and the level of imbalance.

Keywords Medical imaging · Few-shot learning · Siamese convolutional neural networks · Imbalanced classification · 
Transfer learning

1 Introduction

Deep learning algorithms exhibit remarkable capabilities 
in computer-aided detection and diagnosis (CAD) across 
diverse applications  [1], including disease classifica-
tion [2–4], segmentation [5, 6], or medical object detection 
such as pulmonary nodules [7] or lymphocytes [8], among 

others. In particular, the emergence of annotated X-ray 
imaging datasets [9–11] has made the research of many 
applications based on deep neural networks possible, greatly 
benefiting pathology diagnosis and prognosis.

Nevertheless, the performance of models trained on 
medical images highly depends on several factors that can 
notably worsen the results. Key challenges include the scar-
city of annotated data and the substantial cost associated 
with expert labeling [12]. Compared to regular datasets in 
computer vision, a medical image dataset usually contains 
relatively few images, and in some cases, only a small per-
centage of them are annotated by experts [1]. In addition, 
there is commonly a considerable imbalance between nega-
tive (healthy) and positive (pathological) samples. Moreover, 
generated models strongly rely on the specific domain of 
data for which they were trained. All these challenges collec-
tively hinder the development of effective, robust, and gen-
eralizable methods for processing medical images [13], and 
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only a few approaches based on deep learning techniques are 
eventually certified for clinical usage [14].

A standard solution to deal with the scarcity of anno-
tated medical imaging data due to its associated high costs 
is data augmentation [15, 16]. This technique generates syn-
thetic samples from existing images, expanding the training 
dataset. However, the distinctive characteristics of medical 
images, such as their high dimensionality, intricate struc-
tures, and substantial inter- and intra-class variability, pre-
sent challenges when applying traditional data augmentation 
techniques [17]. Therefore, designing effective augmentation 
strategies for medical imaging often requires domain exper-
tise involving radiologists or medical professionals who can 
provide guidance and validation.

Another widely adopted solution for addressing the lim-
ited availability of annotated data is using transfer learn-
ing [18]. This technique involves leveraging knowledge 
acquired from a domain with sufficient labeled data and 
applying it to another domain by fine-tuning the model. In 
this process, the weights of a pre-trained model are used 
as an initialization for a new model. Transfer learning has 
gained significant interest for medical imaging [19–21]. 
Notably, it helps reduce the amount of labeled data required 
for training, accelerates convergence, and yields models with 
better generalization capabilities. These generalized mod-
els can be effectively transferred to other domains, enabling 
inter-domain use.

The issue of highly imbalanced data is another common 
challenge in medical imaging, where the number of positive 
samples is often significantly lower than that of negative 
ones [22]. Machine learning models trained on imbalanced 
data tend to exhibit bias towards the majority class, not pay-
ing attention to the samples from the minority class [23]. 
Consequently, this leads to suboptimal performance for the 
underrepresented samples, which can have severe conse-
quences in detecting specific pathologies and could represent 
a risk for the patients in critical scenarios.

A small dataset becomes even more prone to overfitting, 
making the model lose generalization capabilities when the 
training data is not large enough. Few-shot learning (FSL) 
algorithms address this issue. These methods can be catego-
rized [24] into metric-based, optimization-based, and trans-
fer learning-based approaches. Metric-based FSL learns a 
representation by comparing training examples through Sia-
mese networks [25], matching networks [26], prototypical 
networks [27], or relation networks [28]. Optimization-based 
FSL [29] can learn the parameters of any standard model 
via meta-learning in such a way as to prepare that model for 
fast adaptation. These techniques include Model-Agnostic 
Meta-Learning (MAML) [29], LSTM-based meta-learner 
models [30], and Proto-MAML [31]. Finally, transfer learn-
ing-based approaches include fine-tuning [32] and linear 
models learned on top of a pre-trained embedding [33], such 

as k-Nearest Neighbor (kNN) [34], Support Vector Machine 
(SVM) [35], or Random Forest (RF) [36].

Although FSL has been studied extensively, only a few 
of these techniques [37] have been investigated for medical 
imaging. In [38], a MAML algorithm is adopted for a few-
shot problem with medical images, and the Dice loss func-
tion is used to mitigate class imbalance. Different FSL meth-
ods are compared in [24] for the skin condition recognition 
problem in which class imbalance exists, showing that when 
combined with conventional imbalance techniques, they lead 
to better performance, especially for the rare classes.

There are some previous works evaluating few-shot 
approaches using COVID-19 X-ray images. In  [2], the 
effects of different k-way, n-shot configurations, and loss 
functions are examined using the dataset from Dr. Cohen 
[39] to identify positive COVID-19 images. In [40], Sia-
mese networks are also explored using a dataset with 226 
positive images from [41]. In [42], a Siamese network with 
triplet loss is used to classify CT scan images into Normal, 
COVID-19, and Community-Acquired Pneumonia.

While most former COVID-19 X-ray image classifica-
tion approaches are focused on FSL architectures, in this 
proposed work we evaluate how a series of techniques 
affect these architectures. The main objective of this work 
is to investigate the accuracy of learning-based models in 
the medical imaging domain, focusing on their behavior 
in imbalanced few-shot scenarios. In [43], we studied the 
effect of different techniques to deal with imbalanced data 
but for scenarios with sufficient samples. The evaluation 
was performed on different chest X-ray datasets labeled 
with COVID-19 positive and negative diagnoses. Here, we 
extend this previous work by proposing and evaluating simi-
lar techniques but adapted to the few-shot learning paradigm 
with imbalanced data. In particular, we use a metric-based 
FSL method based on Siamese networks [44] in which a 
series of proposals are integrated to mitigate the effects of 
few and imbalanced data, including different initialization 
methods, transfer learning, data augmentation, four propos-
als adapted to Siamese neural networks to deal with imbal-
anced data, and four alternative classifiers to carry out the 
final prediction.

To carry out the evaluation, four publicly available chest 
X-ray image datasets [9–11, 45] are considered. Three cor-
pus pairs are created from these, each containing positive 
and negative samples of COVID-19 patients. The perfor-
mance of these techniques is evaluated in both intra-domain 
(within the same domain) and inter-domain (across different 
domains) use cases, as well as for four levels of data imbal-
ance. The results of the experiments carried out show that 
the low number of parameters due to the shared weights of 
both Siamese networks, along with the included proposals, 
improve the results and reduce the tendency to overfit and 
the amount of data required for training.
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The remainder of the paper is organized as follows: 
Sect. 2 outlines the proposed approach to address the chal-
lenges discussed earlier; Sect. 3 presents the experimental 
setting used to evaluate the approach, including details about 
the datasets used for experimentation; Sect. 4 presents and 
analyzes the evaluation results obtained from applying the 
proposed techniques; and Sect. 5 finally concludes the paper 
by summarizing the key findings and contributions of the 
study. Additionally, it outlines potential directions for future 
research in the medical imaging domain and the challenges 
that remain to be addressed.

2  Methodology

This section describes the methodological proposal to 
address the challenges that learning-based methods com-
monly face when dealing with medical image datasets. 
These challenges, as mentioned, are mainly data scarcity 
and intrinsic imbalance according to the data distribution.

Figure  1 illustrates the pipeline steps followed dur-
ing the training and inference stages. Formally, let 
T =

{(
Ii, ci

)
∶ Ii ∈ I, ci ∈ C

}|I|
i=1

 represent a set of labeled 
images where I  denotes the input data space and C the set 
of possible categories. Let also � ∶ I → C be the function 
that relates the input image Ii with its associated class ci , 
i.e., �

(
Ii
)
= ci.

During the training phase, the aim is to learn an approxi-
mation of � , denoted by ĥw , implemented through a learning-
based network parameterized with a set of weights w. To 
learn ĥw , the training set T  is used to minimize the network 
error according to a given loss function L . This work ana-
lyzes the improvement brought to this learning process by 
different techniques that address the challenges posed.

In the proposed pipeline, input data is first processed to 
balance the sampling and adjust the data distribution of T  . 

A data augmentation process is also considered to generate 
more training samples artificially. This preprocessed data 
is then used to learn the function ĥw , for which a Siamese 
architecture is considered, as it is specially devised for few-
shot scenarios. Different initialization techniques, including 
transfer learning, are also studied in this step. Besides, a 
weighted loss function Lw is introduced to address the imbal-
ance and improve the model training further.

Once the training is completed, the inference stage is 
carried out. Given a set of query data Q =

{(
Iq
)}

⊂ I × C , 
inference is performed by considering the estimated func-
tion ĥw to calculate the final prediction ĉq , i.e., ĥw

(
Iq
)
= ĉq . 

For this, a new model ĥw is generated from the weights w 
of one of the parallel networks of the Siamese architecture. 
The network then processes the query sample Iq to extract 
its embedding representation, which is compared with the 
embeddings (also called Neural Codes or NC) obtained for 
the training set T  to compute the final prediction.

The following sections provide a detailed explanation of 
each step of this process, starting with the definition of the 
Siamese architecture.

2.1  Siamese architecture

The Siamese architecture consists of two identical parallel 
networks with shared weights, which process two input 
images to determine whether they are equal. This configura-
tion is especially suitable for few-shot learning scenarios for 
two main reasons. On the one hand, it simplifies the task as 
it only aims to determine the similarity of the images and 
not the class. On the other hand, the pair-wise arrangement 
of the set T  increases the number of samples used to train 

the model (in practice, M =

(
|T|
2

)
 possible pairs may be 

generated). Therefore, this arrangement results in greater 
input data variability, favoring convergence.

Fig. 1  Diagram with the pipeline of the process. The proposed techniques to be studied are highlighted in yellow
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Let P =
{({

Ia, Ib
}
, yi

)
∶
{
Ia, Ib

}
∈ I, yi ∈ Y

}M

i=1
 repre-

sent the set with all possible pairs of images 
{
Ia, Ib

}
 drawn 

from the defined input space I  and yi ∈ Y be a binary 
indicator depicting whether the input pair is similar or dif-
ferent. The Siamese architecture initially maps the input 
pair 

{
Ia, Ib

}
 using the networks hw to a new N-dimensional 

space X ∈ ℝ
N , obtaining the feature vectors xa and xb , 

respectively. In this new space, given a dissimilarity met-
ric d ∶ X × X → ℝ

+
0
 , a similitude score Dw between xa and 

xb is calculated. This value is meant to be zero when the 
images are equal and move away proportionally accord-
ing to the degree of dissimilarity. Note that Dw should be 
thresholded (either heuristically or with a learning-based 
method) to establish whether the inputs are similar. The 
block labeled “Siamese” in Fig. 1 shows a graphical scheme 
of this architecture.

The Siamese networks are trained using the so-called 
contrastive loss which, for a single pair of data 

(
Ia, Ib

)
 , is 

defined as:

where Dw stands for the dissimilarity value between input 
elements, i.e., Dw = d

(
xa, xb

)
 , y for the binary class-match-

ing indicator, and m represents a separation margin follow-
ing the proposal by Hadsell et al. [46] to define a hinge or 
maximum margin loss.

From this, the total loss LS can be calculated as the sum 
of the par tial losses for each pair in P  ,  i .e. , 
LS =

∑�P�
i=1

L

�
w,

�
y, Ia, Ib

�(i)�.
In this context, this work studies the performance of 

this scheme in imbalance few-shot scenarios and the 
improvement that different additional mechanisms bring 
to this process, such as initialization techniques, transfer 
learning, data augmentation, and proposals to balance the 
data distribution, as introduced in the following sections.

2.2  Siamese initialization

In a few-shot learning scenario, the initialization of the 
neural network weights plays a crucial role since it can 
influence both the final result and the number of samples 
needed for training [47]. To assess its effect on the task at 
hand, three initialization strategies are studied:

• Training from scratch: The network is initialized with 
random weights, leading to a learning process that 
begins from scratch. This approach typically requires 
a larger set of labeled data for the model training to 
converge.

(1)L
(
w,

(
y, Ia, Ib

))
= (1 − y) ⋅ D2

w
+ y ⋅max

(
0,m − Dw

)2

• Initializing the network with ImageNet pre-trained 
weights: Although it is a very different domain, leverag-
ing knowledge from this large-scale dataset reduces the 
training time and data requirements, potentially accel-
erating the learning process and improving the results 
obtained.

• Transfer learning: This approach initializes the network 
using the weights obtained with a similar X-ray dataset 
for which there is a larger availability of labeled data and 
then applies a fine-tuning process to the target distribu-
tion. In this way, training starts from a good initializa-
tion and can benefit from the knowledge extracted from 
a closer domain while adapting to the particularities of 
the new data. Note that, in this case, due to the larger 
quantity of data, the initial training may be carried out on 
the hw backbone used in the Siamese (without pairwise 
training) and then construct the Siamese architecture 
from this.

2.3  Data augmentation

Due to its good results, data augmentation has become a de 
facto standard in training learning-based methods. This tech-
nique increases the size and diversity of a training dataset 
by applying transformations to the existing samples, which 
may include rotations, skew, scaling, cropping, flipping, and 
contrast or color adjustments, among others. The introduced 
variability improves the trained models’ robustness and gen-
eralizability and reduces overfitting, making it a valuable 
tool for small training sets.

However, the effectiveness of each transformation largely 
depends on the specific task to be solved. In the context 
of medical imaging, its unique properties require a more 
cautious approach when applying data augmentation [15, 
48]. Some inappropriate transformations can hide or alter 
certain findings that could be key to diagnosing a pathol-
ogy (for example, a flip operation would change the heart’s 
position). Consequently, we have considered a limited set 
of transformations that do not alter the shape or invert the 
position of elements in the image. Specifically, the effect of 
the following set of transformations is studied as the value 
of the � parameter increases:

• Horizontal and vertical shifts (in the range of [−�, �] % 
of the image size).

• Scaling (in the range of [−�, �] % of the original image 
size).

• Rotations (in the range of [−�◦, �◦]).

2.4  Imbalanced data

While previous sections have focused on solutions for small 
training sets, this section describes the techniques aimed at 
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dealing with data imbalance. For this, four proposals are 
assessed: balancing the sample distribution, weighting the 
loss function, combining balancing with the loss, and modi-
fying the ratio of positive and negative pairs. Note that when 
we talk about positive and negative pairs in the Siamese 
network, we mean pairs of images belonging to the same 
class and pairs of images of different classes, respectively, 
regardless of whether they represent sick or healthy cases.

As previously indicated, the total number of possible 

training pairs is calculated as M =

(
|T|
2

)
 , encompassing 

both positive and negative pairs. Accordingly, this total can 
be split into M = MP +MN , the sum of possible positive 
pairs (denoted as MP ) and negative pairs ( MN ). From this, 
we define the imbalance ratio between positive and negative 
pairs as r = MP

/
MN , which will be perfectly balanced when 

r = 1 . The balanced sampling proposal aims to obtain an 
index of r = 1 by equalizing the number of samples from 
each class (healthy or with COVID-19) so that the possible 
positive and negative pairs are balanced. This approach is 
analogous to the Oversampling technique explored in our 
previous work [43], which involved duplicating the samples 
of the minority class. However, in this case, it is adapted to 
the requirements of Siamese networks. Undersampling is not 
considered since it has been proven to yield poor results, 
which would be even worse in this scenario with few data.

A second proposal to deal with imbalanced distributions 
is to weight the loss function during the training stage. Spe-
cifically, this technique increases the value of the error com-
mitted for the minority classes to balance their contribution 
to the overall error. This forces the training process to treat 
all classes equally and prevents creating a bias towards the 
majority class. As far as we know, there are no proposals to 
weight the contrastive loss used by Siamese networks. For 
this reason, we propose to modify Eq. 1 by introducing the 
following weighting factor:

where the parameters �ci represent the factors used to weight 
the classes ci of each sample Ia and Ib , respectively, recov-
ered as ca = �(Ia) and cb = �(Ib) . �ci is calculated as the quo-
tient of the total training samples |T| divided by the number 
of classes |C| multiplied by the number of samples of the 
class ci , i.e. |T|ci . This weighting factor can be expressed as:

As a third proposal, we will study the combined effect of 
applying balanced sampling and the weighted loss function.

(2)
w =

�� (Ia) + �� (Ib)
2

(

(1 − y) ⋅ (Dw(Ia, Ib))2 + y ⋅max
(

0,m − Dw(Ia, Ib)
)2
)

(3)�ci =
|T|

|C| ⋅ |T|ci

Finally, modifying the balance of pairing of positive 
and negative examples used during network training is 
also proposed. Instead of generating a set P with the same 
number of positive and negative pairs, it is suggested to 
change this proportion so that the network, for example, 
sees many more negative pairs than positive ones (or vice 
versa). This technique also modifies the data distribution 
since it requires drawing a sample from each class to cre-
ate negative pairs. Consequently, the instances from the 
minority class will be repeated.

2.5  Inference stage

The Siamese architecture is designed to determine a simi-
larity score that correlates the embedded representations of 
input elements rather than directly retrieving class labels 
for classification tasks. Therefore, the following procedure 
is usually considered to adapt Siamese schemes for clas-
sification purposes: given a query sample denoted as Iq , 
the distances between this item and the entire training set 
T  are computed in the embedded representation space X  . 
The query Iq is eventually assigned with the label ĉq , which 
corresponds to the label of the element that exhibits the 
minimum distance value. This process can be expressed 
as follows:

In addition to this approach (which we will refer to as Histo-
gram), it is proposed to study the improvement provided by 
using a model learned using the embeddings generated by 
the Siamese network. This technique could be considered a 
transfer-learning approach according to the literature [33]. 
Specifically, the trained hw network is used to transform the 
inputs to the embedded representation space X  , on which 
three alternative methods are applied to calculate the final 
correlation:

• k-Nearest Neighbor (kNN) [34]: This algorithm catego-
rizes the given query Iq by identifying the prevailing 
class among the k nearest elements to it. For this, a dis-
similarity metric is used to compare the embedding of 
the query with those of the training set (NC in Fig. 1).

• Support Vector Machine (SVM) [35]: This approach 
transforms the original data into a higher-dimensional 
space using a specified kernel function. Subsequently, it 
learns a hyperplane to distinguish between the classes.

• Random Forest (RF) [36]: This method constructs an 
ensemble classifier from individual decision trees, each 
trained on random data subsets. The final output amal-
gamates the decisions from each tree to calculate the 
class of the input query.

(4)ĉq = 𝜁

(
argmin ∀Ii∈T

d
(
hw(Iq), hw(Ii)

))
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3  Experimental setup

This section details the experimental setup, including the 
selection of datasets, the network architecture and the 
parameters chosen, the training process details, and the 
evaluation metrics employed.

3.1  Datasets

The methodology was assessed using four distinct datasets.1 
An overview of these datasets is presented in Table 1, indi-
cating the types of samples they contain (negative (−) or 
positive ( + ) COVID-19 samples), along with the original 
sizes of the training and evaluation sets. Example images 
from these datasets are shown in Fig. 2.

As seen in Table 1, two of the datasets exclusively con-
tain negative samples of COVID-19 patients. The other two 

include both classes, although they exhibit notable class 
imbalance. Three combinations were made from these data 
to evaluate the proposed methodology, creating new datasets 
with positive and negative samples, as presented in Table 2. 
This table introduces an acronym for each combination (to 
be used in the experimentation section) and specifies the 
number of positive and negative samples in each newly gen-
erated set. As in the previous work [43], the number of sam-
ples added from the original datasets was limited to 10,000 
to ease the experiments. Additionally, the “mean imbalance 
ratio” (MeanIR) index is provided to indicate the imbal-
ance level of the corpus [49]. The MeanIR value ranges 
from [1,∞) and denotes a higher imbalance as the value 
increases. For this two-class (binary) task, this is defined 
as MeanIR = (1 + |T−|∕|T+|)∕2 , where T− represents the 
number of samples in the majority class (which in this case 
are the healthy or COVID-negative patients) and T+ is the 
number of samples in the minority class (COVID-19 posi-
tive patients).

Note that since the size of the training partitions in these 
corpora does not meet the requirements of a few-shot learn-
ing scenario, we artificially reduce their size while leaving 
the test sets unaltered. Specifically, for the experimentation, 
10-fold cross-validation was carried out, selecting for each 

Table 1  The initial configuration of the datasets under consideration 
is as follows, showing the type of samples (positive + and negative − 
COVID-19 patients), the number of samples per class, and their total 

( 
∑

 ). Additionally, the size of the training and test sets is provided, 
along with the percentage of each set compared to the total size

Dataset Classes Train size Test size Total

ChestX-ray [11] – 86,524 (77%) 25,596 (23%) 112,120
PadChest [9] – 91,508 (95%) 4762 (5%) 96,270
BIMCV-COVID [10] – 3014 159 3173

+ 1610 82 1692
∑

4624 (95%) 241 (5%) 4865
Github-COVID [45] – 81 29 110

+ 283 11 294
∑

364 (90%) 40 (10%) 404

Fig. 2  Illustrative samples from the evaluated datasets

1 All datasets are publicly accessible: ChestX-ray can be found at 
https:// nihcc. app. box. com/v/ Chest Xray- NIHCC, GitHub-COVID 
at https:// github. com/ ieee8 023/ covid- chest xray- datas et, PadChest 
is available at https:// bimcv. cipf. es/ bimcv- proje cts/ padch est, and 
BIMCV-COVID repositories can be accessed through https:// bimcv. 
cipf. es/ bimcv- proje cts/ bimcv- covid 19.

https://nihcc.app.box.com/v/ChestXray-NIHCC
https://github.com/ieee8023/covid-chestxray-dataset
https://bimcv.cipf.es/bimcv-projects/padchest
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19
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fold 100 random samples without repetition from the major-
ity class (healthy patients) and n random samples from the 
minority class (COVID-19+ patients). For the value of n, 
four possible imbalance scenarios were considered: High 
imbalance with n = 1 , Medium imbalance with n = 10 , Low 
imbalance with n = 50 , and No imbalance with n = 100 . In 
addition, the effect of the proposed techniques is also studied 
when the number of samples is increased to 200 and 300 
while maintaining the level of imbalance. Note that, in all 
cases, the evaluation was carried out with the complete test 
set as indicated in Table 2.

3.2  Network architecture

The proposed methodology was assessed using ResNet-50 
v2 [50]—the same architecture as the baseline method [43], 
to allow a fair comparison—as the backbone for the hw Sia-
mese parallel networks. This standard architecture for image 
classification is known for its state-of-the-art results in vari-
ous benchmarks and applications [51]. This updated version 
of ResNet-50 incorporates identity shortcuts and pre-activa-
tion units, enhancing performance and reducing overfitting.

Regarding the rest of the configuration details of the Sia-
mese architecture, the Euclidean distance was considered 
as dissimilarity function d (i.e., Dw =

√
(hw(Ia) − hw(Ib))

2 ) 
and the �2 normalization [52] for the regularization of the 
embedded representations.

For the margin parameter m of the loss function (see 
Eq. 1), initial experimentation was carried out considering 
values in the range m ∈ [0, 8] , obtaining low results for the 
extremes of this range. The value of m = 1 was eventually 
selected for the rest of the experimentation, as it reported 
the best results overall.

Throughout all the experiments, the Siamese networks 
were trained for 200 epochs with a batch size of 32 images. 
Stochastic Gradient Descent [53] was employed for parame-
ters optimization with a Nesterov momentum of 0.9, a learn-
ing rate of 10−2 , and a decay factor of 10−6 . The images were 
scaled to 224×224 pixels, and their values were normalized 

within the range [0, 1] to aid model convergence. The values 
in this setting match the baseline to ensure a fair comparison.

3.3  Metrics

For the quantitative evaluation, we used the F-measure ( F 1 ) 
as the figure of merit to mitigate potential biases caused by 
significant label imbalances in the considered datasets. In a 
binary classification scenario, F 1 is calculated as the har-
monic mean of Precision (P) and Recall (R). The definitions 
of these metrics are as follows:

where TP, FP, and FN denote the number of true positives, 
false positives, and false negatives, respectively.

The evaluation involved binary-class experiments, so the 
results are reported in terms of macro-F1 for a comprehen-
sive assessment. Macro-F1 is computed as the average of the 
F1 scores obtained for each class.

4  Results

This section evaluates the proposed methodology using the 
datasets, network configuration, and metrics described previ-
ously. The results of each technique presented before being 
applied on the network of Fig. 1 are analyzed individually 
to provide a comprehensive assessment. The section starts 
with the effects of the initialization process, then delves into 
data augmentation analysis, contrasts techniques for data 
imbalance, compares inference classifiers, and examines the 
influence of training set size. Finally, the section includes a 

(5)P =
TP

TP + FP

(6)R =
TP

TP + FN

(7)F1 =
2 ⋅ P ⋅ R

P + R
=

2 ⋅ TP

2 ⋅ TP + FP + FN

Table 2  Description of the 
new combined datasets derived 
from Table 1. They include 
the acronym, partition sizes, 
the count of positive ( + ) 
and negative (−) COVID-19 
samples, and their respective 
percentages. The MeanIR, an 
indicator of dataset balance, is 
also provided

Acronym Combined data Train size Test size Total MeanIR

ChestX-Git ChestX-ray
∪

Github-COVID

−: 10,081 −: 10,029 −: 20110(99%) 34.7
+ : 283 + : 11 + : 294 (1%)
∑

 : 10,364 (51%)
∑

 : 10,040 (49%)
∑

 : 20,404
Pad-BIM PadChest

∪

BIMCV-COVID+

−: 10,000 −: 4762 −: 14,762 (90%) 4.9
+ : 1610 + : 82 + : 1692 (10%)
∑

 : 11,610 (71%)
∑

 : 4844 (29%)
∑

 : 16,454
BIMCV-COVID BIMCV-COVID-

∪

BIMCV-COVID+

−: 3014 −: 159 −: 3173 (65%) 1.4
+ : 1610 + : 82 + : 1692 (35%)
∑

 : 4624 (95%)
∑

 : 241 (5%)
∑

:4865
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discussion with concluding remarks, comparing the few-shot 
learning scenario with the results from the prior study that 
explored techniques without labeled data constraints.

In all cases, results are analyzed at intra- and inter-domain 
levels and for four imbalanced data distributions. These dis-
tributions are referred to with the initials H, M, L, and N, 
being H → High imbalance (100/1), M → Medium (100/10), 
L → Low (100/50), and N → None (100/100).

4.1  Initialization

As a recap of the pipeline presented in the methodology, one 
way to cope with small datasets is to use a good initializa-
tion of the network weights before starting the training pro-
cess. In this section, we will focus on studying the effects of 
different initialization techniques. First, a baseline result is 
obtained by training the Siamese ResNet-50 v2 backbones 
from scratch, i.e., using random values as initialization 
parameters. It is compared to a pre-initialized model whose 
weights are obtained from a generic dataset—in this case, 
ImageNet [54]—that is then fine-tuned with our datasets. 
For the sake of simplicity, we will refer to them as scratch 
and pre-initialized models.

Table 3 shows the macro-F1 results of both approaches, 
scratch and pre-initialized with weight initialization, for the 
four levels of data imbalance considered. This table also 
includes detailed results for each possible training-to-eval-
uation dataset combination. The “From” column indicates 
the training source, whereas “To” refers to the evaluation 
set. Hence, we evaluate cases within the same domain (intra-
domain), which are underlined, and also inter-domain cases 
in which the model is assessed on domains different from its 
training source. The best result per experiment and imbal-
ance level is marked in bold, i.e., the best figure obtained 
according to the initialization method, either from scratch or 
pre-initialized. For instance, the value 45.1 appears in bold 

in the first column (corresponding to the BIMCV-COVID 
test set) because the training from scratch approach is better 
than the weight initialization (which obtains a 44.7 in this 
case). On the contrary, the pre-initialized model achieves 
higher performance in the high imbalance cases for the 
Chest-Git (with 42.2) and Pad-BIM (with 46.0) test sets.

From a global perspective, the results show that, in 
most cases, the performance of the pre-initialized network 
achieves better results, especially for the cases with High, 
Medium, and Low imbalance. Regarding the None imbal-
anced experiments, the results obtained are quite similar 
for both initialization approaches. This makes it clear that 
the architecture presented can learn efficiently regardless of 
initialization, even for this low-data scenario. The high vari-
ability generated by possible combinations of training pairs 
makes it not so dependent on initialization. However, in the 
case of High imbalance, this architecture appears to strug-
gle with convergence during training, as a single example 
from the minority class may be insufficient. These results 
improve progressively as the level of imbalance decreases. 
It is also noteworthy that the average intra-domain results 
are promising starting from a Medium imbalance, especially 
considering that it is a few-shot scenario.

To further analyze the effect of initialization, we will 
now examine the impact of transfer learning by pre-
training with an alternative X-ray dataset, which may be 
considered another technique to address the data scar-
city issue. The results of this experiment are shown in 
Table 4. Based on the weights obtained with ImageNet, 
a pre-training is performed with a dataset from a similar 
domain (“Pre-trained” column), for which a larger amount 
of labeled data is available (in this case, considering 1700 
training instances). Then, a fine-tuning process is carried 
out to the source dataset (“From” column) and evaluated 
for the target set (“To” column). As before, four imbalance 
levels are assessed, from High to None. Similarly to the 

Table 3  F
1
 results achieved 

by training the model from 
scratch and initializing with 
ImageNet weights. In each 
scenario, the intra-domain cases 
are underlined for clarity. Each 
case is analyzed considering 
four levels of imbalance: High, 
Medium, Low, and None

From scratch Weight initialization

From To H M L N H M L N

Chest-Git Chest-Git 39.2 52.4 68.0 74.8 42.2 61.7 72.2 73.2
Pad-BIM 44.9 54.8 61.2 61.3 46.0 60.4 57.4 56.9
BIMCV-COVID 45.1 45.5 47.1 47.3 44.7 49.7 46.9 46.3

Pad-BIM Chest-Git 42.4 51.0 44.7 45.8 43.6 49.7 47.6 43.4
Pad-BIM 50.9 54.9 70.6 81.8 55.4 63.2 79.2 82.8
BIMCV-COVID 47.8 46.1 51.5 53.0 46.3 51.4 54.4 50.8

BIMCV-COVID Chest-Git 42.3 53.7 44.7 52.7 44.0 52.8 54.2 48.8
Pad-BIM 51.2 52.2 46.3 54.0 48.1 55.3 58.7 55.9
BIMCV-COVID 48.4 47.8 49.1 55.1 47.3 46.4 51.9 50.9

Inter-Domain Avg. 45.6 50.5 49.2 52.3 45.4 53.2 53.2 50.3
Intra-Domain Avg. 46.2 51.7 62.6 70.5 48.3 57.1 67.8 68.9
Global Avg. 45.8 50.9 53.7 58.4 46.4 54.5 58.0 56.5
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previous table, bold values refer to the best performance, 
but in this case, they are compared to the best initializa-
tion method reported in Table 3. For example, the value 
48.0 in the first row and column High of Table 4 appears 
in bold because the best initialization value for this same 
case in Table 3 is lower (42.2). However, the first value in 
the second column, 47.9, is not marked because the cor-
responding one in Table 3 obtains a better result (61.7) for 
weight initialization training.

Knowing this, we can see that transfer learning 
improves, in general terms, the previous results of the 
pre-trained models. This suggests that parameters from 
a network trained with data of a similar typology help to 
find good features for the task at hand. If we pay attention 
to the Medium column, most values are not better than the 
previous ones. This may happen because the network has 
to re-learn features from the training set (“From” dataset) 
although it has very little positive data, i.e., the minority 
class is hardening the task of differentiating the classes. 
In the High imbalance, however, only one sample of posi-
tive data will not affect much in the re-training process. 
Even though these results are somewhat better, similar 
to before, it also seems to have convergence issues for 
the High imbalance case due to having only one minority 
sample.

On the other hand, the figures reported for the Low and 
None imbalance levels almost outperform every result in 
the previous experiment, especially in the intra-domain sce-
narios. Clearly, in the case of a balanced or nearly balanced 
set of data, pre-training with data from a similar typology 
improves the results as it initializes the network with bet-
ter parameters that will lead to better classification. Inter-
estingly, even in inter-domain scenarios, the results, while 
slightly subdued, remain promising. This suggests that even 
with domain shifts, transfer learning can provide founda-
tional knowledge that outpaces starting afresh or leveraging 
broader, less task-specific initializations like ImageNet.

4.2  Data augmentation

Another approach to address the scarcity of labeled data is to 
apply transformations to generate synthetic images from the 
available samples. In this section, the results of this process 
are analyzed by applying the transformations described in 
Sect. 2.3, which include horizontal and vertical shifts, scal-
ing, and rotations. The result obtained by increasing the � 
factor with which they are applied is analyzed for each of 
these transformations. Specifically, the following set of val-
ues is considered: � ∈ {0, 1, 5, 10, 15}.

The graphs depicted in Fig. 3 show the results of these 
experiments for the four different imbalanced data distribu-
tions. In this case, we can see that the trend is of not improv-
ing the classification when data augmentation is applied. 
Data augmentation degrades performance in some cases, 
mainly in intra-domain and for high imbalance. This might 
be caused by the distinctiveness of medical X-ray images. 
Applying data augmentation includes non-realistic charac-
teristics in the model, hardening the classification process.

4.3  Dealing with Imbalanced Data

This set of experiments addresses the data imbalance prob-
lem and analyzes the results obtained by applying the tech-
niques proposed in Sect. 2.4. Table 5 shows these results, 
which are similarly arranged as the experiments before, with 
the training set in “From” and the evaluation set in “To” 
columns, respectively. In the table, three cases are evaluated: 
the weighted loss function (that gives more importance to 
the minority class, i.e., COVID-19+ cases), the balanced 
sampling technique by oversampling the minority class to 
have an equal number of data in the Siamese pairing during 
the training process, and the combination of both (columns 
“Bal. + W.Loss”).

The data in bold refer to the best performance per row 
and imbalance level. Focusing on the average values at the 

Table 4  F
1
 results obtained 

through the transfer learning 
technique. The initial column 
specifies the dataset used for 
model pre-training, the “From” 
column signifies the dataset 
used for fine-tuning, and 
the “To” column represents 
the dataset considered for 
evaluation. The intra-domain 
cases are underlined in each 
scenario. Each case is analyzed 
for four levels of imbalance: 
High, Medium, Low, and None

Pre-trained From To H M L N

Pad-BIM Chest-Git Chest-Git 48.0 47.9 78.0 85.9
BIMCV-COVID Pad-BIM 48.3 56.0 56.2 67.9
Pad-BIM BIMCV-COVID 47.9 42.2 53.7 53.3
BIMCV-COVID Pad-BIM Chest-Git 47.4 55.7 54.6 56.4
Chest-Git Pad-BIM 58.4 61.9 83.3 87.3
Chest-Git BIMCV-COVID 49.5 52.4 60.9 53.4
Pad-BIM BIMCV-COVID Chest-Git 43.7 48.0 49.6 51.5
Chest-Git Pad-BIM 41.9 56.1 58.2 58.4
Chest-Git BIMCV-COVID 41.9 46.1 53.5 57.4
Inter-domain Avg. 46.4 51.7 55.5 56.8
Intra-domain Avg. 49.4 52.0 71.6 76.9
Global Avg. 47.4 51.8 60.9 63.5
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bottom of the table, we can see that the oversampling tech-
nique achieves the best results in High imbalanced cases. 
This makes sense as it compensates for the high imbalance 
by feeding the network with more minority samples. Nev-
ertheless, for the rest of the cases, the average results of 
combining oversampling with the proposed weighted loss 
function provide the best classification.

Next, the fourth proposal to deal with imbalanced data is 
evaluated: the level of positive/negative data pairing (refer-
ring to pairs of equal or different images) during the training 
process of the Siamese network. Figure 4 presents the F1 
results for five pairing ratios and for the four data distri-
butions, from High to None. Particularly, the Siamese net-
work is trained with pairing proportions from five positives 
for every negative (5/1), then three positives for every two 
negatives (3/2), up until one positive for every five negatives 
(1/5). Note that in the case of High imbalance, where there 
is only one positive sample (COVID-19 infected patients) 
along with 100 negative (healthy) data, the 5/1 pairing will 

only have this same image for the negative pairs. Conse-
quently, this image will be presented to the network in every 
batch, leading to overfitting. Therefore, the classification 
accuracy will drop when evaluated with varied positive data 
(other COVID cases). This phenomenon is further analyzed 
in the following paragraph.

From Fig. 4, we can observe that in the high imbalance 
scenario, the pairing hardly affects the performance, obtain-
ing results around 50 of F1 in all the pairing levels studied, 
which denotes the previously mentioned problem: the sparse 
positive data (COVID cases) in the dataset leads the network 
to overfit and underperform on the test set. However, in Low 
and None imbalance, the intra-domain F1 is notably higher 
and improves as more negative pairs are presented to the 
network. This is because when more negative pairs (i.e., 
different) are fed to the Siamese network, it learns better fea-
tures to distinguish the classes and, hence, classifies better.

As a summary of this approach to handling imbalanced 
data, we can conclude that adjusting the pairing level has 

Fig. 3  Graph of data augmenta-
tion. Five levels of augmented 
percentage are shown, from 0% 
to 15% , for the four different 
levels of data imbalance, High 
to None

Table 5  Comparison of the F
1
 results obtained through the balanc-

ing techniques: weighted loss function, oversampling minority data, 
and the combination of weighted loss and oversampling. Results for 

the four data distributions considered, from High to None. The best 
results per line are marked in bold

Weighted loss Balanced sampling Bal. + W.Loss

From To H M L N H M L N H M L N

Chest-Git Chest-Git 46.5 50.4 75.8 76.2 49.8 51.1 71.6 74.7 50.7 59.4 68.9 75.2
Pad-BIM 51.5 54.8 56.6 61.7 55.9 61.5 57.0 59.9 45.1 56.6 58.8 57.5
BIMCV-COVID 43.9 45.5 47.0 44.5 46.4 46.9 46.9 41.0 44.5 46.8 43.7 49.2

Pad-BIM Chest-Git 50.3 50.0 49.0 40.1 54.4 46.9 49.6 38.7 44.3 51.9 42.6 45.9
Pad-BIM 47.9 64.3 80.8 82.4 55.0 62.2 77.6 80.4 48.9 65.5 80.2 80.9
BIMCV-COVID 46.4 47.7 52.8 52.1 47.2 48.1 51.7 48.5 48.1 48.7 53.8 51.5

BIMCV-COVID Chest-Git 42.8 55.6 49.3 50.4 51.4 52.8 53.0 51.7 48.4 53.1 58.0 56.7
Pad-BIM 48.5 55.5 51.6 55.9 52.0 57.2 58.1 57.5 45.2 52.0 60.3 56.5
BIMCV-COVID 46.4 47.0 51.0 51.2 48.2 47.2 52.3 53.7 45.3 47.2 51.9 51.9

Inter-Domain Avg. 47.2 51.5 51.1 50.8 51.2 52.2 52.7 49.6 45.9 51.5 52.9 52.9
Intra-Domain Avg. 46.9 53.9 69.2 69.9 51.0 53.5 67.1 69.6 48.3 57.4 67.0 69.3
Global Avg. 47.1 52.3 57.1 57.2 51.1 52.6 57.5 56.2 46.7 53.5 57.6 58.4
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no effect in situations with high imbalance. In similar 
distributions, pairing levels with a greater number of 
negative pairs seems beneficial for the Siamese training 
process.

4.4  Inference classifier

This section focuses on analyzing the improvement pro-
vided by the final classifier used in the proposed pipeline. 
We have previously reported the results using the histo-
gram method (see Sect. 2.5)—simply choosing the class 
that minimizes the distance—as it represents the com-
monly used approach. These results are now compared 
with those obtained using three alternative classifiers 
trained from the embeddings generated by the Siamese 
network, namely kNN, Rf, and SVM, and using the same 
distance metric as before, that is, the Euclidean distance. 
For each of these methods, the baseline parametrization 
of [44] was initially considered, although these hyperpa-
rameters have also been studied and tuned for this sce-
nario, eventually selecting the best configurations, which 
include k values within the range k ∈ [1, 15] , several tree 
estimators t ∈ [10, 500] for Rf, and Linear, Polynomial, 
and Radial Basis functions for the kernel of SVM with a 
learning cost c ∈ [1, 9].

Table  6 shows the outcomes of these experiments, 
comparing the performance of the four classifiers across 
inter- and intra-domain levels and for the four imbal-
anced distributions considered. A general analysis of 
these results shows that the SVM classifier reports an 
improvement in all scenarios except for high levels of 
imbalance, for which the use of the histogram-based or 
kNN-based approaches seems more advisable. If we ana-
lyze the results at the inter- and intra-domain levels, it 
is observed that SVM generates a model that general-
izes better to other domains, while the solutions based 
on histogram and kNN are more effective within the same 
domain.

4.5  Analysis of the training set size

In this section, the performance of the proposal is evalu-
ated as the training set size increases. These results are also 
compared with those obtained by training a single back-
bone (the CNN ResNet-50 v2 architecture, which is also 
the one analyzed in the previous work [43]). Regarding 
the size of the training set, in addition to the data distribu-
tions with 100 samples for the majority class, which has 
been used in the previous experiments, the amount of data 
is increased to 200 and 300 samples following the same 
imbalanced distributions: High → {100∕1, 200∕2, 300∕3} , 
M e d i u m  → {100∕10, 200∕20, 300∕30}  ,  L o w 
→ {100∕50, 200∕100, 300∕150}  ,  a n d  N o n e 
→ {100∕100, 200∕200, 300∕300}.

The results of these experiments are depicted in Fig. 5 
for both the Siamese network and the CNN at the inter- 
and intra-domain levels. The first aspect to highlight is 
that in the case of High imbalance, the error is quite simi-
lar for both models, achieving a low F1 performance and 
being the CNN the lowest in most cases. This shows that 

Fig. 4  Graph of pairing experi-
mentation. Five different ratios 
of positive/negative pairs, and 
High to None data distribution 
cases

Table 6  Comparison of the F
1
 results obtained by the different infer-

ence classifiers considered: Histogram, kNN, Rf, and SVM. The best 
result for each imbalanced scenario is marked in bold

Imbalance level Hist kNN Rf SVM

Inter-domain High 45.4 49.1 35.1 45.6
Medium 47.7 50.6 40.6 51.8
Low 49.3 51.5 53.6 54.3
None 54.4 54.4 58.4 56.9

Intra-domain High 51.0 47.4 34.7 42.1
Medium 53.1 52.7 42.1 54.1
Low 64.7 65.9 65.7 67.1
None 71.8 71.7 71.7 72.2

Inter-domain avg. 49.2 51.4 46.9 52.1
Intra-domain avg. 60.2 59.5 53.5 58.9
Global Avg. 52.8 54.1 49.1 54.4
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the two architectures have problems learning this highly 
imbalanced distribution.

Generally, the lower the imbalance, the better the 
results for the intra-domain scenarios. When studying the 
Low and None cases, we can see that intra-domain models 
are remarkably better, being the CNN slightly better in 
both cases. An additional observation from the graphs is 
that the Siamese network stabilizes earlier than the CNN.

From the information in the charts of Fig. 5, we can 
conclude that the Siamese network works better for High 
and Medium-imbalanced datasets. In contrast, using this 
network is not necessary in cases of balanced data. On 
the other hand, the fact that the inter-domain training pro-
cesses maintain a low F1 score regardless of the imbalance 
level demonstrates that the networks do not generalize 
properly.

4.6  Discussion

This last section summarizes the improvements provided by 
each technique studied for a few-shot learning scenario with 
imbalanced datasets. These results are compared with those 
obtained in the previous study [43] using equivalent tech-
niques for imbalanced datasets but applied to a CNN when 
there is no limitation of labeled data. This comparison aims 
to shed light on whether these techniques are consistent in 
their results or, on the contrary, performance depends on the 
amount of information available or the network architecture.

Table 7 shows a summary of results for all the previous 
approaches and both inter- and intra-domain cases, indi-
cating the percentage of improvement relative to the base 
case, which is the model trained from scratch as described 
in Sect. 4.1. For the sake of fair comparison, the percentages 

Fig. 5  Graph comparison of Siamese and CNN network architectures. The evaluation is carried out for three sizes of training sets, 100, 200, and 
300 samples for the majority class, and High to None imbalance data distributions

Table 7  Summary of the improvements obtained by each of the tech-
niques proposed for the Siamese architecture (in the case of the infer-
ence classifier, only the two best are included). These results are com-

pared to those obtained using equivalent techniques on a CNN in our 
previous work [43]

Initialization Inf. Classi-
fiers

Data Aug. Imbalance solutions

ImageNet (%) Tr. 
learning 
(%)

kNN SVM ImageNet
+ Data Aug.(%)

Over-
sampling 
(%)

W. Loss (%) Oversampling
+ W. Loss

Oversampling
+ Pairing

CNN Inter-Domain 2.1 2.7 – – 2.8 8.1 10.2 – –
Intra-Domain 2.0 3.8 – – 1.9 5.6 8.9 – –
Average 2.1 3.1 – – 2.5 7.3 9.8 – –

Siamese Inter-Domain 2.7 4.0 2.9% 4.1% −0.2 1.7 1.0 1.0% 0.8%
Intra-Domain 5.4 0.6 −0.4% 1.0% 3.9 1.8 2.2 5.6% 3.7%
Average 3.6 1.9 1.8% 3.1% 1.1 1.7 1.4 2.5% 1.8%
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of improvement shown of the Siamese network are with 
Medium imbalance (100/10) since it represents the data 
distribution most similar to the original one studied in the 
previous work using a CNN. In the table, the CNN cases 
without results are marked with “–”, either because they 
were not considered in the previous study or because they 
do not apply to a CNN, such as the level of pairing.

From this general analysis, it can be observed that the 
various techniques studied offer promising improvements 
over the baseline in almost all cases. However, it appears 
that using one technique over another may be more advis-
able depending on whether the learning problem involves 
limited data or if there are no restrictions on labeled data. 
In the case of Few-shot learning, it seems more advisable to 
have a better initialization and use a classifier learned from 
the embeddings of the Siamese network during inference. 
However, with no data restrictions, using oversampling and 
weight loss proves to be much more beneficial. This may 
be because, in a Few-shot scenario with a single sample, 
if repeated many times or given a high weight, it generates 
overfitting towards the minority class, limiting its generali-
zation capabilities.

The best technique to select also depends on the appli-
cation domain. For instance, in few-shot scenarios, if the 
goal is to have better inter-domain generalization, the use of 
transfer learning and SVM is recommended. On the other 
hand, if the aim is to be more effective within the source 
domain, a general initialization—with ImageNet, which 
does not create a bias towards other distributions—is more 
appropriate, employing the proposal for oversampling com-
bined with a weighted loss function. When there are no data 
restrictions, these conclusions change slightly. For example, 
in addition to weight loss and oversampling—which in this 
case are recommended to be used separately since they pro-
vide a more notable improvement—it is always advisable 
to initialize using transfer learning. This may be because 
having more data available for fine-tuning eliminates the 
risk of creating bias.

5  Conclusions

This study delves into the performance of various tech-
niques in the challenging context of few-shot learning with 
imbalanced medical datasets. The results shed light on the 
intricate dynamics between the amount of data, distribu-
tion imbalance, and model architecture. While some of the 
studied techniques are well-established in the literature, oth-
ers are not, such as the adaptation proposals to deal with 
imbalanced data. Besides, this work focuses on evaluating 
their effectiveness in the context of medical imaging and 
examining their performance when used in combination with 
Siamese architectures.

First, we focus on the initialization of network parameters 
for few-shot scenarios. The main conclusion is that pre-train-
ing the model using transfer learning, either with general 
data or with data from a similar domain, helps improve the 
generalization capabilities of the model in this challenging 
data-sparse scenario. Several data augmentation techniques 
have also been studied, concluding that applying standard 
transformations with medical imaging for few-shot scenarios 
is not a good practice due to the peculiarities of these data.

Furthermore, four approaches have been proposed to 
address data imbalance, including a weighted loss biased 
to the minority class, balancing the samples, and modify-
ing the pairing ratio of positive and negative samples. The 
conclusions are that, in cases of high imbalance, balancing 
the samples by repeating the minority data helps improve 
the results. However, when the dataset is not highly imbal-
anced, combining a weighted loss with balanced data allows 
the network to learn better features. Different pairing ratios 
between the same and other classes in the Siamese train-
ing were also studied. In this case, when the datasets are 
balanced and the pairing ratio shifts towards more negative 
(different) pairs than positive, intra-domain results improve 
since this helps to learn features that distinguish between 
classes.

Regarding classification, the evaluation included four 
approaches: Histogram, kNN, Rf, and SVM. The SVM clas-
sifier is more accurate in all inter- and intra-domain scenar-
ios except for high levels of imbalance. In high imbalance, 
using the histogram-based (for intra-domain) or kNN-based 
(for inter-domain) approaches reports better results.

Finally, we compared the Siamese network (with the dif-
ferent techniques introduced for dealing with few-show and 
imbalanced datasets) against a standard CNN network from 
previous works. We first studied the impact of the training 
set with other data distributions. The main conclusion of 
this experiment is that, in highly imbalanced situations, the 
performance of both Siamese and standard CNN is low, with 
the first slightly better. However, in balanced cases, the inter-
domain training improves with the dataset size, whereas the 
inter-domain does not, showing limited generalization capa-
bilities. Afterward, we compared the different initializations, 
data augmentation, and imbalance solutions for the CNN 
and the Siamese network. As expected, the general observa-
tion from this study validates the general intuition that the 
specific technique to be applied depends on the level of data 
available and the application domain.

For future work, these techniques could also be adapted 
and studied for matching, prototypical, and relation networks 
to compare them to the Siamese approach. In addition, alter-
native network architectures other than ResNet-50 could be 
evaluated. Data augmentation guided by experts for the 
medical domain could also be included, as well as additional 
datasets. Regarding initialization, alternative techniques, 
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such as Self-Supervised Learning, could be evaluated for 
scenarios with data scarcity.
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