
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 1

Evaluation of Fault Mitigation Techniques Based on
Approximate Computing Under Radiation

A. Martı́nez-Álvarez1, D. González-Montesoro1, A. Serrano-Cases1, A. Aponte-Moreno2, F. Restrepo-Calle2, Y.
Morilla3, P. Martı́n-Holgado3, and S. Cuenca-Asensi1

Abstract—A software technique based on approximate comput-
ing and redundancy is presented to mitigate radiation-induced
soft errors in COTS microprocessors. Approximate Computing
relies on the capability of certain applications to accept imprecise
results to improve efficiency by sacrificing its results in a con-
trolled manner. Our approach avoids the time overhead derived
from hardening while preserving the detection and correction
rate. Experimental results show that we can detect and correct
SDC events improving the cross-section up to 160×, and keeping
accuracy under control without compromising performance. In
addition, an accuracy-aware layer is included to improve error
mitigation and to provide a trade-off between the number of
tolerable errors and the necessary accuracy.

Index Terms—Approximate computing, ARM, proton irradia-
tion, fault tolerance.

I. INTRODUCTION

Commercial off-the-shelf (COTS) hardware devices con-
tinue gaining popularity when fault tolerance is a requirement.
Given the nature of such systems, software techniques define
the most evident source of improved reliability. In this context,
traditional triple modular redundancy (TMR) techniques are
the most common method to provide protection. However,
software-based fault tolerance techniques, of any kind, are
always applied at a cost. Indeed, they involve several unwanted
overheads, such as execution time and memory usage, which
must be limited and kept under control, especially when
applied to embedded systems.

In cases where accuracy requisites can be relaxed, the usage
of approximate computing techniques (AC) can shrink time
limits to a minimum. Recently, approximate computing tech-
niques have been employed to design fault-tolerant systems
with a reduced time overhead [1], [2]. The AC paradigm
improves the performance (and consequently also the time

The research reported in this paper has been partially supported through
the following projects: MultiRad (funded by Région Auvergne-Rhône-Alpes,
France); IRT Nanoelec (French National Research Agency ANR-10-AIRT-05
project funded through the Program d’investissement d’avenir); UGA/LPSC/-
GENESIS platform and PID2022-138696OB-C22 (funded by the Spanish
Ministry of Science and Innovation).

1A. Martı́nez-Álvarez, D. González-Montesoro, A. Serrano-Cases and S.
Cuenca-Asensi are staff members at the Computer Technology Department,
University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 Alicante,
Spain (e-mail: {amartinez, dgonzalez, aserrano, sergio}@dtic.ua.es.)

2 A. Aponte-Moreno and F. Restrepo-Calle are with Department of Systems
and Industrial Engineering, Universidad Nacional de Colombia, Bogotá D.C.,
Colombia. (e-mail: jaapontem@unal.edu.co, ferestrepoca@unal.edu.co).

3Y. Morilla and Pedro Martin-Holgado are with the Centro Nacional de
Aceleradores (CNA), Centro Nacional de Aceleradores, CSIC, JA, Univer-
sidad de Seville, E-41092 Seville, Spain, SPAIN (e-mail: ymorilla@us.es,
pmartinholgado@us.es).

overhead) and energy efficiency of a given software at the cost
of introducing some inaccuracy at the output [3]. However, it
is essential to ensure that the approximated output remains
compatible with precise software results while keeping accu-
racy under control.

In this paper, we propose and assess, under proton radiation,
a modified version of the AC-based fault tolerance technique
introduced in [4]. Our technique combines redundancy and
approximate computing, both software-based, to further min-
imize the time overhead inherent to SIHFT (Software Im-
plemented Hardware Fault Tolerance) techniques. They have
the advantage that they can be used in COTS microprocessor
devices where no hardware modifications can be achieved. An
extensive case study is presented where critical computation is
defined by the well-known robotic translations inverse2kj
and forward2kj. These algorithms have applications in
robotic arms on terrestrial and in space [4]; for instance, they
are intended to perform calculations on a robotic arm with two
degrees of freedom to return the position of the robotic arm in
cartesian coordinates as well as in particular coordinates using
trigonometric operations. The benchmarks are hardened using
a combination of temporal redundancy and different levels of
AC. The device under test (DUT) was a 28nm Xilinx Zynq-
7010 System on a Chip (SoC) integrating an ARM Cortex-A9
processor. The system was irradiated with 15.3MeV protons.
The results show that the technique is perfectly suitable for
detecting and correcting single-event faults while keeping the
accuracy under control and without examining performance
overheads.

II. BACKGROUND AND RELATED WORKS

Approximate Computing relies on the ability of certain
applications to accept imprecise results to enhance efficiency
or improve energy consumption [3]. Approximate Computing
techniques are classified into different levels: from Hardware,
where energy consumption or circuit area can be reduced, to
Software, where the performance of an application can be
improved by sacrificing its result in a controlled manner.

Due to the benefits of using AC techniques to reduce
energy consumption or improve the performance of a system,
researchers have extended the use of approximate computing
to the design of fault-tolerant systems to reduce the overheads
associated with hardening [2].

Most of the work using Approximate Computing in the
design of fault-tolerant systems is at the circuit level. For
instance, hardware TMR proposals using approximate logic

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 2

circuits [5]–[8] or Quadruple Approximate Modular Redun-
dancy (QAMR) schemes [9]–[11] have been presented. In
these works, good results are achieved (fault coverage and
reduction of area overheads).

Specific architectural designs have also been presented to
reduce the overheads associated with hardening. For example,
the use of components with different levels of reliability has
been proposed; the most precise cores are responsible for
executing the most sensitive parts of the application [12].

On the other hand, there have been works where the multi-
core feature of systems is exploited to implement NMR
(N Modular Redundancy) with AC. In [13], a proposal called
LEXACT is introduced, which relies on executing both exact
and approximate versions of a task on different processor
cores. The approximate versions have a shorter execution time,
allowing multiple approximate tasks to be executed on the
same core.

Duplication with comparison (DWC) with approximation
for error detection, has been proposed for software solutions
applicable to COTS devices [14], [15]. In these cases, the
precision is reduced to compensate for the overhead associated
with duplication.

In [16], the authors propose a framework called FTxAC,
based on Approximate Computing, for the design of fault-
tolerant systems with reduced overheads. The proposal was
validated through several software-level case studies, demon-
strating that program approximation not only reduces over-
heads but also improves reliability.

Finally, it is worth mentioning that some studies have
included experimental evaluations of novel approaches to im-
prove the reliability and efficiency of approximate computing
systems. The work presented in [17] deals with the impact
of neutron irradiation on approximate computing techniques
applied to the data representation of Convolutional Neural
Networks (CNNs). The work presented in [18] proposes
a software emulator capable of injecting real faults from
radiation tests into CNNs, providing a more efficient and
versatile method for reliability assessment compared to tra-
ditional statistical fault injection methods. Furthermore, [19]
proposes Approximate Triple Modular Redundancy (ATMR)
to mitigate multi-bit upsets in embedded software and shows
that ATMR effectively balances execution time overhead and
fault masking rate, offering a promising approach to improve
system resilience. The experiments involve exposing an ARM
Cortex A9 processor to laser pulses in the data cache memory
area to induce bit flips. Lastly, a neutron beam experiment is
performed in [20] to assess the vulnerability of a Kepler GPU
to transient effects induced by radiation. In addition, a fault
injection campaign is performed in the same work to identify
critical registers and improve the reliability of the GPU register
file by relaxing application accuracy.

III. APPROXIMATE COMPUTING MITIGATION APPROACH

The AC mitigation technique proposed in [4] consists of ap-
proximating the computational calculation of a given program
before applying hardening strategies (ie, traditional TMR in
that work) to compensate for overheads associated with fault

tolerance. To minimize these overheads, the authors introduced
a new AC technique called simplified iterations, which is a
variation of the loop perforation technique.

The conventional loop perforation technique involves re-
ducing the number of iterations in a loop. This approach
decreases the execution time while compromising the result’s
precision in a controlled manner. However, the applicability
of the loop perforation technique is limited to algorithms of
iterative nature. Not all algorithms with long loops are suitable
candidates for an accurate approximation using this technique.
For instance, programs that fulfil identical calculations on
a large set of input data may employ loops with as many
iterations as there are inputs to execute operations on each
of them. Skipping iterations in such programs can result in
abandoning calculations on specific inputs, potentially leading
to significant approximation errors.

Hence, to uphold an acceptable level of imprecision, the
authors suggest refraining from employing the traditional loop
perforation method, which involves skipping entire iterations.
Instead, they propose expediting the computations conducted
within the previously ommited iterations by performing op-
erations of reduced complexity that yield results closely
approximating the original calculations. To achieve this, a
thorough functional analysis of the loop’s internal processes
is essential. This analysis will aid in devising a function
whose approximate calculations can be executed efficiently
without significantly deviating from the precise outcomes.
This functional analysis is imperative as the calculation’s
simplification hinges on the operations carried out within the
loop’s body.

The approximation technique is represented in Figure 1. At
the top of the figure, a traditional loop representation is shown,
where the calculations are repeated n times. At the bottom, the
approximate loop is depicted using the simplified iterations
technique.

Loop

Iteration 1 Iteration 2 Iteration 3 Iteration n

Approximated loop

Simplified
Iteration 1

Iteration 2 Simplified
Iteration 3

Iteration n

time

time

Fig. 1. Simplified iterations technique

The implementation of simplified iterations is illustrated
in Figure 2. The upper section shows the code structure
of a typical for-loop, while the bottom section shows the
application of simplified iterations on the same loop. The
original_iteration() function represents the precise
calculations, while the approximated ones are represented by
the approximated_calculations() function.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 3

For loop:
1: for i← 0 to N do
2: original calculations()
3: end for

Approximated for loop:
1: for i← 0 to N do
2: if Non-approximate iteration then
3: original calculations()
4: else
5: approximated calculations()
6: end if
7: end for

Fig. 2. Snippet of pseudo-code for simplified iterations technique

In this study, the authors propose using the DWCF (Du-
plication With Comparison) fault mitigation technique [21]
in conjunction with the simplified iterations AC technique,
instead of traditional TMR. DWCF is an advanced version
of conventional DWC that can also correct faults. In DWCF,
the program is executed twice, and the results are compared;
in addition, a third program execution is triggered only if the
result comparison does not match; finally, a second comparison
can be performed to correct any faults using a majority voter
with the results from the three program executions. Figure 3
shows how DWCF works in its original and approximate
versions.

Failure

Failure

DWCF

Approx. DWCF

Code section Code section Compare

Code section Voter

Approx. code Approx. code Compare

Approx. code Voter

Time

Fig. 3. DWCF with simplified iterations approximation.

The use of AC modules results in a noticeable reduction in
execution time. Additionally, the time is further minimized at
the end of the first comparison if the results from the first two
executions match.

The reduction in execution time depends on the degree of
approximation achieved by the AC technique used. In this case
(through simplified iterations), the degree of approximation is
related to the number of iterations on the original loop that
are replaced with simplified calculations, and how much the
operations in the iteration can be approximated. Therefore, by
changing the number of approximate iterations, it is possible
to obtain different levels of approximation for the same
algorithm.

Compared to previous works, this study stands out for its
applicability to Commercial Off-The-Shelf (COTS) devices, as
it is software-based, enabling error detection and correction.
Although software-level proposals have been presented, they
solely focus on error detection and offer solutions to specific

problems. Furthermore, it is crucial to emphasize that the
validation of this study was conducted through radiation
experiments.

IV. TEST BENCH APPROXIMATION

The test bench for the radiation experiments was comprised
of two selected test programs, Inversek2j (IN) and
Forwardk2j (FW), which were obtained from the
AxBench benchmark suite for approximate computing [22].
Both algorithms are used in robot kinematics with two
degrees of freedom and are intended to calculate the position
of a robotic arm. These tests are essential as robotic arms are
not only limited to terrestrial use but also have the potential
for operation in space [23], where there is a significant
amount of radiation exposure.

Forwardk2j (forward kinematics) calculates the position
of the end of the arm in space, based on the angles of the
joints. In this study, we consider a two-jointed robotic arm
with lengths l1 and l2. The arm’s position, expressed as the
Cartesian plane coordinates (x, y), is calculated based on the
angles θ1 and θ2, as illustrated in the equations 1 and 2.

x = l1 · cos(θ1) + l2 · cos(θ1 + θ2) (1)

y = l1 · sin(θ1) + l2 · sin(θ1 + θ2) (2)

Inversek2j (inverse kinematics) calculates the robot
joint angles, based on the desired position of the end of the
arm in space. The equations 3 and 4 corresponding to the
calculation of the angles.

θ2 = arccos(
x2 + y2 − l21 − l22

2 · l1 · l2
) (3)

θ1 = arcsin(
y · (l1 + l2 · cos(θ2))− x · l2 · sin(θ2)

x2 + y2
) (4)

In this work, the input for both programs was a 64-bit
floating-point matrix of 500× 2 spatial coordinates.

Adhering to the AC method of simplified iterations, we re-
placed complex calculations with simpler ones during specific
iterations. The extent of approximation varies depending on
the functional analysis of each algorithm. Both algorithms de-
pend on trigonometric functions in their kinematic equations,
and their computations entail considerable computational re-
sources. Therefore, replacing them with simpler operations
results in a significant reduction in execution time. More
specifically, we approximated the functions sine, cosine,
arcsine, and arccosine by replacing them with straight
line segments that are close to the values of the original
trigonometric functions.

In the case of the Forwardk2j algorithm, the approxima-
tions of these trigonometric functions (sine and cosine) used
in the kinematic equations through line segments are illustrated
in Figure 4.

The kinematic equations for Inversek2j are based on
the inverse trigonometric functions arcsine, and arccosine.
The approximations of these functions are shown in Figure 5.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 4

0 π
2

π 3
2π

2π

−1

−0.5

0

0.5

1

x

f
(x
)

sin(x)

approx sin(x)

0 π
2

π 3
2π

2π

−1

−0.5

0

0.5

1

x

f
(x
)

cos(x)

approx cos(x)

Fig. 4. Approximation of trigonometric functions

−1 0 1

−π
2

0

π
2

x

f
(x
)

arcsin(x)
approx arcsin(x)

−1 0 1
0

π
2

π

x

f
(x
)

arccos(x)
approx arccos(x)

Fig. 5. Approximation of inverse trigonometric functions

For the radiation tests in this work, we selected two approx-
imated versions (A2 and A5), in addition to the precise one
(P). In version A2, the precise operations were performed in
every third iteration, whereas in version A5, one out of every
six iterations utilized original calculations, with the remaining
five iterations utilizing approximate operations. With this AC
method, a speed-up of 2.81× and 5.06× was obtained for
the A2 and A5 versions in Forwardk2j. In the case of
Inversek2j, the speed-up obtained were 2.84× and 5.22×
for A2 and A5, respectively.

The inaccuracy of the results due to the approximation
was evaluated using the Symmetric Mean Absolute Percentage
Error (SMAPE) metric [24], which involves dividing the
difference between the exact and approximate results by their
sum, as shown in equation 5.

ϵ =
1

n
·

n∑
i=1

|Pi −Ai|
Pi +Ai

· 100 (5)

SMAPE solves two problems of the classical Mean Ab-
solute Percentage Error (MAPE) metric: the first is the lack
of symmetry, the result is different when exchanging precise
and approximate values in the classical equation; the second
is that the distortion is maximized with precise results close
to zero in MAPE. Therefore, in this work, we have preferred
the SMAPE to measure the imprecision of the results.

By employing simplified iterations, significantly fewer inac-
curacies are achieved in the result compared to those obtained
using the traditional loop perforation technique.

If loop perforation were employed, inaccuracies of 67% and
83.3% would be attained for versions A2 and A5 of the two
algorithms, respectively. Conversely, when using simplified
iterations, results in deviations of 5.8% and 8.1% are obtained
for the approximate versions of Forwardk2j and 18.6% and
22.2% for Inversek2j.

The performance improvement of the approximate versions
is reflected in their reduction of overhead in execution time due
to the program hardening. In the worst case scenario where all
three executions of the Forwardk2j algorithm are performed
in DWCF, the overhead for the precise and hardened version
is 3.02×. However, the use of the A2 version reduces the
overhead to 1.09×, while the A5 version further reduces it
to 0.60×. Similar results are obtained for the Inversek2j
algorithm, with an overhead of 3.01× for the precise version
and 1.07× and 0.59× for the A2 and A5 versions, respectively.

V. RADIATION EXPERIMENTS

The device under test (DUT) selected for the irradiation
assessment was the Zynq Board, equipped with a 28-nm
CMOS Xilinx ZYNQ XC7Z010 system-on-chip (SoC) [25].
This SoC integrates a dual-core 667 MHz 32-bit ARM Cor-
tex A9 microprocessor with a 13-stage instruction pipeline,
branch prediction, and support for two levels of cache. It also
has 256 KiB of built-in on-chip memory (OCM) and 512 MiB
of external DDR memory. In this work, only one processor
was used having its L1 data cache disabled. The DUT was
controlled by an external computer, the RaspberryPi 3 Model
B acting as a control computer (CC), the main task of which
was to supervise the status of the DUT, receive and log all
the information generated in the DUT and reboot it when
necessary. The DUT was configured to send a state message
every 5-10s in the absence of errors and the CC is programmed
to receive them. In case there are no messages incoming for
twice the message time, then the CC automatically resets
and reprograms the DUT. In the next picture (figure 6) you
can see the aforementioned setup assembled to perform the
experiments.

Fig. 6. Experimental set-up established inside the radiation chamber

A. AC+DWCF technique assessment.

An irradiation experiment was conducted using the selected
test bench. Both programs are tested using unhardened (_UH_)
and hardened (_H_) versions, and three levels of approxima-
tion: full precise or accurate computing (_P) and the two
aforementioned approximated versions: _A2 and _A5. As
an example of the notation used in this paper, FW_UH_P
means that we have irradiated an unhardened version (UH) of
forwardk2j (FW) with full precision (P). All compilations
were performed using the GCC compiler from the Linaro
project (version arm-eabi-gcc v7.2-2017.11).

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 5

TABLE I
PROTON BEAM TEST RESULTS

#events σ upper limit
lower limit · 10−10 (cm2) MWTF · 1012

Bench Φ · 1011
(p+/cm2)

#SDC #Det /
Det&Rec

#Hang /
Invalid Status

SDC Improvement
(SDC)

Det / Det&Rec Hang +
Invalid Status

Total** SDC Hang +
Invalid Status

Total**

FW UH P 2.07 99 − 16 / 1 4.79 5.94
3.78 ×1 − 0.82 1.32

0.47 5.62 6.87
4.49 0.745 4.34 0.635

FW H P 3.13 0 3 / 75 13 / 4 *0.03 0.18
0.00 ×150 0.10 0.28

0.02 / 2.40 3.05
1.83 0.54 0.88

0.31 0.54 0.88
0.31 66.8 3.93 3.71

FW UH A2 3.56 139 − 12 / 4 3.90 4.71
3.17 ×1 − 0.45 0.73

0.25 4.35 5.21
3.56 1.20 10.4 1.08

FW H A2 3.76 0 6 / 63 18 / 11 *0.03 0.15
0.00 ×146 0.16 0.35

0.06 / 1.68 2.18
1.25 0.77 1.12

0.51 0.77 1.12
0.51 102 3.52 3.40

FW UH A5 3.19 105 − 17 / 4 3.24 3.99
2.56 ×1 − 0.65 1.00

0.39 3.88 4.72
3.13 1.57 7.86 1.31

FW H A5 2.57 0 8 / 52 19 / 5 *0.04 0.28
0.00 ×83.1 0.31 0.62

0.13 / 2.02 2.69
1.47 0.94 1.40

0.59 0.94 1.40
0.59 72.3 3.01 2.89

IN UH P 2.61 89 − 13 / 8 3.41 4.27
2.66 ×1 − 0.81 1.24

0.49 4.22 5.18
3.36 0.347 1.47 0.281

IN H P 1.78 0 7 / 34 17 / 11 *0.06 0.31
0.00 ×60.7 0.39 0.81

0.16 / 1.91 2.69
1.29 1.57 2.29

1.02 1.57 2.29
1.02 11.3 0.403 0.390

IN UH A2 2.99 106 − 16 / 3 3.54 4.36
2.81 ×1 − 0.64 1.00

0.37 4.18 5.08
3.36 0.695 3.88 0.589

IN H A2 2.92 0 7 / 61 18 / 5 *0.03 0.19
0.00 ×103 0.24 0.50

0.09 / 2.09 2.72
1.55 0.79 1.19

0.49 0.79 1.19
0.49 38.9 1.69 1.62

IN UH A5 2.68 81 − 21 / 3 3.02 3.82
2.33 ×1 − 0.90 1.34

0.56 3.92 4.83
3.11 1.09 3.69 0.843

IN H A5 2.88 0 5 / 52 22 / 9 *0.04 0.22
0.00 ×77.68 0.17 0.41

0.06 / 1.81 2.40
1.31 1.21 1.73

0.80 1.21 1.73
0.80 72.3 2.33 2.26

∗ No errors observed, so for comparison purposes, this is calculated given one error (assuming the worst-case) ∗∗ Total is measured as SDC+Hang+Invalid Status

The test campaign was carried out on the external beamline
of the compact 18/9 ion beam applications cyclotron located at
Centro Nacional de Aceleradores (CNA) [26] in Sevilla, Spain,
in March 2023. The DUT was irradiated without thinning
in the open air. The beam energy at the DUT surface was
15.3 MeV, with an estimated spread in the order of 400
keV. The average proton flux was maintained in the range
of 5.2− 6.5 · 108 p+/(cm2 · s) and the total fluence for each
run was within 2.1 − 3.8 · 1011 p+/cm2. The homogeneous
beam spot of 16mm in diameter covered the area of interest.
The energy of the protons in the active area of the silicon
is considered enough to produce single-event effects on the
28-nm technology device with no thinning.

We have observed the following error categories:
• Silent Data Corruption (SDC). The benchmark execution

has finished with errors in the resulting output data. An
error is considered when only one bit differs from the
golden result.

• Hangs: The processor execution flow has been abruptly
interrupted by an unexpected exception, probably caused
by forbidden memory access. If not handled, this type of
error would become a timeout error. The DUT becomes
unresponsive.

• Communication error: The serial communication with the
processor has become corrupted, making it impossible to
identify further errors. The logs become unreadable.

• Communication stuck-at incongruous: The serial port en-
ters an infinite loop and sends the same message forever.

Table I represents the results of the irradiation experiment.
We show, for each benchmark, the total accumulated fluence
(Φ) in the second column, next are all the observed events, be-
ginning with the SDC events in the third column; the next has
the “Detected / Detected&Recovered” (#Det/Det&Rec) that
were measured using the hardened versions, and the fifth has
system hangs and invalid status events (communication error,
communication stacks, etc.). The sixth column begins with
their corresponding cross-sections (σ) up to the ninth column,
where the cumulative cross-section for each benchmark can be
read. All the cross-sections are presented the same way: just to

the right of the measured value, two numbers are provided; the
top value is the upper limit of the confidence interval, while
the bottom one is the lower limit of the confidence interval.
These values were calculated using the inverse chi-squared
(inv − χ2) distribution as described in [27], at a confidence
level of 95% considering the fluence uncertainty of ±10%.
Versions (P, A2 and A5) of each benchmark are arranged in
separate rows in the table to better show the evidence of the
improvement of the hardening technique. Finally, to make it
possible to compare the different versions of the benchmarks
taking into account not only the error rate but also the inherent
time overhead, the well-known metric MWTF (Mean Work to
Failure) was used.

Regarding the number of observed Hang/Invalid events,
those related to the hardened versions always suppose an
increment with their un-hardened counterparts with the only
exception of the Hang number from the first row (FW_UH_P
vs FW_H_P). This behavior was also expected because the
hardened code is always instrumented to implement both the
protection (DWCF) and the corresponding AC technique. This
implies a more failure-prone code because we have more code
to be executed, with newly added critical points that have to

FW_UH_P
FW_H_P

FW_UH_A2
FW_H_A2

FW_UH_A5
FW_H_A5

IN_UH_P
IN_H_P

IN_UH_A2
IN_H_A2

IN_UH_A5
IN_H_A5

Algorithms

10 12

10 11

10 10

10 9

(c
m

2)

SDC Cross-section

Fig. 7. Representation of SDC Cross-section for all tested benchmarks. Note
that the missing lower values extends down to zero

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 6

TABLE II
AC TECHNIQUE WITH ACCURACY AWARE LAYER EXPERIMENTAL RESULTS

#events σ · 10−10(cm2) MWTF · 1012

Bench Φ · 1011(p+/cm2) #SDC #Crit / Tol #Hang /
Invalid Status

SDC Crit / Tol Hang +
Invalid Status

Total** SDC Hang +
Invalid Status

Total**

FW UH A2-T 3.94 128 47 / 81 15 / 2 3.25 3.94
2.62 1.19 1.60

0.86 / 2.06 2.60
1.59 0.43 0.69

0.25 3.68 4.43
3.00 2.77 20.9 2.45

FW UH A5-T 3.90 158 60 / 98 12 / 4 4.05 4.84
3.32 1.54 2.01

1.14 / 2.51 3.12
1.98 0.41 0.67

0.23 4.46 5.30
3.68 3.16 31.2 2.87

∗∗ Total is measured as SDC+Hang+Invalid Status

do with the control flow of the program.
It is worth mentioning that no SDC events were observed in

the hardened versions of the benchmarks. With this scenario,
the corresponding cross-sections were calculated assuming a
worst-case of 1 SDC event per experiment [28], thus avoiding
a null cross-section.

As expected, the protected versions of each benchmark show
an improvement in the SDC cross-section. This improvement
is measured to be of at least one order of magnitude in each
case. For example on the first 4.79 vs 0.03 (10−10cm2) (see
Table I and Figure 7) in FW_UH_P and FW_H_P, respectively.
The improvements range from ×60 (IN_UH_P vs IN_H_P)
up to ×150 (FW_UH_P vs FW_H_P). Focusing on the AC
techniques (A2 and A5), the SDC cross-sections increase also
as expected, this is, we observe larger SDC cross-sections in
the A2 versions than in the A5 ones. The reason behind is
because A5 versions suppose less computing than the A2 ones.

Figure 8 represents the diverse MWTF SDC and Hang
scores for each benchmark. X-axis coordinates have been
ordered so that each corresponding score improves all previous
ones. By doing that we obtain a series of monotonically
increasing scores that give relevant information (ranking)
about the most convenient benchmark to be used. For example,
focusing on the MWTF SDC ordering, we observe that, as
expected, a first group of non-hardened versions (UH_P <
UH_A2 < UH_A5) show a similar score which is then im-
proved, by 2 orders of magnitude, by the remaining 3 MWTF
for hardened versions, ordered as H_P < H_A5 < H_A2 for
FW benchmark and H_P < H_A2 < H_A5 for IN one. It is
also remarkable that precise versions (H_P) elicit worse scores
in each group (including Hang scores). These arrangements
meet the progressive increment in the complexity and duration
of each version.

Gathering the relevant information from Table I and Figure
8, we see that the single application of the AC techniques
implies an improvement in protection as a side effect. In fact,
the MWTF and SDC cross-sections become larger in this
case. This improvement is more evident in the SDC cross-
section. If the hybrid AC + DWCF is applied, we observe
an improvement in both metrics. Logically, not all algorithms
allow us to vary the accuracy using approximate computing, so
these techniques are limited to the cases where it is possible.

B. Accuracy-aware layer for AC technique

An additional accuracy-aware layer has been developed for
the following experimental phase to introduce an enhanced

UH_P
UH_A2

UH_A5 H_P H_A5
H_A2

Algorithm

0

20

40

60

80

100

M
W

TF

FW SDC

UH_P
UH_A2

UH_A5 H_P H_A2
H_A5

Algorithm

0

20

40

60

M
W

TF

INV SDC

H_A5
H_A2 H_P UH_P

UH_A5
UH_A2

Algorithm

4

6

8

10
M

W
TF

FW HANG

H_P UH_P H_A2
H_A5

UH_A5
UH_A2

Algorithm

1

2

3

4

M
W

TF

INV HANG

Fig. 8. Monotonically increasing representation of SDC and Hang MWTF
(1012) scores for each version of the algorithm.

differentiation among errors, categorizing them as either “tol-
erable” or “critical.” This layer uses a tolerance parameter
to evaluate the degree of deviation in the results, thereby
distinguishing errors that require recalculation from those that
can be considered acceptable. The results gathered in this
experiment are presented in Table II.

In the previous case, an error is considered when just one
bit in the experimental result a′ differs from the golden result
a. However, when using AC there is an intrinsic inaccuracy
regarding the full precision values that is considered tolerable.
In this approach, erroneous results that fall inside this tolerable
accuracy interval will not need any intervention at all. To take
this effect into account we examine the errors to determine
if, even being affected by a fault, they keep the necessary
accuracy.

The layer fundamentally alters the error detection method-
ology, replacing the usual precise comparison (a − a′ = 0)
with an absolute value subtraction, where the outcome must
fall below a defined tolerance threshold (T > 0 : |a−a′| < T).
For this experiment, T has been determined as twice the
standard deviation of the differences between the precise result
and the approximated one (T = stdev|precise−approx| · 2),

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 7

ensuring it encompasses at least 95% of the values. This subtle
classification of errors into tolerable and critical allows for
reducing the number of error corrections, thereby enhancing
efficiency. As long as the condition (a − T) < a′ < (a + T)
is met, an error is considered tolerable, obviating the need
for a third computation of the output. By conducting this
validation on the output, it is ensured that errors do not
propagate, eliminating the risk of causing undesired situations
or potentially impacting performance.

In the case the range of the inputs is known, we can
precalculate the inaccuracy of the approximate computing and
then obtain the threshold. However, in other cases, we will
need to use a statistical or worst-case approach to derive the
tolerance threshold. Another mechanism of defining T value
could be based on the real specifications of the task or the
capabilities of the actual robot for this matter.

The accuracy-aware layer is functional for both hardened
and unhardened algorithmic versions. In this experiment, the
layer was tested on implementations denoted as FW_UH_A2-T
and FW_UH_A5-T, where the suffix ‘-T’ indicates the incor-
poration of the accuracy-aware layer.

The results are presented in Table II. Notably, the number
of SDC events is comparable to the previous findings in Table
I. Remarkably, only approximately 37% of SDC events in
both cases are deemed as “critical” while the remainder are
considered tolerable. This observation presents an opportunity
to substantially reduce computational and temporal costs as-
sociated with software redundancy by selectively executing
the third iteration in DWCF only for SDCs lying outside the
defined tolerance interval.

Note that in this experiment the T value was defined and
constant, nevertheless, this parameter can be configurable to
be variable and adjustable to different levels of confidence to
match the task needs

VI. CONCLUSIONS

Approximate computing is used to shrink the time overheads
to a minimum while the accuracy of the approximated program
output remains valid and under control. In this paper, we
have studied and assessed a variation of an approximate
computing-based mitigation technique (using DWCF instead
of traditional TMR) for radiation-induced soft errors in COTS
microprocessors. Several unprotected and protected versions at
different levels of approximation were studied and subjected
to a radiation campaign under proton.

Radiation experimental results show that the technique can
detect and correct single-event effects keeping the accuracy
under control and without compromising performance. The
main result of this work is that the computation can be
significantly protected by applying AC with or without a
hardening technique. This is, AC improves the protection as
a side effect, as the two most relevant metrics (SDC cross-
section and MWFT) reveal.

Regarding the last experiment, with the inclusion of the
accuracy-aware layer, a considerable reduction in errors that
require correction can be observed. Also, it should be taken
into account that reducing the size of the accuracy interval, will

result in more values falling outside the interval, which will
increase the number of critical events. T should be adjusted
to provide the best trade-off between the number of tolerable
errors and the necessary accuracy.

REFERENCES

[1] G. S. Rodrigues, A. Barros de Oliveira, F. L. Kastensmidt, V. Pouget, and
A. Bosio, “Assessing the reliability of successive approximate computing
algorithms under fault injection,” Journal of Electronic Testing, vol. 35,
no. 3, pp. 367–381, Jun. 2019.

[2] A. Aponte-Moreno, A. Moncada, F. Restrepo-Calle, and C. Pedraza, “A
review of approximate computing techniques towards fault mitigation in
HW/SW systems,” in 2018 IEEE 19th Latin-American Test Symposium
(LATS). IEEE, Mar. 2018, pp. 48–53.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016.

[4] A. Aponte-Moreno, F. Restrepo-Calle, and C. Pedraza, “A low-cost fault
tolerance method for arm and risc-v microprocessor-based systems using
temporal redundancy and approximate computing through simplified
iterations,” Journal of Integrated Circuits and Systems, vol. 16, no. 3,
p. 1–14, Apr. 2022.

[5] I. A. C. Gomes and F. G. L. Kastensmidt, “Reducing TMR overhead
by combining approximate circuit, transistor topology and input permu-
tation approaches,” in 2013 26th Symposium on Integrated Circuits and
Systems Design (SBCCI), Sep. 2013, pp. 88–93.

[6] T. Arifeen, A. S. Hassan, H. Moradian, and J. A. Lee, “Probing
Approximate TMR in Error Resilient Applications for Better Design
Tradeoffs,” in Proceedings - 19th Euromicro Conference on Digital
System Design, DSD 2016. IEEE, Aug. 2016, pp. 637–640.

[7] A. J. Sanchez-Clemente, L. Entrena, and M. Garcia-Valderas, “Partial
TMR in FPGAs Using Approximate Logic Circuits,” IEEE Transactions
on Nuclear Science, vol. 63, no. 4, pp. 2233–2240, Aug. 2016.

[8] A. Sánchez, L. Entrena, and F. Kastensmidt, “Approximate TMR for
selective error mitigation in FPGAs based on testability analysis,” in
2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).
IEEE, Aug. 2018, pp. 112–119.

[9] B. Deveautour, M. Traiola, A. Virazel, and P. Girard, “Qamr: An
approximation-based fully reliable tmr alternative for area overhead
reduction,” in 2020 IEEE European Test Symposium (ETS), vol. 2020-
May. Institute of Electrical and Electronics Engineers Inc., May 2020,
pp. 78–83.

[10] B. Deveautour, M. Traiola, A. Virazel, and P. Girard., “Reducing
Overprovision of Triple Modular Reduncancy Owing to Approximate
Computing,” in 2021 IEEE 27th International Symposium on On-Line
Testing and Robust System Design (IOLTS). IEEE, Jun. 2021, pp.
142–148.

[11] M. Traiola, J. Echavarria, A. Bosio, J. Teich, and I. O’Connor, “Design
Space Exploration of Approximation-Based Quadruple Modular Redun-
dancy Circuits,” in IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, ICCAD, vol. 2021-November.
IEEE, Nov. 2021, pp. 759–767.

[12] H. Cho, L. Leem, and S. Mitra, “ERSA: Error Resilient System Archi-
tecture for Probabilistic Applications,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 31, no. 4, pp.
546–558, Apr. 2012.

[13] F. Baharvand and S. G. Miremadi, “Lexact: Low energy n-modular
redundancy using approximate computing for real-time multicore pro-
cessors,” IEEE Transactions on Emerging Topics in Computing, vol. 8,
no. 2, pp. 431–441, Apr. 2020.

[14] G. S. Rodrigues, A. Barros de Oliveira, A. Bosio, F. L. Kastensmidt, and
E. Pignaton de Freitas, “ARFT: An Approximative Redundant Technique
for Fault Tolerance,” in 2018 Conference on Design of Circuits and
Integrated Systems (DCIS). IEEE, Nov. 2018, pp. 108–113.

[15] F. F. dos Santos, M. Brandalero, M. B. Sullivan, P. M. Basso, M. Hubner,
L. Carro, and P. Rech, “Reduced Precision DWC: An Efficient Harden-
ing Strategy for Mixed-Precision Architectures,” IEEE Transactions on
Computers, vol. 71, no. 3, pp. 573–586, Mar. 2022.

[16] A. Aponte-Moreno, F. Restrepo-Calle, and C. A. Pedraza, “FTxAC:
Leveraging the Approximate Computing Paradigm in the Design of
Fault-Tolerant Embedded Systems to Reduce Overheads,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 9, no. 2, pp. 797–810,
Apr. 2021.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2023 8

[17] L. M. Luza, D. Söderström, G. Tsiligiannis, H. Puchner, C. Cazzaniga,
E. Sanchez, A. Bosio, and L. Dilillo, “Investigating the impact of
radiation-induced soft errors on the reliability of approximate computing
systems,” in 2020 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, Oct.
2020, pp. 49–54.

[18] L. M. Luza, A. Ruospo, D. Söderström, C. Cazzaniga, M. Kastriotou,
E. Sanchez, A. Bosio, and L. Dilillo, “Emulating the effects of radiation-
induced soft-errors for the reliability assessment of neural networks,”
IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 4,
pp. 1867–1882, Oct. 2022.

[19] G. S. Rodrigues, F. L. Kastensmidt, V. Pouget, and A. Bosio, “Approxi-
mate tmr based on successive approximation to protect against multiple
bit upset in microprocessors,” in 2018 18th European Conference on
Radiation and Its Effects on Components and Systems (RADECS), vol. 1,
Sep. 2018, pp. 129–133.

[20] M. M. Goncalves, I. P. Lamb, P. Rech, R. M. Brum, and J. R. Azambuja,
“Improving selective fault tolerance in gpu register files by relaxing
application accuracy,” IEEE Transactions on Nuclear Science, vol. 67,
no. 7, pp. 1573–1580, Jul. 2020.

[21] H. M. Quinn, Z. K. Baker, T. D. Fairbanks, J. L. Tripp, and M. G.
Duran Il, “Robust duplication with comparison methods in microcon-
trollers,” IEEE Transactions on Nuclear Science, vol. 64, no. 1, p.
338–345, Jan. 2016.

[22] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“AxBench: A Multiplatform Benchmark Suite for Approximate Com-
puting,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68, Apr. 2017.

[23] Z. Wen, Y. Wang, J. Luo, A. Kuijper, N. Di, and M. Jin, “Robust, fast
and accurate vision-based localization of a cooperative target used for
space robotic arm,” Acta Astronautica, vol. 136, pp. 101–114, Jul. 2017.

[24] C. Tofallis, “A better measure of relative prediction accuracy for model
selection and model estimation,” Journal of the Operational Research
Society, vol. 66, no. 8, pp. 1352–1362, aug 2015.

[25] Xilix, UG585, “Zynq-7000 all programmable SoC: Technical reference
manual,” 2016.

[26] Centro Nacional de Aceleradores, “CNA,” http://www.cna.us.es, Last
visited: March 31st, 2023, Seville, Spain.

[27] ESA/ESCC, “Single event effects test method and guidelines. escc
basic specification no. 25100,” ESA/ESCC European Space components
Coordination, Oct 2014.

[28] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions
on Nuclear Science, vol. 61, no. 2, pp. 766–786, Apr. 2014.

This article has been accepted for publication in IEEE Transactions on Nuclear Science. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNS.2024.3404055

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDAD DE ALICANTE . Downloaded on May 26,2024 at 06:26:26 UTC from IEEE Xplore. Restrictions apply.

