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A B S T R A C T

Scene understanding is an important area in robotics and autonomous driving. To accomplish these tasks, the
3D structures in the scene have to be inferred to know what the objects and their locations are. To this end,
semantic segmentation and disparity estimation networks are typically used, but running them individually is
inefficient since they require high-performance resources. A possible solution is to learn both tasks together
using a multi-task approach. Some current methods address this problem by learning semantic segmentation
and monocular depth together. However, monocular depth estimation from single images is an ill-posed
problem. A better solution is to estimate the disparity between two stereo images and take advantage of
this additional information to improve the segmentation. This work proposes an efficient multi-task method
that jointly learns disparity and semantic segmentation. Employing a Siamese backbone architecture for
multi-scale feature extraction, the method integrates specialized branches for disparity estimation and coarse
and refined segmentations, leveraging progressive task-specific feature sharing and attention mechanisms
to enhance accuracy for solving both tasks concurrently. The proposal achieves state-of-the-art results for
joint segmentation and disparity estimation on three distinct datasets: Cityscapes, TrimBot2020 Garden, and
S-ROSeS, using only 1∕3 of the parameters of previous approaches.
1. Introduction

Disparity estimation and semantic segmentation are fundamental
problems in computer vision. The goal of disparity estimation is to
find the pixel correspondences from a rectified pair of stereo images.
On the other hand, semantic segmentation assigns class labels to each
pixel in the image. Both tasks, individually, have been intensively
investigated [1,2]. Currently, solutions based on Deep Learning and,
more specifically, on Convolutional Neural Networks (CNN), are the
predominant approaches for both tasks due to their good performance
[3,4].

Both disparity estimation and semantic segmentation are heavily
used in scene understanding, autonomous driving, and robotics [5,6].
However, running state-of-the-art methods from both tasks indepen-
dently [7,8] essentially doubles the computational load, which may
be prohibitive for some applications [9,10]. Therefore, a method that
combines both tasks into a single model can potentially reduce the
computational burden, and thus allow it to be embedded in portable
devices or executed in real-time. This type of approach is called multi-
task learning [11], an area that is almost unexplored in the field of joint
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segmentation and disparity estimation [12,13], unlike segmentation
and monocular depth estimation [13–15].

In the literature, many methods for disparity estimation and seg-
mentation can be found [2]. However, compared to the extensive
literature that addresses these tasks separately (which will be reviewed
in the next section), there are few works about solving them simulta-
neously using data-driven techniques [12,13,15]. This is mainly due
to two reasons: segmenting an image and finding the disparity map
are complex tasks per se that require many training examples to learn
meaningful representations. This problem is worsened by the scarcity
of datasets composed of stereo pairs that have both depth and semantic
ground truths, with which to train multi-task proposals.

This paper presents a multi-task approach for disparity estimation
and semantic segmentation that takes advantage of the information
extracted from the different tasks and combines them progressively
at the feature level using self-attention in order to improve the final
results and make the training process more efficient. As will be seen in
the Experiments section (Section 5), learning both tasks simultaneously
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Fig. 1. Overview of the proposed architecture. Stereo pair features are extracted from a Siamese backbone structure and used to feed three specialized branches for a multi-scale
and multi-task prediction. The first branch generates a coarse segmentation using features from the deepest backbone layer, enriched by high-level image features to enhance
context. The second branch computes the disparity map by correlating features from an earlier backbone layer, incorporating coarse segmentation features (𝐹𝑠𝑒𝑔) and Spatial Pyramid
Pooling for broader feature correlation. The third branch refines the segmentation outcome by leveraging both disparity and segmentation features (𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝), employing
attention mechanisms to focus processing on relevant features.
allows using additional information from the stereo pair to improve the
segmentation and, at the same time, using the segmentation to improve
the calculation of disparity.

The proposed method uses a Siamese architecture [16] of backbones
to extract feature information at different scales from the left and
right input images (see Fig. 1). From these features, three specialized
branches are connected to carry out the calculation of disparity and
segmentation. The first branch extracts a coarse segmentation using
low-level features from the backbone, optimized by a 1 × 1 convolution
to reduce parameter depth and hourglass blocks [17] for enhanced
context. The second branch calculates the disparity map through fea-
ture correlation between stereo images, task-specific features from the
coarse segmentation, and the use of Spatial Pyramid Pooling [18]
for comprehensive context. The third branch obtains the refined final
segmentation by combining high-level features from the backbone and
the output of the two previous branches. This last branch employs a
self-attention mechanism [19] to focus on the most relevant features
from the coarse segmentation and the disparity map. As will be shown,
this progressive multi-scale learning allows the segmentation and the
disparity estimation to refine each other.

In summary, the main contributions of this paper are:

• An end-to-end novel architecture that successfully learns the se-
mantic segmentation and disparity map together from an input
stereo pair. To achieve this, it extracts task-specific features that
are shared along with the two tasks progressively.

• State-of-the-art results for multi-task joint learning of disparity
and segmentation, and with competitive results against other
methods that solve each task individually.

• A network capable of solving both tasks simultaneously using
less than 1∕3 of the parameters that previous works use to solve
only one of these tasks. This reduced number of parameters is
useful for systems that have limited resources like robots and
autonomous vehicles.
2

The rest of the paper is structured as follows: Section 2 reviews
the related literature to contextualize the work; Section 3 presents
the proposed methodology; Section 4 details the experimental setup
considered; Section 5 shows the results obtained with the three datasets
considered and makes a comparison with the state of the art; Section 6
analyzes in detail the results obtained, and, finally, Section 7 concludes
the work by summarizing the main insights obtained and proposing
future research lines to address.

2. Related work

As previously discussed, many methods for disparity estimation
and image segmentation can be found in the literature [1,2]. The
general approach—in both cases—is the use of an encoder–decoder
CNN architecture, where the encoder part extracts feature information
by reducing (encoding) the dimension of the input image, and the
decoder part uses these intermediate encoded representations to predict
the disparity map or the semantic segmentation.

For disparity estimation, two main approaches are currently fol-
lowed in the state of the art. The first one treats disparity estimation
as a regression problem, using solely 2D convolutions [20]. The second
approach obtains a cost volume by extracting 3D features and discretiz-
ing the disparity [21,22]. A complete review on this topic can be found
in Zhou et al. [23].

For semantic segmentation, the standard approach is to use a pre-
trained network as a backbone (encoder) and add specialized layers
(decoder) to obtain the segmentation [24]. Long et al. [25] was one of
the first successful works using this approach. Later, Deeplab networks
introduced Atrous convolutions and greatly improved the results with
different datasets like Cityscapes [26–28]. Currently, the state of the
art usually employs Deeplab or similar architectures for the encoder
part and follows two possible approaches to perform segmentation in
the decoder part. One of these is the use of multi-scale images as
input in order to optimize the network so it can extract information
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at different scales, which improves the generality and precision of
the results [8,29,30]. The other common solution is the use of at-
tention layers, which have been popularized by large language and
text-to-image models [31,32], to capture more context with the relation
between the pixels and the classes of the objects to be segmented. This
information is usually concatenated to the network or used to weight
certain layers [33].

Compared to the number of proposals that address these topics
separately, there are only a few works focused on their simultaneous
solution [12,13,15]. However, as previously argued, for certain ap-
plications it can be prohibitive to run two separate methods of this
kind in parallel, and assuming unlimited resources is not a realistic
or practical approach. Therefore, in these cases, a joint solution that
optimizes resources may be of great interest.

One of the main reasons why these tasks are usually approached in-
dividually is because of their complexity, which makes it very difficult
to overcome the state of the art by following a joint approach. Also,
training an end-to-end architecture of this kind requires many ground-
truth samples to learn meaningful and generalizable representations.
This last requirement worsens the problem since there are very few
stereo pair datasets that have both ground truths (i.e., both semantic
segmentation and disparity values). Among the few existing datasets
with these characteristics, we can find Cityscapes [34], KITTI [35],
TrimBot2020 Garden [36], and S-ROSeS [9].

This scarcity of data means that most of the multi-task proposals
for this purpose are based on monocular depth estimation [13–15,37],
which is an ill-posed problem from the geometry perspective [38]. A
better solution is to calculate the disparity between two stereo images
and take advantage of this information to improve the segmenta-
tion [12]. The approaches based on these two paradigms are described
in detail below.

Kendall et al. [13] proposed a multi-task likelihood to improve
the joint learning of monocular disparity, semantic segmentation, and
instance segmentation. They used Deeplab v3 [28] as the backbone and
three separate branches as decoders, one for each task. Zhang et al. [14]
also combines feature information from a backbone to estimate monoc-
ular depth and segmentation. In this case, they performed a sequence
of task-level interactions that evolve along a coarse-to-fine scale space
so that the required features can be progressively reconstructed. The
approach by Nekrasov et al. [15] follows a similar structure for the
prediction of monocular depth and segmentation. They introduced a
teacher–student approach to be able to learn both tasks when one of
them does not have ground truth. Xu et al. [37] proposed PAD-Net, a
multi-task guided prediction-and-distillation network that leverages a
series of intermediate auxiliary tasks, ranging from low to high-level,
whose predictions are then distilled to enhance the performance of
the final tasks, demonstrating effectiveness across challenging datasets.
Yang et al. [12] is the only approach that exploits the information of
a stereo pair. It first uses a segmentation network as a backbone to
extract features from the left and right images of the stereo input and
then takes advantage of this information to calculate the disparity and
also to refine the segmentation.

All of these approaches demonstrate that combining features from
different domains can help to improve similar tasks. However, they do
not fully exploit the additional information that a task-specific decoder
can learn to improve the other tasks (and vice-versa, that is, combine
the information obtained from those other tasks to improve the task
solved by the decoder). For example, Yang et al. [12] first trains one
task and then freezes part of the network and builds on these learned
features to solve the other task. According to Baxter [39], learning
multiple tasks simultaneously within an environment of related tasks
can potentially give much better generalization than learning a single
task. This is because models can take advantage of commonalities and
differences between tasks.

Our proposal pursues this motivation to learn the segmentation
3

and disparity jointly. Similar to Zhang et al. [14], our method uses e
a refined progressive learning approach rather than concatenating the
disparity and segmentation features only once. While they focus on
multi-scale refinement for both tasks at the same time, which yields
good predictions but is computationally expensive, our method predicts
one task per scale. Another main difference with these methods is
that our approach employs stereo pairs to obtain the disparity map
instead of using a single image, thus avoiding the ill-posed problem
and giving more context to the network which can help not only with
the calculation of depth but also with segmentation.

Our approach also takes inspiration from the single-task network
RefineNet [40], where the output is refined using different feature
scales. Similar to this method, our method separates the backbone into
blocks. Each block outputs features at different scales which are further
processed by specialized convolutional layers. RefineNet focuses only
on segmenting an image, therefore, they use these convolutional layers
to learn residual information at different scales that is subsequently
added. In our case, each scale outputs either a disparity map or a seg-
mentation, so each convolutional layer provides feature information for
a specific task. To share this information with other scales (organized
in branches in our implementation) and guarantee feature propagation,
these features are concatenated rather than being used like a residual
connection, similar to a DenseNet block in [41].

One last differential aspect to highlight is that the entire archi-
tecture is trained to solve both tasks at the same time, following an
end-to-end fashion and propagating the information from the obtained
disparity to calculate the segmentation (and vice-versa). It allows the
architecture to combine the specific information calculated for each
task, searching for commonalities and differences, as proposed by
Baxter [39], in order to collaboratively improve the final result.

3. Proposed method

This section describes the proposed architecture and elaborates on
how to use feature information from one task to improve other tasks
using a coarse-to-fine structure with a binocular stereo input.

3.1. Network architecture

Before describing the network in detail, a brief overview of its main
parts is given, as well as the general details of the different layers used.
The proposed network consists of a Siamese architecture of backbones
and a decoder with three specialized branches, as shown in Fig. 1. The
first branch obtains a coarse segmentation and outputs task-specific
features (𝐹𝑠𝑒𝑔) that are used as input for subsequent branches. The
second branch outputs the disparity of the stereo pair and its own task-
specific features (𝐹𝑑𝑖𝑠𝑝). The third branch uses the previous features
(𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝) to calculate the refined segmentation. As is common in
stereo vision, disparity is calculated with respect to the left image and,
for consistency, also segmentation. This is why these high-level features
are extracted only from the left image, although information from the
right image is also reinforced in early stages of the architecture using
the 𝐹𝑅

1 , 𝐹𝑅
2 , and 𝐹𝑅

4 features of the backbone.
Unless otherwise stated, each convolution layer used in the network

as a kernel size of 3 × 3 and is followed by a ReLU activation
unction [42] and a batch normalization operation [43]. Following [22,
4], after concatenating any 2 or more features, they are processed
ith a series of top-down/bottom-up convolutions known as hourglass

encoder–decoder) to learn more context information. Each hourglass
lock is composed of 3 convolutions and 3 deconvolutions with residual
onnections [17].

It should also be noted that in order to obtain a prediction with
lmost the same dimension as the input without this implying an
ncrease in the necessary resources, convolutions with a large field of
iew are used to extract high-level features that are concatenated with

ach of the branches before generating the prediction.
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Fig. 2. Shared weights backbones structure used to process the input stereo pair. See
more details in Appendix.

The following sections describe the different parts of the proposed
architecture in detail. Appendix provides an in-depth illustration of the
complete architectural framework, showcasing the detailed composi-
tion of its layers. Furthermore, it includes tables that precisely specify
the characteristics of each component.

3.2. Backbone feature extraction

As previously indicated, the network initially uses a Siamese struc-
ture [16] for feature extraction. To determine this architecture as
well as the backbone to be used, a series of preliminary experiments
were carried out (including networks such as DenseNet-121 [41],
EfficientNet-B2 [45], MobileNet v3 [46], ResNet-101, and ResNet-
50 [47]; some of these results will be analyzed in the experimentation
section), eventually selecting DenseNet-121 to be used as the backbone.

Therefore, two instances of DenseNet-121 [41] with shared weights
are used to obtain low and high-level features from the left and right in-
put images. The shared weights approach reduces the number of param-
eters needed by the network [48] and facilitates obtaining consistent
features for both inputs.

The backbones are divided into 5 blocks (see Fig. 2) to extract
features at different scales. Each block reduces the dimension of its
input in half. The dimensions of blocks 0, 1, 2, 3, and 4 respectively
are 1∕2, 1∕4, 1∕8, 1∕16, and 1∕32, with reference to the size of the input
image. The features extracted from these blocks will be denoted as 𝐹𝐿

𝑖
nd 𝐹𝑅

𝑖 in the rest of the paper, where 𝑖 is the block and 𝐿 and 𝑅
indicate if the feature belongs to the left or right image. Specifically, the
features 𝐹𝐿∕𝑅

1 , 𝐹𝐿∕𝑅
2 and 𝐹𝐿∕𝑅

4 (highlighted in Fig. 2) are the ones that
will be used in the specialized branches described in the next sections.

3.3. Coarse segmentation branch

The first branch (see Fig. 3) extracts a coarse segmentation that is
used as an auxiliary loss in order to optimize the quality of the final
segmentation and also to aid in the disparity calculation [49].

The input of this branch is the concatenated feature maps 𝐹𝐿
4 and

𝑅
4 , from Block 4 of the backbone. These features undergo an upscaling
y a factor of two, followed by a convolution with a 1 × 1 kernel
o reduce the depth of this concatenation, and thus the number of
arameters needed. This information is then processed through an
ourglass block in order to learn more context information, whose
ntermediate output is propagated to the next layer as well as used as
task-specific feature (𝐹𝑠𝑒𝑔).

Block 4 returns features with 1∕32 of the original image size, causing
4

loss of detailed information. Following [50], to reduce this problem,
Fig. 3. Coarse segmentation branch. It receives as input 𝐹𝐿
4 and 𝐹𝑅

4 from Block 4 of
the backbone. Before predicting the coarse segmentation, the left image is convolved
and concatenated to add low-level information. See more details in Appendix.

high-level features are obtained by processing the left image with
a 5 × 5 convolution (i.e., a larger receptive field). This output is
concatenated with the rest of the features in the branch (which are
rescaled to match the size of the high-level features) and convolved
one more time through the last hourglass block (see Fig. 3) to output
the final segmentation. The Softmax activation function is used at the
pixel level to calculate the probability of each class.

The segmentation branch extracts task-specific features (denoted as
𝐹𝑠𝑒𝑔 in Fig. 3), which are used to compute both the disparity and the
inal refined segmentation. In this way, the network explicitly passes
he features learned by this branch for a progressive learning and
efinement.

.4. Disparity branch

The second branch calculates the disparity map from the stereo
mages (see Fig. 4). The inputs of this branch are the features 𝐹𝐿

2
nd 𝐹𝑅

2 obtained from Block 2 of the corresponding left and right
ackbones. The correlation between these two input features is com-
uted using a correlation layer [20], which takes a block of 𝐹𝐿

2 and
onvolves it in a neighborhood window around 𝐹𝑅

2 . However, it does
ot capture correlations between distant features because the window
ize is limited. For this reason, Spatial Pyramid Pooling (SPP) [18] is
sed on the two feature planes, before extracting their correlations,
o obtain multi-scale information, and thus, allow to find distant cor-
elations. The depth of the correlation block is then reduced using a
× 1 convolution and concatenated with the features 𝐹𝑠𝑒𝑔 computed

y the coarse segmentation branch (which have the same size thanks
o the upscaling applied in the first branch). In this way, the features
earned by the segmentation are included to add more information for
he disparity estimation.

As before, and following [22,44], an hourglass block is used after
his concatenation to extract more context information. Then, high-
evel features are added to the network by processing the left input
mage with a 5 × 5 convolution, concatenated with the rest of the
eatures in the branch (which are rescaled to match the size), and
rocessed through another hourglass block to calculate the final dis-
arity. Similar to the previous decoder, this branch also outputs an
ntermediate task-specific feature (𝐹𝑑𝑖𝑠𝑝), which is used by the refined
egmentation branch.
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Fig. 4. Scheme of the disparity branch. It extracts multi-scale information from
backbone blocks 𝐹𝐿

2 and 𝐹𝑅
2 using Spatial Pyramid Pooling (SPP). This information

s processed further and concatenated with the features from the coarse segmentation.
ee more details in Appendix.

.5. Refined segmentation branch

The third decoder computes the refined segmentation (see Fig. 5).
n this branch, Spatial Pyramid Pooling is first used on the backbone
eatures 𝐹𝐿

1 and 𝐹𝑅
1 . The resulting features are concatenated and pro-

cessed by an hourglass block. From this result, two subbranches are
created: one part is combined with 𝐹𝑠𝑒𝑔 and the other with 𝐹𝑑𝑖𝑠𝑝 in order
to add task-specific and high-level information from previous branches
(note that these features are resized to match the dimensions of the
branch’s features). A 1 × 1 convolution with sigmoid activation is used
on each part to compute an attention map. This operation focuses on
selecting important features from each task (an example can be seen in
Fig. 6). Each of these subbranches is then multiplied by the features of
the previous hourglass block and concatenated with high-level features
obtained by processing the left input image with a 5 × 5 convolution
(note that scaling is also applied to adjust the dimensions). Finally, an
encoder–decoder block with an output dimension equal to the number
of labels and followed by a Softmax activation function is used to obtain
the refined segmentation.

3.6. Model optimization

Rather than training each branch separately or a part of the net-
work, freezing the weights and then adjusting the rest (as in the work of
Yang et al. [12]), the optimization of the complete model is end-to-end.

Each branch optimizes an objective function, either to reduce the
segmentation error or the disparity error. For the loss of the two
segmentation branches (𝑠𝑒𝑔𝑐𝑟 and 𝑠𝑒𝑔𝑟𝑒𝑓 ), the Cross-entropy and the
Lovasz loss are combined [51] to optimize the intersection-over-union
between the prediction and the classes labeled in the ground truth
of the left input image. For the disparity branch (𝑑𝑖𝑠𝑝) the L1 loss
is used between the disparity prediction and the labeling of the left
5

Fig. 5. Refined segmentation branch. It concatenates the multi-scale feature informa-
tion from 𝐹𝐿

1 and 𝐹𝑅
1 . The features from the previous coarse segmentation branch (𝐹𝑠𝑒𝑔)

and from the disparity branch (𝐹𝑑𝑖𝑠𝑝) are also added to the network using an attention
layer. See more details in Appendix.

image. The final loss consists of the sum of the losses of the 3 branches:
 = 𝑠𝑒𝑔𝑐𝑟 + 𝑑𝑖𝑠𝑝 + 𝑠𝑒𝑔𝑟𝑒𝑓 .

The gradients of each branch loss are propagated across the whole
network, for which the standard back-propagation algorithm can be
used [52]. Simultaneously optimizing all three losses for the two target
tasks allows the network to take advantage of the additional infor-
mation provided for the other task. For example, knowing the depth
can help to differentiate between two objects and, in the same way,
knowing the segmentation and class of an object can help to find their
correspondences for the calculation of the disparity.

4. Experimental setup

This section describes the datasets used for the experiments as well
as the details of the model implementation and the training process.
The implementation code is publicly available at: https://github.com/
cuevhv/PMT_learning_for_semantic_segmentation_and_disparity.

All experiments were carried out using the Python programming
language (v. 3.7) with the public library PyTorch (v. 1.9). The machine
used consists of an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz with
16 GB RAM and an NVIDIA GeForce RTX 2070 with 6 GB GDDR6
Graphics Processing Unit (GPU).

4.1. Datasets

For the training and evaluation of the proposed method, three
datasets were used: Cityscapes [34], TrimBot Garden [36], and S-
ROSeS [9]. These datasets are described in detail below. Table 1
includes a summary of their characteristics and some random image
examples can be seen in Fig. 7.

https://github.com/cuevhv/PMT_learning_for_semantic_segmentation_and_disparity
https://github.com/cuevhv/PMT_learning_for_semantic_segmentation_and_disparity
https://github.com/cuevhv/PMT_learning_for_semantic_segmentation_and_disparity
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Fig. 6. Example output for an attention map. The intensity of the attention is represented by a color gradient, with red indicating the areas with the highest attention. The map
obtained for the coarse segmentation (b) focuses on the inner part of the element to be segmented, where the network is more confident. On the other hand, the attention for
the disparity (c) marks textured areas of the background on which the network relies to calculate disparity. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 7. Random examples of the three datasets considered: Cityscapes, TrimBot2020 Garden, and S-ROSeS.
Table 1
Summary of the characteristics of the datasets considered, including the type of images, the number of samples, their resolution, the number
of segmented classes, and the type of disparity ground-truth (GT) provided.

Type # samples Resolution (px.) Segmented classes Type of disparity GT

Cityscapes Real 5000 2048 × 1024 19 SGM stereo sparse map
TrimBot2020 Garden Synthetic 12,500 640 × 480 9 Synthetic dense 3D mesh
S-ROSeS Synthetic 5760 720 × 480 2 Synthetic dense disparity map
Cityscapes [34]: It is an urban scene understanding dataset for
pixel-wise semantic segmentation that contains 19 classes plus 1 unde-
termined class, which—as in the original work—is not considered for
evaluation. The 19 classes are grouped into 7 categories: flat (including
classes such as road and sidewalk), human, vehicles, constructions,
objects (with poles, traffic signs, traffic lights, etc.), nature (vegetation
and terrain), sky, and void. The disparity ground truth is a sparse map
obtained by SGM stereo. This corpus contains 5000 high-resolution
2048× 1024 px images, from which 2975 (60%) were used for training,
500 (10%) for validation, and 1525 (30%) for testing (these parti-
tions are those proposed by the authors and have been maintained
for experimentation with all the methods considered to make a fair
comparison).

TrimBot2020 Garden [36]: It consists of images from a synthetic
garden under 5 weather conditions. The dataset contains 12,500 stereo
6

pairs with a spatial resolution of 640 × 480 px, from which 10,000
(80%) were used for training and 2500 for testing (20%). In this case,
10% of the training set was used for validation, and, as before, the same
partitions were kept for all compared methods. The ground truth has 9
pixel-wise segmented classes (grass, ground, pavement, hedge, topiary,
rose, obstacle, tree, and background) and their corresponding disparity
maps.

S-ROSeS (Synthetic dataset of Roses for Object Segmentation and
Skeletonization) [9]: It comprises 5760 synthetic stereo images of rose
bushes, divided into 80% for training and 20% for testing. Each stereo
pair corresponds to a different view of 36 models of synthetic rose
bushes. These plants were generated by imitating the morphology and
appearance of real rose bushes with a mean height of 0.6 ± 0.2 m.
Four backgrounds of exterior environments were created, which vary
in background, light conditions, and the position of the sun. Both the
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Table 2
Transformations considered during the data augmentation process. The dimensions
for random cropping vary by dataset†: 512 × 512 for Cityscapes, and 480 × 480
for both TrimBot2020 and S-ROSeS. Additionally, class uniform sampling is tailored
to balance the representation of each class within the dataset, without a predefined
parameterization range.

Transformation Range

Brightness [0.5, 1.5]
Contrast [0.8, 1.2]
Saturation [0.5, 1.5]
Gaussian blur [0.25, 1.15]
Random cropping {512 × 512, 480 × 480}†
Zooming in and out [0.7, 1.5]
Class uniform sampling –

left and right input images, as well as the ground truths with the
segmentation and the disparity map, were obtained with a resolution
of 720 × 480 px. The depth map was calculated from the simulation of

stereo camera with parallel stereoscopic configuration, sensor size of
2 mm, focal length of 0.032 m, and baseline of 0.03 m.

For the assessment of each dataset, we employed the metrics pro-
osed in the original papers to ensure that our results are directly
omparable using the same benchmarks as others in the field. This
pproach allows for a consistent reference point across different stud-
es. These metrics will be detailed in the results section as they are
mployed.

.2. Implementation details

The backbones (DenseNet-121 [41]) were first initialized using the
re-trained weights obtained with the ILSVRC dataset [53,54]. A fine-
uning process was then applied to the entire network using the specific
orpus to be evaluated.

The training lasted a maximum of 70K iterations with a mini-
atch size of 16 samples and early stopping when the loss did not

decrease during 15 epochs. The training of the network parameters was
made using Stochastic Gradient Descent (SGD) [52] with Adam [55] as
optimizer (learning rate 1e−3, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 1e−8).

Data augmentation was used to artificially increase the size of the
training set by randomly applying different types of transformations
to the original training samples [53,56]. Specifically, the transfor-
mations applied include changes in brightness, contrast, and satura-
tion, the addition of gaussian blur (with a standard deviation in the
range [0.25, 1.15]), random cropping (512 × 512 px for Cityscapes and
480 × 480 px for TrimBot2020 and S-ROSeS), zooming in and out
in the range [0.7, 1.5] with respect to the original image size), and

class uniform sampling to handle the class imbalance, as proposed by
Choi et al. [57]. These augmentations are detailed in Table 2. In each
iteration of the training process, and for every image being processed,
a set of transformations is randomly selected from the permitted range
and applied to the image. This ensures that the data augmentation
process introduces a diverse and varied set of modifications, enhancing
the robustness and generalizability of the model.

Note that when optimizing two simultaneous tasks, the transfor-
mations have to be applied to both ground truths. In this sense, the
operations considered do not alter the segmentation or disparity label-
ing, with the exception of the zoom, which does modify the disparity.
For this reason, and to the best of our knowledge, it is not usually
used when training disparity networks (as opposed to segmentation
networks, where it is always used). In this work, we propose the use
of this augmentation criterion by resorting to simple geometry: The
disparity values were re-scaled based on the zooming scale factor, with
7

the new disparity being 𝑑𝑖𝑠𝑝𝑛𝑒𝑤 = 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑑𝑖𝑠𝑝𝑜𝑙𝑑 .
5. Results

This section presents the results obtained with the proposed method
following the experimental setup described in Section 4. The first part
is devoted to the optimization of the different hyper-parameters of the
scheme. After that, the individual results obtained for the three datasets
are analyzed and compared with those of the state of the art.

5.1. Hyper-parameter tuning

For simplicity, the initial analysis is presented with Cityscapes as
it is the most challenging dataset of those selected, although these
experiments were also carried out with the other two with similar
results. Table 3 shows a summary of the most relevant results obtained
regarding the input and batch size, the data augmentation techniques
considered, and the different topologies for the network’s backbone.
Results are reported in terms of mean class-wise Intersection over
Union (mIoU) for the evaluation of semantic segmentation and D-1
error for disparity estimation. The latter calculates the percentage of
pixel-wise disparity errors below a threshold, which—as in the related
literature—is set to 3 pixels of difference between the ground truth and
the estimated disparity.

Similar to other works that use backbones with batch normalization
layers [2,26], our experiments show that small training batches lead
to unstable batch-norm statistics and to poor learning performance.
Results show a progressive improvement in the disparity and segmen-
tation when the batch size is increased up to 16, and gets worse after
that.

The results also show that larger input sizes provide better overall
performance, which may be due to the following two reasons. First, the
input size is obtained by randomly cropping the original image. This
means that the bigger the extracted chunk, the more context the net-
work sees, which translates into learning better relationships between
objects. The second reason is related to the reduction in dimension due
to the backbone topology. In the case of ResNet and DenseNet, the
backbones are divided into blocks, and each block reduces by half its
input size. This means that the feature dimensions of blocks 1 to 5 are
1∕2 to 1∕32 of the input image size. Therefore, if we use an input size
of 256 × 256 px, the output feature from block 5 will be only 8 × 8.

Regarding data augmentation, it is observed how the different tech-
niques progressively improve the segmentation result by up to 4.5% for
the IoU and reduce the disparity error by a total of 0.042. Specifically,
the different augmentation processes provide a similar improvement
for segmentation. However, for disparity (see Table 3), zooming seems
to help the most (reducing the error by 0.018), then class uniform
sampling (with a decrease of 0.016), and finally brightness changes
(lowering the error by 0.008).

The proposal was also evaluated considering six different back-
bones: EfficientNet-B2, MobileNet v3, ResNet-101, ResNet-50, ResNet-
18, and DenseNet-121. As can be seen, the latter is the one that reports
the best results both for segmentation and for calculating the disparity.
For this reason, to carry out the rest of the experiments, we will
use this backbone together with the best hyper-parameters previously
determined: a batch size of 16, an input size of 512 × 512 px, and the
use all the types of data augmentation proposed.

5.2. Cityscapes

Once the best configuration of hyper-parameters has been deter-
mined, we proceed to evaluate the results obtained with the considered
datasets, starting with Cityscapes.

Table 4 compares the proposal with the state of the art in the
Cityscapes ranking. For comparison, the highest-scored methods for
segmentation were considered, including Panoptic-DeepLab [30], RC-
Net [3], PSPNet [49], as well as the multi-task approach with the

highest score for both tasks [13], which is called MTU. As our approach
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Table 3
Comparison of the results obtained using different hyperparameters when using the Cityscapes validation set. Coarse segmentation (Seg cr.) and refined segmentation (Seg ref.) are
valuated considering the IoU figure of merit, and the disparity using the D1-error. The best result per metric is highlighted in bold.

Input size
(px)

Backbone Batch
size

Random
cropping

Zoom
in/out

Brightness
variation

Class
sampling

Seg cr.
IoU

Seg ref.
IoU

Disp. D-1
error

Batch &
input size

256 × 256 DenseNet-121 4 ✓ 63.2 66.0 0.353
256 × 256 DenseNet-121 8 ✓ 64.7 68.3 0.345
256 × 256 DenseNet-121 16 ✓ 65.2 69.6 0.311

512 × 512 DenseNet-121 8 ✓ 67.3 71.3 0.185
512 × 512 DenseNet-121 16 ✓ 70.1 73.2 0.082
512 × 512 DenseNet-121 32 ✓ 68.3 71.1 0.092

Data aug.
512 × 512 DenseNet-121 16 ✓ ✓ 71.7 74.6 0.064
512 × 512 DenseNet-121 16 ✓ ✓ ✓ 73.0 76.1 0.056
512 × 512 DenseNet-121 16 ✓ ✓ ✓ ✓ 74.6 77.6 0.040

Backbones

512 × 512 EfficientNet-B2 16 ✓ ✓ ✓ ✓ 72.2 74.7 0.090
512 × 512 MobileNet v3 16 ✓ ✓ ✓ ✓ 69.1 72.0 0.124
512 × 512 ResNet-101 16 ✓ ✓ ✓ ✓ 60.4 64.0 0.453
512 × 512 ResNet-50 16 ✓ ✓ ✓ ✓ 66.6 70.0 0.173
512 × 512 ResNet-18 16 ✓ ✓ ✓ ✓ 62.1 66.7 0.326
Table 4
Comparison of the results obtained with the Cityscapes dataset in terms of class and category segmentation IoU, and disparity error. Categories
group the 19 classes into 7 groups (see Section 4.1). Results are included for both the test and validation partitions, the latter being the most
used in the literature. The best result per metric is marked in bold type and the second-best result is underlined.

Method Backbone Train input size (px) # Params. Seg. mIoU class Seg. mIoU category Disp. RMSE

Val. Test Test Test

Multi-task methods

Ours DenseNet-121 512 × 512 18.0M 77.6 76.1 91.0 3.28
MTU [13] Deeplab v3 512 × 512 64.2M 78.1 78.5 89.9 5.88

Semantic segmentation methods

Panoptic [30] Deeplab v3 2049 × 1025 46.7M 81.5 84.5 92.9 N/A
RCNet [3] ResNet-50 512 × 1024 14.1M 70.9 – – N/A
PSPNet [49] ResNet-101 2048 × 1024 54.7M 73.9 – – N/A

Ladder-style [58] DenseNet-121 2048 × 1024 8.2M 62.3 – – N/A
Ladder-style [58] DenseNet-169 2048 × 1024 15.6M 75.7 74.3 89.7 N/A

Deeplab v3 [27] Xception-71 513 × 513 46.7M 79.5 82.1 – N/A
Deeplab v3 [57] ResNet-101 768 × 768 64.2M 79.2 – – N/A
Deeplab v3 [57] ResNet-50 768 × 768 45.1M 77.8 – – N/A
is based on DenseNet, the work with the highest score that uses this
backbone is also included, which is Ladder-style DenseNet [58]. In
addition, given that the best-ranked methods are based on Deeplab v3,
three versions of this architecture using different backbones (Xception-
71, ResNet-101, and ResNet-50) were also included in the comparison.
Please note that the column referring to input size denotes the size used
during training, where crops of this size are extracted from the original
training images. For evaluation, images are processed at their original
size without cropping or scaling, ensuring a fair comparison.

When analyzing the results of this table, it is important to keep in
mind the column with the number of parameters, as it represents an
efficient solution that addresses both tasks simultaneously. Most of the
proposed approaches that yield better results are based on Deeplab v3,
which ranges from 41M to 64.2M parameters, depending on the imple-
mentation [57]. In our case, the DenseNet-121 backbone [41] has only
8M parameters, and with the addition of specialized decoders for dis-
parity and semantic segmentation, it reaches 18M parameters. This is
between 2.6 to 3.6 times fewer than the top-performing state-of-the-art
solutions (i.e., Panoptic-DeepLab and MTU).

If we compare the proposal with the best single-task solution
(Panoptic), we can observe that it is only 3.9 points lower on the class-
level validation set and 1.9 points lower on the category-level test
set. As mentioned before, we must highlight that it is a much more
efficient network (with 2.6 times fewer parameters) and that it also
addresses two tasks simultaneously. When compared to other more
efficient single-task solutions, such as Ladder-style or RCNet, with a
similar number of parameters, our proposal achieves notably better
results.
8

If we compare it with the multi-task alternative that obtains the
best result in the Cityscapes ranking—i.e., MTU [13]—our network
demonstrates a reduced disparity error and superior category-wise IoU,
while being only 2.4% less effective in class-wise IoU on the test set and
0.5% on the validation set. Moreover, it is noteworthy that this level of
performance is achieved with fewer than a third of the parameters used
by MTU. To determine the source of performance differences—whether
due to the backbone, training process, or loss function—we conducted
two additional experiments (refer to Table 5): (1) We applied their loss
function within our architecture (see the second row in the table) and
(2) We replaced the MTU backbone with our method’s DenseNet-121,
while retaining its decoder and uncertainty loss (see the third row).
The outcomes indicate that our approach remarkably surpasses MTU
in both segmentation and disparity metrics under identical evaluation
and training conditions. The integration of its loss function negatively
impacts the performance of our model, and the use of our backbone
in MTU leads to a significant deterioration in their results. Hence, the
superior class-wise IoU of MTU presented in Table 4 should be directly
attributed to its backbone, which has a considerably higher parameter
count.

For a qualitative analysis of the results, Fig. 8 shows four examples
(columns) of the segmentation and disparity estimation obtained with
our network. The first two rows show the input images, followed by
the disparity and segmentation results compared with the GT. In these
images, it can be seen that the errors made occur mainly at edges,
isolated pixels, or in the lower area that corresponds to the hood
of the car, for which the sensor does not seem to provide adequate
information.
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Fig. 8. Four examples of results with Cityscapes. The input stereo pair is shown in the first two rows. The ground truth and predicted disparities are shown in rows 3 and 4. The
error of the predicted disparity (row 5) encodes the error 𝑒 in 3 colors: blue (𝑒 < 3), green (𝑒 < 6), and red (𝑒 ≥ 6). Rows 6 and 7 show the ground truth and the prediction obtained
for the segmentation task. The black color in the disparity and segmentation images means that the ground truth has no disparity or class assigned to that pixel, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Comparison of our proposal and MTU [13] on the Cityscapes validation set when using
the same backbone (DenseNet-121) and changing the decoder and the loss function.
The changes applied are underlined. The original results of our approach and MTU are
included for reference (1st and 4th rows).

Method (decoder) Backbone Loss Seg. Disp.
mIoU class D-1 error

Ours DenseNet-121 Ours 77.6 0.040

Ours DenseNet-121 MTU 72.2 0.067
MTU DenseNet-121 MTU 59.6 0.347

MTU Deeplab v3 MTU 78.1 0.102

5.3. TrimBot2020 Garden

In this section, the proposed method is evaluated with the Trim-
Bot2020 Garden dataset and compared with the best-performing state-
of-the-art methods for semantic segmentation and depth estimation:
DTIS [59], HAB [36], and LAPSI360 [60]. DTIS uses a network similar
to FuseNet [61], which has as input an RGB image and a depth map,
and outputs both the semantic segmentation and a refined version
of the depth map. HAB uses ELAS stereo [62] to produce a dense
point cloud and DeepLab v3 [28] to obtain the segmentation. The
resulting point cloud is denoised with class-specific filters based on the
3D geometry. LAPSI360 focuses on the 3D reconstruction; for this it
generates the geometric mesh of the garden using the information from
the 10 cameras provided in the dataset.
9

Table 6
TrimBot2020 dataset comparison. The segmentation accuracy (Seg acc.) and complete-
ness (comp.) are in percentages. The 3D reconstruction accuracy (Acc. (m)) reports the
error in meters, therefore, the lower the value the better. The best result per metric is
highlighted in bold.

Method # Params. Seg. acc. 3D reconstruction

Acc. (m) Comp.

Ours 18.0M 91.9 0.061 77.8
DTIS [59] 207.8M 91.9 0.122 66.2
HAB [36] 64.2Ma 79.0 0.069 74.0
LAPSI [60] N/A – 0.164 23.9

a The number of parameters refers only to the segmentation algorithm, an iterative
classical vision algorithm is used for the disparity.

Following the original HAB paper [36], pixel-wise accuracy was
used to evaluate the semantic segmentation. Using the TrimBot2020
Garden dataset allows evaluation of the quality of the 3D reconstruction
instead of finding the error of the 3D depth or disparity. To evaluate the
goodness of these reconstructions, 2 metrics were used: completeness
and 3D accuracy. Completeness is calculated by considering a predicted
point as correct if it differs from the ground truth by ≤0.05 m, similar
to the D-1 error. The 3D accuracy is the distance 𝑑 in meters, such that
90% of the reconstruction is within 𝑑 meters of the ground truth mesh.
In our case, disparity predictions were transformed into depth maps
and back-projected into the 3D space using the camera parameters
(provided in the original paper).

Table 6 shows the results of this comparison. As can be seen,
our method obtains a segmentation accuracy similar to DTIS—using



Pattern Recognition 154 (2024) 110601H. Cuevas-Velasquez et al.

t
s
3

T
b
a
r
m
f
a
o

5

t
w
N
f
w
o
a
a
o

o
a
S
i
m
e
H
a
i
a
m

f
o
f
G
a
a
s
t

Table 7
Comparison of the results obtained for the calculation of the disparity and segmentation with the S-ROSeS
dataset. The best results per metric is highlighted in bold.

Method # Params. Segmentation Disparity

Precision Recall F1 mIoU RMSE Sq-Rel

Multi-task methods

Ours 18.0M 98.49 93.28 95.80 97.52 0.05 0.0134
FCSN [9] 2.9Ma 90.47 93.18 91.70 94.16 0.5648 0.0917
FCSN-Comb. [9] 2.9Ma 92.86 92.59 92.96 95.07 0.5082 0.0630

Semantic segmentation methods

U-Net [63] 1.9M 91.08 88.50 89.77 90.21 N/A N/A
SegNet [64] 5.5M 88.84 77.07 81.81 83.60 N/A N/A
DeepLab v3 [28] 11.8M 76.94 84.63 80.59 79.64 N/A N/A

a The number of parameters refers only to the segmentation algorithm. An iterative classical vision algorithm
is used for the disparity.
t

11.5 times fewer parameters—and outperforms HAB. Regarding the 3D
reconstruction, our network achieves the best score in both metrics
considered. It is 3.8% more complete than the best result (i.e., HAB),
and the reconstruction accuracy is almost 0.01 m better. It is important
o highlight that, unlike HAB, our method obtains both results at the
ame time without applying any heavy point cloud filtering or using
D features.

Fig. 9 shows some results of our network for different views of the
rimBot2020 Garden. The proposed approach, captures details like thin
ranches not only in the segmentation but also in the disparity. In
ddition, and for a better qualitative analysis, Fig. 10 shows the 3D
econstruction obtained for the entire garden. Here you can see how
ost errors are made on the edges, corners, or in areas where many

ine branches appear. In the latter case, it is mainly due to the error
ccumulated by combining multiple views in which the completeness
f the reconstruction of the branches is not exact.

.4. S-ROSeS dataset

This section focuses on the evaluation of the proposed method using
he third dataset—i.e., the S-ROSeS dataset—and on the comparison
ith different methods from the state of the art for this task: U-
et [63], SegNet [64], and DeepLab v3 [28], as well-known algorithms

or segmentation, and the methods FCSN and FCSN-Combined [9],
hich also compute the disparity. These last two methods are based
n a custom architecture for segmentation and on the Block Matching
lgorithm [65] for disparity. The FCSN-Combined variant performs
n iterative process that combines the segmentation and the disparity
btained to improve each other.

The results of this comparison are shown in Table 7. As in the
riginal paper [9], we resort to Precision, Recall, F1, and IoU to
ssess segmentation, and to Root Mean Squared Error (RMSE) and
quared Relative difference (Sq-Rel) to evaluate disparity. As observed
n Table 7, the proposed method obtains the best results in all the
etrics considered, remarkably surpassing the rest of the proposals,

specially in Precision. The only exception is the number of parameters.
owever, it is important to note that in the case of U-Net (as well
s for SegNet and DeepLab), only the segmentation is calculated, and
n FCSN the number of parameters refers only to the segmentation
rchitecture, since it requires the use of another iterative and slow
ethod for calculating the disparity.

As before, for a qualitative analysis of the results, Fig. 11 shows
our examples (columns) of the segmentation and disparity estimation
btained with our network. The first two rows show the input images,
ollowed by the disparity and segmentation results compared with the
T. Regarding the disparity, it is observed that errors are only made
t the edges of the fine branches. This is better understood if we also
nalyze the segmentation result, for which both coarse and refined
egmentations are shown. The auxiliary loss detects the main parts of
he bush, which are later refined to obtain the final segmentation where
10

s

only a few mistakes are made at the edges of the finer branches. The
reported improvement, especially in the detection of thin branches, is
very important for the original task of this dataset, since it will allow a
better reconstruction of the rose bush and, in this way, avoid possible
errors in the pruning process.

6. Discussion

This section presents a more in-depth analysis of the selected archi-
tecture and the results obtained. First, we evaluate the improvement
provided by the use of progressive feature learning with auxiliary loss
functions. We also study the relationship between the efficiency and
precision of the method and compare it with the other state-of-the-art
methods.

6.1. Effect of task-specific features

A series of experiments were conducted to test the effectiveness
of sharing task-specific features among the branches of the proposed
network. Recall that it concatenates feature information from the coarse
segmentation branch (𝐹𝑠𝑒𝑔) with the disparity, and then uses the seg-
mentation and disparity features (𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝) to refine the final
segmentation (see Fig. 1).

To test if this progressive sharing of feature information helps
the network to improve the calculation of disparity and/or semantic
segmentation, three variations of the proposed method (generated by
removing the different connections between the task branches) were
trained and tested on the validation set of Cityscapes1: (1) All the con-
nections between the task-specific features and branches were removed,
(2) The connection between the features from the coarse segmentation
(𝐹𝑠𝑒𝑔) and the disparity decoder was kept, but the connections of the
disparity and the coarse segmentation features (𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝) with the
refined segmentation branch were removed, and (3) The connection
𝐹𝑠𝑒𝑔 from the disparity branch was removed and the connections 𝐹𝑠𝑒𝑔
and 𝐹𝑑𝑖𝑠𝑝 with the refined segmentation branch were kept. Table 8
shows the results of this experiment, where the fourth row corresponds
to the original model with all the connections.

The experiments show that the connection between the coarse
segmentation features 𝐹𝑠𝑒𝑔 and the disparity branch helps to reduce
the disparity error from 0.064 to 0.051 (results from the first and
second row of the table). The lowest disparity error, 0.040, is obtained
when 𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝 are also shared with the refined segmentation
branch (fourth row). This result points out that, even though this last
connection does not affect the disparity prediction at inference time,
the progressive connection between task-specific features does help in
the training process to learn better descriptors.

1 We show the results for this dataset as it is the most challenging of
he three, although similar experiments were performed with the others with
imilar results.
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Fig. 9. Four examples of the results obtained for the TrimBot2020 Garden. The input stereo pair is included in the first two rows. The ground truth and predicted disparities are
shown in rows 3 and 4, respectively. Row 5 shows the error 𝑒 of the predicted disparity using 3 colors: blue (𝑒 < 3), green (𝑒 < 6), and red (𝑒 ≥ 6). Rows 6 and 7 show the ground
truth and the prediction obtained for the segmentation task. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 8
Task-specific feature sharing effect. The first two columns show if the features 𝐹𝑑𝑖𝑠𝑝
and 𝐹𝑠𝑒𝑔 were concatenated to the disparity or refined segmentation branches. Seg cr.
and Seg ref. IoU show the results for coarse and refined segmentation. The best result
per metric is highlighted in bold.
𝐹𝑠𝑒𝑔
↓

Br. disp

𝐹𝑠𝑒𝑔 ∧ 𝐹𝑑𝑖𝑠𝑝
↓

Br. seg ref.

Seg cr. IoU Seg ref. IoU Disp D-1 error

✗ ✗ 73.3 64.8 0.064
✓ ✗ 73.3 64.7 0.051
✗ ✓ 72.5 75.7 0.060
✓ ✓ 74.6 77.6 0.040
11
These experiments also demonstrate that the refined segmentation is
improved when it receives the task-specific features 𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝. The
improvement ranges from 64.8% to 75.7% when the disparity branch
does not receive 𝐹𝑠𝑒𝑔 , and to 77.6% when it does. This also shows that if
the disparity branch receives information from the coarse segmentation
task, it can learn more meaningful features that can be passed to the
refined segmentation branch.

Finally, the experiments show that the refined segmentation per-
forms worse than the coarse segmentation (first two rows of Table 8)
when it does not receive the features 𝐹𝑠𝑒𝑔 and 𝐹𝑑𝑖𝑠𝑝. This is probably
because it can only use the features at the beginning of the backbone
(low-level features), which are not enough for such a complex task as
semantic segmentation.
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Fig. 10. 3D reconstruction obtained for the entire TrimBot2020 Garden dataset. Cold colors indicate well-reconstructed segments. Hot colors indicate missing parts (completeness).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
6.2. Effectiveness vs. efficiency

Another important aspect to discuss is the objectives of high effi-
ciency (measured in the number of parameters) and precision of the
proposed method, because they are, quite often, opposite objectives,
since attempting to improve one of them usually implies a deterioration
in the other. From this point of view, this task can be seen as a Multi-
objective Optimization Problem (MOP) in which two functions are
optimized simultaneously.

The means commonly employed to evaluate this type of problem
is the use of the concept of non-dominance: One solution is said to
dominate another if, and only if, it is better or equal in each objective
function and, at least, strictly better in one of them. The Pareto frontier
stands for the set of all non-dominated elements and represents the
different optimal solutions to the MOP. The strategies within this set
can be considered the best without any particular priority or order
among them.

Fig. 12 compares the semantic segmentation precision and the
efficiency of the algorithms evaluated assuming a MOP scenario. In
addition, the Pareto frontier is marked with the non-dominated results,
in which four combinations are found to be non-dominated for the
Cityscapes dataset (Our proposal, Ladder D121, Ladder D169, and
Panoptic), two for the Garden dataset (Our proposal and DTIS), and
three for S-ROSeS (Our proposal, U-Net, and FCSN-Comb.). Therefore,
for all datasets, our solution is the multi-task approach (marked with
triangles in the graph) with the best combination of efficiency and
precision. The rest of the non-dominated results are optimized for
a single task (Ladder, Panoptic, and U-Net), or they are multi-task
solutions but much less efficient (DTIS and FCSN-Comb.). In the case of
FCSN-Comb., it is important to remember the considerable slowdown
produced by the combination of segmentation and disparity in an
iterative algorithm.

6.3. Computational complexity

To assess the efficiency of the compared architectures, we have
focused on the number of parameters, disregarding execution time due
12
to its dependence on factors not related to the method itself, such as
the programming language, code optimization, external libraries, or
hardware configuration, among others. Therefore, we consider using
the number of parameters more fair, as it is directly related to the time
neural architectures will take to perform a forward pass.

However, in this section, we analyze the execution time to give an
intuitive idea of the efficiency of the proposal according to the available
resources. For this, an experiment was carried out on three different
machines: one with very high resources (equipped with a DGX A100
GPU with 40 Gb of RAM), one more modest (RTX 4090 with 24 Gb
of RAM), and one with low resources (GTX 1650 Super with 4 Gb of
RAM). Table 9 shows the average training times per epoch and infer-
ence times. This was calculated using the S-ROSeS dataset, averaging
over 100 training epochs and 100 forward passes for inference. These
times were obtained for a non-optimized implementation in Python,
using the PyTorch library. Nonetheless, acceptable times of about 2
FPS are observed for the low-resource architecture, which could be
substantially improved by optimizing the code.

Comparing these results with some state-of-the-art methods, we can
confirm the argument regarding the efficiency relationship with the
number of parameters. For example, the compared architecture with
the most similar number of parameters, Ladder-169, which has 15.6M
(vs. 18M in our case), has an average inference time of 0.56 s in the
low-resource scenario. Heavier architectures like DTIS or FCSN-Comb.
report much slower inference times, 4.23 and 5.67 s, respectively.
Meanwhile, more efficient architectures, such as SegNet or U-Net,
manage to execute in average times of 0.1 s However, in return, they
achieve worse results and only predict segmentation. Thus, it should
be added the execution time for disparity calculation, a more complex
and demanding task than segmentation.

6.4. Limitations

Having discussed the strengths of the proposal, this final section
addresses its limitations, which are mainly related to the training data,

its type, and the types of errors, as detailed below.
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Fig. 11. Four examples of the results obtained for S-RoSES. The input stereo pair is included in the first two rows. The GT and predicted disparities are shown in rows 3 and
4. Row 5 shows the error 𝑒 of the predicted disparity using 3 colors: blue (𝑒 < 3), green (𝑒 < 6), and red (𝑒 ≥ 6). Rows 6 and 7 respectively show the coarse and the refined
segmentation. In this case, the differences with the GT have been marked with two colors: blue for false positives (predicted branch pixels that do not appear in the GT) and red
for false negatives (branch pixels in the GT that have not been detected). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 9
Comparison of execution time (in seconds) for the proposed model across three
computer architectures with varying resource levels, presenting the mean time plus
standard deviation for both training over 100 epochs and inference on 100 images.

GPU model Epoch training time (s) Inference time (s)

DGX A100 133.74 ± 13.81 0.15 ± 0.01
RTX 4090 386.32 ± 48.73 0.49 ± 0.06
GTX 1650 S 601.46 ± 37.27 0.60 ± 0.02

Although the method is proposed as efficient in terms of parame-
ters and computational resources, it still requires a significant volume
of annotated data with information on both disparity and seman-
tic segmentation for training, which can be challenging in domains
where data annotation is costly or difficult to obtain. As a solution
to this limitation, future work could explore the integration of Self-
Supervised Learning [66] to improve weight initialization and reduce
the amount of annotated data required. Alternatively, the integration
of Domain Adaptation techniques [67] could be considered to adapt
13
models learned in one domain to new application domains. This latter
technique would also allow the method to generalize to new domains
or types of scenes, which is especially relevant in robotics and au-
tonomous driving applications where environmental conditions can
vary significantly.

Another potential limitation of the proposal is its dependency on a
very specialized type of data for disparity estimation, such as stereo-
scopic images. This dependency could limit its applicability in situa-
tions where only monocular images are available or where capturing
stereoscopic images is not feasible. In these cases, adapting the ar-
chitecture to implement depth estimation techniques from a single
image, which can leverage monocular depth cues such as the relative
size of objects, perspective, and shadows, to infer depth without the
need for a stereo pair, could be studied [15]. In this case, most of the
architecture already operates with only the left image, and it would
only be necessary to integrate these types of techniques replacing the
depth calculation when using the right image.

On the other hand, the method benefits from the use of attention
mechanisms and the progressive sharing of task-specific features across
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Fig. 12. Analysis of efficiency (measured in the number of parameters) and effectiveness (considering IoU for the Cityscapes and S-ROSeS datasets and Pixel Accuracy for
rimBot2020 Garden) as a Multi-objective Optimization Problem (MOP). Non-dominated elements and multi-task approaches are highlighted.
ts branches. However, this strategy might not be optimal for all object
lasses or objects at different scales, which could affect the precision
f the segmentation and disparity estimation in complex scenes. This
imitation has been observed in the qualitative analysis conducted for
oarse segmentation in Fig. 11, where the main errors appear at the
dges of thin elements. However, these errors seem to be resolved
hen refining the segmentation by leveraging shared information from

he different branches and the details of higher-level features. Further
esearch is intended on how to improve this limitation by including
ther types of techniques, such as a loss function that penalizes errors
t the edges, the use of specific data augmentation techniques that
14
generate variations at the edges of objects, or the inclusion of other
techniques in the architecture like Atrous or dilated convolutions [26].

7. Conclusions

This work presents an efficient end-to-end method based on multi-
task learning that successfully learns the semantic segmentation and
disparity map together from an input stereo pair. To increase efficiency
without sacrificing accuracy, a combination of a series of techniques
is proposed, such as the use of Siamese architecture, decoders that
perform progressive multi-scale learning and share task-specific fea-
tures, the inclusion of attention layers to focus on the relevant parts,
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Fig. A.13. Comprehensive visual overview of the proposed architecture including the detail of each of its parts. Refer to Tables A.10, A.11, A.12, and A.13 for specific information
on the backbones and branches related to coarse segmentation, disparity, and refined segmentation, respectively.
or Spatial Pyramid Pooling to capture correlations between distant
features, among others.

The proposal is evaluated with 3 datasets—Cityscapes, TrimBot2020
Garden, and S-ROSeS—and compared with 21 state-of-the-art methods,
outperforming the multi-task learning solutions and obtaining compet-
itive results against the methods that solve each task individually but
using only 1∕3 of their parameters.
15
It is experimentally demonstrated that using separate decoders for
each task is not sufficient to achieve good performance, and that
sharing the knowledge of segmentation and disparity tasks between
them, in a progressive fashion, improves the results of both tasks.
Since the features of each task are obtained at different resolutions,
these task-specific features also provide multi-scale information for
coarse-to-fine learning. In addition, sharing the learned features also
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Table A.10
Backbone settings. It shows the input image (Left and Right) for each backbone and
the features that are extracted. The size of each feature is shown with respect to the
input size (height 𝐻 and width 𝑊 ). The last dimension of the output represents the
umber of channels.
Input Layer settings Output

Name Dim

Left Densenet121

𝐹𝐿
1

𝐻
4

× 𝑊
4

× 128

𝐹𝐿
2

𝐻
8

× 𝑊
8

× 256

𝐹𝐿
4

𝐻
32

× 𝑊
32

× 1024

Right Densenet121

𝐹𝑅
1

𝐻
4

× 𝑊
4

× 128

𝐹𝑅
2

𝐻
8

× 𝑊
8

× 256

𝐹𝑅
4

𝐻
32

× 𝑊
32

× 1024

Table A.11
Coarse segmentation branch modules. For the convolutional layers conv_1d and
conv_2d, the layer settings 𝑘 × 𝑘, 𝑓 represent the kernel size 𝑘 and the number of
ilters 𝑓 .
Input Layer settings Output

Left conv2D(5 × 5, 1) L_conv_0

𝐹𝐿
4

𝐹𝑅
4

concat cat_0

cat_0 upscale ×2
conv1D(1 × 1, 64)

conv1d_0

conv1d_0 hourglass(3 × 3, 32) 𝐹𝑠𝑒𝑔
𝐹𝑠𝑒𝑔 resize to L_conv_0 dim convdec_0

L_conv_0
convdec_0

concat cat_1

cat_1 conv1D(1 × 1, 32) conv1d_1
conv1d_1 hourglass(3 × 3, 32) convdec_1
convdec_1 conv2D(3 × 3, 𝑛_𝑙𝑎𝑏𝑒𝑙𝑠) conv2d_0
conv2d_0 resize to Left dim coarse_seg

Table A.12
Disparity branch modules. The brackets in the 𝑆𝑃𝑃 module indicate that the input
was processed in 4 different ways and the result of each process was concatenated.

Input Layer settings Output

Left conv2D(5 × 5, 1) L_conv_1

𝐹𝐿
2

⎡

⎢

⎢

⎢

⎢

⎣

avgPool(32, 32), conv2D(3 × 3, 32)
avgPool(16, 16), conv2D(3 × 3, 32)
avgPool(8, 8), conv2D(3 × 3, 32)

𝐹𝐿
2

⎤

⎥

⎥

⎥

⎥

⎦

𝑆𝑃𝑃 𝐿
2

𝐹𝑅
2

⎡

⎢

⎢

⎢

⎢

⎣

avgPool(32, 32), conv2D(3 × 3, 32)
avgPool(16, 16), conv2D(3 × 3, 32)
avgPool(8, 8), conv2D(3 × 3, 32)

𝐹𝑅
2

⎤

⎥

⎥

⎥

⎥

⎦

𝑆𝑃𝑃𝑅
2

𝑆𝑃𝑃 𝐿
2

𝑆𝑃𝑃𝑅
2

correlation_layer corr

corr conv1D(1 × 1, 128) conv1d_2

𝐹𝑠𝑒𝑔 hourglass(3 × 3, 128)
resize to conv1d_2 dim

convdec_2

conv1d_2
convdec_2

concat cat_3

cat_3 hourglass(3 × 3, 64) 𝐹𝑑𝑖𝑠𝑝
𝐹𝑑𝑖𝑠𝑝 resize to L_conv_1 dim convdec_3

L_conv_1
convdec_3

concat cat_4

cat_4 conv1D(1 × 1, 64) conv1d_3
conv1d_3 hourglass(3 × 3, 64) convdec_4
convdec_4 deconv2D(5 × 5, 1) deconv2d_0
deconv2D_0 resize to Left dim disp

helps to reduce the complexity of the network and thus to increase
its performance. This reduced number of parameters may allow its
application on systems that have limited resources, such as low-budget
16
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Table A.13
Refined segmentation branch modules. The brackets in the 𝑆𝑃𝑃 module follow the
same notation as in Table A.12.

Input Layer settings Output

Left conv2D(5 × 5, 1) L_conv_2

𝐹𝐿
1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

avgPool(64, 64), conv2D(3 × 3, 32)
avgPool(32, 32), conv2D(3 × 3, 32)
avgPool(16, 16), conv2D(3 × 3, 32)
avgPool(8, 8), conv2D(3 × 3, 32)

𝐹𝐿
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑆𝑃𝑃 𝐿
1

𝐹𝑅
1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

avgPool(64, 64), conv2D(3 × 3, 32)
avgPool(32, 32), conv2D(3 × 3, 32)
avgPool(16, 16), conv2D(3 × 3, 32)
avgPool(8, 8), conv2D(3 × 3, 32)

𝐹𝑅
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑆𝑃𝑃𝑅
1

𝑆𝑃𝑃 𝐿
1

𝑆𝑃𝑃𝑅
1

concat cat_5

cat_5 conv1D(1 × 1, 128) conv1d_4
conv1d_4 hourglass(3 × 3, 64) convdec_5
𝐹𝑠𝑒𝑔 resize to convdec_5 dim 𝐹𝑠𝑒𝑔
𝐹𝑑𝑖𝑠𝑝 resize to convdec_5 dim 𝐹𝑑𝑖𝑠𝑝

𝐹𝑠𝑒𝑔
convdec_5

concat cat_6

𝐹𝑑𝑖𝑠𝑝
convdec_5

concat cat_7

cat_6 conv1D(1 × 1, 1), sigmoid() seg_att
cat_7 conv1D(1 × 1, 1), sigmoid() disp_att

seg_att seg_att∗convdec_5
resize to L_conv_2 dim

seg_att

disp_att disp_att∗convdec_5
resize to L_conv_2 dim

disp_att

seg_att
disp_att
L_conv_2

concat cat_8

cat_8 hourglass(3 × 3, 32) convdec_6
convdec_6 conv2D(3 × 3, 𝑛_𝑙𝑎𝑏𝑒𝑙𝑠) conv2d_1
conv2d_1 resize to L_conv_2 dim ref_seg

autonomous driving systems or the development of affordable robots
for garden care.

As future work, it is intended to extend the proposal to process other
types of data, such as point clouds, to directly calculate their segmen-
tation and depth. We also intend to further improve the efficiency of
the method by studying more advanced network architectures, using
more efficient backbones, and also by optimizing the implementation.
Another line of work is exploring proposals to reduce the amount
of training data needed, including techniques such as self-supervised
learning, few-shot learning, or domain adaptation.
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Appendix. Network details

This section complements the network details described in the main
body of the paper. Fig. A.13 shows a comprehensive overview of the
proposed architecture with detailed information of each of its parts.
Table A.10 shows the split of the backbone and the dimension of each
output feature 𝐹𝑖. Tables A.11, A.12, and A.13 show the layer settings,
inputs, and outputs of the coarse segmentation, disparity estimation,
and refined segmentation branches, respectively. Each layer has a stride
of 1 except for the Spatial Pyramid Pooling (SPP), where the stride is
the same size as the pooling window.
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