
1
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Abstract—Stress is revealed by the inability of individuals
to cope with their environment, which is frequently evidenced
by a failure to achieve their full potential in tasks or goals.
This study aims to assess the feasibility of estimating the level
of stress that the user is perceiving related to a specific task
through an electroencephalograpic (EEG) system. This system
is integrated with a Serious Game consisting of a multi-level
stress driving tool, and Deep Learning (DL) neural networks are
used for classification. The game involves controlling a vehicle to
dodge obstacles, with the number of obstacles increasing based on
complexity. Assuming that there is a direct correlation between
the difficulty level of the game and the stress level of the user,
a recurrent neural network (RNN) with a structure based on
gated recurrent units (GRU) was used to classify the different
levels of stress. The results show that the RNN model is able to
predict stress levels above current state-of-the-art with up to 94%
accuracy in some cases, suggesting that the use of EEG systems in
combination with Serious Games and DL represents a promising
technique in the prediction and classification of mental stress
levels.

Index Terms—EEG, Serious Games, Deep Learning, Mental
stress

I. INTRODUCTION

STRESS is one of the most common conditions in modern
society, and its impact on the health and well-being of in-

dividuals can be profound. Each person perceives and manages
stress to a greater or lesser extent, where poor management can
lead to chronic stress, which has a demonstrable relationship
with physical and mental health problems [1], [2]. The brain
is intimately connected to stress. When a person experiences a
stressful event, triggers a response that involves the release of
hormones and the bodily adaptation in order to overcome that
situation [1], [3], [4]. In those cases, they may confront these
situations with varying levels of confidence, tension, fear or
tranquility [5], [6], [7].

In recent decades, the study of stress has gained significant
importance in several fields such as medicine, psychology,
education or professional activity, among others. Thanks to
technological and scientific advancements, a variety of tech-
niques and tools have been developed to measure and analyze
stress. Furthermore, artificial intelligence (AI) and machine
learning (ML) have enabled the development of predictive and
classification models for stress, opening up new possibilities
in research and treatment of this condition [8]. A way of
evaluating stress is recording and processing EEG signals from
the surface of the scalp using non-invasive electrodes [9], [10].
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A number of studies have emerged focusing on the extraction
of relevant information from human EEG signals, with their
value lying in their application to the diagnosis and treatment
of a wide range of neurological and psychiatric disorders [10],
[11], [12].

When addressing the evaluation of stress, a few recent
examples of ML approaches can be cited. For instance, Kalas
et al. conducted a study on stress detection using EEG signals
and applied k-means clustering to classify stress-relax binary
states. The study compared this classification with an objective
assessment based on physiological variables [13]. Another
work by Perez-Valero et al. quantitatively evaluated stress
through virtual reality (VR), measuring brain activity of 25
participants. Their study employed individualized machine
learning models based on regression algorithms and achieved
a high correlation with ground-truth stress levels [14]. Further
analysis with Deep Learning (DL) models for stress detection
has also been developed due to improved computational ca-
pacity of this algorithms. The study of Pandey et al. focused on
emotion detection, including stress, using DL and categorizing
emotions into valence and arousal. They applied a deep neural
network (DNN) model with approximately 60% accuracy
on test data. Comparative analysis with classical machine
learning classifiers demonstrated similar or superior results
depending on the specific application [8], [15]. Finally, a study
conducted by Xu et al. addressed the use of DL combined
with Transformers. This work shows promising results of up
to approximately 92% accuracy [16].

All previous approaches share the common goal of stress
detection, each employing different techniques such as ML
and DL, but stress induction lacks of interactivity. Although
there are some studies that employ interactive approaches to
measure mental stress in many cases they only rely on passive
audiovisual experiences as a method of stress monitoring
[17]. The present study proposes an innovative differentiating
approach based on Serious Games. This concept is linked
to games developed for purposes other than entertainment,
aiming to provide value and utility in their focused field.
Our proposal employs this kind of games as an interactive
method for the quantitative measurement of mental stress,
seeking greater user involvement and attention during the
monitoring process with the objective of corroborating if this
interactive approach is an effective method for the prediction
and classification of mental stress from EEG signals. For the
identification of the stress level, we propose a classification
model consisting of a RNN based on a GRU architecture, a
variant of the Long Short-Term Memory (LSTM) network, due
to the time-series nature of the recorded signals.
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II. MATERIALS AND METHODS

The proposed system consists of a Serious Game about
a racing game focused on avoiding obstacles with a vehicle
controlled by the side arrow keys on the computer keyboard
(see Figure 1). The game is divided into 4 levels of difficulty,
each differentiated by the increasing number of obstacles to
dodge. As described in the introduction, the use of the game as
the final application is based on the interactivity and attention
it generates in users during gameplay. An 8-channel EEG
device is used as the recording method to capture the brain
signals of a group of 19 users, from which a dataset of signals
is obtained based on the played level, repetition, channel, and
user. The dataset undergoes a preprocessing stage to optimally
input the data into the classification model. The goal is to
classify mental stress into 4 levels of intensity correlated with
the 4 levels of difficulty in the Serious Game. The DL model
consists of RNNs with a structure of 7 layers based on GRUs.
The model is trained with the preprocessed dataset to tackle
the multi-class classification problem of mental stress into 4
intensity levels.

A. Serious Game

The development of a game is a complex and creative
process that involves multiple stages, from the conception
of the idea to its production. The development process for
the proposed game takes place in the Unity game engine,
which brings together the necessary tools to import materials,
textures, and effects that shape the game and allow for the
construction of the application to be integrated into the EEG
system.

The initial idea of the game addresses how to make the
player face various situations that generate different lev-
els of stress. To achieve this, based on the concept of
stress-generating Information and Communication Technolo-
gies (ICTs) factors, a racing game with multiple difficulty
levels is proposed. In each level, the number of obstacles to
dodge will increase. This idea is based on the ICT aspect of
information overload, where the increase in visual elements
(obstacles) in each level creates an overload that induces ten-
sion and stress. Additionally, technical difficulty is induced by
creating four levels, thereby increasing the game’s challenge.
On the other hand, social isolation is induced by requiring
the player to perform the test alone without distractions, with
the car engine and game sound isolating external sounds [18],
[19].

The game presents randomly generated roads and obstacles,
the car moves by scrolling vertically through these random
roads during the level. The difficulty of each level varies
depending on the increase or decrease in the number of
obstacles (trucks) placed on each road. Players can change
the horizontal position of the car while it moves at a constant
velocity through the screen. A countdown at the beginning of
each level has been added together with sounds activated when
the car crashes with the obstacles which are represented by
long yellow trucks. When a player crashes with an obstacle
it disappears and an explosion sound is played to increase

the sense of failure. Additionally, Play Now and Play Again
buttons have been added for better management.

Additionally, a survey has been conducted to ensure that the
game levels generate a stress level comparable to the difficulty
of each level (Figure 2). Each participant was asked to decide
which amount of stress (from 1 to 10) was feeling while
playing each of the game levels. The survey shows that each
of the 4 levels provide a clear difference in stress perception.

B. EEG System and Communication

The EEG system used is the Unicorn Hybrid Black ac-
quisition device (G.tec Medical Engineering GmbH, Austria)
connected to a laptop computer with the final application of
the Serious Game programmed in Unity and the recording
API programmed to integrate the game with the acquisition
device. The Unicorn Hybrid Black is an EEG device that
allows the measurement of brain electrical activity in different
scalp areas through 8 surface electrodes located following the
10/20 International System (Fz, C3, Cz, C4, Pz, Po7, Oz,
P08). The EEG signals are sampled at 24 bits and 250 Hz
per channel, and referenced to two electrodes placed on the
mastoids [20]. This device has been chosen to evaluate if
mental stress detection is feasible even with a low-cost device
and outside the laboratory environment.

For the integration of the Unicorn recording device and the
Serious Game, an API is programmed using UDP sockets to
enable communication between the two parts. The recording
is programmed to last exactly 90 seconds.

C. Experimental Protocol

Brain signals have been measured from a group of 19 users
(15 men and 4 women with an average age of 31±14). 12
of the participants are right-handed and 7 are left-handed. All
participants have signed the correspondent informed consent
following the Ethics Committee Protocol (REF: UA-2023-
02-08 2) according to the Declaration of Helsinki, which
establishes the postures, breaks, and timing to be followed.
During the test, each user is monitored by level and repetition,
with 5 repetitions for each of the 4 difficulty levels of the
Serious Game, resulting in 20 EEG measurements of 90
seconds for each of the 19 participants, generating a 30-minute
EEG recording per user.

D. EEG Signal Preprocessing

Once the brain signals of each user are captured, a pre-
processing window is established with the aim of clean-
ing, removing noise, and transforming the data to arrange
it optimally for subsequent classification. To achieve this,
a low-pass filter is applied to eliminate higher frequencies
caused by motion artifacts or high-frequency electromagnetic
interference, allowing only frequency components up to 60
Hz to pass through. A high-pass filter is also used to remove
lower frequencies present in the signal caused by slow-motion
artifacts such as head position changes, slow eye movements
or finger movements during the game interaction. The applied
filter removes frequencies ranging from 0 to 4 Hz to eliminate
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(a) Serious Game

(b) Unicorn Hybrid Black
(c) Unicorn Hybrid EEG Elec-
trodes

(d) EEG cap (e) Electrode positions

Fig. 1: Experimental setup composed of the Serious game (a), and the EEG system composed of the LED array (b), electrodes
(c), cap (d) and standardized channel locations (e).

Fig. 2: User’s subjective stress perception at each difficulty
level. 1-10 Likert Scale (n=19).

all types of motor and visual artifacts present during the
experiment. A Notch filter is implemented to eliminate the
50 Hz component caused by the power grid interference.
Additionally, an adaptive averaging filter is applied to remove
residual noise or interference by adapting to the input signal
while preserving the relevant signal features. Other methods,
such as Independent Component Analysis (ICA), have been
discarded due to the limited number of channels and uncertain
reliability.

In order to generate a larger amount of data to train the DL
model, the EEG signal from the 8 channels is divided into 2-
second segments with a 20% overlap. This has been done to
generate a large amount of data for the neural network, which

also allows for the generation of a greater number of patterns
for the network to learn from and enhances computational
efficiency. The generated dataset is stored in a matrix saved
in a MATLAB (.mat) file, organized in folders by user. Each
file is labeled according to the attempt and difficulty level of
the game.

The remaining transformations and preprocessing steps take
place in Kaggle (online community of ML). The Kaggle’s
environment used to preprocess and also train the models
provides a Tesla P100 GPU with 16 GB of RAM and weekly
access of 30 hours. The data is labeled with a value ranging
from 0 to 3, corresponding to the difficulty level of the
respective level. The specific labeling is as follows: ”0: Low
stress, 1: Moderate stress, 2: Intermediate stress, 3: High
stress”.

Prior to preparing the dataset for the model, it is necessary
to ensure the removal of as many artifacts as possible, which
involves performing a second preprocessing step for this
purpose. Values exceeding the absolute threshold of 75 mV
are considered outliers, as they exceed the resting potential
of neurons [14]. These outliers can be caused by blinks, user
movements, or simply uncommon recordings of brain activity.
To handle them, they are mitigated to 0 mV without being
removed from the dataset.

It is worth noting that DL models perform better with data
normalized between the values of 0 and 1. This is because
normalized data has lower variance and is less sensitive to
any remaining outliers. Additionally, normalized data provides
numerical stability and allows the model to compare and
extract features more easily since all the data is on the
same scale. Therefore, the data has been normalized and
rounded to one decimal place to avoid overloading subsequent
calculations due to the number of decimal places.
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Once the data has been preprocessed, the next step is to
transform it to make it suitable as an input for the model.
Considering that a minimum of 19 stress classification models
will be implemented (one model per user), the computational
cost will be high. To leverage the capabilities provided by
Kaggle, the data is transformed into one dimension making it
suitable for one-dimensional models. Afterwards, the dataset
is converted into a tensor and divided into training, testing, and
validation sets. The predefined split percentage is as follows:
20% of the total data for the test set, 20% of the remaining
80% for the validation set and the remaining for the training
set.

E. Multi Stress Level Classification

Once the preprocessed and transformed dataset is ready,
patterns and features are extracted using a DL model to make
predictions on stress level classification.

Considering that our problem involves classifying EEG sig-
nals using DL and that classification models for EEG signals
do not generalize well due to the variability in how individuals
express their emotions at the brain level and the varying
requirements to induce stress in each person, we will train a
classification model for each user. Additionally, medium-size
models (4 participants) and models with all participants will
be trained to establish how well this modelling can generalize.

Regarding the implementation of the model, it is necessary
to establish a consensus to ensure that each generated model
is identical in terms of architecture and hyperparameters,
ensuring consistent classification for each user. To achieve
this, it is important to consider the type of data used as input.
In this case, the signal data corresponds to a time series, so
a RNN model based on GRU will be implemented (Figure
3). GRU units are a variant of LSTM networks, with the
difference being that each GRU unit has two gates: reset gate
and update gate, instead of the three gates (input, forget, and
output) present in LSTM units. This design choice increases
computational efficiency with GRU units at the expense of
reducing long-term storage capacity [21]. Also, GRU has been
implemented due to the favorable nature of the data as a
time series and its ability for short-term memory, allowing
it to retain information about important patterns to learn and
discern stress levels. In contrast, simple DNN are unable to
learn, according to previous analysis and Transformers require
a large amount of data (much greater than the current dataset)
for the model to start learning patterns properly.

To build the model, an input layer is implemented with a
size corresponding to the training data that will be fed into
the model. This is followed by 4 GRU layers, each consisting
of 128 units, except for the last layer which has 256 units.
Subsequently, a flattening layer is implemented to reduce the
dimensionality of the data. Finally, the output layer is added,
consisting of a dense layer with 4 units representing the 4
stress levels. The softmax activation function is applied to
interpret the output as a probability distribution across the 4
stress levels [22].

To compile the model, an optimizer, a loss function, and a
performance evaluation metric need to be defined. Firstly, the

Fig. 3: DL model architecture composed of GRU layers where
the input data is routed to a dense layer with ”softmax”
activation function to confront the multi-class classification
problem.

”Adam” (Adaptive Moment Estimation) optimizer has been
implemented. This optimization approach allows the network
to adapt to different learning rates and adjust the model to
the specific problem at hand [22]. As for the loss function,
”categorical cross-entropy” has been implemented, as the
address problem is multi-class and this function evaluates the
discrepancy between the predicted probabilities and the actual
classes, aiming to minimize this divergence during the model
training. Additionally, a suitable performance evaluation met-
ric should be chosen to assess the model’s performance on the
task at hand. The performance evaluation metric chosen is the
accuracy, which measures the fraction of correct predictions
out of the total predictions made [22], [23]. Finally, the model
is trained by providing the corresponding training data, which
includes the signal data and their corresponding labels. The
number of epochs to iterate over, the batch size of the data, and
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validation data are defined. Additionally, a learning rate decay
callback is introduced to gradually reduce the learning rate at
each epoch. In this case, TensorFlow learning rate scheduler
has been used, which adjusts the learning rate based on a
lambda function that reduces the rate by a factor every X
epochs. This allows for a fine-tuning of the model’s learning
process and potentially improves its performance.

The process of creating, compiling, and training the model is
replicated for each of the 19 users and later is generalized by
implementing intermediate (M) and full-dataset (G) models,
resulting in a total of 25 stress level classification models.
Individual models have been trained using 60 epochs. This
number is selected by averaging the optimal number of epochs
for each individual model. However, for larger models ”M”
and ”G” a higher number of epochs (90) has been also selected
to show if there were differences in accuracy due to the
increase of this parameter.

Each model has been trained with the same hyperparame-
ters, except for the aforementioned number of epochs and the
increase in batch size in the general models, which require
a longer training time to learn, specifically, being 32 for
individual models, 64 for medium models, and 512 for large
models. In spite of that, the architecture and size of the model
remain the same. After training and validating the models, they
are saved, and their performance is evaluated using unseen test
data. This provides a series of results based on the metric used,
accuracy. Both, the training and performance evaluation of the
models, with validation and test data, are performed using a
cross-validation. Each model is therefore trained and validated
5 times, to later obtain the average accuracy and deviation as
the final result for the evaluation of the model.

III. RESULTS AND DISCUSSION

Results of individual (I), medium size (M) and generalized
(G) models are shown in Table I, including the selected num-
ber of epochs and the mean accuracy values after classification.
M1 model includes participants 1, 6, 16 and 18, while M2
includes participants 2, 4, 12 and 19. Users included in the M
models are randomly selected. The G model includes all par-
ticipants except for users 2, 8 and 11. These three participants
were excluded from the general model because they exhibited
sudden movements and unintentional gestures during the test,
which contributed to the appearance of artifacts. This aspect is
reflected in the individual model’s accuracy of some of these
users. Additionally, the letter ”L” indicates that the model has
been trained for a larger number of epochs.

Figure 4 shows that models I1, I4, I6, I9, I16, and I17
have achieved an accuracy greater than 90%. However, four
of them, I3, I7, I10, and I11, do not reach 80% accuracy.
The variability in these results is relatively low and can be
attributed to factors such as noise during the test, user’s sudden
movements, lower concentration at certain moments during
monitoring, or simply variations in the user’s perception of
stress levels compared to the established reference. In other
words, there may be moments where the user is more or less
stressed than what is defined.

Models trained with a higher number of iterations, such as
M1L, M2L, or G1L, show that the increased number of epochs

does not significantly improve the model’s accuracy (Wilcoxon
Sum Rank Test, p > 0.05). However, if a model were to
be constructed with a very large number of participants, this
would be a factor worth studying and considering.

On the other hand, the accuracy metric used in the devel-
opment is one of the most suitable for this problem. Since the
model’s output is an integer representing the stress level, this
metric can effectively show the percentage of times the model
has correctly predicted a stress level. Thus, intuitively, the real
performance of the model can be understood.

Theoretically, as more individuals are introduced, the accu-
racy of the model should decrease due to the fact that EEG
data does not generalize well as it is a signal very dependent
on individual brain behavior. For the intermediate models,
considering that one of them was trained with individuals
who had an accuracy higher than 90%, the result was lower,
although the decrease was minimal compared to what was
expected. With a higher number of epochs, it achieved a very
similar accuracy of approximately 89%.

For the model that includes all 16 users, the reduction
in accuracy was significant, reaching around 73%. However,
this result is still quite promising because it was possible to
generalize a model that includes a large number of different
users, each with distinct psychological traits. Despite being
lower than the accuracy of the individual models, which was
expected, the percentage of accuracy is much higher than
initially estimated. Compared to other studies, there was a
possibility that with such a number of users, the model would
not learn or yield a lower result.

IV. COMPARATIVE WITH PREVIOUS STUDIES

After presenting and discussing the results, a comparison
between our study and previous works addressing stress clas-
sification from EEG signals has been done (see Table II). This
comparison has been carried out only with those studies that
use ML or DL as an approach for classifying mental stress
level. It is worth mentioning that the disparity of protocols and
approaches make more difficult this comparison but studies
have been selected at least considering multi-class stress level.

Following Table II, in the study presented by Hou et al. [24]
a Stroop colour-word test is used to induce different levels
of stress, and two classifiers, support vector machine (SVM)
and K-nearest neighbors (k-NN), are applied, comparing the
accuracy results of both methods. In this study, a classification
of different stress levels is made, which are divided into 2, 3
or 4 levels; this allows us to compare our model with those
described in this study, seeing how our model always classifies
4 levels, in addition to the fact that the accuracy results are
considerably higher in comparison for those cases.

Kalas et al. [13] conducted research on stress detection
using a multi-class method such as k-means clustering to
divide the dataset into 2 classes by applying a threshold. In
contrast, our study segments the data into 4 classes and extracts
features from 19 subjects. The evaluation metric accuracy
was not used, but the classification threshold was shown as
0.3989 stress index. On the other hand, Perez-Valero et al. [14]
conducted a study employing a virtual relaxation experience,
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Models Epochs Mean Accuracy Std
I1 60 0.912 0.012
I2 60 0.854 0.014
I3 60 0.783 0.018
I4 60 0.944 0.008
I5 60 0.866 0.012
I6 60 0.914 0.008
I7 60 0.868 0.004
I8 60 0.699 0.018
I9 60 0.897 0.008

I10 60 0.795 0.009
I11 60 0.716 0.012
I12 60 0.828 0.007
I13 60 0.874 0.005
I14 60 0.887 0.010
I15 60 0.895 0.009
I16 60 0.932 0.012
I17 60 0.939 0.006
I18 60 0.790 0.015
I19 60 0.855 0.020
M1 60 0.858 0.004
M2 60 0.841 0.007

M1L 90 0.837 0.010
M2L 90 0.844 0.016
G1 60 0.722 0.005

G1L 90 0.714 0.007

TABLE I: Results of trained models. The nomenclature for each model corresponds to the letter ”I” followed by the participant
number for individual models, the letter ”M” followed by the model number for medium-sized models. Additionally, the letter
”L” indicates that the model has been trained with a larger number of epochs. Finally, the letter ”G” followed by the model
number represents the large-sized model that includes all users except for three (I2, I8, I11). The columns ”Mean Accuracy”
and ”Std” represent the mean and the corresponding standard deviation obtained from a 5-fold cross validation.

Fig. 4: Mean accuracy and standard deviation for each proposed model. I1-I19 corresponds to individual models, M1-M2L
corresponds to middle-size models and G1 and G1L corresponds to generalized models.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3395548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Study Hou et al. (2015) [24] Perez-Valero et al. (2021) [14] Pandey et al. (2022) [15] OURS
Participants 9 23 26 19

Dataset source Own Own External Own
EEG Channels 14 64 64 8

Method to
induce stress

Stroop colour-word
test

VR-induced
relaxation-stress states

Induction of
different moods

Serious game
with 4 levels
of difficulty

Classes to
be classified (2, 3), 4 5 2 4

Metrics Accuracy Correlation Accuracy Accuracy

Performance
Worst 0.47, 0.40 0.7 0.56 0.73

Average 0.67±0.13, 0.54± 0.11 0.92 0.60±0.04 0.86±0.07
Best 0.84, 0.74 1 0.62 0.95

Generalised performance
(if evaluated) – – – 0.73

Study Xu et al. (2022) [16] Roy et al. (2023) [25] Sundaresan et al. (2021) [26] OURS
Participants 23 48 13 19

Dataset source Own External Own Own
EEG Channels 64 14 16 8

Method to
induce stress

Music and
arithmetic
operations

SIMKAP
experiment

Arithmetic
operations

Serious game
with 4 levels
of difficulty

Classes to
be classified 2 2 4 4

Metrics Accuracy Several (we show accuracy) Accuracy Accuracy

Performance
Worst 0.62 <0.9 0.91 0.73

Average 0.81 <0.95 0.93 0.86±0.07
Best 0.93 0.98 0.99 0.95

Generalised performance
(if evaluated) 0.75 – – 0.73

TABLE II: Summary of State-of-the-Art of stress level classification from EEG signals.

unlike the interactive ”serious game” approach in this study.
They extracted features from 23 participants to classify 2 states
(relaxed and stressed), whereas this study includes 19 users
and aims to classify 4 classes. They used classical ML and
various methods for classification, unlike the DL and accuracy
metric used here. Their result showed a correlation coefficient
between 0.7 and 1, but this metric could have flaws as it
ignores amplitude and baseline when comparing data and can
lead to inaccurate predictions despite a high coefficient.

The study by Pandey et al. [15] also uses DL for stress
classification, but they use a DNN instead of LSTM net.
Their approach involves a 64-channel EEG device, a public
dataset with 26 subjects, and the classification of emotions
into two variables: valence and arousal. They achieve around
60% accuracy, lower than the current study, but find that DL
is the most effective choice for their problem, compared to
the tested ML method SVM. Both projects use the accuracy
metric, showing the model’s real effectiveness.

The study by Xu et al. [16] focuses on using Transformers
with DL networks, a popular and novel approach. They use
different music types for relaxation and arithmetic tasks for
stress induction, monitoring 23 users with a 64-electrode EEG
device, 512 Hz sampling, and 2 classes (stressed and non-
stressed) with 5 sub-levels each. Their goal is similar to our
study, seeking a universal method for stress measurement
and classification. Results are comparable, with slightly lower
accuracy at around 62% and 92%, and a generic model
achieving approximately 73% accuracy.

Other studies primarily employed RNNs among other neural
networks. For instance, Roy et al.’s research [25], implements
LSTM, BiLSTM, GRU, and hybrid networks combining CNN

with RNN. Several models were trained with an EEG signals
dataset collected through the application of a subjective test on
users that classifies signals into two binary states (stressed and
relaxed). In comparison with their study, ours takes an interac-
tive approach (Serious Game) as opposed to the employed test;
furthermore, our study performs a multi-class classification of
stress levels as opposed to their binary classification.

Another interesting study is Sundaresan et al. [26], which
investigated stress in patients with Autism Spectrum Disorder
(ASD). Stress was induced by subjecting patients to perform
complex arithmetical calculations and an RNN was used for
classification of four classes that include a stressful state
and guided or unguided breathing. Similar to our study, this
research presents a multi-class classification approach to stress
levels. However, it lacks of an interactive approach and does
not classify different stress levels.

Upon observing the table, excluding the study by Perez-
Valero et al. [14] that applies a different metric based on
correlation, the best-performing study is the current one,
followed by the study of Xu et al. [16] with similar metrics.
The study of Sundaresan et al. [26] obtains a slightly better
results but it is focused on classifying a single stress state
vs other conditions. The study of Pandey et al. [15] exhibits
the least variability in the performance of different models,
showing only 4% variation in the various tests. This indicates
that despite not yielding the best results, the trained models are
quite consistent, performing similarly to each other. Moreover,
the studies by Hou et al. [24], by Perez-Valero et al. [14], by
Sundaresan et al. [26] and the proposed in this paper are the
ones with more than 2 classes to classify. This is important
to consider, as an increase in the number of classes makes
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it a multi-class problem, posing greater difficulty. It is worth
noticing that only one study (Xu et al.[16]) performs model
generalization.

Considering the relationship between the number of classes
and performance, the generalization approach and the use
of the accuracy metric, the current study achieved the best
performance, reaching up to 0.95 for this metric. This success
is attributed to the ongoing adjustments made to the archi-
tecture and hyperparameters, persistently refining them until
discovering the optimal combination for achieving the high-
est performance levels. Additionally, the utilization of GRU
played a significant role in enhancing the model’s capabilities.
Furthermore, the introduction of an interactive method, specif-
ically the serious game, proved to be instrumental in inducing
stress in a more nuanced and effective manner. Also, a unique
dataset was created based on capturing information through
EEG signals of users playing a serious game, which generates
an interactive data capture environment distinguishing it from
other passive datasets contexts.

V. CONCLUSIONS

In this study, an EEG system has been developed combined
with a Serious Game capable of measuring stress in a relatively
straightforward manner due to the intuitive control presented.
This approach constitutes a distinctive system compared to
conventional EEG-based systems used for stress measurement,
which primarily involve the application of a visual and au-
ditory experience where participants alternate between states
of relaxation and stress. The difference lies in the user’s
interactivity with the game, as opposed to the passivity of
traditional systems.

Concerning the multi-class prediction and classification of
stress levels, several factors have contributed to the success
of our proposal, such as the carefully devised measurement
protocol and specific preprocessing undertaken. This has pro-
vided promising results towards the goal of implementing a
comprehensive stress model. Our proposal outperforms most
of the current state-of-the-art regarding general accuracy (0.95
with very high stability) and is better in terms of number of
classified stress levels (4 vs the conventional binary classi-
fication of stress vs relax). This suggests that the utilization
of Serious Games and DL could potentially evolve into an
effective technique for mental stress classification.

ACKNOWLEDGMENTS

The authors want to thank all the participants in the study.

REFERENCES

[1] Kemeny, M. E. (2003). The psychobiology of stress. Current directions
in psychological science, 12(4), 124-129.

[2] Ehrlich, M., & Mitchell, J. K. (1994). Working stress design method
for reinforced soil walls. Journal of geotechnical engineering, 120(4),
625-645.

[3] Dallman, M. F. (2010). Stress-induced obesity and the emotional nervous
system. Trends in Endocrinology & Metabolism, 21(3), 159-165.

[4] Wadhwa, P. D., Sandman, C. A., & Garite, T. J. (2001). The neu-
robiology of stress in human pregnancy: implications for prematurity
and development of the fetal central nervous system. Progress in brain
research, 133, 131-142.

[5] Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’and ‘where’in the
human brain. Current opinion in neurobiology, 4(2), 157-165.

[6] Park, H. J., & Friston, K. (2013). Structural and functional brain
networks: from connections to cognition. Science, 342(6158), 1238411

[7] Pereira, T. D., Shaevitz, J. W., & Murthy, M. (2020). Quantifying
behavior to understand the brain. Nature neuroscience, 23(12), 1537-
1549.

[8] Aggarwal, K., Mijwil, M. M., Al-Mistarehi, A. H., Alomari, S., Gök,
M., Alaabdin, A. M. Z., & Abdulrhman, S. H. (2022). Has the future
started? The current growth of artificial intelligence, machine learning,
and deep learning. Iraqi Journal for Computer Science and Mathematics,
3(1), 115-123.

[9] Wallace, B. E., Wagner, A. K., Wagner, E. P., & McDeavitt, J. T. (2001).
A history and review of quantitative electroencephalography in traumatic
brain injury. The Journal of head trauma rehabilitation, 16(2), 165-190.

[10] Sterman, M. B. (2000). Basic concepts and clinical findings in the
treatment of seizure disorders with EEG operant conditioning. Clinical
electroencephalography, 31(1), 45-55.

[11] Hyland, H. H., Goodwin, J. E., & Hall, G. E. (1939). Clinical applica-
tions of electroencephalography. Canadian Medical Association Journal,
41(3), 239.

[12] Curran, E. A., & Stokes, M. J. (2003). Learning to control brain activity:
A review of the production and control of EEG components for driving
brain–computer interface (BCI) systems. Brain and cognition, 51(3),
326-336.

[13] Kalas, M. S., Momin, B. F. (2016). Stress detection and reduction using
EEG signals. In 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT), 471-475.

[14] Perez-Valero, E., Vaquero-Blasco, M. A., Lopez-Gordo, M. A., Moril-
las, C. (2021). Quantitative assessment of stress through EEG during
a virtual reality stress-relax session. Frontiers in Computational Neuro-
science, 15, 684423.

[15] Pandey, P., Seeja, K. R. (2022). Subject independent emotion recogni-
tion from EEG using VMD and deep learning. Journal of King Saud
University-Computer and Information Sciences, 34(5), 1730-1738.

[16] Xu, X., Zhao, Y., Zhang, R., & Xu, T. (2022). Research on Stress
Reduction Model Based on Transformer. KSII Transactions on Internet
and Information Systems (TIIS), 16(12), 3943-3959.

[17] Badr, Y., Al-Shargie, F., Tariq, U., Babiloni, F., Al Mughairbi F., &
Al-Nashash, H. (2023). Classification of Mental Stress using Dry EEG
Electrodes and Machine Learning. Advances in Science and Engineering
Technology International Conferences (ASET), 1-5.

[18] Day, A., Scott, N., & Kevin Kelloway, E. (2010). Information and com-
munication technology: Implications for job stress and employee well-
being. In New developments in theoretical and conceptual approaches
to job stress, 317-350.

[19] Lee, A. R., Son, S. M., & Kim, K. K. (2016). Information and commu-
nication technology overload and social networking service fatigue: A
stress perspective. Computers in human behavior, 55, 51-61.

[20] Breinbauer, S. (January 12, 2023). Home. Unicorn Hybrid Black.
Retrieved on March 15, 2023 from https://www.unicorn-bi.com/

[21] Yang, S., Yu, X., & Zhou, Y. (2020). Lstm and gru neural network
performance comparison study: Taking yelp review dataset as an exam-
ple. In 2020 International workshop on electronic communication and
artificial intelligence (IWECAI), 98-101

[22] Probst, P., Boulesteix, A. L., & Bischl, B. (2019). Tunability: Importance
of hyperparameters of machine learning algorithms. The Journal of
Machine Learning Research, 20(1), 1934-1965.

[23] Maxwell, A. E., Warner, T. A., Guillén, L. A. (2021). Accuracy
assessment in convolutional neural network-based deep learning remote
sensing studies—Part 1: Literature review. Remote Sensing, 13(13),
2450.

[24] Hou, X., Liu, Y., Sourina, O., Tan, Y. R. E., Wang, L., & Mueller-
Wittig, W. (2015). EEG Based Stress Monitoring. IEEE International
Conference on Systems, Man, and Cybernetics, 3110-3115.

[25] Roy, B., et al. (2023). Hybrid Deep Learning Approach for Stress
Detection Using Decomposed EEG Signals. Diagnostics, 13.11, 1936.

[26] Sundaresan, A., et al. (2021). Evaluating deep learning EEG-based
mental stress classification in adolescents with autism for breathing
entertainment BCI. Brain Informatics, 8.1, 1-12.

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3395548

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


