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ABSTRACT: Phase equilibria for systems that present different types of azeotropy have been analyzed by using the dimensionless
Gibbs energy of mixing (gM) for the liquid and vapor phases along with both the common tangent criterion and the phase stability
test. First, the gM,L function for the liquid phase and its derivatives have been analyzed to obtain the boundary function between the
homogeneous (L) and heterogeneous (LLE) regions as a function of the parameters for different activity coefficient models. Next,
the excess Gibbs free energies and their first derivatives for the liquid and vapor phases have been analyzed to determine the
mathematical conditions and the limits of different types of azeotropy (VLE and VLLE) and the possible combinations of two
azeotropes in the same binary system. Finally, as a result of the combination of all this information, azeotropy and miscibility maps
have been obtained as a function of the parameter values for Margules, van Laar, Wilson, and NRTL activity coefficient models.

1. INTRODUCTION
Correlation of phase equilibrium data plays an important role
in the design and optimization of many separation processes,
such as solvent extraction and rectification. Activity coefficient
models are frequently used to describe the nonideal behavior
of liquid mixtures. Margules,1 van Laar,2 Wilson,3 and NRTL4

are among the most popular of these models that have been
used for a long time for liquid−liquid (LLE) and vapor−liquid
(VLE) equilibrium data correlation (with the exception of the
Wilson equation that cannot be used in LLE). These models
with their corresponding parameters are implemented in the
most popular simulation packages, such as Aspen Plus5 and
CHEMCAD,6 to carry out phase equilibrium data calculations
as those required for the simulation of chemical processes in
which they are involved.

Although the theoretical background related to these topics
seems to be well established, some important problems still
remain unresolved. One of these problems is the lack of
robustness in the algorithms frequently used for phase
equilibrium data correlation, which results in convergence
failures. During the optimization process involved in the
correlation, a variety of phase behaviors are frequently analyzed
and compared with the experimental one. For example, in VLE

(or VLLE), the systems may be zeotropic (nonazeotropic) or
azeotropic; in the latter case, the azeotrope may be
homogeneous of the global maximum or minimum boiling
point, homogeneous of the intermediate boiling point, or
otherwise heterogeneous. The complex optimization process
involved in some cases may present convergence problems and
could be interrupted at some point, especially for parameter
values that are significantly different from those corresponding
with the solution, where the equilibrium behavior can be very
different from the experimental one. The probability of finding
a solution to the correlation problem could be increased by
using, during the optimization, an adequate strategy to guide
and restrict the parameter values to those compatible with the
specific phase equilibrium behavior to be correlated. In this
way, a very interesting article has been published recently7

connecting the parameter values of one of these models
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(NRTL) with the existence of the different homogeneous
azeotropic behaviors that are possible in binary systems. This
phenomenological study presented very valuable maps of the
NRTL τij parameter values (τ21 vs τ12) producing different
types of azeotropy. Also, the influence of the NRTL αij
parameter and the importance of the vapor pressure of the
pure components were discussed in this paper. Sapkowski and
Hofman8 applied a modified Equal Area Rule (EAR) algorithm
to overcome some difficulties during the LLE calculations in
binary systems and determined the range of NRTL parameters
that reproduces different kinds of immiscibility. De Klerk and
Schwarz9 proposed a parametrization of the NRTL model
(Tττ) and applied it to the LLE of binary systems with upper
and/or lower upper critical solution temperatures. This
method decreases the complexity and computational require-
ments, reducing the nonlinear regression to two linear
regression problems.

The phenomenon of azeotropy has been widely studied in
the literature. Prediction of azeotropes without the require-
ment of VLE calculations is of interest to researchers. In some
of these works, the objective is to obtain that data using a
minimum of properties of the components of the system. For
example, Brito Alves et al.10 presented a neural network
approach for the prediction of azeotrope formation using a
series of macroscopic and microscopic properties of the pure
components. Li et al.11 proposed a method to predict
homogeneous azeotropes in binary mixtures using pure
component properties and activity coefficients at quasi-infinite
dilution, which were estimated by the modified separation of
cohesive energy density model, although any suitable method
could be used. In other works, azeotropy is analyzed from a
theoretical basis with the aim of calculating the conditions for
such a phenomenon. Brandani12 established the conditions for
azeotrope formation at constant temperature in terms of the
infinite dilution activity coefficients. In textbooks of thermody-
namics, such as that of Gmehling and Kleiber,13 the conditions
for azeotropic behavior are also presented and discussed.
Wisniak et al.14 made a very comprehensive thermodynamical
analysis of polyazeotropy at low pressures and established the
conditions that cause it. The evolution of polyazeotropes with
temperature and pressure was also discussed in that paper.
Jaubert and Privat15 published a note to clarify the relation
between the sign (positive or negative) of the homogeneous
azeotrope and the molar excess Gibbs energy (gE) function.
Bonilla-Petriciolet et al.16 proposed a strategy based on the
simulated annealing optimization technique to find homoge-
neous azeotropes in reactive and nonreactive mixtures.
Skiborowski et al.17 presented a unifying approach for the
calculation of azeotropes for homogeneous and heterogeneous
nonreactive mixtures based on an analogy of univolatility
curves and the pinch branches for pure component products.
Many other papers can be cited with different contributions to
this matter.

In the present article, we use some of this previous
information, combining and extending it with a new
perspective, to establish the mathematical conditions that the
typical activity coefficient models have to fulfill for the different
types of azeotropy and miscibility behaviors. The aim of this
work is to allow a better knowledge of the capabilities and
limitations of such models to correlate phase equilibria (VLE,
LLE, and VLLE) including the possible presence of more than
one azeotrope and liquid splitting. For example, in the same
way that dealing with LLE calculations is convenient to know

that the Wilson equation is not able to predict liquid−liquid
(LLE) splitting, it would be very interesting to know, in
advance of any equilibrium calculation, the region in the space
defined by the model parameter values, where other models
could lead to two or more LLE splitting with the possible
presence of metastable solutions. Another example is in VLLE
data fitting (e.g., with application in heterogeneous azeotropic
distillation), where it would be very convenient to know the
region where the parameters provide the heterogeneous
azeotropic behavior for the model used as well as the type of
binary azeotropy that the model may predict. The restriction of
the model parameters during the correlation process to those
values that correspond with the phase equilibrium behavior of
the system would not only facilitate the search for the solution,
but would also guarantee its consistency.18,19

In the present paper, a study was carried out to establish the
relations between the parameter values of some of the most
popular activity coefficient models and both the miscibility and
azeotropic behavior of the mixtures. The models selected in
this paper are Margules, van Laar, Wilson, and NRTL. The
UNIQUAC model has not been included because the ri and qi
structural parameters, required for each component of the
system, restrict the possibility of generalization. However, the
principles to deal with this model would be like those
presented in this work. In the first part of this paper, the focus
has been on the LLE to determine those functions between
conjugate parameters that define, for each model, the boundary
between one homogeneous liquid phase (L) region and two
liquid phases in equilibrium (LLE) region. Next, the presence
of a vapor phase (ideal) in equilibrium with one or more liquid
phases has been considered. From this, maps showing those
regions where the parameters provide different azeotropic and
miscibility behaviors have been obtained for all the activity
coefficient models selected. The Gibbs common tangent
equilibrium condition, the stability test, as well as the
comparison of the slopes of the Gibbs energy of mixing
function (gM) for the liquid and vapor phases, have been the
tools used in the present work.

2. RESULTS
2.1. Liquid−Liquid Equilibrium. Phase equilibria can be

analyzed very conveniently by using the dimensionless Gibbs
energy of the mixing function (gM= GM/RT) along with the
common tangent criterion and the stability test. Regarding
liquid phases, a binary mixture is homogeneous (L) when the
gM,L curve represented against composition (mole fraction, xi)
is convex over the whole composition domain. Figure S1a
shows qualitatively the shape of this function and those of its
first, second, and third derivatives with respect to composition
(mole fraction, x1). The first derivative (dgM,L/dx1) passes
from negative to positive values and presents an “s” shape. The
second derivative (d2gM,L/dx1

2) is always positive and presents
a minimum and, consequently, the third derivative (d3gM,L/
dx1

3) presents a shape similar to that of the first derivative with
a zero at the mole fraction where the second derivative has the
minimum. Figure S1b shows the corresponding representa-
tions for a system exhibiting liquid−liquid phase splitting
(LLE). The gM,L curve shows convex/concave transitions.
Consequently, the first derivative presents the “s” shape, but
passes through a local maximum and a local minimum. Thus,
the second derivative (d2gM,L/dx1

2) presents two zeros, being
negative in a certain interval of mole fractions. Figure S1c
shows the conditions limiting the situations described in Figure
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S1a,b, i.e., the limit between a system with no liquid phase
splitting and with LLE. In this case, the first derivative presents
an almost linear zone (limit where the local maximum and
minimum vanish), and the second derivative minimum is zero,
occurring at the same mole fraction where the third derivative
is also zero, as Figure S1c shows. In the present article, these
mathematical conditions have been used to calculate the
boundary between the homogeneous (L) and heterogeneous
(LL) regions of parameters for each selected activity coefficient
model.
2.1.1. Margules Equation. In the following, the gM,L

function according to the Margules equation is written as
well as its second and third derivatives with respect to the
composition for a binary system:

g x x x x x x A x A xln ln ( )M,L
1 1 2 2 1 2 21 1 12 2= + + + (1)

g
x x x

A x A x x

A A

d
d

1 1
2( ) 2(1 2 )

( )

2 M,L

1
2

1 2
21 1 12 2 1

21 12

= + + +

(2)

g
x x x

A A
d

d
1 1

6 6
3 M,L

1
3

1
2

2
2 21 12= + +

(3)

These equations are functions of the two binary interaction
parameters (A12 and A21) of the model and the mole fraction x1
(with x2 = 1 − x1). The conditions to obtain the boundary
function between the homogeneous (L) and heterogeneous
(LL) regions are the equality of the second and third
derivatives to zero at the same mole fraction (x1

B), as shown
in Figure S1c:

g
x

d
d

0
x

2 M,L

1
2

1
B

=
(4)

g
x

d
d

0
x

3 M,L

1
3

1
B

=
(5)

There are three unknowns (A12, A21, and x1
B) but only two

equations. So, the values for one of the parameters, A12 or A21,
have been set, and the other two, the binary interaction
parameter and x1

B, have been calculated by solving eqs 4 and 5
simultaneously. Table S1 and Figure 1 show the parameter
values obtained for this boundary between the L and LL
regions according to the Margules equation. For this equation,
symmetry is observed about the bisectors to the first and third
quadrants (dashed line in the figure). Taking into account this
symmetry, the boundary obtained above the bisector has been
fitted to the following sixth-degree polynomial equation (P1):

A P A
A A
A

A A
A

( )
1.335205 10 3.871697 10
4.186163 10

2.123819 10 6.103912 10
1.836793 10 2.145975

21 1 12
5

12
6 4

12
5

3
12
4

2
12
3 2

12
2

1
12

=
= × ×

×

× ×
+ × + (6)

and below the bisector, the boundary accomplishes the
polynomial P2, which, considering the symmetry mentioned,
has the same function as P1:

A P A( )12 2 21= (7)

For A21 values higher than those obtained using the
polynomial function of A12 shown in eq 6 (A21 > P1(A12)),
the liquid mixture will be unstable providing two liquid phases
at equilibrium (LL region). For A21 values smaller than those
calculated with eq 6 (A21 < P1(A12)), a new value of the
parameter A′12 has to be determined with the polynomial P2
(eq 7) using the value of A21. If A′12 < P2(A21), the system will
be a homogeneous liquid phase (L), and if A′12 > P2(A21), the
system splits into two liquid phases (LL).

Next, a similar procedure has been followed for the other
activity coefficient models selected in this paper.

2.1.2. van Laar Equation. The van Laar equation for gM,L

and its second and third derivatives with respect to
composition (mole fraction) are presented in eqs S1−S4.

It should be considered at this point that the van Laar
equation does not admit A12 and A21 parameters having
different signs. In other words, only those combinations with
both parameters being either positive (first quadrant) or
negative (third quadrant) are possible. Besides, it has been
checked in this work that the simultaneous solution to eqs 4
and 5 along with eqs S3 and S4 is only possible for both A12
and A21 values being positives. This means that the existence of
liquid−liquid (LL) splitting is limited to some regions in the
first quadrant of A21 versus A12, while in the third quadrant, the
solution is always a homogeneous liquid phase (L). Table S2
shows the values obtained for the boundary between the L and
LL regions in the first quadrant, setting values for one of the
two binary interaction parameters (A12 in this case) and
calculating the other one (A21) and x1

B by solving eqs 4 and 5
along with eqs S3 and S4. This boundary between the L and
LL regions, represented in Figure S2, has been fitted to the
following third-degree polynomial equation:

A P A

A A

A

( )

4.828697 10 3.395757 10

5.666309 10 3.385391

21 3 12
2

12
3 2

12
2

1
12

=

= × + ×
× + (8)

Figure 1. Boundary (solid blue line) between the homogeneous (L)
and heterogeneous (LL) regions for the Margules equation as a
function of the binary interaction parameters A12 and A21.
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2.1.3. Wilson Equation. It is well-known that the Wilson
equation does not provide LLE because the second derivative
of the Gibbs energy of mixing is always positive (eqs S6 and
S7). Consequently, any combination of parameters always
provides a homogeneous liquid mixture (L region) for this
model.
2.1.4. NRTL Model. The NRTL equation for a binary system

and the second and third derivatives with respect to
composition (x1) are presented in eqs S8−S13.

For a binary system, this model has three parameters: τ12,
τ21, and α12 = α21. The boundary between the homogeneous
(L) and heterogeneous (LL) liquid regions has been previously
published20 as a function of the nonrandomness parameter α12
= α21. In the present paper, this boundary function has been
calculated more precisely by solving eqs 4 and 5 along with eqs
S12 and S13, for the specific value of α12 = α21 = 0.2, frequently
used in the literature for LLE. Table S3 shows the parameter
values, and the boundary curve has been represented in Figure
S3. This curve has been fitted to a third-order polynomial
equation, which is quite similar to the one previously
published:

P ( )

2.150856 10 6.904109 10

1.190333 2.609190

21 4 12
3

12
3 2

12
2

12

=

= · + ·
+ (9)

It is known that the NRTL model could produce, depending
on the αij values, two different liquid−liquid (LL) splitting
regions for a binary system, which could be both stable or, on
the contrary, one of them metastable. Nevertheless, these
regions have not been considered in the present analysis
because they appear at very high and infrequent parameter
values.20

2.2. Vapor−Liquid Equilibrium. Next, the vapor phase is
considered and added to this study to obtain, for each one of
the activity coefficient models selected, a map of the parameter
values regarding the different possible combinations of liquid
and vapor phases in equilibrium, with and without azeotropes
of maximum or minimum temperature, which could also be
either homogeneous or heterogeneous.

The Gibbs common tangent equilibrium condition along
with the stability test can be applied to the liquid and vapor
phases to establish the conditions for equilibrium (LLE, VLE,
and VLLE). For this analysis, the Gibbs energies of both vapor
and liquid phases must refer to the same reference state. The
liquid phase at the same temperature and pressure of the
mixture was selected as the reference state for each
component. According to this selection, the Gibbs energy of
mixing for the liquid phase (gM,L) is given by eq 10, as a
function of the mole fraction of the two components (zi) and
their activity coefficients (γi):

g g g z z zln ln
i

i i
i

i i
M,L ideal,L E,L

1

2

1

2

= + = +
= = (10)

That for the vapor phase (gM,V), using the liquid phase as the
reference and considering ideal vapor, is given by

g g

z z z g

z z z
P
p

ln

ln ln

i
i i

i
i i

V

i
i i

i
i

i

M,V M,Videal

1

2

1

2
pure,

1

2

1

2

0

= +

= +

= =

= = (11)

where zi is the mole fraction in any global mixture, γi is the
activity coefficient, pi0 is the vapor pressure of component i,
and P is the total pressure.

The representation of the Gibbs energy of mixing of the
liquid phase (gM,L) versus composition (z1) is a curve passing
through the (0,0) and (1,0) points. The representation of the
Gibbs energy of mixing of the vapor phase (gM,V) is the linear
combination of an ideal term, similar to that of the liquid
phase, and a straight line passing through the points

0, ln P
p2

0

i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzz and 1, ln P

p1
0

i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzz. Figure S4 shows a possible

representation of these two functions at a constant P for a
zeotropic system. In Figure S4a, a constant temperature (T) is
set with T < Tb,l (boiling temperature of the light component),
and so the liquid is the stable phase for any composition.
Figure S4b shows the influence of the temperature in the gM,V

function. Obviously, the curve moves downward in an almost
parallel way as temperature increases. In this figure, the
variation of the Gibbs energy of mixing of the liquid (gM,L)
with temperature has been neglected, which is a common
practice in some equations (e.g., Margules or van Laar) or its
influence is very weak in others (e.g., NRTL), and furthermore,
it has no influence in the analysis that follows. In Figure S4c,
both functions (gM,L and gM,V) are represented at three
temperatures, i.e., at the boiling points of the pure components
(light Tb,l and heavy Tb,h) and at an intermediate temperature
(T0) where a common tangent line to the two gM,L and gM,V

curves can be drawn representing the minimum energy. The
compositions of these two points with a common tangent line
are the liquid and vapor phases at equilibrium (x0, y0) at T and
P. At temperatures above Tb,h, the system is in the vapor phase,
and at temperatures below Tb,l is in the liquid phase, regardless
of the composition.

The hypothetical system represented in Figure S4c would
not have an azeotrope because it is not possible, at any
temperature, to have a common tangent line to both the gM,L

and gM,V curves at the same composition (z1). Both curves can
be tangent to each other only at z1 = 0 (at T = Tb,h) or z1 = 1
(at T = Tb,l). In this case, only one common tangent line exists
between the gM,V and gM,L curves, at different compositions (x0,
y0), at each temperature between the boiling points of both
pure components.

Figure S5a shows an example of a binary system presenting
VLE with one homogeneous azeotrope of minimum boiling
point (Am). This situation is characterized by a temperature
(TAm), lower than Tb,l, where the gM,V and gM,L curves are
tangent at an intermediate z1 mole fraction. Figure S5b shows
the corresponding situation for a binary system exhibiting one
maximum boiling point azeotrope (AM) at a temperature
(TAM), higher than Tb,h, whereas Figure S5c shows the
situation for a system with a heterogeneous azeotrope (AmH),
which is always of minimum boiling temperature (TAmH).

Other situations may occur, leading to systems with no
azeotrope but with liquid−liquid−vapor equilibrium (VLLE)
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or systems with two homogeneous azeotropes of global or local
maximum or minimum temperatures, the last ones also called
intermediate azeotropes. Figure S6 shows several possible
cases. Figure S6a corresponds to a system with two azeotropes,
one (global) maximum boiling point azeotrope (AM) at a low
z1 mole fraction and one (global) minimum boiling point
azeotrope (Am) at a higher z1 mole fraction. Figure S6b
corresponds to one azeotrope of the (local) minimum boiling
temperature (am) at low z1 mole fraction and one (global)
maximum boiling point azeotrope (AM) at high z1 mole
fraction. Finally, Figure S6c corresponds to one VLLE with no
azeotrope (VLLnA) at compositions of x0

I , x0
II, and y0 for the

mole fractions of component 1 in the two liquids and one
vapor phase in equilibrium, respectively. The temperature for
this situation has been named TVLLnA in Figure S6c.

Other behaviors may be possible, such as the combination of
heterogeneous and homogeneous azeotropes. Nevertheless,
because the analysis using the excess Gibbs free energy (for the
liquid and vapor phases) is clearer for this aim than using the
corresponding mixing functions, all possible cases of two
azeotropes, including one homogeneous and one heteroge-
neous, will be presented from this point of view.

The occurrence of azeotropes of global minimum or
maximum boiling temperatures is determined by the difference
between the slopes of the tangent lines to the gM,L and gM,V

curves at the extremes of the composition domain, i,e., at z1 =0
and z1 = 1, being, for example, 1 the light component. To apply
such analysis to specific systems, eqs 10 and 11 for gM,L and
gM,V, respectively, must be considered. The derivatives to be
compared are
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eqs 10 and 11 have a common term, the one that
corresponds with the ideal contribution in the liquid phase
that is given by eq 14, whose derivatives in both extremes (z1 =
1 and z1 = 0) represented by eq 15 are infinite:

g z zln
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i i
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=
= (14)
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This fact leads to indeterminacy in the calculation of the
derivatives given by eqs 12 and 13. Since the contribution
represented by eq 14 is present in both gM,L and gM,V functions,
eqs 10 and 11, respectively, and only the differences between
their derivatives (not their own values) are of interest for the
present analysis, the ideal term represented in eq 14 can be
removed from both equations. Thus, the analysis can be done
by comparing the excess Gibbs free energy of the liquid phase
(gE,L), represented by eq 16, and what could be considered as
“pseudo excess” Gibbs free energy of the vapor phase (gE,V),
represented by eq 17, which is the result of considering the
liquid phase as the reference state. In its strict sense, the excess
contribution for the vapor phase is zero since ideal vapor has

been considered. However, by analogy with the liquid phase,
the term represented in eq 17 has been labeled in this work as
(pseudo) excess, E, for representing the difference among the
total Gibbs free energy of the corresponding phase (liquid or
vapor) and that represented by eq 14. Thus, the following
equations and their corresponding derivatives are used in the
analysis of azeotropy:
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The nomenclature used for the functions to compare is
At z1 = 1 and T = Tb,1

d
g

z
d

g
z

d
d

and
d

d
z T T z T T

L,1

E,L

1 1,
V,1

E,V

1 1,1 b,1 1 b,1

= =
= = = =

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

(18)

At z1 = 0 and T = Tb,2
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where Tb,1 and Tb,2 indicate the boiling temperatures for
components 1 (light) and 2 (heavy), respectively, at the
pressure of the system.

Figure 2 shows the gM,L and gM,V curves (Figure 2a1−c1),
the gE,L curve and gE,V line (Figure 2a2−c2), their derivatives
with respect to the mole fraction of the light component (z1)
(Figure 2a3−c3), and the temperature versus composition (z1)
diagram (Figure 2a4−c4), for a zeotropic binary system (case
a), as well as for a system with one minimum boiling point

Figure 2. Representation of gM,L and gM,V curves (1), gE,L and gE,V

functions (2), their derivatives with respect to the mole fraction of the
light component z1 (3), and T/z1 diagram (4) for a binary system
with (a) no azeotrope, (b) one Am, and (c) one AM.
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azeotrope Am (case b), and another with one maximum
boiling point azeotrope AM (case c).

If the system has no azeotropes, the derivative of gE,L does
not intersect with that of gE,V (Figure 2a3), which is a constant
value. To analyze the case represented in Figure 2b, the
derivatives of gM,L and gM,V at z1 = 0 and z1 = 1 for a binary
system that presents one minimum boiling point azeotrope
(Am) are represented in Figure S7. In this figure, the Gibbs
free energy of the mixing curve for the vapor, gM,V, has been
represented at two temperatures: the boiling temperatures of
the light (Tb,l) and heavy (Tb,h) components. The slope of the
gM curve for both liquid and vapor phases is negative at z1 = 0
and positive at z1 = 1 and also tends to be infinite.
Nevertheless, that of the vapor phase at both ends (z1 = 0
for Tb,h and z1 = 1 for Tb,l) must be higher (in absolute value)
than that of the liquid phase to guarantee the existence of one
Am. In other words, the convexity of the vapor curve must be
higher than that of the liquid phase, which, in turn, results in
an intersection of the gM,V curve, calculated at the boiling point
of the light component, to that of the liquid gM,L at a mole
fraction between 0 and 1. To attain this situation, the gE,L curve
must be positive and there must be one intersection point
between the gE,L curve and the gE,V line in the positive domain
(Figure 2b2). Thus, the first derivative of gE,L is a decreasing
function intersecting that of gE,V, which is constant (Figure
2b3). Following this reasoning, if the system presents one AM
(Figure 2c), the gE,L curve must be negative, since the
convexity of the gM,L curve must be higher than that of the gM,V

curve. This is reflected in the existence of an intersection
between the gE,L curve and the gE,V line in the negative domain
(Figure 2c2). Thus, the first derivative of gE,L is an increasing
function intersecting that of gE,V (Figure 2c3).

Accordingly, the required conditions for some of the most
common VLE behaviors (totally miscible liquid phase) in
terms of the derivatives presented in eqs 18 and 19 are

a) No azeotrope

d d d dandV,1 L,1 V,2 L,2< < (20)

b) At least one azeotrope of minimum temperature

d d d dandV,1 L,1 V,2 L,2> < (21)

c) At least one azeotrope of maximum temperature

d d d dandV,1 L,1 V,2 L,2< > (22)

d) At least two azeotropes, one of minimum and the other
of maximum temperatures

d d d dandV,1 L,1 V,2 L,2> > (23)

Cases b and c are in accordance with the conditions
established by Brandani12 in terms of infinite dilution activity
coefficients. The last case presented d is addressed later in this
paper, when the presence of more than one azeotrope is
considered.

For those cases where, in addition to any of these VLE
behaviors, the liquid mixture splits into two liquid phases, these
conditions must be combined with a Gibbs energy of mixing
curve, gM,L, in which a common tangent line at two points must
exist. For example, this is the case for the heterogeneous
azeotropes (VLLE) that must satisfy the conditions given in eq

21 for the minimum temperature azeotropes (Am) along with
a gM,L curve with one common tangent line (LL splitting).

The derivatives dV,1 and dV,2 depend on the vapor pressures
of the two components (1 and 2) of the binary system as
shown in eq 17. Thus, the analysis of azeotropy in VLE
depends on these values, which are set when the components
of the system are specified. In this paper, the procedure that
could be carried out to obtain azeotropy and miscibility maps
is presented for some of the most used activity coefficient
models once the components, and so their vapor pressures,
have been set. Table 1 shows the Antoine equation constants

used in the present work21 for the calculations that follow,
where arbitrarily the parameters for the light (1) and heavy (2)
components are those for 2-propanol and water, respectively.
The selection of these specific components is not relevant at all
to the discussion presented in this paper.

From eq 17 we obtain
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that applied at the boiling points of the light (Tb,1) and
heavy (Tb,2) components provides the required derivatives for
the vapor phase:
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For the liquid phase, the corresponding derivative functions
dL,1 and dL,2 depend on the activity coefficient model. These
functions are presented below for the selected models:
Margules, van Laar, Wilson, and NRTL. Then, the equalities
dV,1 = dL,1 and dV,2 = dL,2 have been applied to obtain the limits
of azeotropy specified in eqs 20−23.
2.3. Maps of Miscibility and Azeotropy. The adequate

combination of the information presented in the previous
sections leads to the construction of maps showing the
different regions of azeotropy and liquid phase miscibility as
functions of the parameter values for some of the most
common activity coefficient models. These maps depend on
the vapor pressures of the components. As an example, the
binary mixture 2-propanol (1) + water (2) has been arbitrarily
selected to illustrate the procedure presented in this paper.
Constants for the Antoine equation used to calculate the vapor
pressures for these two components are given in Table 1.21

2.3.1. Margules Equation. From the excess contribution
given by the Margules equation, eq 27, eqs 28 and 29 are
deduced:

g x x A x A x( )E,L
1 2 21 1 12 2= + (27)

Table 1. Constants for the Antoine Equation (log
pi0(mmHg) = A − B/(T(°C) + C)) for Drawing of
Azeotropy Maps Shown in Figures 3 and S8−S1021

components A B (°C) C (°C)

light (1): 2-propanol 8.87829 2010.330 252.636
heavy (2): water 8.07131 1730.630 233.426
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d AL,1 21= (28)

d AL,2 12= (29)

Equating eqs 25 and 28:
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(30)

which represents a straight line with zero slope (horizontal)
in the graphical representation of A21 vs A12 shown in Figure 3.
Below this line, no minimum boiling point azeotrope can be
present, and above it, the system will present at least one
minimum boiling point azeotrope (Am).

Similarly, equating eqs 26 and 29 is obtained:
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which represents a straight line with an infinite slope
(vertical) in the graphical representation of A21 vs A12 (Figure
3). To the right of this line, no maximum boiling point
azeotrope can exist, while to the left, at least one maximum
boiling point azeotrope is present (AM).

This information, combined with the miscibility boundary
given in eq 6 that separates the homogeneous (L) and
heterogeneous (LL) equilibrium regions, provides the
azeotropy and miscibility map represented in Figure 3. This
figure shows the variety of equilibrium behaviors that can be
obtained with this model as a function of the parameter values.
Among them, there are, in addition to the typical non-
azeotropic (VLnA) or those presenting one (AM, Am, and
AmH) or two (AMAm and AMAmH) azeotropes, other less
frequent equilibrium regions as those with nonazeotropic VLL
equilibrium, which occurs alone (VLLnA) or combined with a
maximum boiling point azeotrope (AM/VLLnA or VLLnA/
AM depending on their relative positions with respect to x1).

A similar procedure has been carried out for the other
activity coefficient models, as shown below.

2.3.2. van Laar Equation. From the van Laar equation for
the gE,L function (Supporting Information) and applying the
required derivatives, the same functions as those using the
Margules equation are obtained:

d AL,1 21= (32)

d AL,2 12= (33)

Thus, equating eqs 25 and 32, on the one hand, and eqs 26
and 33, on the other, two straight lines are obtained, one
horizontal and the other vertical, in the graphical representa-
tion of A21 vs A12. These two lines separate the same azeotropic
behaviors as in the Margules equation, but the boundary curves
between the L and LL regions are different for each model. In
this case, the boundary function for miscibility represented by
eq 8 is combined with the azeotropic behavior to provide the
map presented in Figure S8 for the van Laar equation. As was
already mentioned, in the van Laar equation, both parameters
(A12 and A21) must have the same sign, and so there are no
solutions for the second and fourth quadrants. Moreover, the
impossibility of finding solutions to the van Laar equation in
the second quadrant (negative A12 and positive A21 values)
prevents the possibility of coexistence of two azeotropes, one
of maximum and the other of minimum temperatures
(AMAm), for this model. A small region with nonazeotropic
VLL equilibrium (VLLnA) is also present in the map for
certain values of the parameters.

2.3.3. Wilson Equation. By derivation of the excess
contribution given by the Wilson equation (Supporting
Information) the following equations are obtained

d A A1 lnL,1 12 21= + + (34)

d A A1 lnL,2 21 12= (35)

Equating eqs 25 and 34 and rearranging, the following
equation is obtained:
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Below this curve, represented in Figure S9 (dashed red line),
the system forms a minimum boiling point azeotrope (Am),
and above it, there are two possibilities: no azeotrope (VLnA)
or a maximum boiling point azeotrope (AM). To distinguish
between these two situations, it is necessary to operate
similarly with eqs 26 and 35, obtaining the following curve
(dashed green line)
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(37)

which separates the region where both situations, no
azeotrope (VLnA) or a minimum boiling point azeotrope
(Am), are possible (below) from the one where a maximum
boiling point azeotrope (AM) is present (above). The result is
the map shown in Figure S9.

Obviously, in this case, it is not possible to represent
heterogeneous azeotropes because, as was already mentioned,
the Wilson equation does not present the convex/concave
transitions required for liquid mixtures splitting (LLE).

Figure 3. Map showing the different regions for azeotropy and
miscibility depending on the parameter values of the Margules
equation at atmospheric pressure. Antoine constants in Table 1.
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Moreover, both A12 and A21 parameters must be necessarily
positive in this model because they are defined as the product
between a ratio of volumes and an exponential term, both
positives.
2.3.4. NRTL Model. From the Gibbs energy of excess

formulated by this model for a binary mixture (Supporting
Information), the following derivatives are obtained

d GL,1 21 21 12= (38)

d GL,2 21 12 12= + (39)

Combining these equations with those for the vapor phase,
the boundaries for different azeotropy behaviors are obtained.
Thus, by equating eqs 25 and 38, it is obtained:
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(40)

To the right of this curve (dashed red line in Figure S10),
the system presents at least one azeotrope of minimum boiling
temperature (Am) and the combination with a maximum
boiling point azeotrope (AM) is also possible, providing
AMAm behavior. Conversely, to the left of the curve, one of
these two possibilities, the absence of azeotropes (VLnA) or a
maximum boiling azeotrope (AM), can occur.

Applying the same procedure to eqs 26 and 39, the following
is obtained:
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Above this curve (dashed green line in Figure S10), the
system presents either no azeotrope (VLnA) or a minimum
boiling point azeotrope (Am). Below, at least one maximum
boiling azeotrope (AM) is present, with the possibility of
coexistence with a minimum boiling azeotrope (Am) or with
nonazeotropic VLL resulting in AMAm and AM/VLLnA types
of azeotropy, respectively. All this information has been
represented in Figure S10 along with the polynomial function
given by eq 9 for the liquid miscibility, providing the different
regions for azeotropy and miscibility as a function of the
NRTL parameters. Depending on the region for the liquid
miscibility behavior, the equilibrium can be VLnA or VLLnA
and the azeotropes can be homogeneous or heterogeneous
(the last ones identified with H) appearing in new regions in
the map, derived from those previously discussed.
2.3.5. Influence of Vapor Pressures on the Azeotropic

Behavior. The NRTL model has been arbitrarily selected to
illustrate the dependence of the azeotropic behavior on the
vapor pressures of the components and the different situations
that may occur depending on how similar or dissimilar are
their boiling points. In Figure S11, the evolution of the
different azeotropic regions with the variation of the vapor
pressure of the light component is represented, while the vapor
pressure for the heavy component is held constant. Table 2
presents the constants for the Antoine equation used in the
calculations for drawing these maps, which were selected
arbitrarily to provide the boiling points indicated in the table.
The dashed curves that separate the different regions of
azeotropic behavior approach each other as the boiling
temperatures Tb,l and Tb,h are closer. This fact causes not
only changes in the size of the different regions but also the

appearance and disappearance of some of these regions due to
the evolution of the intersections between both the miscibility
and azeotropy boundaries. This example is intended to
illustrate the marked influence of the vapor pressures (of the
specific components of the system) on the maps representing
the different types of azeotropy and miscibility, which are
obtained for some activity coefficient models as a function of
their parameters. Related to this, for the Wilson model, it has
been found empirically, analyzing different cases, that the
combination of two azeotropes is only possible when the
difference between the boiling temperatures of the pure
components is very small (similar vapor pressures). Moreover,
this situation seems to occur exclusively for certain
combinations of model parameters where, in addition, the
A12 parameter is smaller than A21, where 1 is the light
component.

2.3.6. Local Maximum or Minimum Boiling Point
Azeotropes. The analysis presented, limited to the comparison
of the gE,V and gE,L slopes in the extremes of the composition
domain (z1 = 0 and z1 = 1) or infinite dilution conditions,
explains not only the presence of a unique azeotrope, but also
the simultaneous presence of two azeotropes (for a binary
system at constant P) when the conditions presented in eq 23
are fulfilled. However, it is important to highlight that these
conditions are valid exclusively to detect global (maximum or
minimum) boiling temperature azeotropes. The global or local
character as maximum or minimum boiling point of azeotropes
refers to the comparison between the boiling temperatures of
the azeotropes and the pure components. When the system
presents only one azeotrope, it is always of global maximum or
minimum boiling temperature. However, when the system
presents more than one azeotrope, it can be global or local at
minimum or maximum boiling temperature. Because local (or
intermediate) azeotropes are only possible when two or more
azeotropes are present, it is in these cases where additional
conditions should be established to localize those regions
where this type of azeotropes exists. All this with the aim of
obtaining more precise maps of azeotropy and miscibility in
which these cases are also considered.

Figure 4 schematically shows a possible situation of this
type. In this figure, the gM,L and gM,V curves do not satisfy the
conditions given by eq 23 (Figure 4a). Even so, the gM,V curves
obtained at two intermediate temperatures between Tb,l and
Tb,h are tangent to the gM,L curve, providing one local minimum
boiling point azeotrope (Figure 4b) and one local maximum
boiling point azeotrope (Figure 4c), at low and high z1 mole
fraction, respectively. These temperatures have been identified
as Tam and TaM, where “a” is used for a local azeotrope and
“amaM” is used to identify the presence of both local minimum
(am) and maximum (aM) boiling point azeotropes in the
system at low and high z1, respectively. Figure 4d shows the

Table 2. Constants for the Antoine Equation (log
pi0(mmHg) = A − B/(T(°C) + C)) Used for Drawing the
Maps (NRTL Model) Are Shown in Figure S11

components A B (°C) C (°C) Tb (°C)

light (1) in Figure S11a 9.0347 1600 230 30
light (1) in Figure S11b 8.5951 1600 230 50
light (1) in Figure S11c 8.2141 1600 230 70
light (1) in Figure S11d 7.8808 1600 230 90
heavy (2) 7.7293 1600 230 100
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temperature (T) versus composition (z1) diagram for this type
of VLE behavior.

So, if two or more azeotropes could be present in a binary
system, the analysis of azeotropy becomes more complicated
because the gE,L and gE,V functions, and their derivatives with
respect to mole fraction, must be evaluated not only at the
extremes (z1 = 0 and z1 = 1) and at the boiling points of the
pure components (Tb,l and Tb,h), but also in all of the
composition space at any temperature.

In Figure 5, all of the situations that may occur when two
azeotropes are present in a binary system at constant P have
been represented. There are eight possible combinations of
two azeotropes, considering their relative positions (mole
fraction) and their local or global character, plus an additional
one that is explained later, leading to a total of nine cases (a−i
in the figure), of which only six are possible. Figure 5 shows
the Gibbs energy of mixing curves for the vapor and liquid
phases (1), the excess Gibbs free energy functions (2) and
their derivatives (3) also for the vapor and liquid phases, and
the T/z1 diagram (4) illustrating all possible cases. The
nomenclature used to name the different types of azeotropes in
this figure is the same used previously in this paper: “A” for
global and “a” for local maximum (M) or minimum (m)
boiling temperature azeotropes. For instance, AmaM would
correspond to a system with one global minimum boiling point
azeotrope at low z1 mole fraction and one local maximum
boiling point azeotrope at higher z1 mole fraction.

At this point, two considerations are made that significantly
simplify the analysis without modifying the conclusions derived
from it. The first one is that, although models such as Wilson
and NRTL consider the variation of gM,L with temperature,
such variation is generally small, and so the gM,L curve is
considered constant with temperature for this analysis. The
second question is whether the ratios of the vapor pressures of

Figure 4. Gibbs energy of mixing curves gM,L and gM,V for a binary
system with two homogeneous azeotropes of local minimum and
maximum boiling temperatures (amaM) at constant P: (a) gM,V at Tb,l
and Tb,h, (b) gM,V at Tam, (c) gM,V at TaM, and (d) T/z1 diagram.

Figure 5. Possible combinations (cases a−i) of two azeotropes in a
binary system at constant P, considering their relative positions (mole
fraction) and their local or global character as minimum or maximum
boiling point azeotropes (compared with the boiling temperatures of
the pure components): (1) gM,L and gM,V curves at T of azeotropes,
(2) gE,L and gE,V curves at Tb,l and Tb,h, (3) first derivatives of the gE,L

and gE,V curves, and (4) T/z1 diagram.
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the two pure components at their boiling point temperatures
(Tb,l and Tb,h) that appear in eqs 25 and 26 are very similar,
and so, any of them could be considered for the analysis that is
carried out. This is the reason why, in column (3) of Figure 5
for all cases a−i, the first derivative of the gE,V curve is a single
straight line, without distinguishing between that at Tb,l and at
Tb,h temperatures, which are very close to each other.

It is evident that the systems AMam (case d), aMam (case
e), and aMAm (case h) cannot exist if there are only two
azeotropes. For instance, the hypothetical aMAm system
(Figure 5h) would require a local maximum boiling point near
the heavy component of higher boiling temperature. This leads
to an absurdity: to the left of the local maximum boiling point,
the temperature should decrease, but, otherwise, the temper-
ature should increase to reach the boiling point of the pure
heavy component. Similar situations occur in the other two
cases in which neither are possible. Besides, Figure 5g shows
the particular case, as previously mentioned, where the two
intermediate azeotropes merge into a single one. The case
presented in Figure 5f is the same as that represented in Figure
4d.

Cases 5a and 5c could be identified by the conditions
indicated in eq 23, because they correspond with the two
possibilities of combination, AmAM and AMAm, respectively,
of the global boiling point (maximum and minimum)
azeotropes. However, the other possible cases presented in
that figure could not be detected with those conditions because
they include some local (instead global) maximum or
minimum boiling point azeotrope. A more general condition
for detecting all cases, including those where local maximum or
minimum boiling point azeotropes are present, is deduced
from Figure 5. Thus, from this more general analysis of
azeotropy, the following can be stated: for two azeotropes to be
present in a binary system at constant P, the derivatives of the
excess Gibbs f ree energies for the liquid and vapor phases, gE,L and
gE,V, must have two intersection points between them. This can be
observed in Figure 5a3−i3, except for those not possible cases
(d, e, and h) and for case g, where the two intersection points
merge into a single one. As the derivative of gE,V is constant
(horizontal line), this condition implies that the derivative of
gE,L must have a maximum or a minimum. In the first case, the
maximum (global or local) boiling point azeotrope appears at
the low z1 mole fraction (case c in Figure 5), and in the second
one, it appears at the high z1 mole fraction (cases a, b, f, and i
in Figure 5). However, fulfilling this condition for the presence
of two azeotropes is not necessary for the first derivative of gE,L

to be zero at two compositions within 0 and 1. This is related
to the note published by Jaubert and Privat,15 where they
demonstrated that the presence of a positive (minimum boiling
point) or negative (maximum boiling point) azeotrope does
not require that gE for the liquid phase be positive or negative,
but concave or convex, respectively. Thus, case b represented
in Figure 5, in which both AmaM azeotropes are present, is
also possible with a positive gE,L function at any composition
(Figure 6 case b2) instead of the one represented in Figure 5
case b2, where negative gE,L values exist in some region where
the maximum (local) boiling point azeotrope (aM) is located.
The concave part of the gE,L curve allows the minimum (or
positive) azeotrope to exist and the convex, but also positive,
part of the gE,L curve enables the maximum (or negative)
azeotrope. Because in this last case, the gE,L curve only presents
a maximum, its derivative is only zero at one composition, as it
is shown in Figure 6 case b3, unlike Figure 5 case b3, where

two zeros are present in the derivative due to the presence of
both maximum and minimum extremes of the gE,L function
(Figure 5 case b2). Jaubert and Privat15 presented the
pentafluoroethane + ammonia system at 49.9 °C as an
example of this type of behavior. A similar discussion could be
applied to cases f, g, and i, from those possible cases
represented in Figure 5. For example, in case f also represented
in Figure 6, the presence of amaM azeotropes is also obtained
with a positive gE,L function with one concave to convex
transition, and so only one zero in its derivative exists. This fact
confirms that is the number of intersection points between the
derivatives of the gE functions for the liquid and vapor phases,
gE,L and gE,V, and not the number of zeros in the derivative of
the gE function for the liquid phase that indicates the number
of azeotropes in a binary system. Besides, the composition of
these intersection points (i.e., the mole fraction where the
derivatives of gE,L and gE,V are equal) is the composition of the
azeotropes. In other words, the presence of two azeotropes in a
binary system requires a maximum or minimum in the
derivative of gE,L, and, consequently, one zero in its second
derivative. At this point, the mathematical conditions that the
system must necessarily fulfill to present an azeotropic
behavior of any type can be established as an alternative to
those presented by Wisniak et al.14 Considering these
requirements, it is possible to draw some general conclusions,
such as that the van Laar model cannot predict two azeotropes
because the second derivative of gE,L formulated using this
model cannot be zero at any point in the composition interval.

Besides, from Figure 5, it is observed that a local boiling
point azeotrope (am or aM) appears when the point where the
slopes of the gE,L and gE,V functions are equal is comprised
between the straight lines corresponding to the gE,V at the
boiling points (Tb,l and Tb,h) of both pure components, as can
be seen in cases b (aM at the high z1 mole fraction), f (am and
aM at low and high z1 mole fractions, respectively), g (aMm at
the same mole fraction), and i (am at the low z1 mole
fraction). If those points where the slopes of the gE,L and gE,V

functions are equal appear above the gE,V straight line at Tb,l or
below the gE,V straight line at Tb,h, the azeotropes are of global
minimum (Am) or maximum (AM) boiling temperatures,
respectively, as shown in case a (Am and AM at the low and
high z1 mole fraction, respectively), case b (Am at the low z1
mole fraction), case c (AM and Am at low and high z1 mole

Figure 6. Extension of Figure 5 to show different gE,L curves that
provide the same type of azeotropy as those presented in cases b and
f: (2) gE,L and gE,V curves at Tb,l and Tb,h and (3) first derivatives of the
gE,L and gE,V curves.
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fractions, respectively), and case i (AM at the high z1 mole
fraction) in Figure 5.

Moreover, it must be considered that the presence of two
azeotropes may correspond with the combination of one
heterogeneous (VLL) and one homogeneous (VL) azeotrope,
even though in Figure 5, homogeneous azeotropes have been
represented in most cases for simplification. Only in the
impossible cases e and h, the gM,L function splits into two liquid
phases in equilibrium to enable the required tangencies with
the gM,V curve that corresponds to each one of these fictitious
situations.

These conditions for azeotropy, which consider the possible
presence of local minimum or maximum boiling point
azeotropes, have been applied to the Margules equation as
an example to illustrate the procedure to obtain a more
detailed map of azeotropy and miscibility (Figure 7) than the
one previously obtained for this same model (Figure 3).

It should be noted that in the regions where there were
supposedly no azeotropes (VLnA and VLLnA) in Figure 3,
now different combinations of azeotropes of local and global
character (AmaM, aMm, amaM, amAM, amHaM, amHAM,
am/VLLnA/AM) appear (Figure 7). It is due to the limits of
azeotropy that have been now obtained evaluating the gE,L and
gE,V functions, and their derivatives with respect to mole
fraction, in all the composition ranges at each temperature, and
not exclusively at the extremes (z1 = 0 and z1 = 1) and at the
boiling points of the pure components (Tb,l and Tb,h). For that
reason, some limits defining new regions of azeotropy appear
in Figure 7, which were not described by eqs 30 and 31 and
neither represented in Figure 3.

A more detailed analysis is presented related to two complex
regions of the map shown in Figure 7. With that aim, in Figure
8, the T/z1 diagram for these two regions is shown: the am/
VLLnA/AM region (Figure 8a) and the amHAM region
(Figure 8b). In the am/VLLnA/AM region, the local minimum
point (am) at low z1 mole fraction is to the left of the VLLnA
region (VLLE with no heterogeneous azeotrope), and in the
amHAM region, the local minimum boiling point azeotrope is

in the VLLE region (heterogeneous azeotrope, amH).
Consequently, in the boundary between these two regions,
the location of the minimum boiling point azeotrope is exactly
at one extreme (low z1 mole fraction) of the LL tie-line. From
the point of view of the Gibbs free energy of mixing, in the
am/VLLnA/AM region, the am at low z1 mole fraction occurs
when the tangent point between the gM,L y gM,V curves is to the
left of the VLLnA (to the left of the two points on the gM,L

curve and one point to the gM,V curve with a common tangent
line), while in the amHAM region, the point on the gM,V curve
with a common tangent to the LL tie-line is located between
them (as Figure S5c shows). So, in the boundary between
these two regions, the common tangent point between the gM,L

y gM,V curves occurs exactly in one extreme of the LL tie-line.
To solve the location of this boundary, the objective function
schematically represented by eq 42 could be used:

x xF.O . (F.O.(am) F.O.(amH) ( ) )1
am

I
1 2= + + <

(42)

where F.O.(am) and F.O.(amH) are the objective functions of
the local homogeneous minimum boiling point azeotrope and
the local heterogeneous azeotrope, respectively, x1

am is the
component 1 mole fraction corresponding to the local
minimum boiling point azeotrope (am) and x1

I is the
component 1 mole fraction of the liquid phase with low x1
(phase I) in the heterogeneous azeotrope (amH), and ε is a
low tolerance value guaranteeing the fulfillment of the specified
conditions. The last of these conditions specified in eq 42 is
that the composition of the homogeneous azeotrope (x1

am)
must be the same as the composition of one of the liquid
phases of the heterogeneous azeotrope (x1

I). In the
minimization of this objective function, T and x1

I are the
variables to optimize.

Finally, it should be noted that the detailed analysis carried
out for the Margules equation, as an example in order to detect
the regions that include local maximum or minimum boiling
point azeotropes, could be done for any other activity
coefficient model in a similar way.

3. CONCLUSIONS
The analysis of the mixing and excess Gibbs free energy
functions, and their derivatives with respect to the mole
fraction, for both liquid and vapor phases, has led to the
development of a procedure for calculating and drawing
azeotropy and miscibility maps for binary systems, as a
function of the parameter values of some of the most used
activity coefficient models (Margules, van Laar, Wilson, and
NRTL). The equality to zero of the second and third

Figure 7. Map showing the different regions for azeotropy and
miscibility depending on the parameter values of the Margules
equation at atmospheric pressure. Antoine constants are given in
Table 1.

Figure 8. T/z1 diagrams for some regions shown in Figure 7 for the
Margules equation: (a) am/VLLnA/AM region and (b) amHAM
region.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.3c03991
Ind. Eng. Chem. Res. 2024, 63, 7926−7938

7936

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.3c03991/suppl_file/ie3c03991_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.3c03991?fig=fig8&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.3c03991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


derivatives of the gM,L function with respect to the mole
fraction, at the same composition, has been the two equations
employed to obtain the boundary function between the
homogeneous (L) and the heterogeneous (LL) regions as a
function of the parameter values of the different activity
coefficient models. Besides, the comparative analysis of the
slopes of the liquid and vapor excess Gibbs free energies, gE,L

and gE,V, respectively, evaluated at the extremes of the
composition domain (z1 = 0 and z1 = 1) and at the boiling
temperatures of the pure components, has allowed us to obtain
the required conditions for some of the most common VLE
behaviors. However, for systems with two azeotropes that
include some local (not global) maximum or minimum boiling
point azeotrope (also called intermediate azeotropes), a more
general condition must be used: for two azeotropes to be
present in a binary system at constant P, the gE,L and gE,V

functions must have two intersection points between them,
whose compositions are, in addition, those of the azeotropes.
These conditions can be easily extended to the presence of
three or more azeotropes and systems with three or more
components. This study is markedly influenced by the vapor
pressures of the pure components. Very different situations
may occur depending on how similar or dissimilar their boiling
points are and their variation with temperature. So, obtaining a
simple expression for relating all variables involved in
predicting the existence of different types of azeotropes
would be a tough or impossible task. Alternatively, the
conditions that the mixing and excess Gibbs free energy
functions must fulfill for the different cases are presented in
this paper. As an example, a detailed map of azeotropy and
miscibility has been obtained as a function of the Margules
parameter values for a binary system (2-propanol + water) at
atmospheric pressure.
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R Gas constant (J·K−1·mol−1)
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VLE Vapor−liquid equilibrium
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τij NRTL binary interaction parameter (dimensionless)
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L Liquid phase
V Vapor phase

■ SUBSCRIPTS
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1, l Light component
2, h Heavy component
i, j Components
L Liquid phase
V Vapor phase
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