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Abstract 

In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the 

textbook example of axial-equatorial equilibrium in mono-substituted cyclohexanes. The 

difficulty in modelling such a simple isomerization is related to the need of reproducing the 

delicate balance between two forces, with opposite effects, namely the attractive London 

dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for 

density-functional approximations and it is systematically explored here by considering 20 

mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference 

calculations, their axial-equatorial equilibrium is studied with a large set of 49 exchange-

correlation approximations, spanning from semilocal to hybrid to more recent double hybrid 

functionals. This dataset, called SAV20 (as Steric A-Values for 20 molecules), allows to 

highlight the difficulties encountered by common and more original DFT approaches, including 

those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-

effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. 

Interestingly, the performance of the approaches considered in this contribution on the SAV20 

dataset does not correlate with that obtained with other more standard datasets, such as S66, 

IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already 

considered in previous noncovalent interaction benchmarks.  
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1.Introduction 

The heuristic validation of new exchange-correlation functionals, leading to a more accurate 

evaluation of chemical properties, has a relevant role within Density Functional Theory (DFT).  

Up to now, a large number of properties have been targeted. Among them, we count 

thermochemistry, molecular structures, ionization potentials, absorption and emission spectra, 

just to mention a few of them (see for instance references 1-3). This huge benchmarking effort 

is necessary to estimate the typical error on the prediction of a selected property associated to a 

given functional, thus increasing the number and range of accurate chemical applications for 

DFT models.  Taking also into consideration their excellent ratio between accuracy and required 

computational resources, it is then not surprising that DFT approaches have become a very 

widespread computational tool beyond the boundaries of theoretical and computational 

chemistry.  

While a number of properties are actually reproduced (or predicted) with the desired accuracy, 

often referred to it as “chemical accuracy”, still some of them are trickier to describe and require 

additional care. This is the case, for instance, for weak non-covalent interactions (NCIs), whose 

relevance in Chemistry is longstanding and unquestionable [4,5,6].  

If, generally speaking, functionals based on Generalized Gradient Approximations (GGAs), 

such as PBE [7] and BLYP [8,9], cannot correctly reproduce the energies associated with NCIs 

(over- and under-binding respectively for these two examples) [2], better performances are 

obtained by functionals including a fraction of Exact Exchange (EXX), leading to the family of 

so-called Global Hybrids (GHs) [10]. Lower deviations can be obtained especially if NCI 

energy properties are included in the training set for functional parameterization (e.g. M06-2X). 

DFT approaches specifically developed for weak interactions should be also mentioned, but 

their performances on other chemical properties are not necessarily exceptional.  

Yet, the most significant step towards a greater accuracy for NCIs is represented by the coupling 

of standard exchange-correlation functionals with empirical dispersion corrections based on 

classical additive potentials [11,12]. These simple models are widely used since they combine 

a physically-sound model at negligible computational cost to get (very) low errors on weak-

interaction energies. The side effect is the increase of the number of empirical parameters added 

to the computing approach since the pairwise functions depend on the atom types involved in 

the interactions and on the exchange-correlation functional to which they are coupled.  

An interesting alternative is represented by the so-called Double Hybrids (DHs). They are 

hybrid functionals containing also a second-order perturbative (PT2) term that improves the 

treatment of the electronic correlation [13,14]. Indeed, DHs lead to a systematic improvement 
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with respect to GHs on a considerably large number of properties [13-15].  Nevertheless, NCIs 

are still affected by significant errors at the DH level, even if these are significantly reduced 

with respect to those obtained with GHs [2,15]. Also in this case, the pairing with empirical 

potentials, is beneficial [16,17] and, indeed, particular DHs integrate them in their construction 

(as in DSD-PBEP86 and its variants, for instance) [18,19] still with the need for specific 

parameterization. 

In this context, up to here briefly sketched, we have recently developed a basis set, called DH-

SVPD, appositely tailored to deal with NCIs and DHs [20]. When this small basis set is coupled 

with our latest nonempirical DH, PBE-QIDH [21], errors comparable to those by the most 

refined DFT approaches, including DHs paired with large triple- or quadruple- ζ basis set and 

empirical potentials, are obtained. This fact was proven in a large number of tests, from 

medium-size molecules such as those contained in the S22 [22] and S66 [23] benchmark sets, 

to the large systems included in the L7 [24] and CiM13 [25] (up to 1000 atoms) datasets [26-

28]. Beyond the gain in computing time, as this small basis set allows a roughly 4-times faster 

calculations with respect to larger quadruple-ζ basis, this combination also implies the 

definition of a completely nonempirical model, PBE-QIDH/DH-SVPD, a feature that is 

particularly novel and interesting within the field.  

Moving away from the standard benchmarks mentioned above, more complex properties and 

systems are often considered in literature as “stress” tests for DFT approaches. The aim tackling 

these systems is therefore to push further the limits of modern functionals and expand their field 

of applicability. For instance, anharmonic frequencies are a step beyond harmonic vibrations 

[29] and a high accuracy in UV-vis band shape can be considered as an improvement with 

respect to the benchmarking of simple vertical transitions (λmax) [30].  This effort allows to have 

a better evaluation of complex systems and properties of interest for Chemists. Complexity here 

is not necessarily related to large chemical systems, but also in properties where the concurrent 

effects of different factors, distinct in origin and opposite in action, are present in a subtle yet 

key balance. 

Very recently, a number of articles shed light on some fundamental issues concerning a 

textbook example, the equilibrium between the axial and equatorial conformation of 

monosubstituted cyclohexane (see Figure 1) [31,32]. The context is clearly related to the 

assessment of the role played by NCIs in Chemistry, notably concerning the stabilization of 

supramolecular complexes or complex molecular structures, for which these interactions play 

a crucial role (see for instance references 33 and 34). Monosubstituted cyclohexanes have, of 
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course, the advantage of being small in size, which allows the deployment of refined post-

Hartree-Fock methods for a very precise quantification of the intramolecular NCIs. 

Furthermore, they have been largely studied at the experimental level and estimations are 

available for the Winstein-Holness parameter, also known as A-value, that is the free energy 

difference, often estimated from NMR data, between the axial and equatorial form [35,36]. The 

equatorial conformer is typically the most stable one, and the textbook explanation is based on 

the larger contribution of the steric hindrance between the substituent and the close axial 

hydrogens in the axial form (see Figure 1 and reference 37 for a short discussion). However, 

Schreiner and co-workers pointed out that London dispersion (LD) interactions significantly 

affect the axial-equatorial equilibrium in monosubstituted cyclohexanes [31]. They give an 

estimation of the ratio between the LD and steric contributions to the relative energies of the 

two forms that ranges between 19% (R=CI3) and 95% (R=CN), depending on the R-substituent 

to the cyclohexane ring. This interplay of steric and LD interactions also induces strains into 

the molecular structure. It should be noted that previous works have already shown the 

relevance of LD on the conformational equilibrium of mono-substituted cyclohexanes [38,39].  

Starting from this analysis and without entering into details on the nature of different 

contributions to the relative stabilities [39] (that could depend on the energy-partition method 

used, as other examples show), these monosubstituted cyclohexanes likely represent an 

example of those small systems discussed above, where one can find a complex balance of 

effects that escapes the range of structure-property relationships covered by traditional 

benchmark datasets. Furthermore, they represent an ideal test case since they provide a clear 

example of a fundamental problem in Chemistry, while still maintaining an affordable 

dimension from a computational point of view (up to 21 atoms in the cases considered here).  

Therefore, we believe that it is interesting to verify if a number of commonly-used DFT 

methods are able to correctly describe the axial-equatorial equilibrium in substituted 

cyclohexanes and to reproduce the subtle Chemistry associated to the balance of steric and LD 

components. To this end, the 20 mono-substituted cyclohexane analyzed by Schreiner and co-

workers are considered here and their conformational energies are computed with 49 

functionals, including GGAs, GHs, DHs as well as Range Separated Hybrids (RSH). Coupled 

Cluster (CC) high-quality energies are taken as references; the obtained results nicely illustrate 

the complexity of this chemical problem and its difference from benchmarks commonly 

employed for the assessment of NCI interactions.    
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2. Computational Details 

A set of 28 exchange-correlation functionals, selected among those more used in literature, 

listed in Table 1 is considered along this study. Some of them are paired with D3 and D3(BJ) 

and potentials, using the appropriate parametrizations, for a total number of 49 different DFT 

approaches. The D4 model [65] was also considered for selected functionals, taking the 

parameters from literature [65] or specifically optimizing them for the PBE-QIDH functional 

(see Table S1).  

Single-point energy calculations are carried out using the def2-TVPP basis set on the molecular 

structures of the monosubstituted cyclohexanes optimized at the MP2/aug-cc-pVTZ level of 

theory and retrieved from ref. 31.  This set of data is expanded to include those obtained using 

the DH-SVPD basis set. As reported in reference 20, the latter was developed in a nonempirical 

fashion by minimizing recursively a combination of the PBE-QIDH energy contributions of a 

set of dimers in NCI and their respective monomers with respect to few atomic basis set 

exponents. Therefore, the DH-SVPD basis set is not trained on any specific external data 

coming, for instance, from post-HF interaction energies.   

In addition to these approaches, we also considered the methods proposed by DiLabio and co-

workers for an accurate evaluation of NCIs, based on the coupling of so-called atom-centered 

potentials (ACP) with the small 6-31-G(d) basis set (called 6-31G*-ACP) [66]. These ACPs 

are parametrized on more than 118,000 energies, including about 19,000 NCIs. Only 3 

functionals, namely BLYP, M06-2X and CAM-B3LYP are considered in this approach as well 

as few atomic elements, not including Br and I atoms. Therefore, the 6-31G*-ACP model is not 

applied to 4 molecules of our cyclohexanes set, namely R=Br, I, CBr3 and CI3, thus reducing 

the number of tested molecules from 20 to 16.  

The def2-TZVPP and DH-SVPD basis sets as well as  the 6-31G*-ACP model are also 

considered for the structure optimization and subsequent Gibbs free-energy calculations at DFT 

level. All DFT calculations are carried out with the Gaussian program [67]. 

The CCSD(T) “gold standard” method is selected to compute reference relative energy values 

[68]. The complete basis set (CBS) limit is further reached by running a two-point extrapolation 

with the cc-pVnZ Dunning correlation consistent basis set, n being the `cardinal number’ of the 

basis set. Within this scheme, the convergence of the self-consistent field (SCF) exchange 

energy to the CBS limit is assumed to follow 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆
𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐴𝐴𝑒𝑒−𝛼𝛼√𝑛𝑛, 
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with 𝐴𝐴 and 𝛼𝛼, two constants, the former being determined with the two-point extrapolation 

scheme and the latter taken as an optimally tuned basis set constant [69]. It is assigned to 𝛼𝛼2 3⁄ =

4.42 (𝛼𝛼3 4⁄ = 5.46) for a 2/3 (3/4) extrapolation scheme. On the other hand, the convergence of 

the correlation energy is assumed to follow the expression 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑛𝑛𝛽𝛽𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑚𝑚𝛽𝛽𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑛𝑛𝛽𝛽−𝑚𝑚𝛽𝛽 , 

 

with 𝛽𝛽, another tabulated constant which is assigned to 𝛽𝛽2 3⁄ = 2.46 or 𝛽𝛽3 4⁄ = 3.05 for a 2/3 or 

3/4 extrapolation scheme, respectively [70].  The total CBS energy is then obtained by summing 

the exchange and correlation energies extrapolated at the basis set limit such as 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶 . 

For domain based local pair natural orbitals (DLPNO) cost-effective methods, a three-point 

extrapolation scheme (EP3), consisting in adding a correction to the 3/4 extrapolated correlation 

energy term with the canonical method at cc-pVDZ level has been considered. For instance, an 

EP3 extrapolation with DLPNO-CCSD(T) level writes 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇)
𝐸𝐸𝐸𝐸3 = 𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆

𝐶𝐶𝐶𝐶𝐶𝐶(3 4⁄ ) + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇)
𝐶𝐶𝐶𝐶𝐶𝐶(3 4⁄ ) + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇)

𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇)
𝑐𝑐𝑐𝑐−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   

Following previous suggestions, very tight settings are used in the DPLNO calculations [71,72].   

As comparison with CCSD(T), the 2nd order Möller-Plesset perturbation theory (MP2) is also 

employed in its Spin-Component Scaled (SCS-)MP2 variant [73] together with the same 

sequence of cc-pVnZ basis set (n = D, T, Q) and the corresponding extrapolation to the 

CBS(2/3) and CBS(3/4) limit.  

All CCSD(T) and MP2 calculations have been carried out with the ORCA program [74]. 

 

3. Results and Discussion 

3.1 High-quality axial-equatorial energy differences 

As discussed above, the axial-equatorial energy differences taken as reference are the ones 

computed at the CCSD(T)/CBS(3,4) level. They are reported in the last column of Table 2. The 

corresponding Mean Energy Difference (MED) for the whole molecular set, that is the average 

value of the energy difference between axial and equatorial isomers, amounts to 2.2 kcal/mol. 

As expected, all the equatorial conformations, except one, are more stable than the axial ones 

due to dominant steric effects.  The values range between 6.23 kcal/mol (R=CI3) and 0.13 

kcal/mol (R=F), with the single exception represented by the CN derivative, where the two 

conformers are computed to be almost isoenergetic (∆Eax-eq=-0.03 kcal/mol). These data well 
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agree with the qualitative analysis of Schreiner and co-workers carried out at the B3LYP-

D3(BJ) level of theory.  

Let us start our discussion from the canonical CCSD(T) calculations. Here the deviations from 

the reference values systematically decrease going from the 2-ζ to the 4-ζ basis set, namely 

from 0.26 to 0.05 kcal/mol. This variation corresponds to a shift of the error from 11.8% to 2.3 

% on the 2.2 kcal/mol average value (MED) . An analysis of the results collected in Table 2 

shows that they follow the expected trends, with few exceptions. For instance, the stability of 

the equatorial form of the F-cyclohexane is overestimated at the CCSD(T)/2ζ level of theory 

(∆Eax-eq=-0.38 kcal/mol) together with that of R=CN (∆Eax-eq=-0.22 kcal/mol) and R=CF3 (∆Eax-

eq= 1.60 kcal/mol) derivatives. While in this latter case the energy difference is positive, thus 

suggesting the correct reproduction of the interplay between steric and LD interactions, the 

negative sign for R=F and R=CN suggests an overestimation of the dispersion interactions. The 

two isomers are predicted to be, instead, isoenergetic for R=CCH (∆Eax-eq=-0.02 kcal/mol), 

always for the same computational model.  

In Figure 3 are reported the Mean Absolute Error (MAE) obtained for the other post-HF 

approaches considered in this work. For instance, a MAE of 0.11 kcal/mol is obtained with the 

3-ζ basis set, about one half of the deviation computed with the smaller basis set. The CBS(2,3) 

approach provides, instead, an error slightly larger than that obtained with the 3-ζ basis (0.12 

kcal/mol).  These two methods restore the correct trends on the energy values (see also Table 

S2). 

More in general, the cyclohexanes with aliphatic substituents (Me, Et, tBu) or the SiMe3 group 

are quite insensitive to the method, showing only small fluctuations with the basis set size or 

the extrapolation scheme (maximum variation of 0.2 kcal/mol). In contrast, larger variations 

are found for halogenated groups, as above discussed. This behaviour is well illustrated in 

Figure 4 (left), where the CCSD(T) values, computed using different basis set, extrapolation 

schemes and localized orbitals, are plotted as functions of the reference canonical 

CCSD(T)/CBS(3,4) energies. The outliers, labelled with the substituent groups, are indeed all 

halogenated systems.  

Following referee’s suggestion, the original two-point extrapolation scheme of Helgaker [75] 

was also considered for the CCSD(T) calculations.  The differences on the MAE for the 

CBS(3,4) extrapolation with respect to the scheme using modified coefficients is less than 0.002 

kcal/mol (see Table S2).  We have also considered larger basis sets, of aug-cc-pVnZ quality, 
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but, unfortunately, this basis set did not provide converged results for most of the molecules of 

the data set and it was, therefore, discharged.   

The consideration of the DLPNO scheme does not significantly affect the computed MAEs (see 

Figure 3 and Table S3). Indeed, only small variations (< 0.01 kcal/mol) are observed between 

the canonical CCSD(T) calculations and their DLPNO counterparts with the 2-, 3- and 4-ζ basis 

set, thus well confirming the accuracy of that orbital localization scheme. A larger, but still 

acceptable, difference (∆MAE=0.02/0.03 kcal/mol) is however evaluated with the CBS 

approaches, corresponding to about 1% of the MED. The error is, however, sizeable at the 

CCSD(T)/EP3, being about 0.08 kcal/mol, that is about 4% of the MED. This scheme is 

supposed to be superior to the more traditional CBS in modelling weak interactions in the S66 

dataset, but, apparently, it is not at its best on cyclohexane conformers. 

The SCS-MP2 calculations reflect the trends of canonical CCSD(T) ones, with the 2ζ basis set 

providing a larger error (0.33 kcal/mol) decreasing to 0.16 kcal/mol for the 4ζ basis set (see 

Figure 3 and Table S4). Interestingly, the two CBS extrapolation schemes considered, namely 

CBS(2,3) and CBS(3,4), give the same MAE, slightly lower than that found for the 4ζ basis 

(about 0.12 kcal/mol). As for the CCSD(T) approaches, the most problematic groups are those 

containing halogen atoms, as it is clearly shown in Figure 4 (left). Indeed, the points most distant 

from the identity line are the same observed for CCSD(T) calculations, namely R=F, I, CF3, 

CBr3 and CI3.  

Generally speaking, these results are completely aligned with those obtained with the same 

methods for purely covalent interactions, in particular concerning basis set effects and the 

DLPNO approximations [67,76,77]. It should also be pointed out that, consideration of non-

perturbative triple and perturbative quadruple excitations, giving CCSDT and CCSDT(Q) 

models, respectively, has a small effect on computed NCIs for small systems (such as water 

and ammonia dimers), modifying the interactions energies only a few cm-1 (that is 0.01-0.02 

kcal/mol). The huge computational effort associated with these methods is, in our opinion, well 

beyond the scope of the present paper. 

 

3.2 DFT benchmarks 

The next step is to identify the most suitable functionals to model the axial-equatorial 

equilibrium in the set of monosubstituted cyclohexanes. The MAEs for the functionals collected 

in Table 1 (with and without dispersion corrections) are reported in Figure 5.  The 49 DFT 

methods have very different behaviors, with MAEs ranging from 0.90 to 0.07 kcal/mol for 
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BLYP and PBE0-D3(BJ), respectively, that is between 41% and 4% of the reference MED (2.2 

kcal/mol). Besides the two worst-performing approaches (BLYP and B3LYP), about one half 

of the functionals provides an error between 0.6 and 0.4 kcal/mol, while for the others the range 

is between 0.3 and 0.1 kcal/mol. As expected, GGA functionals, such as BLYP, PBE and M06-

L, are in the first group, while GHs and DHs, eventually corrected for dispersion, are in the 

second one. Indeed, all the best performers (MAE < 0.14 kcal/mol) incorporate some form of 

dispersion correction, from the original Grimme’s proposal [12], to VV10 [46], through Becke-

Johnson [78] and Spherical Atom Dispersion Term [52] models.  

The best performer is a GH, namely PBE0, coupled to the D3(BJ) potential that provides an 

error as low as 0.07 kcal/mol.  It is slightly better than the related PBE0-DH functional corrected 

with the D4 potential (PBE0-DH-D4, 0.074 kcal/mol) and  3 semi-empirical functionals, 

namely ωB97X-V, ωB97M-V and DSD-PBEP86, that show deviations of 0.09, 0.10 and 0.11 

kcal, respectively. These last three functionals include dispersion corrections and are explicitly 

developed including NCIs in the training set, e.g., the S22, S66 or NC15 datasets, used to 

optimize their intrinsic parameters. Indeed, these errors are comparable to those obtained, for 

instance, on the NC15 data set, at least for ωB97X-V and ωB97M-V [79].  

Other interesting trends can be inferred from the MAEs values. First, functionals including PBE 

model perform better than those using BLYP. For instance, BLYP, B3LYP (and CAM-B3LYP) 

are the worst performing methods, with deviations of 0.90 and 0.83 kcal/mol (and 0.63 

kcal/mol), respectively, whereas PBE and PBE0 provide 0.51 and 0.52 kcal/mol. In both cases, 

it is interesting to notice the negligible role played by the EXX, with GGAs and GHs providing 

very close deviations. This is not the case for other weak-interacting systems, such as those 

contained in the S22 or S66 datasets.  The two corresponding DHs, B2-PLYP and PBE-QIDH, 

confirm this behavior, their MAEs being 0.47 and 0.24 kcal/mol respectively. 

For these two families of functionals, specifically, dispersion corrections have a significant 

impact, reducing the MAEs between 0.3 and 0.5 kcal/mol, depending on the specific functional. 

This is the case, for instance, for B2-PLYP/B2-PLYP-D3 (from 0.47 to 0.14 kcal/mol) and 

PBE-QIDH/PBE-QIDH-D3(BJ) (from 0.24 to 0.12 kcal/mol). Other functionals display the 

same behavior upon the addition of empirical potentials, such as APF and APFD (from 0.59 to 

0.12 kcal/mol) or mPW2-PLYP and mPW2-PLYP-D (from 0.44 to 0.13 kcal/mol).  

It should be also remarked that the consideration of the most recent D4 correction in place of 

the D3(BJ) model, marginally affects the MAE for PBE0 (+0.008 kcal/mol) and the related DH 

functional, PBE-QIDH (-0.010 kcal/mol, see Figure 5 and Table S5). Such limited variations 
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in going from the D3(BJ) to the D4 correction for functionals of the PBE family was already 

reported in literature [80,81]. 

While the data well highlights the overall contribution of the NCIs, they do not allow to quantify 

the relative weight of steric and LD interactions. Appropriate analysis tools, based on electron 

density or energy partition, can be used [39], but this goes beyond the scope of this paper and, 

in addition, the answer is likely to be method-dependent.  

The most accurate dispersion-uncorrected functional is M06 with a MAE of 0.15 kcal/mol, 

about two-times that of the best performing functional, PBE0-D3(BJ), but significantly better 

than other approaches including dispersion corrections, such as ωB97X-D or B3LYP-D3. 

Interestingly, most of the Minnesota functionals considered here are quite insensitive to the 

addition of a dispersion potential. For instance, the MAE for M06-D3 is 0.19 kcal/mol, even 

higher than the deviation for the bare M06 model. Similar values are also found for M06-HF 

and M06-HF-D3 (0.22 vs. 0.23 kcal/mol). These results are in contrast with data in the literature 

suggesting that empirical dispersions are also beneficial for Minnesota functionals [82], thus 

giving further indications that the set of monosubstituted cyclohexanes are complementary to 

other commonly employed benchmarks. 

Some interesting features appear from a deep analysis of the single energy values collected in 

Table S5.  The functionals involving PBE or BLYP models, pure GGA, GHs or DHs and with 

or without dispersion corrections, always give energy differences with the correct positive sign, 

with the axial form being always higher in energy than the equatorial one. The only exception 

is PBE-QIDH-D3 that gives -0.10 kcal/mol for the CN derivative to be compared to the -0.03 

kcal/mol for the reference CCSD(T)/CBS(3,4) value.  

More in general, the largest deviations are observed with the pure BLYP or PBE functionals, 

and the agreement with the reference data increases going to the corresponding GHs (B3LYP 

and PBE0) and then DHs (B2-PLYP and PBE-QIDH). The addition of the D3(BJ) correction 

further reduces the deviations and leads to an inversion on the quality scale between PBE0-

D3(BJ) and PBE-QIDH-D3(BJ). Larger improvements along this scale (from GGAs to DHs 

and with/without dispersion corrections) are observed for aliphatic or aromatic substituents 

(such as tBu or Ph) than for halogenated ones (CX3, X=Cl, Br, I), thus suggesting that, in these 

molecules, the LDs are less relevant.   

A different picture emerges for the Minnesota functionals. Here M11, MN15 and M06-L prefer 

the equatorial form for the mono-halogenated (R=F, Cl, Br, I), CN and CCH substituted species, 

even upon addition of a dispersion correction.  Correct trends are, instead, obtained for M06, 

M06-2X and M06-HF, with the small variation, already discussed, from the D3 correction. 
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Functional involving the B97 model (B97M-V, ωB97M-V and ωB97X-V) are, as discussed, in 

excellent agreement with the reference data for all the 20 molecules. 

In Figure 5 are also reported the MAEs computed with the 6-31G*-ACP model and the 3 

functionals for which it was developed, that is BLYP, CAM-B3LYP and M06-2X as well as 

the results obtained with the DH-SVPD basis set and 3 DHs (B2-PLYP, PBE0-DH and PBE-

QIDH).  The 6-31G*-ACP model, representing an excellent compromise between cost and 

accuracy, significantly reduces the MAE for BLYP (from 0.90 to 0.39 kcal/mol, -56%) and 

CAM-B3LYP (from 0.63 to 0.33 kcal/mol, -58%). It has, however, a limited impact on M06-

2X (from 0.17 to 0.15 kcal/mol), thus reproducing the behavior already observed for Minnesota 

functionals and empirical correction. 

More in detail, from the data reported in Table S6, one can clearly conclude that the ACP model 

represents a significant improvement in the description of all the 20 axial-equatorial energy 

differences with respect to the uncorrected BLYP and CAM-B3LYP, reducing the gap between 

the energies of the two conformers. For M06-2X, the effect is in the opposite direction, the 

axial-equatorial difference increases for most of the molecules. The alkyne (CCH) and cyano 

(CN) substituents represent, however, an exception with the equatorial form being excessively 

stabilized by the 6-31G*-ACP model, leading to comparable negative energy differences (about 

-0.5 kcal/mol).  

Finally, the DH-SVPD basis set reduces the overstabilization observed when the PBE-QIDH 

functional is used with a large basis set, thus systematically increasing the agreement with the 

reference values, as shown by the data reported in Table S7.  This effect is systematic for all 

the 20 molecules, whose stabilities have the right trend (all positive except CN) at this level of 

theory. Indeed, the MAE is 0.13 kcal/mol, thus placing the PBE-QIDH/DH-SVPD model at the 

twelve place in the ranking of Figure 5, at 0.06 kcal/mol from the best performer. 

All these trends are summarized in Figure 6, where the computed energy differences, obtained 

with methods selected among those discussed above in details, are reported. In particular the 

effects of dispersion corrections are clear for the BLYP functionals, while the M06-2X model 

provides several values far from the identity line, notably those related to halogenated 

molecules (R=CF3 and CI3). The other functionals are among the most accurate ones and their 

values are, generally speaking, closer or on a similar line.   

In short, an excellent accuracy of about 0.1 kcal/mol or less, corresponding to an error of about 

5% of the reference CCSD(T) MED, can be obtained with several functionals, some recent (and 

more complex), such as ωB97M-V, DSD-PBEP86 and ωB97X-V, other less recent such as 

PBE0-D3(BJ), B2-PLYP-D3 and PBE-QIDH-D3(BJ), all of them featuring a specific 
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correction for dispersion interactions. Not far, it is possible to find M06, with the standard Def2-

TZVPP basis set, PBE-QIDH with the specific DH-SVPD basis, and the M06-2X functional 

coupled to the ACP-6-31G* model. They give MAEs between 0.13 and 0.15 kcal/mol (6 to 7 

% of the reference MED). 

 

3.3 A-values: DFT, CC and experimental data 

The DFT values discussed up to now are evaluated using the same molecular structures for all 

the functionals. This common practice gives the chance to disentangle structural and electronic 

effects and to thus assess the intrinsic predictive qualities of the tested DFT methods. However, 

in most cases, the same exchange-correlation functional is often used at the same level of theory 

for both structural and energy calculations, as well as for (harmonic) frequency evaluations. Of 

course, there is no a priori guarantee of good performances on both properties. Indeed, some 

functionals are shown to be more suitable for evaluating just one of the two [83]. This fact calls, 

naturally, for the definition of accurate reference values for the geometrical parameters (at least 

bond lengths), a task far from trivial, even for small or medium sized molecules [84].  

To this end, in this study, we have also considered an experimental observable, that is linked to 

structural and vibrational fingerprints of the molecule, the so-called Winstein-Holness A-value 

[35,36]. This value is an estimate of the difference between the Gibbs free energies of the axial 

and equatorial isomers obtained via NMR spectroscopy. Indeed, from the ratio of the signal 

intensities of the two forms, the K equilibrium constant and then the ∆G value can be derived. 

It is however worth to note that several experimental factors, such as solvent and temperature 

effects, limit the accuracy of the constant being measured, thus affecting the evaluation of ∆G 

[85].  As it can be seen from the experimental data collected in the first column of Table 3, a 

large value interval has been determined for the smaller monosubstituted cyclohexanes, thus 

confirming the experimental uncertainty.  

Therefore, following the choice made in reference 31, the mean values, listed in the second 

column of Table 3, will be considered in the following as an estimation of the experimental A-

values.  Table 3 also reports the reference theoretical values, evaluated by correcting the 

CCSD(T)/CBS(3,4) energies with the MP2 thermodynamic contributions.  Clearly there are 

inconsistencies between the two datasets, especially for the bulky substituents, while the A-

values of the cyclohexanes with the smaller substituents are better reproduced. The largest 

deviation is observed for R=tBu, about 2 kcal/mol, while the computed values for F, Cl, CCH 

and CF3 are within the experimental interval. Overall, the deviation between CCSD(T) and 

experimental data is large, the MAE is 0.52 kcal/mol, corresponding to about 30% of the mean 
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experimental A-value (1.8 kcal/mol). However, as it is observed from Figure 7, a clear linear 

relationship (r=0.98) emerges between experimental data and CCSD(T) values. The outliers 

are, again, the above-mentioned systems, notably R=tBu, iPr and Ph. This good relationship 

between computed and experimentally-estimated data is, of course, only qualitative, since the 

theoretical values have been evaluated on isolated molecules without including any solvent 

model.    

Inspecting the CCSD(T) values, it is worth to note that the equatorial conformers are more 

stable in terms of Gibbs free energy differences than ∆E, except for the R=Ph-C and CI3 

molecules. The largest absolute variations are observed for R=tBu (+1.95 kcal/mol) and R=Ph-

D (+1.64 kcal/mol), with the largest relative variations observed for CN (-574%), and CCH 

(+71%). The latter values are however, small on the absolute scale (+0.17 and +0.20 kcal/mol 

respectively).  

This context leads us to prefer the theoretical A-values for further comparison, also considering 

the limited number of experimental data, 13 instead of the 20 original systems as well as the 

large interval of experimental values for some molecules. Similar considerations have been also 

previously reported in literature [31]. 

Figure 8 reports the MAE for the A-values with respect to the CCSD(T) references, obtained 

for the DFT approaches being considered here. Of course, these A-values have been computed 

using the same exchange-correlation functional for structures, energies, and thermal corrections 

(see also Table S8 for single values).  At first sight, it should be observed that the range of 

MAEs for A-values is reduced with respect to that found for energies at fixed structures. Indeed, 

the values in Figure 8 span over an interval of about 0.4 kcal/mol (from 0.21 to 0.67), while the 

MAE range of the MP2 structures is about twice as large (0.8 kcal/mol, from 0.07 to 0.90 

kcal/mol). 

Globally, the trends observed with fixed geometries are preserved, and only a limited 

reshuffling in the rank of the functionals is observed. Indeed, 7 of the 10 worst performing 

functionals (BLYP, B3LYP, CAM-B3LYP, M11-D3(BJ), APF, M11and BMK-D3(BJ)) are the 

same as those in fixed MP2 geometry, even if not in the same order. Also 9 of the best 

performing functionals, out of 10, confirm their performance on the new reference set.  

These results are rather reassuring since they clearly indicate a marked consistency between 

single energy values at given geometry and differences in Gibbs free energies. 

Two other points deserve further discussion. First, our PBE-QIDH/DH-SVPD protocol has a 

MAE that is only 0.03 kcal/mol higher than the best functional (0.230 vs. 0.204 kcal/mol, Table 

S9), thus further confirming its robustness and its ability to reproduce both structure and thermal 
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effects. The second point concerns the performance of the ACP-6-31G* model that leads to 

comparable results to those obtained with the larger Def2-TZVPP basis set for BLYP (a MAE 

of 0.54 vs. 0.48 kcal/mol, respectively) and CAM-B3LYP (a MAE of 0.51 vs. 0.46 kcal/mol, 

respectively), but, of course, at a fraction of the computational cost. In contrast, a slight increase 

is found for M06-2X in going from the Def2-TZVPP basis to the ACP-6-31G* model (from 

0.29 to 0.35 kcal/mol, respectively).  Such behavior is likely related to an overestimation of the 

attractive dispersion interactions in some of the systems, predicting at the CAM-B3LYP level 

the axial form as the most stable for R=CCH and CN (see Table S9). 

In summary, the comparison against Gibbs free energies follows the same trends observed using 

fixed molecular structures, but it is slightly less discriminating for the functional selection, due 

to the reduced range of values and the significant role played by thermal and vibrational 

contributions. Therefore, we believe that the axial-equatorial energy differences, as discussed 

in paragraphs 3.1 and 3.2, represent an appealing option to be included in the datasets for the 

systematic benchmarking of DFT approaches. This dataset, including the CCSD(T)-CBS(3/4) 

energies (last column of Table 2), will be named SAV20, from Steric A-values for 20 

molecules, to remark its origin. 

 

3.4 About the utility of another dataset for non-covalent interactions. 

The final question to be addressed concerns the usefulness of this new dataset, compared to 

those already present in the literature and largely used for functional benchmarking. To answer 

this basic question, we compare the performances of selected functionals for three standard 

datasets probing for NCI energy properties, namely the so-called S66 [23], IDISP [86] and 

NCI15 [77] set, with those obtained on our SAV20 set. These sets are totally diverse in nature, 

containing different molecules and covering NCIs with various interaction energies. Indeed, the 

first set, S66, is a relatively large dataset containing the interactions energies of 66 molecular 

complexes, generated from 13 different monomers (acetic, acetamide cyclic, cyclopentane, 

ethene, ethyne, neopentane, n-pentane, methylamine, methanol, N-methylacetamide, pyridine, 

uracil, and water). This dataset was conceived to be representative of the most common types 

of NCIs in biomolecules, including both LD, H-bond, and mixed LD/H-bond complexes almost 

in the same ratio.  The CCSD(T)/CBS reference energies ranges from about 2 kcal/mol to about 

20 kcal/mol, but most of the complexes have interaction energy around 4 kcal/mol. The mean 

interaction energy over the whole set is about 5 kcal/mol.  

IDISP is a small dataset covering intramolecular LDs of large organic systems. These energies 

are evaluated from 4 reactions, namely the dimerization of anthracene, the hydrogenation 
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reaction of [2.2]paracyclophane yielding p-xylene, the isomerization of n-octane to iso-octane 

and isomerization of n-undecane to 2,2,3,3,4,4-hexamethylpentane, and from the energy 

differences between the linear and folded conformers of the C14H30 and C22H46 hydrocarbons. 

These reactions were identified as problematic for DFT methods (see for instance reference 2). 

The IDISP set involves 13 single point calculations and the average energy is 14.1 kcal/mol. 

Both S66 and IDISP sets are part of the large GMTKN55 database, commonly used for 

benchmarking DFT-based (but not exclusively) methods [2].   

Finally, the third set is the NC15 proposed by Patkowski and co-workers [77], composed by 

small LD complexes such as rare-gas dimers, water, ammonia, and methane dimers, forming 

21 homo- and hetero-NCI dimers (please note that the 15 in the acronym is the year). The 

CCSD(T)/CBS reference energies span from 0.02 to 48.3 kcal/mol, with 5 of them being 

between 1 and 5 kcal/mol, and 1 at 48.3 kcal/mol. The average value is 3.3 kcal/mol. Among 

the three sets, the last one is the most recent and less widespread, but its average value is the 

closest to that of SAV20 (2.2 kcal/mol). 

In Figure 9 are reported the MAEs of the SAV20 set as function of the values obtained (with 

the same functionals) for the S66, IDISP and NC15 sets. A correlation close to linearity between 

two sets will indicate that they are mapping similar features and, therefore, they are redundant. 

Since the aim here is to look for a possible correlation between the different sets, a minimal 

effort strategy, based on using published data for these sets [79,87], is largely sufficient. Indeed, 

the variations from a linear correlation are significantly larger than those related to numerical 

issues (different computers codes and computational parameters).  

Concerning the first two sets, S66 and IDISP, the regressions are relatively good (r of about 

0.7), but different functionals are significantly far from the linear correlation, as also clearly 

appears from the spreading of the points on the graphs (Figure 9, left). In particular, the most 

significant outliers are PBE, MN15, M11, and their D3-corrected counterparts for the IDISP 

set, and B3LYP, PBE, M11, M11-D3(BJ), TPSS and BMK for the S66 set.  In the first case, 

however, all the functionals provide significant errors on both IDISP and SAV20 sets (even if 

the two bad performances are not correlated), while in the second case PBE, M11 and M11-

D3(BJ) are (relatively) good on S66 and bad on SAV20. Furthermore, the outliers are not 

always the same for the two sets. The most relevant outliers for the NC15 set (Figure 9, right) 

are BLYP, BMK and BMK-D3, these functionals provide different degrees of accuracy on the 

NC15 and the SAV20 sets. This non-systematic behavior strongly indicates that there is not a 

clear correlation between our SAV20 set and the other three benchmark datasets. This absence 

of correlation clearly suggests that the SAV20 set represents a different portion of the chemical 
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interaction space, that is not considered in other widely used benchmarks, and that it could 

largely be used to complement the existing sets in the quality assessment of exchange-

correlation functionals. 

 

4. Conclusions. 

The axial-equatorial equilibrium in 20 mono-substituted cyclohexanes are evaluated using 49 

DFT approaches, in some cases corrected with empirical potentials for non-covalent 

interactions. They are compared to basis-set extrapolated CCSD(T) high-quality energies 

computed within this investigation and used here as a reference. These simple yet challenging 

molecules are ruled by the interplay of London dispersion and steric repulsion, acting in 

opposite direction while defining the relative stabilization of the isomer. They represent, 

therefore, a complex dataset for modelling structure-energy effects. Indeed, our results show a 

discrepancy between the performances obtained on this dataset and those reported in literature 

on others specifically developed for NCIs.  This peculiar feature allowed us to define the Steric 

A-Value (SAV20) dataset, composed by the axial and equatorial monosubstituted cyclohexanes 

(40 molecules in total) and the associated CCSD(T)/CBS(3,4) reference energies. This dataset 

comes as an interesting addition to the ones already existing and mostly including effects from 

single energy components, such as LD. As an interesting byproduct of our analysis, we show 

how our PBE-QIDH/DH-SVPD model, developed for handling NCIs in the framework of 

double hybrids at a reduced computational cost, performs remarkably well also on the SAV20 

dataset. This result is further confirmation that this model is able to catch the main physics 

underpinning complex NCIs.  
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Table 1. List of the exchange-correlation functionals considered in this work, ranked according to the 

casted percentage of the exact-like exchange (EXX) and second-order perturbation (PT2) correlation 

contributions. 

Functional %EXX %PT2 References 
    

GGA and metaGGA    
BLYP 0 0 8,9 
PBE 0 0 7 

M06-L 0 0 40 
revM06-L 0 0 41 
B97M-V 0 0 42 

TPSS 0 0 43 
B97 0 0 44 

B97M-V 0 0 45 
VV10 0 0 46 

    
Global Hybrids    

B3LYP 20 0 47,48 
PBE0 25 0 49 
M06 27 0 50 

revM06 40.4 0 51 
BMK 42 0 55 
MN15 44 0 52 

M06-2X 54 0 50 
M06-HF 100 0 50,53 

APFb 22.945 0 54 
    

Range-Separated Hybridsa    
ωB97M-V 15/100 0 56 
ωB97X-V 16.7/100 0 57 

CAM-B3LYP 19/65 0 58 
ωB97X-D 22/100 0 59 

M11 42.8/100 0 60 
    

Double Hybrids    
PBE0-DH 50 12.5 61 
B2-PLYP 53 27 62 

mPW2-PLYP 55 25 63 
DSD-PBEP86 69 22/52 18 

PBE-QIDH 69.336 33.333 64 
 

a) min/max for range separated hybrids ; b) this functional is a combination of 41.1% 
B3PW91 (20% EXX exchange) and 58.9% PBE0 (25% EXX exchange) 

  



24 
 

Table 2. Energy differences (kcal/mol) between the axial and equatorial conformers of 

substituted cyclohexanes, computed at the CCSD(T) level using different basis sets and 

approximations. 

 

 2-ζ 4-ζ CBS(3/4) 

R DLPNOa canonical DLPNOa canonical DLPNOa canonical 

       
F -0.358 -0.377 0.082 0.106 0.105 0.134 
Cl 0.374 0.355 0.39 0.401 0.357 0.382 
Br 0.558 0.508 0.402 0.41 0.342 0.369 
I 0.569 0.824 0.343 0.319 0.187 0.178 
CCH 0.013 -0.02 0.263 0.248 0.302 0.278 
CN -0.206 -0.225 -0.053 -0.049 -0.048 -0.03 
Me 1.87 1.844 1.758 1.758 1.773 1.78 
Et-A 1.741 1.691 1.636 1.628 1.657 1.648 
Et-B 0.918 0.892 0.79 0.806 0.793 0.816 
iPr-A 1.467 1.409 1.391 1.348 1.418 1.38 
iPr-B 1.531 1.485 1.374 1.334 1.398 1.356 
tBu 5.132 5.1 4.875 4.845 4.878 4.851 
Ph-B 3.002 2.922 2.773 2.7 2.77 2.697 
Ph-C 4.046 3.98 4.052 4.033 4.066 4.053 
Ph-D 3.233 3.149 3.034 2.971 3.027 2.988 
CF3 1.691 1.602 2.285 2.27 2.262 2.267 
CCl3 5.112 5.051 4.849 4.845 4.732 4.769 
CBr3 6.022 5.93 5.563 5.549 5.455 5.454 
CI3 6.949 7.164 6.484 6.508 6.214 6.266 
SiMe3 2.271 2.209 2.288 2.263 2.288 2.276 
       
MAE 0.254 0.263 0.048 0.043 0.026  

 

a) tight settings 
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Table 3. Experimental free-energy differences between the axial and equatorial conformers of 

the substituted cyclohexane (∆G, kcal/mol). The mean experimental value (∆Gav, kcal/mol) as 

well as the best theoretical estimate (Ref., kcal/mol) are also provided. Experimental values are 

taken from reference 85. 

 

R  ∆G ∆Gav Ref. 

     
F  0.25-0.42 0.335 0.208 
Cl  0.53-0.64 0.585 0.598 
Br  0.48-0.67 0.575 0.594 
I  0.47-0.61 0.54 0.365 
CCH  0.41-0.52 0.465 0.476 
CN  0.2 0.2 0.142 
Me  1.74 1.74 2.057 
Et-A  1.79 1.79 1.954 
Et-B    0.992 
iPr-A  2.21 2.21 1.728 
iPt-B    1.487 
tBu  4.7-4.9 4.8 6.803 
Ph-B  2.8, 2.87 2.8 3.275 
Ph-C    3.539 
Ph-D    4.631 
CF3  2.4-2.5 2.45 2.512 
CCl3    4.912 
CBr3    5.547 
CI3    6.233 
SiMe3  2.5 2.5 3.272 
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Figure captions 

Figure 1. Sketch of the substituted cyclohexanes considered in the present paper. According to 

textbooks, the axial conformer should always be higher in energy than the equatorial one, due 

the dominant steric repulsion.   

Figure 2. Sketch of the ethyl-, isopropyl- and phenyl-cyclohexanes (1Eteq,ax, 1iPReq,ax and 

1Phax, respectively). Axial phenyl-cyclohexane is shown from above the cyclohexane ring, with 

the bold lines representing the three possible orientations of the phenyl ring plane (i.e., 

conformers B, C and D) 

Figure 3. Mean Absolute DeviationsErrors (MAE, kcal/mol) for the CCSD(T) methods 

considered in the present paper. The MAEs are computed with respect to CCSD(T)/CBS(3,4) 

values and the acronym CC in the x-axis refers to CCSD(T) calculations. 

Figure 4. Correlations between CCSD(T)/CBS(3,4) energy differences (∆Eref, kcal/mol) and 

corresponding values computed with: left) CCSD(T) and right) MP2 methods. The acronym 

CC in legend refers to CCSD(T) calculations. The outliers with respect to the identity line are 

noted with the R substituent to the cyclohexane ring (see Table 2 for a complete list).  

Figure 5. Mean Absolute Errors (MAE, kcal/mol) for the energy differences between axial and 

equatorial form of the 20 substituted cyclohexanes, computed using the 44 DFT approaches 

considered in the present paper. The MAEs are calculated with respect to CCSD(T)/CBS(3,4) 

values. The two lines reported on the bar plot refer to the MAEs of the best approach (PBE0-

D3(BJ)/def2-TZVPP, 0.070 kcal/mol) and to our model (PBE-QIDH/DH-SVPD, 0.130 

kcal/mol). 

Figure 6. Correlations between CCSD(T)/CBS(3,4) energy differences (∆Eref, kcal/mol) and 

corresponding values computed with selected DFT approaches. The outliers with respect to the 

identity line are noted with the R substituent to the cyclohexane ring (see Table 2 for a complete 

list). 

Figure 7.  Plot of the CCSD(T)/CBS(3,4) A-values versus the available experimental data. The 

values are noted with the R substituent to the cyclohexane ring (see Table 2 for a complete list). 

The dashed orange line corresponds to the best linear fit.  

Figure 8. Mean Absolute Errors (MAE, kcal/mol) for the A-values of the 20 substituted 

cyclohexanes computed using the 44 DFT approaches considered in the present paper. The 

MAEs are computed with respect to CCSD(T)/CBS(3,4) values. The two lines reported on the 

bar plot refer to the MAEs of the best approach (DSD-PBEP86/def2-TZVPP, 0.204 kcal/mol) 

and to our model (PBE-QIDH/DH-SVPD, 0.230 kcal/mol). 
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Figure 9 Correlations between the MAEs (kcal/mol) for the SAV20 dataset and that of the: left) 

S66 and IDISP and right) the NCI15 set. The values are obtained with selected DFT models 

(see text for details). The lines correspond to the best linear fits.  
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