
An improved fast edit approach for two-string
approximated mean computation applied to OCR.

J. Abreu∗,a, J. R. Rico-Juanb

aDpto Informática, Universidad de Matanzas, Carretera a Varadero Km. 3 1/2, Matanzas, Cuba
bDpto Lenguajes y Sistemas Informáticos, Universidad de Alicante, San Vicente del Raspeig, Alicante,

Spain

Abstract

This paper presents a new fast algorithm for computing an approximation to the mean
of two strings of characters representing a 2D shape and its application to a new Wilson-
based editing procedure. The approximate mean is built up by including some symbols
from the two original strings. In addition, a greedy approach to this algorithm is stud-
ied, which allows us to reduce the time required to compute an approximate mean. The
new dataset editing scheme relaxes the criterion for deleting instances proposed by
the Wilson editing procedure. In practice, not all instances misclassified by their near
neighbors are pruned. Instead, an artificial instance is added to the dataset in the hope
of successfully classifying the instance in the future. The new artificial instance is the
approximated mean of the misclassified sample and its same-class nearest neighbor.

Experiments carried out over three widely known databases of contours show that
the proposed algorithm performs very well when computing the mean of two strings,
and outperforms methods proposed by other authors. In particular, the low computa-
tional time required by the heuristic approach makes it very suitable when dealing with
long length strings. Results also show that the proposed preprocessing scheme can re-
duce the classification error in about 83% of trials. There is empirical evidence that
using the greedy approximation to compute the approximated mean does not affect the
performance of the editing procedure.

Key words: dataset editing, shape prototypes, edit distance, median string

1. Introduction

Dataset editing has received considerable attention since Wilson’s seminal studies
(Wilson, 1972) because this technique can improve the response of nearest neighbor
classifiers. Mainly, these algorithms focus on deleting wrongly tagged instances from
the training set for a given classifier. Several modifications have been proposed such
as those by Tomek (1976a), Devijver and Kittler (1980), Ferri and Vidal (1992) Wilson

∗Corresponding author. Fax:965909326
Email addresses: jose.abreu@umcc.cu (J. Abreu), juanra@dlsi.ua.es (J. R. Rico-Juan)

Preprint submitted to Pattern Recognition Letters December 13, 2012

This is a previous version of the article published in Pattern Recognition Letters. 2013, 34(5): 496-504. https://doi.org/10.1016/j.patrec.2012.11.019

and Martı́nez (2000), and more recently Guan et al. (2009) and Vázquez et al. (2005),
which encountered some of the problems of the basic Wilson procedure such as the
statistical dependence of estimations over each instance (Penrod and Wagner, 1977).
Another group of algorithms also changes some instance tags while editing, such as
those proposed by Tomek (1976b) and Koplowitz and Brown (1981).

In many problems, patterns do not have a vectorial representation and another syn-
tactic coding scheme such as strings and trees is commonly used. The methods cited
above deal mainly with vectorial representations and distances; therefore, when deal-
ing with strings a suitable distance needs to be selected. In our case, the widely used
Levenshtein edit distance (Levenshtein, 1966) is chosen. In addition, some approaches
such as that of Sánchez et al. (1997) find representative instances like centroids. Con-
sequently, these concepts need to be extended to the new coding schemes.

Several authors such as Duta et al. (2001), Jian et al. (2000), Martı́nez and Casacu-
bierta (2003) and Cardenas (2004) have considered the problem of computing the av-
erage of 2D shapes represented by strings. Most of these authors built up the desired
string by successive refinements of an initial string or by some ad-hoc procedure, since
(Casacuberta, 2000) demonstrated that the algorithm for finding the exact mean string
from various samples is an NP hard problem. An approximate mean is often used in-
stead of the exact one. For example (Jian et al., 2000) proposed a greedy algorithm
to compute an approximation by iteratively adding symbols to an empty initial string.
This operation uses the most suitable symbols defined using a goodness criterion. In
(Jiang et al., 2003), the authors describe an algorithm for computing the mean of N
strings based on the previously computed mean of N−1 strings and the weighted mean
concept. Fisher and Zell (2000) present two methods to compute averages of strings
by finding the most frequent edit operations when comparing a candidate with a set of
strings. The i-esime symbol from the candidate is changed by applying the commonest
operation at this place. Martı́nez and Casacubierta (2003) start with an initial string as
the set mean, which is approximated toward the true mean by successive refinements
applying deletions, insertions and substitutions over each position on the string in an
attempt to decrease the accumulated distance. This procedure extensively explores the
space of all possible strings to locate a good approximation to the exact mean string.
These authors report different experiments to evaluate the approximate mean goodness.
Although such approaches can lead to very good results, one immediate drawback is
that the number of candidate strings grows cubically with the length of the strings.

There are some earlier studies which do not rely explicitly on the mean strings
for computing the average of 2D shapes. In Bontempi and Marcelli (1995) contours
are made up of basic elements (segments and arcs) and attributes such as curvature
and direction. This information is encoded as a string that represents an individual
in the population which evolves through a genetic algorithm to find a set of prototypes
representing character shapes. In several studies (Duta et al., 1999a,b, 2001) the authors
explore the construction of shape models encoded by a set of coordinates. Each contour
is re-sampled to construct a polygonal approximation. This is aligned with respect to
all the contours to find the polygon which minimizes the average distance between
all objects. The shapes matching this polygon are removed from the set to form a
cluster. Finally, a cluster prototype is defined as the Procrustes Average of the points
extracted from the shapes. Sánchez et al. (2002) encode shapes by cyclic attributed

2

strings which represent a polygonal approximation. To compute the mean shape each
string is transformed in a piecewise linear function and then the mean is computed.
The mean shape is constructed using a progressive procedure. For example, denoting
the mean of two shapes S i, S j as S i, j, to get the mean of shapes S 1, S 2, S 3, S 4, and
S 5, first S 1,2 and S 3,4 are computed. From these strings we get S 1,2,3,4, which is finally
combined with S 5 to obtain S 1,2,3,4,5 Cardenas (2004) describes an update rule to adjust
a prototype by removing differences that are frequent with respect to the same class and
infrequent with respect to different class closer strings.

More recently, other studies such as those by Platonov and Langer (2007) and Ong
et al. (2008) also addressed the construction of prototypes representing a set of shapes
exploring other representation formalisms. Many of these studies rely on a similarity
criterion, mainly the Levenshtein distance when dealing with strings. However other
distances, such as Dynamic Time Warping (DTW) were used in Marzal et al. (2006),
Yu et al. (2007) and Yoon-Sik (2007). The latter studies report interesting results when
DTW is used for shape comparison and retrieval. When the strings to be matched are
not proper Freeman codes but sequences of points or polygons, the Levenshtein dis-
tance may have some drawbacks, as Marzal et al. (2006) pointed out. This distance
is very sensitive to sample frequency along the contours since one-to-many correspon-
dence of symbols from one string to another is not allowed.

In Abreu and Rico-Juan (2010) a Wilson based approach to edit a dataset of in-
stances encoded by a string representation was described. The inclusion of a prototype
representing both a misclassified instance and its same-class nearest neighbor inside
a k-neighborhood if it exists, is the main difference with respect to others described
in the literature. The authors also present an algorithm for computing the prototype
representing two strings suitable for the requirements of the editing procedure.

This paper presents a greedy approximation to the algorithm for computing the
prototype. This approach makes it possible to reduce the time required to compute
the prototype. Also, new experiments were carried out to compare results when the
editing procedure uses the greedy solution. Furthermore some comments relating to
the size of the edited datasets are included. Section 2 provides a detailed explanation
of the two algorithms used to build up the prototype and some useful concepts. Section
3 describes the proposed editing procedure and several considerations relating to the
computational complexity of the proposed algorithms. Finally, section 4 illustrates the
behavior of the proposed methods by means of various experiments.

2. Prototype construction

To compute the prototype representing two strings, in this case defined as an ap-
proximate mean string, the proposed approach focuses on information gathered by cal-
culating the distance between the two strings. This section contains an explanation of
how to calculate the selected distance measure, the Levenshtein (Levenshtein, 1966)
distance, and a procedure to compute an approximate mean.

2.1. Edit Distance
Let Σ be an alphabet and S 1 = {S 11, S 12, · · · , S 1m}, S 2 = {S 21, S 22, · · · , S 2n} two

strings over Σ where m, n ≥ 0, the edit distance between S 1 and S 2, D(S 1, S 2), is

3

defined in terms of elementary edit operations required to transform S 1 into S 2. Usually
three edit operations are considered:

• substitution of a symbol a ∈ S 1 by a symbol b ∈ S 2, denoted as w(a, b)

• insertion of a symbol b ∈ S 2 in S 1, denoted as w(ε, b)

• deletion of a symbol a ∈ S 1, denoted as w(a, ε).

where ε denotes an empty string. Let QS j
S i = {q1, q2, ..., qk} be a sequence of edit op-

erations transforming S i into S j. If each operation has a cost e(qi) the cost of QS 1
S 2 is

EQS 1
S 2

=
∑k

i=1 e(qi) and the edit distance D(S 1, S 2) is defined as:

D(S 1, S 2) = argminQ{ EQS 1
S 2
} .

The strings involved in this paper are Freeman chain-codes and so substitution costs
are computed as follows:

e(w(a, b)) = min{|a − b|, 8 − |a − b|}

In the case of the insertions and deletions, denoted as e(w(·, ε)) and e(w(ε, ·)) re-
spectively, a cost of 2 was chosen, which is half the maximum cost of the substitution
operation; this same fixed number is used in Rico-Juan and Micó (2003). The algo-
rithm described in Wagner and Fischer (1974) makes it possible to compute D(S 1, S 2)
in O(LS 1×LS 2) time, where LS denotes the length of string S . When it is not confusing
w(a, b), w(a, ε) and w(ε, b) will refer to the operation as well its cost.

2.2. Fast Approximate Mean String Computation
The mean of a set Cc of strings can be briefly defined as the string R which mini-

mizes (1).

CumDist(R,Cc) =
∑

D(R, S i)|S i ∈ Cc (1)

As explained above, the proposed approach computes an approximate mean R of
two strings S 1 and S 2 by including some symbols from S 1 or S 2 in R. To choose
whether or not to include a symbol, each operation in the minimum cost edit sequence
QS 1

S 2 is tested to see how it will affect D(R, S 1) and D(R, S 2), since the algorithm looks
for a string R satisfying (1) and (2). This additional requirement specifies that an R
nearly halfway between S 1 and S 2 will be preferred.

R = argminR{|D(R, S 1) − D(R, S 2)|} (2)

As explained in 2.1 deletions in QS 1
S 2 involve a symbol from S 1, insertions a symbol

from S 2, while substitutions relate one symbol from S 1 to another in S 2. The idea
behind the algorithm is that each operation qi in QS 2

S 1 affects the future D(R, S 1) and
D(R, S 2). For deletions and insertions the following cases hold:

The operation qi is accepted:

• If qi is a deletion then a symbol from S 1 will be included in R in order to make
it more similar to S 1.

4

• qi is an insertion, in this case a symbol from S 2 will be included in R, this time
R tends to be similar to S 2.

If the operation is rejected:

• qi is an insertion, in this case the symbol from S 2 will be excluded from R, then
R remains similar to S 1.

• qi is a deletion, then a symbol from S 1 will be excluded from R in order to make
it resemble S 2.

A close examination of each possible operation helps to explain how accepting or
rejecting the operation qi affects D(R, S 1) and D(R, S 2).

For insertions, let bk
S 2 be the k-esime symbol from S 2. An operation qi = w(ε, bk

S 2)
from QS 2

S 1
indicates the insertion of this symbol into S 1 to obtain R. Suppose qi is

accepted, then it can be expected that QS 2
R will not involve insertion of this symbol

in R since it has already been done, so D(R, S 2) does not change but D(R, S 1) grows
by e(w(bk

S 2, ε)), since the symbol needs to be deleted in this case. If the operation is
rejected, i.e. bk

S 2 is not included in R, then D(R, S 2) increases by e(w(ε, bk
S 2)) since bk

S 2
must be inserted in R to get S 2. The distance from R to S 1 will be not affected.

In turn, for accepted deletions w(bk
S 1, ε), the symbol bk

S 1
will be placed in R, thus

D(R, S 1) can be expected to be unchanged while D(R, S 2) increases by e(w(bk
S 1, ε)).

If the operation is rejected, bk
S 1

will be excluded from R so D(R, S 1) will grow by
e(w(ε, bk

S 1)) while D(R, S 2) remains unchanged.
Substitutions w(bS 1 , bS 2) will always be accepted, but whenever possible a symbol

m will be placed in R instead of bS 1 or bS 2 . The choice of m attempts to make R similar
to both S 1 and S 2, thus it must satisfy:

e(w(bS 1 , bS 2)) = e(w(m, bS 1)) + e(w(m, bS 2)). (3)

m = argminm{|e(w(m, bS 1)) − e(w(m, bS 2))|}. (4)

Substitutions make both D(R, S 1) and D(R, S 2) grow by e(w(bS 1,m)) and e(w(m, bS 2))
respectively.

For example, let S 1 = {2, 3, 4}, S 2 = {6, 0}with a substitution cost as defined in sec-
tion 2.1 but fixing a cost of 1 for insertions and deletions. Thus QS 2

S 1 = {w(2, ε),w(3, ε),w(4, 6),w(ε, 0)}.
Possible select/reject options yield the tree in Fig. 1 where each leaf node shows a
candidate R including the symbols involved in the accepted operations from the cor-
responding branch. Inside brackets, the cumulative contribution of each operation up
from the node to D(R, S 1) and D(R, S 2) respectively is shown. For example, string R =

{2, 3, 5, 0} in the leftmost branch results from accepting {w(2, ε),w(2, ε),w(4, 6),w(ε, 0)}.
In this case D(R, S 1) = 2 and D(R, S 2) = 3. The procedures FMSC and FindOp out-
lined below allow us to search through the tree for the edit operations which yield an R
satisfying the established requirements.

5

Function FindOp(opi,aS 1,aS 2) : 〈d, r〉
/* QS 2

S 1: minimum cost edit sequence to transform S 1 into S 2 */

/* r: string resulting from applying or not to S 1 edit operations in QS 2
S 1 */

/* opi: i-esime edit operation op ∈ QS 2
S 1 */

/* aS 1 = 0 and aS 2 = 0 : cumulative distance D(r, S 1) and D(r, S 2) respectively */
/* d: difference between aS 1 and aS 2 */
/* better = 〈∞, ∅〉:better partial result, better[0] distance, better[1] respective r */

if opi == 0 then better ← 〈aS 1 − aS 2,∞〉 else
switch QS 2

S 1[opi] do
case w(bS 1, ε,): /* Deletion */

〈dno, rno〉 ← FindOp(opi − 1, aS 1 + w(ε, bS 1), aS 2)/* Rejected */

〈dyes, ryes〉 ← FindOp(opi − 1, aS 1, aS 2 + w(bS 1, ε))/* Accepted */

if |dyes| < |dno| then better ← 〈dyes, ryes ∪ {bS 1}〉 else
better ← 〈dno, rno〉

end if
case w(ε, bS 2): /* Insertion */

〈dno, rno〉 ← FindOp(opi − 1, aS 1, aS 2 + w(ε, bS 2))/* Rejected */

〈dyes, ryes〉 ← FindOp(opi − 1, aS 1 + w(bS 2, ε), aS 2) /* Accepted */

if |dyes| < |dno| then better ← 〈dyes, ryes ∪ {bS 2}〉 else
better ← 〈dno, rno〉;

end if
case w(bS 1, bS 2): /* Substitution */

foreach symbol m satisfying (3) and (4) do
〈d, r〉 ← FindOp(opi − 1, aS 1 + w(m, bS 1), aS 2 + w(m, bS 2));
if |d| < |better[0]| then better ← 〈d, r ∪ {m}〉;

end foreach

endsw
end if
return better

Function FMSC(S 1, S 2) :R
/* S 1 and S 2: strings to compute its approximate mean R */

compute D(S 1,D2) to get QS 2
S 1;

〈d,R〉 ← FindOp(LQS 2
S 1
, 0, 0);

return R;

6

Figure 1: Each branch represents a set of accept or reject edit operations to get the
string R in the leaf node from S 1. Values for D(R, S 1) and D(R, S 2)

are given in brackets.

2.3. Heuristic Approach to Fast Computing to an Approximate Mean String.

As explained above, this paper proposes a heuristic approach to the previously com-
mented algorithm. This implementation focuses on reducing the number of explored
tree branches by discarding some alternatives. Each time at most two branches B1 and
B2 are kept alive. The tree is explored breadth-wise first. Again, either a substitution or
a deletion splits a branch into two new ones corresponding to the accept/reject options.
This leads to four branches, two of which need to be pruned. The branch leading to
better partial distances D(R, S 1) and D(R, S 2) is one of those selected to stay alive. The
other surviving branch is the one corresponding to the contrary decision on the oppo-
site branch of the tree. For example, suppose the better alternative is a reject decision
over B1, so the other surviving branch is the one corresponding to an accept decision
over B2. With regard to processing substitutions, no changes were introduced. Fig. 2
helps to clarify this situation graphically.

3. Editing Algorithm

Let T be a set of instances. Wilson (Wilson, 1972) based editing procedures such
as those described by Tomek (1976a) and Ferri and Vidal (1992) remove all instances
ti misclassified by their k-nearest neighbors (K-NN). This kind of editing cleans inter-
class overlapping regions while the boundaries between classes are smoothed. A K-NN
classifier that uses the edited set as a training set could improve its classification results
compared with those using the original dataset.

7

Function FMSC-Greedy(S 1, S 2):r
/* S 1 y S 2: strings to compute its approximate mean R */

/* QS 2
S 1: minimum cost edit sequence to transform S 1 into S 2 */

/* opi: i-esime edit operation op ∈ QS 2
S 1 */

/* aB1
S 1,aB1

S 2: respective cumulative distances D(R, S 1) and D(R, S 2), branch 1 */

/* aB2
S 1,aB2

S 2: respective cumulative distances D(R, S 1) and D(R, S 2), branch 2 */

foreach opi ∈ QS 2
S 1 do

switch QS 2
S 1[opi] do

case w(bS 1, ε): /* Deletion */

〈dB1
S 1, d

B1
S 2〉 ← 〈a

B1
S 1 + w(ε, bS 1), aB1

S 2〉; /* Reject, branch 1 */

〈cB1
S 1, c

B1
S 2〉 ← 〈a

B1
S 1, a

B1
S 2 + w(bS 1, ε)〉; /* Accept, branch 1 */

〈dB2
S 1, d

B2
S 2〉 ← 〈a

B2
S 1 + w(ε, bS 1), aB2

S 2〉; /* Reject, branch 1 */

〈cB2
S 1, c

B2
S 2〉 ← 〈a

B2
S 1, a

B2
S 2 + w(bS 1, ε)〉; /* Accept, branch 1 */

UpdateDistances (〈dB1
S 1, d

B1
S 2〉, 〈c

B2
S 1, c

B2
S 2〉, 〈d

B1
S 1, d

B1
S 2〉, 〈c

B1
S 1, c

B1
S 2〉);

case w(ε, bS 2): /* Insertion */

〈dB1
S 1, d

B1
S 2〉 ← 〈a

B1
S 1, a

B1
S 2 + w(ε, bS 2)〉; /* Reject, branch 1 */

〈cB1
S 1, c

B1
S 1〉 ← 〈a

B1
S 1 + w(bS 2, ε), aB1

S 2〉; /* Accept, branch 1 */

〈dB2
S 1, d

B2
S 2〉 ← 〈a

B2
S 1, a

B2
S 2 + w(ε, bS 2)〉; /* Reject, branch 2 */

〈cB2
S 1, c

B2
S 2〉 ← 〈a

B2
S 1 + w(bS 2, ε), aB2

S 2〉; /* Accept, branch 2 */

UpdateDistances (〈dB1
S 1, d

B1
S 2〉, 〈c

B2
S 1, c

B2
S 2〉, 〈d

B1
S 1, d

B1
S 2〉, 〈c

B1
S 1, c

B1
S 2〉);

case w(bS 1, bS 2): /* Substitution */

select the symbol m that better satisfies the equations (3) and (4);
〈aB1

S 1, a
B1
S 2〉 ← 〈a

B1
S 1 + w(m, bS 1, aB1

S 2 + w(m, bS 2)));
〈aB2

S 1, a
B2
S 2〉 ← 〈a

B2
S 1 + w(m, bS 1, aB2

S 2 + w(m, bS 2))〉;

endsw
end foreach
select the better from 〈aB1

S 1, a
B1
S 2〉 and 〈aB2

S 1, a
B2
S 2〉;

return R, including symbols involved in the accepted operations from the better
branch.

8

Figure 2: Heuristic approach example where crossed nodes represent pruned branches
at each level.

As Wilson and Martı́nez (2000) point out, in some cases editing needs to be done
carefully because the algorithm may remove a lot of instances and spoil the general-
ization capabilities. When k ≥ 1, a wrong classification of ti does not mean that no
one k-nearest neighbor belongs to the same class as ti. Thus, it is reasonable to as-
sume that ti is not necessarily an outlier, but can be a boundary instance useful for
subsequent classifications. In other cases, due to some factors such as the high dimen-
sionality of the data (Ferri et al., 1999), every instance is near to examples belonging
to other classes. This means that any reduction in the original set increases the average
classification error.

The proposed approach aims to deal successfully with this problem by adding to
T an artificial instance R computed from ti and its same-class nearest neighbor, t j, if it
belongs to k-nearest neighbors. R, tagged as ti, satisfies D(R, ti) ≤ D(ti, t j) and (2). Its
inclusion boosts the chance ti will be correctly reclassified since by definition R lies in
the ti k-neighborhood. Moreover, this means that some poorly covered regions may be
better represented. From these assumptions it may de deduced that this editing scheme
leads to fewer classification errors than when the original dataset is used. The artificial
instance R will be computed by the Fast Mean String Computation procedure, FMSC
for short, described in section (2.2), as R = FMS C(ti, t j). One of the purposes of this
paper is to compare how results using Greedy-FMSC vary from those using FMSC.
The algorithm sketched below allows the edited set to be computed.

3.1. Computational Cost Analysis
Let LS be the length of the string S , L the length of the longest chain-code in a set

of N ≥ 2 shapes and LQS j
S i

= LS i + LS j ≤ 2L for the worst case, i.e. when there are

9

Procedure UpdateDistances(〈dB1
S 1, d

B1
S 2〉, 〈c

B2
S 1, c

B2
S 2〉, 〈d

B1
S 1, d

B1
S 2〉, 〈c

B1
S 1, c

B1
S 2〉)

〈tS 1, tS 2〉 ← better from {〈dB1
S 1, d

B1
S 2〉, 〈c

B2
S 1, c

B2
S 2〉, 〈d

B1
S 1, d

B1
S 2〉, 〈c

B1
S 1, c

B1
S 2〉};

switch 〈tS 1, tS 2〉 do
case 〈dB1

S 1, d
B1
S 2〉:

〈aB1
S 1, a

B1
S 2〉 ← 〈d

B1
S 1, d

B1
S 2〉;

〈aB2
S 1, a

B2
S 2〉 ← 〈c

B2
S 1, c

B2
S 2〉;

case 〈cB1
S 1, c

B1
S 2〉:

〈aB1
S 1, a

B1
S 2〉 ← 〈c

B1
S 1, c

B1
S 2〉;

〈aB2
S 1, a

B2
S 2〉 ← 〈d

B2
S 1, d

B2
S 2〉;

case 〈dB2
S 1, d

B2
S 2〉:

〈aB1
S 1, a

B1
S 2〉 ← 〈c

B1
S 1, c

B1
S 2〉;

〈aB2
S 1, a

B2
S 2〉 ← 〈d

B2
S 1, d

B2
S 2〉;

case 〈cB2
S 1, c

B2
S 2〉:

〈aB1
S 1, a

B1
S 2〉 ← 〈d

B1
S 1, d

B1
S 2〉;

〈aB2
S 1, a

B2
S 2〉 ← 〈c

B2
S 1, c

B2
S 2〉;

endsw

Function JWilson(T,K) :T
/* T: instance set to edit. */
/* K: number of near neighbors. */

foreach instance ti ∈ T do
classify ti by its k-nearest neighbors in T − ti;
if ti is wrongly classified then

find t j, the k-nearest same-class neighbor of ti;
if t j exists then

build R = FMS C(ti, t j) or R = FMS C −Greedy(ti, t j);
make T = T ∪ R;

else
mark ti to deletion;

end if
end if

end foreach
delete from T all marked instances;
return T ;

10

no substitutions, the length of the minimum cost edit sequence to transform S i into S j.
Computing an approximate mean R from two strings S 1 and S 2 involves calculating
D(S 1, S 2), which can be accomplished in O(LS 1×LS 2) as pointed out in subsection 2.1
or more simply, in O(L2).

Both FMSC and FMSC-Greedy involve computing D(S 1,D2). Searching through
the tree with FindOp can be viewed as evaluating all possibilities of assigning {accepted/re jected}
to every qi in QS 2

S 1, so there are 22L chances, that is, the maximum number of branches
on the tree. Thus FindOp requires a first step, computing the distance, with cost O(L2)
followed by another block with cost O(22L). By the sum rule (Aho et al, 1983) this
leads to O(22L) time. Logically in practice this value is lower since substitutions do not
split a branch in two new ones.

Regarding FMSC-Greedy, the foreach loop needs to examine all LQS 2
S 1

operations
in QS 2

S 1 but just once. This can be accomplished in O(2L). Also the cost of computing
the distance from S 1 to S 2 needs to be considered. Again by the sum rule the cost for
FMSC-Greedy is O(L2).

The editing procedure needs to classify every instance in T , which requires O(|T |2)
time. A second step involves computing FMSC for every wrongly classified instance
having a same-class k-nearest neighbor. In the worst case, all |T | instances will need to
be processed, so this step entails O(|T | ×FMSC) time or O(|T | ×FMSC-Greedy) for the
greedy approach.

4. Experimental Results

Experiments were carried out to evaluate the performance of FMSC, FMSC-Greedy
and JWilson in their respective tasks.

A first test experiment was done to compare FMSC and FMSC-Greedy when com-
puting the average of two shapes. These methods were also compared to the one pro-
posed by (Martı́nez and Casacubierta, 2003) initialized with the set mean and with a
greedy approximate mean, labelled as MH(Set mean) and MH(Greedy) respectively.
Since the algorithm in (Martı́nez and Casacubierta, 2003) only focuses on finding an
approximate mean satisfying (1), a modification was introduced to check also the re-
striction in (2).

To ensure the results were independent of the database, the class and the string
length data were randomly collected from three widely known contour datasets. The
Special Database 3 of the National Institute of Standards and Technology, the US Post
Service digit recognition corpus (UPS) and the MPEG7 CE Shape-1 Part B with 26, 10
and 11 different classes respectively. The length of the strings coding the 2D shapes can
be seen to vary greatly. The average contour length was 724 with standard deviation of
844. The longest and the shortest chain-codes have length of 3431 and 41 respectively.
All pair-wise averages were then computed even if the shapes belonged to different
classes.

To evaluate how well the algorithms behave with respect to (1) and (2), these values
were computed. In terms of (1) no differences were found for FMSC-Greedy, FMSC
and Martı́nez and Casacubierta (2003) when initialized with the set mean since for
each pair-wise average the computed approximate mean had the same value for (1).

11

When a greedy string was set as the initial instance for the approach in (Martı́nez and
Casacubierta, 2003), the worst results were obtained.

Table 1 shows that FMSC and FMSC-Greedy behave very well in terms of (2), i.e.
the average shape computed is in the ”middle” of the two original shapes. MH(SetMean)
also performs well, but the high standard deviation indicates that in some cases the
computed approximate mean is biased towards one of the strings. Again MH(Greedy)
achieves the worst results.

It is remarkable that FMSC-Greedy is as effective as FMSC and (Martı́nez and
Casacubierta, 2003), but requires significantly less computational power. For example
every time a candidate string is modified to test if it improves the approximate mean,
two distances need to be computed. In this case MH(SetMean) needs to compute about
43218.2 distances on average, MH(Greedy) a total of 73143.3, whereas FMSC-Greedy
requires only one. Although theoretically FMSC-Greedy is less time consuming than
FMSC, an empirical comparison was done. On average, the Greedy approach was
about 16 times faster.

Table 1: Mean value of |D(R, S 1) − D(R, S 2)| for all pair-wise averages.

Algorithm Avg.±Stdv
FMSC 0.5 ± 0.5

FMSC-Greedy 0.9 ± 0.7
MH(Greedy) 3.3 ± 44.4

MH(SetMean) 0.7 ± 5.3

4.1. Evaluation of the editing procedure.
A second experiment was done to evaluate the performance of the proposed editing

procedure and determine how using FMSC-Greedy instead of FMSC affects perfor-
mance of JWilson. A comparison with the classic Wilson procedure was also made. A
sample of 80 instances per class was drawn from the NIST-3 Uppercase Letters and
the USPS Digits datasets. MPEG-7 was discarded in this experiment since there are
only 20 instances available per class. Each set was split for a 4-fold cross-validation
technique.

Initially all training sets were edited by the Wilson procedure and each test set
classified by the K-NN rule using the respective edited set. This editing-classification
experiment was repeated twice but using the proposed editing scheme: first, computing
the prototypes using the FMSC approach and finally using FMSC-Greedy. As a base-
line, the original training set classification was used. In each fold, editing was repeated
for odd values of K from 3 to 17, while in the classification stage, the range was from
1 to 17. The weighted edit distance, described in section 2.1 was used as the distance
measure.

Tables 2 and 3 show the 4-fold average classification error and the standard devi-
ation for all K values tested at the editing and classification stages of the experiments.
In none of these experiments did the Wilson procedure reduce the baseline error rate
(classification with original training sets). This result improved when editing was done
using our proposed algorithm and the FMSC procedure. This approach reduced the

12

baseline error in 87.5% of the trials for the character dataset and in 79.2% in the case
of the digit dataset. These improvements are highlighted in bold type in the tables of
results. Similar results were obtained when the greedy implementation was used. Pre-
vious results show that, on average, the proposed algorithm for editing outperforms the
Wilson approach as regards error rate reduction. Heat maps in Fig. 3 visually represent
the data in tables (2) and (3) and also include the respective standard deviation. Better
results are obtained when editing is done taking high values for K and classification
is done taking low values for K. As was expected, there were no remarkable differ-
ences in performance of the editing procedure depending on the algorithm selected to
compute the artificial prototype. An example of this can be seen in the graphics in
Fig. 4, where a significant improvement may be seen in the case of classification. This
illustrates the 4-fold average error rate and the standard deviation when classification
is done with K = 1 and K = 17, taking data sets edited by different values of K. For
other values of K in the classification, results are very similar.

Another interesting subject to analyze is the number of instances in the edited set.
The Wilson procedure removes any wrongly classified instances and so the size of the
edited set will never increase. The proposed editing scheme may not erase all instances
tagged to be deleted by Wilson; moreover, new prototypes may be added to the data
set. In all the editing experiments the size of the edited set appears to grow like a linear
factor bounded by K. This is, in all cases S ES ≤ S OS +

K∗S OS
100 , where S OS and S ES are the

size of the original and the edited set respectively.

Table 2: Average error rate (4-fold) as a percentage for classification with different
edited sets in letter database.

K on Classification
1 3 5 7 9 11 13 15 17

K
on

E
di

tio
n

Not edited 13.7±1.4 14.7±1.9 15.4±1.5 16±1 17.1±1.1 17.7±1.7 18±2 18.6±1.8 19.6±1.8

K=3
Wilson 17±2 17.6±1.8 17.6±1.0 19.4±1.4 19.5±1.8 20±2 21.0±1.8 22.0±1.5 22.1±1.6

Dynamic 14.5±1.9 15.5±1.7 15.3±1.4 16.6±1.1 16.4±1.9 18±2 18±2 19±2 19.0±1.9
Greedy 14.4±1.8 15±2 15.3±1.9 16.2±1.5 16±2 18±3 19±2 19±2 19±2

K=5
Wilson 15.8±1.7 17.6±1.7 17.9±1.3 19.6±1.4 20.1±1.7 21±2 21±2 21.6±1.5 22.7±1.7

Dynamic 14.0±1.6 14.5±1.8 14.5±1.7 15.6±1.1 16.0±1.8 16.3±1.7 17.5±1.6 17.7±1.7 18.4±1.9
Greedy 13.8±1.9 15±3 14.7±1.9 15.0±1.2 15.5±1.8 16.1±1.5 17.1±1.4 18.1±1.8 18±2

K=7
Wilson 16.3±1.9 17.5±1.2 17.9±1.3 19.9±1.6 20±2 21±2 22±2 22.3±1.4 23.0±1.4

Dynamic 13.9±1.6 14.4±1.7 14.2±1.6 15.3±1.0 15.6±1.3 16.3±1.0 16.6±1.4 17.3±1.4 17.8±1.7
Greedy 13.9±1.7 14±2 14.1±1.3 15.1±0.5 15.0±1.1 15.9±1.4 16.4±1.2 17.1±1.8 18±2

K=9
Wilson 17±2 17.8±1.7 18.5±1.8 19.8±1.9 21±2 21±3 22±2 22.6±1.6 23.8±1.6

Dynamic 13.8±1.4 14.2±1.3 14.0±1.5 15.0±0.8 15.4±0.9 16.2±0.9 16.8±0.9 17.1±0.8 17.6±1.2
Greedy 13.7±1.4 14.0±1.7 14.0±0.9 14.7±0.2 14.3±1.0 15.8±1.1 16.4±0.9 16.4±1.5 17.2±1.8

K=11
Wilson 17.1±1.9 18.8±1.7 18.9±1.6 20±2 21±2 22±2 23±2 23.3±1.4 24.0±1.4

Dynamic 13.6±1.4 14.0±1.6 14.1±1.6 14.9±0.7 15.2±1.0 15.6±1.0 16.3±1.1 16.5±0.8 17.3±1.2
Greedy 13.5±1.4 14.0±1.5 13.8±1.2 14.5±0.5 14.3±1.2 15.4±1.1 15.8±1.0 15.9±1.5 16.9±1.6

K=13
Wilson 17.1±1.7 18.9±1.3 19.5±1.4 21±2 22±2 22±2 22.8±1.6 23.5±1.5 24.0±1.5

Dynamic 13.6±1.3 14.2±1.5 14.1±1.5 14.6±1.0 15.1±1.0 15.6±1.1 16.3±1.1 16.6±1.2 17.2±1.2
Greedy 13.5±1.3 14.3±1.7 13.9±1.3 14.3±0.7 14.6±1.2 15.3±1.5 15.5±1.0 16.1±1.3 17±2

K=15
Wilson 17.5±1.8 19.6±1.6 19.8±1.4 20.8±1.8 22±2 22±2 23.3±1.6 23.7±1.6 24.6±1.4

Dynamic 13.4±1.3 13.9±1.3 13.8±1.4 14.7±1.0 15.3±1.2 15.6±1.2 16.2±0.9 16.5±1.4 17.0±1.4
Greedy 13.3±1.3 13.9±1.4 13.7±1.3 14.1±0.5 14.1±0.9 15.2±1.3 15.3±0.9 16.1±1.7 16.6±1.7

K=17
Wilson 17.8±1.5 19.9±1.2 20.2±1.2 21.3±1.5 22.2±1.6 23.1±1.7 23.7±1.9 24.2±1.3 24.8±1.3

Dynamic 13.5±1.2 14.0±1.1 13.9±1.4 14.8±1.0 15.3±0.9 15.7±0.9 16.0±1.0 16.3±0.9 16.6±1.5
Greedy 13.3±1.1 13.9±1.0 13.8±1.1 14.5±0.4 14.2±0.7 15.0±0.8 15.3±1.0 15.9±1.4 16.3±1.5

13

Table 3: Average error rate (4-fold) as a percentage for classification with different
edited sets in digits database.

K on Classification
1 3 5 7 9 11 13 15 17

K
on

E
di

tio
n

Not edited 1.8±1.3 2.0±0.7 3.0±0.4 3.5±0.4 3.6±0.3 4.1±0.5 4.4±0.9 4.8±1.3 4.9±0.9

K=3
Wilson 2.8±0.9 3.1±0.8 3.6±0.3 4.3±0.9 4.3±0.9 4.5±0.8 4.8±0.6 5.1±1.1 5.1±0.9

Dynamic 2.0±1.1 2.3±0.5 2.9±0.3 3.4±0.5 3.5±0.7 3.9±0.5 4.1±0.8 4.5±1.3 4.6±0.5
Greedy 1.9±1.0 2.3±0.5 2.9±0.3 3.3±0.3 3.5±0.7 3.9±0.5 4.3±0.6 4.6±1.4 4.8±0.6

K=5
Wilson 2.6±0.9 2.9±0.6 3.6±0.3 4.3±0.6 4.1±0.6 4.5±0.8 4.8±0.6 5.1±1.1 5.1±0.9

Dynamic 1.9±1.1 2.4±0.6 2.8±0.3 3.0±0.4 3.1±0.3 3.8±0.5 3.9±0.5 4.3±1.4 4.4±0.6
Greedy 1.8±1.0 2.3±0.5 2.8±0.3 3.0±0.4 3.1±0.3 3.5±0.4 3.8±0.3 4.3±1.4 4.4±1.0

K=7
Wilson 2.5±1.1 3.0±0.7 3.8±0.5 4.3±0.9 4.3±0.9 4.6±0.9 5.0±0.9 5.4±1.3 5.4±0.6

Dynamic 1.8±1.0 2.1±0.6 2.5±0.6 2.9±0.8 3.1±0.5 3.6±0.6 3.9±0.5 4.1±1.3 4.3±0.6
Greedy 1.6±1.0 2.0±0.4 2.5±0.6 2.9±0.8 3.1±0.5 3.4±0.6 3.8±0.3 4.0±1.2 4.3±1.0

K=9
Wilson 2.9±1.1 3.3±0.9 4.3±0.3 4.5±0.7 4.6±0.6 4.6±0.8 5.0±0.9 5.5±1.1 5.5±0.6

Dynamic 1.8±1.0 2.0±0.4 2.5±0.6 2.6±0.5 3.0±0.4 3.4±0.3 3.5±0.7 4.0±1.1 4.1±0.9
Greedy 1.6±1.0 1.9±0.3 2.5±0.6 2.6±0.5 2.9±0.5 3.3±0.5 3.5±0.7 3.8±0.9 4.1±1.3

K=11
Wilson 2.8±1.0 3.4±0.9 4.3±0.3 4.6±0.6 4.9±0.8 4.6±0.8 5.3±1.0 5.5±1.1 5.5±0.9

Dynamic 1.8±1.0 2.1±0.6 2.5±0.6 2.6±0.5 2.9±0.6 3.0±0.7 3.3±0.5 3.9±0.9 4.0±0.9
Greedy 1.6±1.0 2.0±0.4 2.5±0.6 2.6±0.5 2.8±0.6 2.9±0.9 3.3±0.5 3.6±0.8 4.0±1.3

K=13
Wilson 2.8±0.9 3.4±0.6 4.1±0.5 4.8±0.3 4.9±0.8 4.8±0.9 5.6±1.4 6.1±1.5 6.1±1.4

Dynamic 1.8±1.0 2.1±0.6 2.4±0.5 2.6±0.5 2.9±0.6 3.0±0.7 3.3±0.5 3.9±0.9 4.0±0.9
Greedy 1.6±1.0 2.0±0.4 2.4±0.5 2.6±0.5 2.8±0.6 2.9±0.9 3.3±0.5 3.8±0.9 4.0±1.3

K=15
Wilson 2.8±0.9 3.8±0.9 4.3±0.6 5.0±0.7 5.1±0.9 4.9±0.8 5.9±1.3 6.3±1.3 6.0±1.6

Dynamic 1.8±1.0 2.1±0.6 2.4±0.5 2.6±0.5 2.9±0.6 3.1±0.5 3.3±0.5 3.6±0.9 3.9±1.1
Greedy 1.6±1.0 2.0±0.4 2.4±0.5 2.6±0.5 2.9±0.9 2.9±0.9 3.3±0.5 3.5±0.7 3.9±1.1

K=17
Wilson 2.8±0.9 3.9±1.0 4.4±0.8 5.1±0.6 5.4±0.8 5.3±0.5 5.9±1.0 6.3±1.3 6.1±1.4

Dynamic 1.6±1.0 2.0±0.7 2.4±0.9 2.6±0.5 3.0±0.8 3.3±0.6 3.3±0.5 3.8±1.0 3.9±1.1
Greedy 1.6±1.0 2.0±0.4 2.4±0.5 2.6±0.5 2.9±0.9 3.0±1.1 3.3±0.5 3.6±0.9 3.9±1.1

5. Conclusions and Future Work

A new method was presented for editing a dataset of contours encoded by Freeman
chain-codes. As the experimental results show, adding artificial prototypes to populate
regions close to instances with a few same-class near neighbors contributes to reducing
the classification error. In addition a new method, FMSC, was presented for comput-
ing the average between two shapes represented as Freeman chain codes. The average
shape is computed as an approximated mean string of the chain codes representing the
shapes. Another approach, FMSC-Greedy, a greedy approximation of the former, was
also described. Experiments show that when computing the average of two shapes both
methods behave very well and achieve similar results to other approaches described in
the literature while, in the case of FMSC-Greedy, significantly reducing the computa-
tional time required. Since at present both methods can handle only two instances at
a time, further investigations may be done to expand on the idea behind the algorithm
between two examples to extend it to N > 2 instances.

Acknowledgments

This work is partially supported by the Spanish CICYT under project DPI2006-
15542-C04-01, the Spanish MICINN through project TIN2009-14205-CO4-01 and by
the Spanish research program Consolider Ingenio 2010: MIPRCV (CSD2007-00018).

14

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

K
 v

a
lu

e
 w

h
e

n
 e

d
it
in

g

K value on classification

Wilson (Letters dataset)

"W_L.dat" matrix

2 1.8 1.0 1.4 1.8 2 1.8 1.5 1.6

1.7 1.7 1.3 1.4 1.7 2 2 1.5 1.7

1.9 1.2 1.3 1.6 2 2 2 1.4 1.4

2 1.7 1.8 1.9 2 3 2 1.6 1.6

1.9 1.7 1.6 2 2 2 2 1.4 1.4

1.7 1.3 1.4 2 2 2 1.6 1.5 1.5

1.8 1.6 1.4 1.8 2 2 1.6 1.6 1.4

1.5 1.2 1.2 1.5 1.6 1.7 1.9 1.3 1.3

 11

 12

 13

 14

 15

 16

 17

 18

%
 e

rr
o

r
ra

te
(a)

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

K
 v

a
lu

e
 w

h
e

n
 e

d
it
in

g

K value on classification

Wilson (Digits dataset)

"W_N.dat" matrix

0.9 0.8 0.3 0.9 0.9 0.8 0.6 1.1 0.9

0.9 0.6 0.3 0.6 0.6 0.8 0.6 1.1 0.9

1.1 0.7 0.5 0.9 0.9 0.9 0.9 1.3 0.6

1.1 0.9 0.3 0.7 0.6 0.8 0.9 1.1 0.6

1.0 0.9 0.3 0.6 0.8 0.8 1.0 1.1 0.9

0.9 0.6 0.5 0.3 0.8 0.9 1.4 1.5 1.4

0.9 0.9 0.6 0.7 0.9 0.8 1.3 1.3 1.6

0.9 1.0 0.8 0.6 0.8 0.5 1.0 1.3 1.4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

%
 e

rr
o

r
ra

te

(b)

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

K
 v

a
lu

e
 w

h
e

n
 e

d
it
in

g

K value on classification

Dynamic (Letters dataset)

"M_D_L.dat" matrix

1.9 1.7 1.4 1.1 1.9 2 2 2 1.9

1.6 1.8 1.7 1.1 1.8 1.7 1.6 1.7 1.9

1.6 1.7 1.6 1.0 1.3 1.0 1.4 1.4 1.7

1.4 1.3 1.5 0.8 0.9 0.9 0.9 0.8 1.2

1.4 1.6 1.6 0.7 1.0 1.0 1.1 0.8 1.2

1.3 1.5 1.5 1.0 1.0 1.1 1.1 1.2 1.2

1.3 1.3 1.4 1.0 1.2 1.2 0.9 1.4 1.4

1.2 1.1 1.4 1.0 0.9 0.9 1.0 0.9 1.5

 11

 12

 13

 14

 15

 16

 17

 18

%
 e

rr
o

r
ra

te

(c)

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

K
 v

a
lu

e
 w

h
e

n
 e

d
it
in

g

K value on classification

Dynamic (Digits dataset)

"M_D_N.dat" matrix

1.1 0.5 0.3 0.5 0.7 0.5 0.8 1.3 0.5

1.1 0.6 0.3 0.4 0.3 0.5 0.5 1.4 0.6

1.0 0.6 0.6 0.8 0.5 0.6 0.5 1.3 0.6

1.0 0.4 0.6 0.5 0.4 0.3 0.7 1.1 0.9

1.0 0.6 0.6 0.5 0.6 0.7 0.5 0.9 0.9

1.0 0.6 0.5 0.5 0.6 0.7 0.5 0.9 0.9

1.0 0.6 0.5 0.5 0.6 0.5 0.5 0.9 1.1

1.0 0.7 0.9 0.5 0.8 0.6 0.5 1.0 1.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

%
 e

rr
o

r
ra

te

(d)

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

K
 v

a
lu

e
 w

h
e

n
 e

d
it
in

g

K value on classification

Greedy (Letters dataset)

"M_G_L.dat" matrix

1.8 2 1.9 1.5 2 3 2 2 2

1.9 3 1.9 1.2 1.8 1.5 1.4 1.8 2

1.7 2 1.3 0.5 1.1 1.4 1.2 1.8 2

1.4 1.7 0.9 0.2 1.0 1.1 0.9 1.5 1.8

1.4 1.5 1.2 0.5 1.2 1.1 1.0 1.5 1.6

1.3 1.7 1.3 0.7 1.2 1.5 1.0 1.3 2

1.3 1.4 1.3 0.5 0.9 1.3 0.9 1.7 1.7

1.1 1.0 1.1 0.4 0.7 0.8 1.0 1.4 1.5

 11

 12

 13

 14

 15

 16

 17

 18

%
 e

rr
o

r
ra

te

(e)

3

5

7

9

11

13

15

17

1 3 5 7 9 11 13 15 17

K
 v

a
lu

e
 w

h
e

n
 e

d
it
in

g

K value on classification

Greedy (Digits dataset)

"M_G_N.dat" matrix

1.0 0.5 0.3 0.3 0.7 0.5 0.6 1.4 0.6

1.0 0.5 0.3 0.4 0.3 0.4 0.3 1.4 1.0

1.0 0.4 0.6 0.8 0.5 0.6 0.3 1.2 1.0

1.0 0.3 0.6 0.5 0.5 0.5 0.7 0.9 1.3

1.0 0.4 0.6 0.5 0.6 0.9 0.5 0.8 1.3

1.0 0.4 0.5 0.5 0.6 0.9 0.5 0.9 1.3

1.0 0.4 0.5 0.5 0.9 0.9 0.5 0.7 1.1

1.0 0.4 0.5 0.5 0.9 1.1 0.5 0.9 1.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

%
 e

rr
o

r
ra

te

(f)

Figure 3: Heat map for average error rates for different algorithms and datasets. The
number in the cells indicates the standard deviation.

15

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 3 5 7 9 11 13 15 17

A
ve

ra
g

e
 e

rr
o

r
ra

te
(%

)

K while editing

Letters dataset, classification with K=1 and K=17

Greedy K=1
Dynamic K=1
Greedy K=17

Dynamic K=17

(a)

 1

 2

 3

 4

 5

 6

 3 5 7 9 11 13 15 17

A
ve

ra
g

e
 e

rr
o

r
ra

te
(%

)

K while editing

Digits dataset, classification with K=1 and K=17

Greedy K=1
Dynamic K=1
Greedy K=17

Dynamic K=17

(b)

Figure 4: Error rate when classifying edited letter (4a) and digit (4b) datasets for K=1
and K=17.

16

References

Abreu, J., Rico-Juan J.,2010. A new editing scheme based on a fast two-string median
computation applied to OCR. In: Structural, Syntatic and Statisticas Pattern Recog-
nition, Vol 6218, pp. 748-756.

Aho, A., J. Hopcroft, and J. Ullman, Data Structures and Algorithms. 1983: Addison-
Wesley.

Bontempi, B., Marcelli, A., 1995. Towars a genetic based prototyper for character
shapes. In: 3rd Int. Conf. on Document Analysis and Recognition. Vol. 2, pp. 694–
697.

Cardenas, R., 2004. A learning model for multiple-prototype classification of strings.
In: 17th Int. Conf. on Pattern Recognition. Vol. 4, pp. 420–423.

Casacuberta, F., 2000. Topology of strings: median string is NP-complete. Theoretical
Computer Science. Vol. 230, pp. 39–48.

Devijver, I., Kittler, J., 1980. On the edited nearest neighbour rule. In:5th Int. Conf. on
Pattern Recognition, pp. 72-80.

Duta, N., Jain, A., Dubuisson-Jolly, M., 1999a. Learning 2D shape models. In: IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition. Vol. 2, pp.
8-14.

Duta, N., Sonka, M., Jain, A., 1999b. Learning shape models from examples using
automatic shape clustering and procrustes analysis. LNCS,Information Processing
in Medical Imaging Vol. 1613, pp. 370-375.

Duta, N., Jain, A., Dubuisson-Jolly, M.,2001. Automatic construction of 2D shape
models. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 23, pp.
433-446.

Ferri, F., Vidal, E., 1992. Comparison of several editing and condensing techniques
for colour image segmentation and object location. Pattern Recognition and Image
Analysis.

Ferri, F., Albert, J. V., Vidal, E., 1999. Considerations about sample-size sensitivity of
a family of edited nearest-neighbor rules. IEEE Transactions on Systems, Man,and
Cybernetics, Part B, Vol. 29 (5), pp. 667-672.

Fisher, I., Zell, A., 2000. String averages and self-organizing maps for strings. In:
Proceedings of the Neural Computation 2000. pp. 208–215.

Guan, D., Yuan, W., Lee, Y., Lee, S., 2009. Nearest neighbor editing aided by unlabeled
data. Information Sciences, Vol. 179, pp. 2273-2282.

Jiang, X.,Schiffmann, L., Bunke, H, 2000. Computation of median shapes. In: 4th
Asian Conference on Computer Vision.

17

Jiang, X., Abegglen, K., Bunke, H., Csirik, J., 2003. Dynamic computation of gener-
alised median strings. Journal Pattern Analysis and Applications. Vol. 6, pp. 185–
193.

Koplowitz, J., Brown, T., 1981. On the relation of performance to editing in nearest
neighbour rules. Pattern Recognition, Vol. 13, pp. 251-255.

Levenshtein, V., 1966. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics, Vol. 10, pp. 707-710.

Martı́nez, C., Juan, A., Casacubierta, F., 2003. Median strings for k-nearest neighbour
classification*1. Pattern Recognition Letters, Vol. 24, pp. 173-181.

Marzal, . A., Palazón, V., Peris, G., 2006. Contour-Based Shape Retrieval Using Dy-
namic Time Warping. Lecture Notes in Computer Science, Vol. 4177, pp. 190-199.

Ong, J. L., Seghouane, A., Osborn, K., 2008. Mean shape models for polyp detection
in CT Colonography. IEEE Computer Society, DICTA. pp. 287-293.

Penrod, C., Wagner, T., 1977. Another look at the edited neares neighbour rule. IEEE
Trans. on Systems, Man and Cybernetics, Vol. 7, pp. 92-94.

Platonov, J., Langer, M., 2007. Automatic contour model creation out of polygonal
(CAD) models for markless augmented reality. In: Proceedings of ISMAR 2007.
pp. 75-78.

Rico-Juan, J. R., Micó, L., 2003. Comparison of aesa and laesa search algorithms using
string and tree-edit distances. Pattern Recognition Letters. Vol. 24, pp. 1417–1426.

Sánchez, J., Pla, F., Ferri, F., 1997. Using the nearest centroid neighbourhood concept
for editing purposes. In: 7th Symposium National de Reconocimiento de Formas y
Análisis de Imágen, Vol. 1, pp. 175-180.

Sánchez, G., Lladós, J., Tombre, K., 2002. A mean string algorithm to compute the
average among a set of 2d shapes. Pattern Recognition Letters. Vol. 23, pp. 203–
213.

Tomek,I., 1976. An experiment with the edit nearest neighbour. IEEE Trans. on Sys-
tems, Man and Cybernetics, Vol. 6, pp. 448-452.

Tomek,I., 1976. A generalization of the k-NN rule. IEEE Trans. on Systems, Man and
Cybernetics, Vol. 6, pp. 121-126.

Vázquez, F., Sánchez, J., Pla, F., 2005. A stochastic approach to Wilson’s editing algo-
rithm. Lecture Notes on Computer Science, Vol. 3523, pp. 35-42.

Wagner, R., Fischer, M., 1974. The String-to-String Correction Problem. Journal of the
ACM, Vol. 21, pp. 168-173.

Wilson, D., 1972. Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. on Systems, Man. and Cybernetics, Vol. 2, pp. 408-421.

18

Wilson, D., Martı́nez, T., 2000. Reduction techniques for instance based learning algo-
rithms. Machine Learning, vol 38, pp. 257-286.

Yoon-Sik, T., 2007. A Leaf Image Retrieval Scheme Based on Partial Dynamic Time
Warping and Two-Level Filtering. In: Proceedings of 7th IEEE Int. Conf. on Com-
puter and Information Technology. pp. 633-638.

Yu, S., Tan, D., Huang, K., Tan, T. 2007. Reducing the effect of noise on human contour
in gait recognition. Biometric Autentication. pp.38–346.

19

