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Abstract
This study addresses the assessment of capital requirements in life insurance for
idiosyncratic demographic risks arising from mortality and longevity in compliance
with the Solvency II framework. A closed-formula methodology, using a cohort-based
risk theoretical approach, is introduced to properly capture the volatility associated
with policyholder deaths or survivals. This approach not only accounts for portfo-
lio size effects but it also considers the impact of variability in sums insured within
cohorts and coverage types with an additional specific address to distribution tails.
The proposed methodology offers a viable alternative within the Solvency II context,
addressing limitations identified in previous studies for the Standard Formula nowa-
days in force. Focusing only on the diversifiable part of demographic risk, the approach
considers company’s specific parameters through a risk-based formula, as opposed to
a simple scenario approach with demographic stress on the Best Estimate of under-
lying contracts valid for the whole business. Numerical results show its accuracy in
approximating capital requirements for a large range of life insurance contracts.
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1 Introduction

Since 2016 a new regulatory framework, namely Solvency II, has been introduced to
set out the requirements for insurance and reinsurance undertakings in the European
Union (European Parliament and Council 2021). It has been designed to ensure that
insurers have sufficient capital to face their risks and protect policyholders. Solvency
II aims to increase transparency and accountability in the insurance sector, promote
market discipline, and protect policyholders. It also requires insurers to have sound
risk management and governance systems in place.

In particular, the regulation provides a risk-based approach that enables insurers to
assess their overall solvency capital requirement (SCR) using either a standard formula
approach or an internal model (European Parliament and Council 2014). The standard
formula is a standardized method of calculating the SCR based on a set of scenarios
and parameters calibrated at market-wide level, while the internal model allows to
take into account in a more detailed way the specific risk profile of the insurer using
its own exposures and characteristics.

However, the regulation provides also the possibility of using undertaking specific
parameters (USPs) for the assessment of the capital requirement for specific risks, as
premium & reserve risk in non-life underwriting. USPs in Solvency II play a critical
role in the SCR calculations, as they allow insurers to tailor the capital requirement to
their specific risk profile by applying fixed methodologies provided by the regulation
(European Parliament and Council 2014). Differently from themarket-wide approach,
the calibration process involves collecting data on the relevant risks, determining the
appropriate factors and calculating the corresponding capital requirement following
anyhow, unlike in Internal Model, a driven formula.

Moreover, the possibility of extending USP to the computation of capital require-
ment for life underwriting risk is currently a topic under discussion in the Solvency II
framework. The European Insurance and Occupational Pensions Authority (EIOPA)
has published, under the Solvency II Review 2018, a discussion paper on the review
of specific items in Solvency II (see EIOPA 2016) and one of the topics discussed
is the possibility of allowing insurers to use their own data to calibrate USPs for life
underwriting risks. EIOPA acknowledges that there are challenges in calculating capi-
tal requirements for life underwriting risks and the use of USPs could provide insurers
with a more accurate assessment of their capital requirements.

Clearly, the implementation of USPs for life underwriting risks would require fur-
ther analyses and discussions among industry experts and regulators before it may be
adopted in the Solvency II framework. Therefore, at the moment, this topic is post-
poned to a later stage of the Solvency II review process (see EIOPA 2017a, b). Indeed,
although some simplified methods have been provided in the Delegated Regulation
(European Parliament and Council 2014) as easy-to-use approaches for smaller insur-
ers to calculate their SCR for life underwriting risk, USP methodologies are needed
for all insurers to accurately assess their risk exposure.

In this framework, a very limited literature focused on USPs’ proposals. In particu-
lar, Cerchiara and Demarco (2016) deal with the data requirements andmethodologies
according the so-called standardized methods proposed in the Solvency II regulation
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for the calibration of USPs and propose a comparison with the market-wide standard
formula in non-life companies.

According to the evaluation of the capital requirement for life underwriting risk,
there are several contributions in the literature, but no-one focused on theUSPs. Indeed,
the longevity risk of a portfolio of annuities is measured in Olivieri and Pitacco (2008)
and Ngugnie Diffouo and Devolder (2020). A partial internal model for the longevity
risk component, which incorporates an unsystematic element due to the size of the
portfolio, is provided in Jarner andMøller (2015). A stochastic model for idyosincratic
and trend risk in a market consistent framework is given in Clemente et al. (2022).

A mortality model is proposed for forecasting trends in Plat (2011). In Börger
(2010), Solvency II scenarios are compared with the results of the forward models
proposed by Bauer et al. (see Bauer et al. 2010a, 2008). An ad-hoc mortality model
that considers demographic risk and the dependency structure between the different
cohorts is given in Börger et al. (2014). Run-off and one-year approaches are compared
in Gylys and Šiaulys (2019). Richards et al. (see Richards et al. 2014) focus on the
share of longevity trend risk to be considered in a one-year value-at-risk framework.

Hari et al. (seeHari et al. 2008) assess the relevance of longevity risk for the solvency
position of annuity portfolios distinguishing betweenmicro andmacro-longevity risks.
The longevity risk capital requirement is obtained by applying the classical Lee-Carter
model in Stevens et al. (2010), by least-squares regression andMonteCarlo simulations
in Bauer and Ha (2015) and by modelling mortality intensity as a stochastic process
in Dahl (2004).

As shown in the literature (for example, see Clemente et al. 2022) and as acknowl-
edged by the Solvency II regulation (refer to Committee of European Insurance and
Occupational Pensions Supervisors 2006; European Parliament and Council 2021),
demographic risk comprises both idiosyncratic (or diversifiable) and trend risks. The
former pertains to the volatility of the random variables, while the latter involves risks
associatedwith structural changes of the second-order assumptions.Within this frame-
work,we provide amethodology for assessing the capital requirement for idiosyncratic
demographic risk due to mortality and longevity in an accounting framework aligned
with the market consistent valuation prescribed by Solvency II. We provide indeed a
closed formula based on a cohort approach aimed at catching the volatility linked to the
random variable “policyholder deaths”(or survivals). It allows to highlight not only the
pooling effects due to the portfolio size, but also the effects of the volatility of the sums
insured within the cohort and of the type of coverage with relevant effects also on the
distribution tail. Our proposal represents indeed a possible undertaking approach in the
Solvency II context for measuring only the diversifiable source of demographic risk.
Additionally, it overcomes some drawbacks of the proposal provided in Quantitative
Impact Study n.2 in 2006 (see Committee of European Insurance and Occupational
Pensions Supervisors 2006) where skewness and sum insured volatility were com-
pletely ignored.

A case study was conducted to evaluate the proposed approach using various life
insurance contracts. The numerical results show how the proposal aligns consistently
with the context, offering a reliable approximation of the capital requirement obtained
through a simulated approach. For testing the goodness of fit, we compared the results
with the capital requirement obtained by considering the simulated distribution of
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the demographic profit and loss derived by a Partial Internal Model (see Clemente
et al. 2022) with consistent assumptions with the proposed USP approach. The Partial
Internal Model has been employed using a traditional Monte Carlo approach although
in the literature extensions have been proposed for specific purposes (see, e.g., Bauer
et al. 2010b for nested simulations and Bauer and Ha 2015; Costabile and Viviano
2020; Floryszczak et al. 2016 for least-squares Monte Carlo)

The paper is organized as follows. Section2 introduces some preliminary aspects
and notation. Section3 defines the idiosyncratic risk and the characteristics of themain
random variables involved. Section4 provides two alternative USPs for mortality and
longevity risk. A numerical application is developed in Sect. 5, followed by the main
Conclusions.

2 Preliminaries

2.1 The cohort approachmodel

Let us consider a measurable space (�,F), where � is a set and F is a σ -algebra
of subsets of �. This mathematical framework allows us to model a wide range of
phenomena where uncertainty or randomness are present. In particular, we can define
a probability measure P on (�,F) that assigns probabilities to events in F , which
represent the possible outcomes of our experiment.

To capture the evolution of such phenomena over time, we introduce a filtration
F = (Ft ) with t = 0, 1, .., n, where n is the duration of the contracts. Each Ft is a
σ -algebra representing the information available up to time t . This filtration allows us
to study the evolution of uncertainty over time and to make expectations about future
events based on the available information.

Contracts play a fundamental role in the actuarial practice, where they are used to
model andmanage various types of risks, such as insurance and financial risks. For sev-
eral purposes, such as calculating reserves, assessing the performance of a portfolio, or
determining regulatory compliance, contracts are often grouped together into cohorts
based on certain characteristics they share, such as their issue date, policyholder’s age,
technical bases or the type of coverage they provide.

Given the importance of this concept in actuarial science, we propose to adopt a
precise definition of cohort for the purpose of our analysis. For instance, when studying
the mortality risk of a life insurance portfolio, a cohort may be defined as a group of
policies issued in a certain year to individuals of a specific age range and gender. By
focusing on such cohorts, we can obtain a more granular and accurate understanding
of the underlying risk profile and design effective risk management strategies.

In the context of this study, we define a cohort as a group of insurance policies that
share certain relevant characteristics for the purpose of our analysis. Specifically, we
consider policies with the same duration, the same insurance contract, issued within
a specific time frame, and subscribed by insureds within the same age. The only
difference between policies within the same cohort is the amount of the sum insured,
which can vary across policyholders. This choice allows us to analyze the risk in a
more detailed way, focusing on the factors that contribute most to the variability of the
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risk profile within a given population of policyholders, e.g., Sum-at-Risk (SaR) and
sums insured variability.

We consider a cohort given by l0 policyholders (with k = 1, ..., l0) at time 0 and
we denote with Sk,t the random variable (r.v.)1 “sum insured of the k-th policyholder
at time t”. This generic r.v., independently of the type of contract, can be defined as
the sum insured whereas the contract is in force at time t , zero otherwise. Considering
a constant sum insured, Sk,t is equal to the product between the initial value sk,0 and
t random variables that assume the value 1 if the policyholder survives in the given
year and 0 in case of death:

Sk,t = sk,0

t−1∏

τ=0

I
L
k,τ . (1)

where I
L
k,τ is aBernoulli r.v. that assumes value equal to one if the policyholder survives

between τ and τ + 1. Therefore, the random variable Sk,t represents the amount that
the insurance company will have to pay to the k-th policyholder if he/she is entitled
to the benefit in that year.

Since the cohort is composed by policyholders with the same characteristics (except
for the sums insured), we assume that the unexpected events (and deaths) of the pol-
icyholders can be described by conditionally independent and identically distributed
random variables. Indeed, we assume that policyholders are conditionally independent
from each other and that all those who belong to the same cohort have the same sur-
vival probability. In other words, conditional on the fact that the survival probabilities
are the same, the survivals of policyholders are independent of each other (see Hanbali
et al. 2019; Milevsky et al. 2006).2 Furthermore, we define the sums insured of the
whole portfolio as:

St =
l0∑

k=1

Sk,t . (2)

2.2 Premiums and reserves

We focus now on the valuation of technical liabilities in accordance to the rules set by
the Solvency II directive.

The starting point is the definition of the vector Xt whose components are the
cashflows from t to n. At time t = 0, we have

X0 = (X0,X1, ...,Xn) ∈ L2n+1(P, F), (3)

where L2n+1(P, F) is a Hilbert space. Hence, the vector of cash-flows can be split as
Xt = Xout

t − Xin
t whereas Xout

t is the vector of the outflows and Xin
t is the vector of

1 Random variables are indicated with capital letters, while deterministic values are indicated with small
letters.
2 It is noteworthy that the conditionally independence assumption can be violated when relatives are
considered in the same cohort (see Luciano et al. 2016)
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the inflows, i.e., the premiums. Moreover, we assume that the premiums are paid in
advance at the beginning of the year, while the benefits are paid at the end of year
when the assured event occurs. For the sake of simplicity, we do not consider expenses
in the outflows. Consequently, for consistency, expenses loadings are also excluded
from the inflows, with premiums income being related only to pure premiums in our
framework, then including only implicit safety loading. Similarly, the impact of lapses,
affecting demographic risk only in terms of minor exposure, is neglected.

Therefore, we define the cash-out of the year as follows:

Xout
t =

l0∑

k=1

Sk,t−1 · I
B
k,t−1 (4)

where I
B
k,t−1 is a dichotomic r.v. which assumes value 1whereas the k-th policyholders

becomes eligible to obtain the benefit in the time span (t − 1, t].3 Notice that the
distribution of I

B
k,τ depends on the type of the insurance contract of the cohort.4

Similarly, for cash-in we have:

Xin
t =

l0∑

k=1

Sk,t · pt (5)

where pt is the pure premium rate5 per unitary sum insured. Notice that Xin
t is

Ft -measurable, as the premium rate is a quantity known when the policies are under-
written.

As known, according to Art. 77 of Solvency II “the value of technical provisions
shall be equal to the sum of a best estimate and a risk margin [...]. The best estimate
shall correspond to the probability weighted average of future cash-flows, taking
account of the time value of money (expected present value of future cash-flows),
using the relevant risk-free interest rate term structure”.

Moreover, we specify that Directive 2009/138/EC and the Delegated Acts impose
that the variations of the RiskMarginmust not influence the Solvency Capital Require-
ment; because of this reason our attention is focused only on the best estimate
component.

Therefore, we define the best estimate value of the liability Rt at a generic time t
as follows:

Rt =
n∑

τ=t+1

(1 + it (t, τ ))t−τ E
(
Xout

τ

∣∣Ft
)

(6)

3 Obviously, in the case of policies with benefits paid in the event of death, reference is made to the
beneficiary.
4 For instance, considering a Term Insurance, we have I

B
k,τ = 1−I

L
k,τ . Hence, I

B
k,τ is a r.v. whose parameter

is the annual, real death probability of the policyholder. Instead, for a Pure Endowment, I
B
k,τ = I

L
k,τ with

parameter equal to annual, real survival probability of the policyholder.
5 Notice that we are neglecting expenses and formula (5) is valid for both annual and single premiums. In
the latter case we have pt = 0 for t > 0

123



An undertaking specific approach to address diversifiable…

in case of single premium or as follows

Rt =
n∑

τ=t+1

(1 + it (t, τ ))t−τ E
(
Xout

τ

∣∣Ft
) −

n−1∑

τ=t

(1 + it (t, τ ))t−τ E
(
Xin

τ

∣∣Ft

)
(7)

in case of an annual premium andwhere it (t, τ ) is the spot rate taken from the risk-free
rate curve provided monthly by EIOPA. It can be noted that, in our framework, the
best estimate value does not include technical provision regarding future expenses,
such as acquisition and management expenses. We point out that this is generally not
a major concern in practical scenarios with annual or regular premiums.6

In relation to the expected value of formula (7), it is evident that the expectation
of cash flows entails a dual source of uncertainty. This includes uncertainty regarding
the value of sums insured at a given future time τ , as well as uncertainty concerning
the occurrence of the event triggering the insurer’s payment.

Exploiting the assumption that the survivals (and deaths) of the policyholders of
the cohort are conditionally i.i.d. r.v., it is possible to define

Rt =
n−1∑

τ=t

(1 + it (t, τ + 1))t−τ−1 E

(
l0∑

k=1

Sk,τ · I
B
k,τ

∣∣Ft

)

−
n−1∑

τ=t

(1 + it (t, τ ))t−τ E

(
l0∑

k=1

Sk,τ · pτ

∣∣Ft

) (8)

Notice that formula (8) (and more generally the whole of this paper) also works in the
case of contracts with a single premium or in which pt is not constant: in both cases
the best estimate rate Rt considers the expected present value of future premiums,
regardless of whether they are 0 or constant or different from each other.

Considering that Sk,t is Ft -measurable and exploiting formula (2), it is possible to
write

Rt =St ·
n−1∑

τ=t

(1 + it (t, τ + 1))t−τ−1 E

(
l0∑

k=1

(
τ−1∏

s=t

I
L
k,s

)
· I

B
k,τ

∣∣Ft

)

− St ·
n−1∑

τ=t

(1 + it (t, τ ))t−τ E

(
l0∑

k=1

(
τ−1∏

s=t

I
L
k,s

)
· pτ

∣∣Ft

) (9)

or, more compactly,

Rt = St · Rt (10)

6 Indeed, acquisition expenses are anticipated by the insurer and thus only slightly reduce the best estimate,
while future management expenses are often at a great level, but are largely offset by future loadings
for management expenses (embedded in the gross premiums). Although this simplification might be less
negligible in the case of single premium, it does not significantly affect our results.
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where Rt is the best estimate rate (per unitary sum insured).
In conclusion, as per Olivieri and Pitacco (2015), we specify that the pure premium

rate for each contract can be computed as a solution of the equation

R∗
0 = 0, (11)

where R∗
0 is the mathematical reserve rate calculated at time zero with:

• i0(0, τ ) = i∗ ∀τ ∈ [1, n], i∗ is usually called technical rate or financial first order
basis,

• The expectation is not under the real-word measure P , but under a probability-
distorted measure P∗, i.e. the so-called first order demographic basis.

Hence, according to formula (11), the expected present value of the benefits is equal
to the expected present value of the premiums whereas the calculation involves the
distorted probability P∗ and the technical rate i∗.

3 The SCR for demographic idiosyncratic risk

3.1 The claims development results (CDRs)

This subsection presents a financial statement model suitable for valuing the profits
and losses of the insurance company over an annual time horizon, which is therefore
consistent for the quantification of the Solvency Capital Requirement of Solvency II.
Considering a generic time span [t, t + 1], the insurance company:

1. Has at disposal the best estimates of the reserves Rt , calculated with the most
up-to-date information,

2. Collect the deterministic premiums at the beginning of the period, i.e., xint in t ,
3. Pay claims at the end of the period, i.e., Xout

t in t + 1,
4. Assess new reserves at the end of the period, only for the policyholders remaining

in the portfolio, on the basis of the new demographic and financial information
available, i.e., Rt+1 in t + 1.

The initial amount, given by the sum of the two components Rt and xint , is needed to
cover potential claims in the event of an assured occurrence, as well as the updated
best estimates for policyholders who survive in t + 1. As is customary, the premiums
collected are typically invested to yield a return sufficient to fulfill obligations owed
to the policyholders. To focus solely on evaluating demographic risk, we assume that
the insurance company invests at the risk-free rate available in the market, and for the
present discussion, we disregard the impact of financial volatility7 which instead is
relevant for investment analysis. Therefore, we consider the quantity

Vt+1 = (Rt + xint ) · (1 + it (t, t + 1)). (12)

7 An extendedmodel considering a rate of return on premiums and reserves would incorporate an additional
component in the model, equal to (Rt + xint ) · (it (t, t + 1) − jt ) with jt stochastic return gained in year t .
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Consistently with the existing literature (see Wüthrich and Merz 2013), we define the
Claims Development Result (CDR) between time t and time t + 1 as

CDRt+1 = Vt+1 − Xout
t+1 − Rt+1. (13)

where, following formula (10), we have Rt+1 = St+1 ·Rt+1 withRt+1 best estimate
rate at time t + 1.

According to formula (13), when capitalized premiums and reserves prove adequate
to cover the claims for the year and future liabilities computed in the new reserve, a
positiveCDRarises.Conversely, if a loss is incurred, theCDR takes on anegative value.
It is worth noting that the CDR incorporates the following sources of randomness:

• Accidental (or idiosyncratic) mortality relative to the number of deaths in the
cohort over the time span (t, t + 1],

• The volatility linked to mortality estimates. The information used by the company
for the provision of the best estimates in t + 1, Ft+1, could be different from Ft ,

• Volatility in the risk-free rate curves between time t and time t + 1. Since in this
work we are only interested in quantifying the demographic risk, we assume that
the spot rate curve in t + 1 coincides with the forward rate curve obtainable in
t . As proved in Clemente et al. (2021), this assumption effectively eliminates the
impact of financial volatility from the model.

Now, we introduce the quantity

R̂t+1 =St+1 ·
n−1∑

τ=t+1

(1 + it (t + 1, τ + 1))t−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· I

B
k,τ

∣∣Ft

)

− St+1 ·
n−1∑

τ=t+1

(1 + it (t + 1, τ ))t+1−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· pτ

∣∣Ft

)(14)

where it (t + 1, τ ) is the forward rate between t + 1 and τ available from the spot
curve at time t . From a qualitative point of view, R̂t+1 is equal to the best estimate of
the policyholders in t + 1 calculated with demographic basis equal to those used in t ,
i.e., Ft . Formula (14) can be rewritten as:

R̂t+1 = St+1R̂t+1 (15)

where R̂t+1 is the best estimate rate at time t + 1 computed using demographic basis
defined at time t .

We define the following quantities,

CDRIdios
t+1 = Vt+1 − Xout

t+1 − R̂t+1 (16)

and

CDRTrend
t+1 = R̂t+1 − Rt+1 (17)
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Wehave thus divided the overallCDR into twocomponents:CDRIdios
t+1 depends solely

on the volatility of the year, whereas CDRTrend
t+1 is influenced by both the volatility

of the year and, more notably, by potential revisions in demographic expectations
resulting from this volatility.

3.2 The CDR for idiosyncratic risk and its characteristics

We focus now on the CDR for idiosyncratic risk defined in formula (16). Notice that
considering the definition of the reserve given in (14), the assumptions reported in
Wüthrich et al. (2010) and Clemente et al. (2022) are satisfied.

It is therefore possible to rewrite CDRIdios
t+1 as

CDRIdios
t+1 =

l0∑

k=1

[
E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft

)
− E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft+1

)]
· ηt+1

(18)

where

ηt+1 =1 −
n−1∑

τ=t+1

(1 + it (t + 1, τ + 1))t−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· I

B
k,τ

∣∣Ft

)

+
n−1∑

τ=t+1

(1 + it (t + 1, τ ))t+1−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· pτ

∣∣Ft

) (19)

in case the cohort is composed by positive SaR policies (as term insurances, endow-
ments) or

ηt+1 = −
n−1∑

τ=t+1

(1 + it (t + 1, τ + 1))t−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· I

B
k,τ

∣∣Ft

)

+
n−1∑

τ=t+1

(1 + it (t + 1, τ ))t+1−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· pτ

∣∣Ft

) (20)

in case of policies with a negative SaR (pure endowments, annuities in the deferral
period8). Note that the formulation of ηt+1, the SaR rate, depends on the type of
insurance contract considered. It is defined as the difference between the unitary sum
insured payable in case of death (equal to zero for policies that only provide a benefit
in case of survival) and the mathematical reserve rate. The SaR amount, if positive,
signifies exposure to mortality risk; if negative it indicates the dismantling of the
mathematical reserve if the death occurs.

8 It is noteworthy that, in case of an annuity evaluated in the payment period, the sum-at-risk rate defined
in formula (20) can be easily obtained considering also the unitary amount paid in case of survival.
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The examination of the r.v. CDRIdios
t+1 at the cohort level is then connected to the

analysis of the following r.v.:
∑l0

k=1 E
(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft+1

)
ηt+1.

The expected value of the CDRIdios
t+1 is equal to zero:

E
(
CDRIdios

t+1

∣∣Ft

)
=

E

(
l0∑

k=1

[
E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft

)
− E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft+1

)]
ηt+1

∣∣∣∣Ft

)

=
l0∑

k=1

E
(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft

)
ηt+1 −

l0∑

k=1

E

(
E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft+1

) ∣∣∣∣Ft

)
ηt+1 = 0

(21)

Previous result is due to the tower property. Therefore, from an actuarial point of view,
if the company does not review its demographic expectations at the end of the period,
the best estimate of the incoming reserves added to the annual premiums allow, on
average, to meet the claims for the year and to set up new best estimates. It is also
noteworthy that the use of prudential first-order bases in the pricing phase implies a
negative best estimate to be obtained at the time of subscription, i.e. at the issue, the
expected present value of the benefits is strictly lower than the expected present value
of the premiums under second order bases.

For the cumulants of order greater than one, we focus on the moments generating
function (mgf) of the r.v. sum insured of occurred death Z B

k,t+1 of the generic k-th

policyholder.9 We define the mgf as follows:

MZk,t (m) = qx+t · em·Sk,t + (1 − qx+t ) (22)

where qx+t = EP
[
I
L
k,t

∣∣∣Ft

]
is the best estimate of the annual death probability for age

x + t at time t .
The mgf of the sums insured of occurred deaths of the whole cohort is

MZt (m) =
(
qx+t · em·Sk,t + (1 − qx+t )

)lt
. (23)

Therefore, the cumulant generating function is defined as:

�Zt (m) = lt · ln
(
qx+t · em·Sk,t + (1 − qx+t )

)
(24)

Variance and skewness of CDRIdios
t+1 are then obtained as follows (for detailed proof

see Clemente et al. 2022):

Var
(
CDRIdios

t+1

∣∣Ft

)
= (

lt · qx+t · (1 − qx+t ) · S̄2,t
) · E

(
η2t+1

∣∣Ft

)
. (25)

9 Notice that Z B
k,t+1 =

(
1 − I

L
k,t

)
· Sk,t for policies with a positive SaR rate and Z B

k,t+1 = 0 otherwise.

For instance, considering a term insurance Xout
k,t = Z B

k,t , considering a pure endowment Xout
k,t = 0 when

t < n, Xout
k,t = I

L
k,t−1 · Sk,t−1 otherwise.
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and

γ
(
CDRIdios

t+1

∣∣Ft

)
= −sgn(ηt+1) · (1 − 2 · qx+t )√

lt · qx+t · (1 − qx+t )
· S̄3,t
[
S̄2,t

]3/2 (26)

where S̄ j,t is the j-raw moment of the sums insured at time t .
In terms of variance, we observe its dependency on the age of the policyholders

(and therefore on the realistic probability of death, denoted as qx+t ), as well as on the
variability of the sums insured and the sum-at-risk rate ηt+1. Regarding skewness, the
sign of the index is opposite to that of the sum-at-risk. For contracts with a positive
sum-at-risk (such as endowments and term insurances), we observe negative skewness
unless extreme ages with qx+t > 50%. Conversely, the opposite situation is observed
for pure endowments and annuities. In conclusion, adopting a cohort approach frame-
work, which is commonly used in the literature as a model point for quantifying
demographic risk, we have showed that the distribution of CDRIdios

t+1 is asymmetric
and exhibits a volatility dependent on both the cohort’s characteristics (sums insured
and age) and the type of contract.

The impact of diversification is also evident, influenced by the size of the portfolio
as indicated by the number of policyholders lt in formulas (25) and (26). Specifically,
for larger portfolios, we observe a less-than-proportional increase in the standard
deviation and a more symmetric distribution. Consequently, in such scenarios, we
have that the capital requirement will escalate in a non-proportional manner with the
expansion of the portfolio.

3.3 Solvency capital requirement framework

Solvency II Directive requires insurance companies to hold a Solvency Capital
Requirement, calculated on an annual time horizon, using the Value-at-Risk risk mea-
sure, with a 99.5% confidence level.

The calculation of the SCR can be performed through either the use of an Internal
Model or a Standard Formula. For a subset of risks, an approach based on the calibraton
of specific parameters of the company (USP) is also allowed. Although this possibility
has been under evaluation for the longevity andmortality risk sub-modules, at moment
only a market-wide approach is allowed. In particular, the SCR for mortality and
longevity risk is calculated as the reduction of the Basic Own Funds under the scenario
of an increase in mortality rates by 15% and a decrease in mortality rates by 20%,
respectively, namely a stress on Best Estimate of liabilities.

Therefore, within the Standard Formula, the idiosyncratic-demographic risk is
therefore not explicitly quantified, but is calculated within the Life Underwriting Risk
with the methodologies described above. However, in several phases, the Solvency
II process focused on the separate assessment of idiosyncratic and trend risk. For
instance, an interesting aspect concerns one of the Solvency II preparatory studies
conducted in 2006 by CEIOPS, the so-called Quantitative Impact Study number 2
(QIS2) (see Committee of European Insurance and Occupational Pensions Supervi-
sors 2006).
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In this context, the capital requirement formortality riskwas calculated as a function
of idiosyncratic risk, defined as:

SCRId,QI S2 = 2.58 ·
√
q · (1 − q)

l
· Sum − at − Risk. (27)

whereas for longevity risk (e.g., as in pure endowments),

SCRId,QI S2 = 2.58 ·
√
q · (1 − q)

l
· Potential − Release. (28)

where “Potential Release” indicated the amount of the technical reserves relevant to
subjects exposed to longevity risk. In both cases, q represented the average mortality
rate of the selected Homogeneous Risk Group. Focusing on QIS2 proposal, it could
be noticed that the approach provided neglects both the skewness of the distribution
and the variability of the sum insured. In particular, both formulas (27) and (28) are
based on a multiplier equal to 2.58 that entails the assumption of normal distribution.
Additionally, with respect to the variance given by formula (25), the volatility of the
sums insured is not considered at all.

Starting from this proposal and previous studies (see Savelli 1993; Savelli and
Clemente 2013), our aim is to provide a method that could represent a suitable USP
approach for assessing capital requirement for longevity and mortality risk and that,
at the same time, allows to overcome the pitfalls of the QIS2 approach.

We define the generic risk measure (see Artzner et al. 1999) as a function ς

ς : L2(P) → R
+; X → ς(X) (29)

Our goal now is to propose an undertaking approach for the Solvency Capital Require-
ment of mortality and longevity idiosyncratic risk under cohort assumption and using
a VaR risk measure. Notice that we follow the VaR approach in order to be consistent
with Solvency II standard formula but the results can be extended also for alternative
risk measures such as TVaR.

4 A proposal of USP approaches for idiosyncratic mortality and
longevity risks

In this section, we present a proposal for USP approaches that could be employed to
assess the capital requirement for mortality and longevity risk. In the case of longevity,
we handle annuity contracts during the benefits payment period separately.

4.1 USP approach for idiosyncratic mortality risk

We consider here contracts with a positive sum-at-risk (as Term Insurance and Endow-
ment) and we focus on a USP approach for idiosyncratic mortality risk. To this end,
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we define the random variable Yt+1 as a linear transformation of CDRIdios
t+1 :

Yt+1 = −CDRIdios
t+1 + d (30)

where d = max(CDRIdios
t+1 ). Since in a contract that pays in case of death, we obtain

the maximum CDR when all policyholders survive at the end of the year (best case
scenario), we can define:

d = Vt+1 − Ṙt+1 (31)

where:

Ṙt+1 = StR̂t+1. (32)

Hence, formula (30) can be rewritten as:

Yt+1 = Xout
t+1 + (St+1 − St ) R̂t+1. (33)

Since CDRIdios
t+1 has a negative skewness, through formula (33) we are focusing on

the r.v. Yt+1 that represents next-year liabilities and has a positive skewness and non-
negative values.

We assume

Yt+1 ∼ LogN (μ, σ ) (34)

and we define the SCR with the USP approach for mortality as follows:

SCRUSP,m = ς (Yt+1) − d (35)

where the risk measure ς is the Value-at-Risk with a confidence level of 99.5% on a
1 year time horizon basis, in line with the requirements of Solvency II.

Considering the well-known relation between Normal and LogNormal,

SCRUSP,m = exp (μ + σ · N99.5%) − d (36)

where N99.5% is the 99.5% percentile of a Standard Normal random variable.
We consider the usual relations related to the LogNormal parameters

μ = ln
(
E

[
Yt+1

]) − σ 2

2
(37)

and

σ =
√
ln

(
1 + CV 2

Yt+1

)
(38)
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whereCVYt+1 is the volatility coefficient of Yt+1 defined as the ratio between standard
deviation and expected value.

We also highlight that E
[
Yt+1

] = d and σYt+1 = σCDRIdios
t+1

.
Exploiting formulas (37) and (38), formula (36) may be rewritten as:

SCRUSP,m = exp

(
ln

[
E (Yt+1)

] − σ 2

2
+

√
ln

(
1 + CV 2

Yt+1

)
· N99.5%

)
− d

(39)

from which, using the well known properties of exponentials

SCRUSP,m =
E

[
Yt+1

] · exp
(√

ln
(
1 + CV 2

Yt+1

)
· N99.5%

)

√
1 + CV 2

Yt+1

− d (40)

and considering the linearity of the expected value,

SCRUSP,m =
d · exp

(√
ln

(
1 + CV 2

Yt+1

)
· N99.5%

)

√
1 + CV 2

Yt+1

− d (41)

from formula (21), we finally obtain the proxy for mortality risk capital requirement:

SCRUSP,m = d ·

⎡

⎢⎢⎢⎣

exp

(√
ln

(
1 + CV 2

Yt+1

)
· 2.58

)

√
1 + CV 2

Yt+1

− 1

⎤

⎥⎥⎥⎦ (42)

where CVYt+1 is calculated as

CVYt+1 =
√(

lt · qx+t · (1 − qx+t ) · S̄2,t
) · E (

η2t+1

∣∣Ft
)

Vt+1 − Ṙt+1
. (43)

4.2 Idiosyncratic longevity risk

4.2.1 Pure endowment and annuity during the deferral period

We focus now on contracts with a negative sum-at-risk (as pure endowment and annu-
ities in the deferral period).
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We recall that due to a negative sum at risk rate, the distribution of CDRIdios
t+1 in

the Pure Endowment case, has a positive skewness. We define the r.v. Wt+1 as

Wt+1 = CDRIdios
t+1 − g (44)

where g = min
{
CDRIdios

t+1

}
defined as

g = Vt+1 − Ṙt+1 (45)

since the minimum CDR for these contracts is observed in case all policyholders
survive (worst case scenario). It is worth noting that while formula (45) is equivalent
to formula (31), it yields a negative value for pure endowments. We have indeed that
the survival of the entire cohort represents an unfavourable scenario for the company,
leading to a demographic loss.

We have that E
[
Wt+1

] = −g and σWt+1 = σCDRIdios
t+1

.
Therefore, formula (44) can be rewritten as:

Wt+1 = (St − St+1) R̂t+1 − Xout
t+1. (46)

We are focusing on the r.v.Wt+1 that represents next-year liabilities and has a positive
skewness and non-negative values and, as before, we assume

Wt+1 ∼ LogN (μ, σ ) (47)

and we define the SCR with the USP approach for longevity as follows:

SCRUSP,l = −ς (Wt+1) − g (48)

Therefore,

SCRUSP,l = −exp (μ + σ · N0.5%) − g (49)

Exploting the relationships presented in formulas (37) and (38), we obtain

SCRUSP,l = −exp

(
ln

[
E (Wt+1)

] − σ 2

2
+

√
ln

(
1 + CV 2

Wt+1

)
· N0.5%

)
− g

(50)

With simple algebra,

SCRUSP,l = −

⎡

⎢⎢⎢⎣

E
[
Wt+1

] · exp
(√

ln
(
1 + CV 2

Wt+1

)
· N0.5%

)

√
1 + CV 2

Wt+1

⎤

⎥⎥⎥⎦ − g (51)
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considering that E
[
Wt+1

] = −g,

SCRUSP,l = −g ·

⎡

⎢⎢⎢⎣1 −
exp

(
−

√
ln

(
1 + CV 2

Wt+1

)
· 2.58

)

√
1 + CV 2

Wt+1

⎤

⎥⎥⎥⎦ (52)

where

CVWt+1 =
√(

lt · qx+t · (1 − qx+t ) · S̄2,t
) · E (

η2t+1

∣∣Ft
)

Ṙt+1 − Vt+1
. (53)

4.2.2 Annuity during the payment phase

The scenario of the annuity during the benefit payment phase will be addressed sep-
arately. The necessity to treat this case independently arises from the fact that certain
quantities undergo slight changes.

Given that in an annuity, the payout of the insured amount occurs only if the
policyholder is alive on the policy anniversary, formula (9) is adjusted as follows:

Rt = St ·
n−1∑

τ=t

(1 + it (t, τ + 1))t−τ−1 E

(
l0∑

k=1

(
τ−1∏

s=t

I
L
k,s

)
· I

L
k,τ

∣∣Ft

)
(54)

Specifically, it is important to note that the component pertaining to the expected
present value of the premiums is entirely disregarded, as it exclusively regards the
accumulation phase. On the other hand, the random variable I

B
k,τ , which is associated

with the eligibility of the insured to receive the benefit, equals one in the case of
survival. Consequently, we denote it as I

L
k,τ .

Exploiting formula (16), with simple algebra it is possible to prove

CDRIdios
t+1 =

l0∑

k=1

[
E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft

)
− E

(
Sk,t ·

(
1 − I

L
k,t

) ∣∣Ft+1

)]
· ηt+1

(55)

with

ηt+1 = −1 −
n−1∑

τ=t+1

(1 + it (t + 1, τ + 1))t−τ E

(
l0∑

k=1

(
τ−1∏

s=t+1

I
L
k,s

)
· I

L
k,τ

∣∣Ft

)

(56)

Also in this context we are dealingwith a distributionwith positive skewness; therefore
we define the Claims Development Result as per formula (44) with g = Vt+1 − St −
Ṙt+1.
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In conclusion, the SCR proxy can be calculated similarly to the pure endowment
case as

SCRUSP,l = −g ·

⎡

⎢⎢⎢⎣1 −
exp

(
−

√
ln

(
1 + CV 2

Wt+1

)
· 2.58

)

√
1 + CV 2

Wt+1

⎤

⎥⎥⎥⎦ (57)

where

CVWt+1 =
√(

lt · qx+t · (1 − qx+t ) · S̄2,t
) · E (

η2t+1

∣∣Ft
)

Ṙt+1 + St − Vt+1
. (58)

5 Numerical results

In this Section, the purpose is to present the results of themodel presented, highlighting
how the formulas proposed to quantify the Solvency Capital Requirement are a good
proxy of the results obtained from the Partial Internal Model based on the simulated
distribution of the demographic profit and loss.
To this end, we summarize in Table 1 the main characteristics of the cohort. In partic-
ular, we consider a cohort of 15,000 policyholders aged 40 years at the inception, with
an average sum insured of 100,000 euros and a coefficient of variation of the sums
insured equal to 2.

Furthermore, it should be noted that, from the perspective of the insurance company,
the policy yields a positive expected profit. This is due to the application of prudential
technical bases during the pricing phase. Specifically, the demographic base used
involves a 20% variation in the mortality rates respect to the second order basis (a
decrease in the case of Pure Endowment and an increase in the case of both Endowment
and Term Insurance). Additionally, the technical rate is set at 1%, representing the
lowest value among all risk-free rates on the EIOPA curve.
In conclusion,wewould like to specify that in this section,wewill focus onEndowment
and Pure Endowment policies. Regarding the latter, our decision is influenced by the
fact that, within an annual time frame, it comprehensively encapsulates any annuity
due to the principle of contract composition. The preference for Endowment over Term
Insurance is simply to streamline this paper, as both are positive Sum-at-Risk policies
and the interpretative results are nearly identical.

5.1 Pure endowment results

The Pure Endowment is a policy that assures the policyholder of receiving the sum
insured if he/she survives until maturity. Its significance lies in the principle of contract
composition, where an annuity is composed of a series of Pure Endowments sharing
the same technical bases but with varying maturities.
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Table 1 Model parameters

Characteristics Value

Number of policyholders in t = 0 15,000

Cohort age in t = 0 40

Policies duration 20 years

1st order demographic base 2nd order qx stressed of 20%

2nd order demographic base Lee-Carter model applied on 1852–2019 Italy data

1st order technical rate 1%

Risk-free curve August 2023, EIOPA’s risk-free curve

Average sum insured 100,000

Coeff.Var. of S0 2

Table 2 Pure
endowment–results

Characteristics Value

Theoretical expected value 0

Simulated expected value −99

Theoretical standard deviation 367,514

Simulated standard deviation 366,199

Theoretical skewness 2.50

Simulated skewness 2.49

LogNormal skewness 1.66

Simulated SCR 544,266

SCRUSP,l 533,298

SCRId,QI S2 415,101

Simulated SCR/St.Dev 1.48

BEL 455,866,134

Simulated SCR/BEL 0.12%

Figure 1 displays the simulated distribution ofCDRIdios
10 obtained through5million

simulations, while Table 2 presents the corresponding numerical results.10

The first noteworthy aspect is that such a large number of simulations enables us to
obtain estimates of theCDRIdios

10 distribution characteristics that are nearly robust and
precise, notwithstanding the well-known weak convergence of skewness and kurtosis.
The theoretical expected value is 0, as indicated by formula (12), demonstrating that,
on average, the sum of best estimates and premiums capitalized at the risk-free rate
it (t, t + 1) (i.e., Vt+1) allows the insurer to cover both the claims of the year and
the creation of new best estimate liabilities calculated with the same technical bases.
Regarding the standard deviation, the primary factors are themortality rate (depending
on the youth of the cohort11), the volatility of the sums insured, and the Sum-at-Risk
rate η10, strongly depending from both policy type and cohort’s seniority. In particular,

10 BEL stands for Best Estimate Liabilities.
11 The term q49 is approximately 0.13%.
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Fig. 1 Simulated distribution of CDRIdios
10 in case of pure endowment obtained by the partial internal

model

the absolute value of the SaR rate is 0.36, underscoring that the policy’smaturity is still
far in the future. As the SaR rate, calculated as the opposite of the best estimate rate
in the case of a pure endowment, is negative, then distribution skewness of CDRIdios

10
is positive.

We provide also a comparison with the QIS2 capital requirement (SCRId,QI S2 in
Table 2). In this context, the relevance of formula (28) proposed within the QIS2,
highlighted a risk-theory approach notwithstanding certain limitations. Indeed, the
percentile of order 0.5% of the distribution implies a standard deviation multiplier
significantly lower than 2.58, which is suitable only in case of a nearly normal distri-
bution. On the other hand, the QIS2 formula underestimates the capital obtained by
Partal Internal Model and USP approaches because the volatility of sums insured is
neglected.
Figure2 compares the simulated distribution of W10 with a LogNormal distribution
whose μ and σ parameters are calibrated using formulas (37) and (38).

Furthermore, apart from the excellent fit of the LogNormal distribution, we would
like to emphasize that the Solvency Capital Requirement (SCR) simulated through the
Monte Carlo approach closely resembles SCRUSP,l . Of particular interest is that, by
employing formula (52), we obtain a capital requirement very close to the simulated
value, aligning with a standard deviation multiplier of 1.48, notably below 2.58. In
conclusion, we specify that SCRUSP,l provides a capital requirement that is lower of
roughly 2% with respect to the partial internal model mainly due to slight differences
in skewness and kurtosis.12 This report highlights that the LogNormal is an excellent
approximation of the W10 distribution, with a negligible underestimation error on the
tails.

12 Skewness is equal to 1.66 and 2.49 in case of, respectively, LogNormal and simulated distributions; in
addition the kurtosis index is equal to 5.27 and 18.45 in case of LogNormal and simulated distributions.
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Fig. 2 Simulated distribution of W10 and LogNormal distribution

Table 3 Endowment–results Characteristics Value

Theoretical expected value 0

Simulated expected value −421

Theoretical standard deviation 646,071

Simulated standard deviation 645,644

Theoretical skewness −2.50

Simulated skewness −2.49

LogNormal skewness 1.66

Simulated SCR 2,682,446

SCRUSP,m 2,625,287

SCRId,QI S2 729,272

Simulated SCR/St.Dev 4.15

BEL 467,175,733

Simulated SCR/BEL 0.57%

5.2 Endowment results

The Endowment policy, as it ensures the policyholder/beneficiary the sum insured in
the event of both death and survival, is the most prevalent policy on the market for
savings purposes.

Also in this context we run 5 millions simulations and we observe simulated results
very close to the theoretical ones. Results are displayed in Table 3.
The slightly negative simulated expected value (instead of 0) is due to negligible con-
vergence errors in simulations. According to formula (25), the primary factor affecting
the standard deviation is the SaR rate. For the Endowment policy, this rate is 0.63,
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Fig. 3 Simulated distribution of CDRIdios
10 in case of endowment obtained by the partial internal model

being the best estimate rate roughly 0.37. The SaR rate is almost twice the absolute
value obtained for the Pure Endowment (being the best estimate rate equal to 0.35).
This substantial difference explains the almost twofold increase in standard deviation.

An intriguing aspect associated with the potential payout of sums insured in the
event of death is that, given the positive Sum-at-Risk rate (as shown in formula (19)),
the skewness of CDRIdios

10 is negative. Consequently, in this scenario, the quest for
the quantile at the 0.5% level shifts towards the heavy tail (refer to Fig. 3). Using
the well-known relationship of the skewness for LogNormal distribution, it becomes
evident that the skewness associated with the LogNormal employed to depict Y10 is
1.66, that is lower than the skewness is the simulated distribution (see Fig. 4 for a
comparison between the LogNormal and the simulated distribution). Therefore, we
observe a lower capital requirement of roughly 2.1% in case of the USP approach.

To complete the analysis, we present in Table 4 the results considering a Term
Insurance contract. These results were obtained under the assumption, for simplicity,
of pricing the contract and considering a cohort with the same characteristics as those
used for the Endowment (as shown in Table 1). Notably, there is greater variability and,
consequently, a higher SCR compared to the Endowment. This outcome is attributed
to the high SaR and, consequently, a significant mortality risk associated with this
contract. Furthermore, it is observed that, even in this case, the proposed USP offers
a highly accurate approximation of the simulated results.
Focusing onmortality risk,we observe that the capital requirement calculated using the
QIS2 formula (refer to formula (27)) underestimates both the USP and Partial Internal
Model approaches. This underestimation arises from neglecting the variability of sums
insured and the negative skewness associated with profit/loss distributions. Regarding
the latter, we note that SCRId,QI S2 provides a greater underestimation whenmortality
risk is evaluated. Specifically, in cases of longevity risk, the profit and loss distribution
is positively skewed, with percentiles positioned in the non-fat tail.
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Fig. 4 Simulated distribution of Y10 and LogNormal distribution

Table 4 Term insurance–results Characteristics Value

Theoretical expected value 0

Simulated expected value −869

Theoretical standard deviation 1,017,345

Simulated standard deviation 1,009,116

Theoretical skewness −2.50

Simulated skewness −2.49

LogNormal skewness 1.66

Simulated SCR 4,215,031

SCRUSP,m 4,133,939

SCRId,QI S2 1,149,074

Simulated SCR/St.Dev 4.14

BEL 5,345,111

Simulated SCR/BEL 78.86%

Finally, to conclude our analysis, Fig. 5 illustrates the results of the comparison
between SCRUSP and the simulated SCR for different values of sum insured vari-
ability across Endowment, Term, and Pure Endowment cohorts. It is evident that the
proposed USP approach consistently provides highly reliable estimates for the value
of sums insured coefficient of variation (CV) within a range around 2. Specifically,
for Endowment and Term Insurance, a CV range between 1.25 and 2.75 results in an
under/overestimation not exceeding 5%, with substantial overlap between Term and
Endowment cases. For Pure Endowments, the CV range extends to 1.75–3.00 due to
the fact that the SCR depends on the short tail of the CDRIdios

10 distribution, which
exhibits positive skewness.
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Fig. 5 Ratios comparing SCRUSP to the SCR derived from the partial internal model (SCRSI M ), consid-
ering various coefficients of variation and contract types (endowment, pure endowment and term insurance)

Furthermore, in the case of Endowment andTerm, the ratio shows values that are hardly
acceptable when sum insured CV exceeds 3. This is attributed to the right long tail
of the transformed random variable Y10, and thus on the left long tail of the random
variable CDRIdios

10 . Consequently, despite LogNormal’s tendency to underestimate
skewness as sums insured CV increases, the LogNormal itself has an infinite tail, while
the Internal Model simulated results practically have a natural maximum limit, given
by the worst-case scenario of all policyholders dying at year-end. This distribution
behaviour leads to unreliable values when using the USP approach in these specific
cases.

It isworth noting that this phenomenondoes not occur, at least not to the same extent,
for Pure Endowment contracts when sums insured CV exceeds 3. This is because we
now have the opposite skewness compared to Endowment cases, hardly mitigating
this undesirable effect on the USP proxy.

In conclusion, in Fig. 6, we illustrate the trend of the ratio SCRUSP,m on Best
Estimate Liabilities for the Endowment, varying with the initial cohort size. In par-
ticular, we observe that as l0 increases, both SCRUSP,m and BEL grow, but the latter
increases more rapidly than the capital requirement. As the portfolio size (l0) tends
towards infinity, the coefficient of variation (CVYt ) approaches zero. Consequently,
the growth of SCRUSP,m is less than proportional, underscoring the diversification
of idiosyncratic risk, which proves to be diversifiable. For this reason, if an insurance
company were able to insure a very large number of policyholders from the same
cohort, the ratio of capital requirement to BEL would be positive, but very close to
zero, as the only effective source of risk for the insurance company would be that
linked to systemic variations in mortality, such as pandemics or sudden improvements
in longevity (i.e. trend risk, here neglected). Moreover, it is worth noting that the USP
approach yields promising results across a range of portfolio dimensions, serving as
a reliable proxy of the Partial Internal Model.
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Fig. 6 This figure shows the ratios between capital requirements and best estimates, using both the proposed
approach (SCRUSP ) and the partial internal model. The x-axis shows various portfolio sizes (l0), offering
insights into the ratio patterns for endowment contracts with a CV of sums insured equal to 2

6 Conclusions

In conclusion, this paper presents a methodology for assessing idiosyncratic demo-
graphic risk arising frommortality and longevity within the framework of Solvency II.
The proposed closed formula, rooted in a cohort approach, effectively captures either
volatility and tail of profit and losses distributions associated with policyholder deaths
or survivals, accounting for portfolio size, sums insured variability, duration and type
of insurance contract (with the latter two influencing the relevant role of SaR rate).
Moreover, recalling that Solvency II standard formula is calibrated on a 99.5% VaR
approach, the ability to capture not only volatility but also the tail (both short and
long) of the profit and loss distribution assumes a quite relevant role in identifying
the capital requirement. Our approach offers a viable alternative within the Solvency
II context providing a suitable USP approach for diversifiable risk, addressing limi-
tations of prior proposals. Obviously, this approach requires specific statistical tests
regarding the distributional hypotheses.

Through a case study, we have showed that our methodology aligns consistently
with the regulatory framework, providing a reliable estimate of the capital require-
ment estimated by a partial internal model based on a simulated approach. This holds
especially true for practical and frequent cases with limited sums insured volatility.
Additionally, this approachmainly provides a slight overestimation of the requirement.
However, this overestimation is not necessarily undesirable for supervisory authori-
ties aiming to maintain conservative SCRs. In our aim this research may contribute to
the ongoing discussion on the evaluation of specific risks under Solvency II, poten-
tially enhancing future regulatory considerations and insurance industry practices.
Further analyses could be conducted to assess the robustness of our USP approach
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across various combinations of durations, distributions of sums insured, and types of
premium payments. Additionally, while our results have been derived at the cohort
level, exploring the impact of aggregation between cohorts as well as across dif-
ferent insurance contracts, warrants deeper investigation. Particularly relevant is the
consideration of natural hedging between contracts, where the inherent diversifica-
tion benefits of a portfolio can mitigate risk exposure. By leveraging our proposed
approach, there is an opportunity to develop effective natural hedging strategies for
constructing life insurance portfolios aimed at minimizing demographic risk. This
involves identifying complementary risk profiles across various insurance contracts
within the portfolio, allowing for the offsetting of adverse demographic trends in
one segment with favourable trends in another. The investigation of such strategies
could enhance the stability of the portfolio but also contribute to optimize the overall
risk-return profiles.

Further researches in this field might be also to appropriately model the trend risk
and to compare the total demographic risk estimated in such a way with the Solvency
II Standard Formula for mortality and longevity.
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