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Iterative evaluation of the path integral for a system coupled
to an anharmonic bath
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An iterative algorithm is presented for evaluating the path integral expression for the reduced
density matrix of a quantum system interacting with an anharmonic dissipative bath whose influence
functional is obtained via numerical methods. The method allows calculation of the reduced density
matrix over very long time periods. ©1999 American Institute of Physics.
@S0021-9606~99!03238-9#
ng
ity
d
e
o
i

lt
as
th
x

d

ail
re
a

th
n
ng
ng

s
ct
u

ec
e

s
p

rv-
d

a
of

.
n, as
ce

ity
is

ost

nly
itial
ss
ics
y of
its
t of
eat-
the
hat
a-
tion
m
–

at
n-
ith
ith
ails

a

In spite of persistent efforts, the problem of calculati
the quantum time evolution of a wave-function or dens
matrix in a multidimensional Hamiltonian remains unsolve
Recent work has revolved around methods based on m
field, quantum-classical, or semiclassical ideas. The m
rigorous of these approaches, semiclassical evolution w
the Van Vleck propagator,1,2 is often highly accurate,3–8 yet
extremely demanding numerically because it requires mu
dimensional integration of oscillatory functions as well
evaluation of a prefactor that scales nonlinearly with
number of particles. Current efforts to make it practical e
ploit filtering techniques,9–11 the self-cancellation achieve
via combined forward–backward propagation,12–16or formu-
lations which avoid calculation of the prefactor.11,17–19While
these approaches appear promising, they are bound to f
long propagation times or if tunneling effects a
prominent.20 Treatment at a higher level becomes necess
in such situations.

In a series of papers by our group, we have argued
the path integral-influence functional formulation of qua
tum dynamics21,22offers significant advantages when deali
with large-dimensional problems. One begins by identifyi
the observable ‘‘system’’@the degree~s! of freedoms being
probed in the calculation# and the remaining ‘‘bath’’ degree
of freedomx which interact with the system and thus affe
its dynamics but whose precise state is not followed. Th
the Hamiltonian is split into two terms,

H[H0~s,ps!1Hb~x,p,s!. ~1!

Expressing the full propagator as a path integral, and coll
ing all bath variables into an influence functional, one arriv
at a formal path integral representation where only path
the low-dimensional system are summed over. For exam
the reduced density matrix of the system takes the form

a!Address to which corrspondence should be sent. Electronic m
nancy@makri.scs.uiuc.edu
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p̃~s8,s9;t ![Trb^s9ur~ t !us8&

5E Ds1E Ds2 expS i

\
S0@s1# D

3expS 2
i

\
S0@s2# DF@s1 ,s2#. ~2!

Here,s1 , s2 are forward and backward paths of the obse
able system respectively,S0 is the corresponding action, an
the influence functional is given by the expression

F@s1 ,s2#5Trb~Ub@s1#r~0!Ub
21@s2# !, ~3!

whereUb is the time evolution operator of the bath along
chosen system path. Note that the time parametrization
these paths makes the bath Hamiltonian time-dependent

There are numerous advantages of this representatio
well as severe obstacles. The explicit form of the influen
functional—an intrinsically quantum mechanical quant
not obtainable by classical molecular dynamics methods—
not available except in very restrictive situations, the m
notable of which is the case of a harmonic bath.22 Yet the
simple structure of the influence functional, where the o
operators appearing are the time propagators and the in
density matrix, implies that its evaluation may require le
work than that required to obtain the full quantum dynam
for the same number of particles. Further, the consistenc
the bath in terms of spectator coordinates implies that
dynamics may be treated at a less rigorous level than tha
the observable system, i.e., errors due to approximate tr
ment of the influence functional are expected to affect
result in a less significant way compared to the error t
would arise if a similar approximation were used to prop
gate the observable system. The semiclassical approxima
lends itself naturally to this goal: it keeps track of quantu
mechanical phases rather faithfully and its forward
backward version12,13 is ideally suited. Thus, assuming th
the influence functional from a sufficiently large enviro
ment can be computed numerically, one is confronted w
the problem of evaluating the remaining path integral w
respect to the system. Monte Carlo sampling of paths f

il:
4 © 1999 American Institute of Physics
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6165J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 Path integral for an anharmonic bath
as the integrand is a highly oscillatory multidimension
function, while explicit enumeration of paths is feasible on
for short times. The only remaining avenue seems to be
iterative formulation. The iterative evaluation of the path
tegral has proved a very fruitful method in the case o
harmonic dissipative bath;23–26 its extension to general an
harmonic environments is undertaken in the present lette

Since we aim at a numerical propagation method,
switch to the discretized path integral representation,
which the reduced density matrix takes the form

r̃~sN
2 ,sN

1 ;t !

5E ds0
6E ds1

6
¯E dsN21

6 ^sN
1ue2 iH 0Dt/\usN21

1 &¯

3^s1
1ue2 iH 0Dt/\us0

1&^s0
2ueiH 0Dt/\us1

2&¯

3^sN21
2 ueiH 0Dt/\usN

2&F~s0
6 ...,sN

6!. ~4!

If the bath is harmonic, the influence functional is an exp
nential of a quadratic form.22 In the case of a general anha
monic environment,F may contain multiple-site interactions
as described in the cumulant expansion of the influe
functional,27

F~s0
6s1

6...sN
6!5expH 2 (

k150

N

~ak1

1 sk1

1 1ak1

2 sk1

2 !

2 (
k150

N

(
k250

N

~bk1k2

11 sk1

1 sk2

1 1bk1k2

12 sk1

1 sk2

2 1¯ !

2 (
k150

N

(
k250

N

(
k350

N

~gk1k2k3

111 sk1

1 sk2

1 sk3

1

1gk1k2k3

112 sk1

1 sk2

1 sk3

2 1¯ !2¯J . ~5!

As shown in Ref. 27, the coefficients in this expansion
given by multitime correlation functions of the force exert
u
r t
on
n
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on the system due to its interaction with the bath. Such c
relation functions decay irreversibly if the environment
macroscopic. As a consequence, the nonlocal interaction
the influence functional arising from condensed media h
finite range. If the expansion coefficients are known, it is
straightforward matter of extending the harmonic bath me
odology developed in our group to devise an iterative pro
dure for evaluating the evolution of the reduced density m
trix.

However, the expansion coefficients in Eq.~5! are not
known in general. In a classical treatment of the bath, lo
order terms in the series can be obtained by molecular
namics simulations. The latter is costly and the evaluation
terms beyond the two-time correlation function is extrem
demanding. Further difficulties are the required determi
tion of imaginary parts and the inability to test the accura
of the classical approximation. An alternative approa
which we have considered is to evaluate the entire influe
functional for each set of system paths numerically us
forward-backward semiclassical dynamics~FBSD!.12,13 This
approach is superior because it is not restricted to low-or
terms in the cumulant expansion, is capable of describing
quantum behavior of the bath, and yields the real and ima
nary parts of the influence functional in a single calculatio
Although a numerically constructed influence function
does not assume the form of a systematic series expansio
is shown below that it can still be cast in a form suitable
iterative propagation.

As in the case of a harmonic bath,26 the scheme proceed
via multiplication of an arrayR of path segments that spa
the memory length by a propagator matrixT. The memory
length tm[DkmaxDt ~where Dkmax is an integer!, given
roughly by the decay time of the bath correlation function
plays the role of a convergence parameter in the calculat
We define path segments

l i
6[$s1

6 ,s2
6 ,...,sDkmax

6 % i , ~6!

and the propagator matrix between the ‘‘old’’ path segmei
and the ‘‘new’’ path segmentj,
Ti j ~nDkmax![T~~snDkmax

6 ,snDkmax11
6 ,...,s~n11!Dkmax21

6 ! i ,~s~n11!Dkmax

6 ,...,s~n12!Dkmax21
6 ! j !

5 )
k5nDkmax11

~n11!Dkmax

^sk21
1 ue2 iH 0Dt/\usk

1&^sk
2ueiH 0Dt/\usk21

2 &

3
F̃~snDkmax

6 ,...,s~n11!Dkmax21
6 ,s~n11!Dkmax

6 ,...,s~n12!Dkmax21
6 !

F̃~0,...,0,s~n11!Dkmax

6 ,...,s~n12!Dkmax21
6 !

. ~7!
-

Here, the tilde indicates that the influence functionals m
be evaluated with the proper boundary conditions: In orde
include all the proper interactions for continued propagati
the old–new path pair is extended in one or both directio
i.e.,
st
o
,

s,

F̃@ l i ,l j #[Trb~U ~0!U@ l j
1#U@ l i

1#

3r~0!U21@ l i
2#U21@ l j

2#U ~0!21
!, ~8!

where U (0) signifies time evolution with the bath Hamil
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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6166 J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 Nancy Makri
tonian in the absence of system–bath interactions. Accord
to Eq. ~8!, the influence functional entering the midtim
propagator is given by evolving the initial density matrix b
one memory length under the influence of the force along
system path segmentl i

1 , subsequently evolving under th
force due tol i

1 , followed by propagation with the isolate
bath Hamiltonian by one more memory length and by
entire series of operations in reverse order in the backw
time direction. The time lengths and forces involved in t
calculation ofF̃ are shown in Fig. 1. Finally, the denomina
tor in Eq. ~7! involves the same sequence of operations
with U@ l i

6# replaced byU (0). It is straightforward to show
that successive multiplication with the propagator defined
Eq. ~7! reproduces the exact dynamics of Eq.~4! subject to
the assumption of finite memory length.

After the first propagation step, the propagator mat
can be stored and used for successive iterations. This i
because the influence functional istranslationally invariant,
i.e., the F̃ calculated from a given pair of path segmen
remains unchanged if additional zero-force segments are
tached to either or both ends of Eq.~8!, as long asl i

6 are not
too close to endpoints. This property is a consequence
dephasing and can be exploited to achieve dramatic com
tational savings.

The details of the algorithm will be presented in a futu
publication.28 Here, we illustrate the scheme by presenti
the long-time dynamics of a two-level system~TLS! coupled
to a nonlinear bath of 50 two-level systems according to
Hamiltonian

H52\Vsx
02(

i 51

n
1

2
\v isx

i 2sz
0(

i 51

n

ci A \

2v i
sz

i . ~9!

In the last equation,sx andsz are the usual Pauli spin ma
trices, the tunneling splittings are 2\V and\v i for the bare
system and the bath spins, respectively, and the param
of the bath are specified from the spectral density function
the Ohmic form,29

J~v!5
p

2 (
i 51

ci
2

v i
d~v2v i !5

p

2
\jve2v/vc,

with vc56V. Further, we assume that the interaction b
tween system and bath is turned on att50, at which time the
system is in the ‘‘up’’ state and that the bath is prepared
the temperature 1/kBb. The discrete character ofH0 turns

FIG. 1. Schematic representation of two system path segments and
tional memory erasing segments for constructing the influence functio
required for the~a! numerator and~b! denominator of the midtime propaga
tor. The system has two states indicated as up- or down-arrows which
termine the force exerted on the bath. The circles correspond to propag
with the isolated bath Hamiltonian.
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the integrals in Eq.~4! into sums. In the present situation, th
influence functional factorizes and is computed exactly
the matrix multiplication method.30

Figure 2 shows the evolution of the average position
the observable TLS as calculated by iterative evaluation
the path integral for\Vb52, j50.1 andb50.05, j50.5.
The path integral time step isDt50.25V21 and the memory
length is tm53Dt. The total propagation time equals 6
elementary time steps. At these long times, full evaluation
the path integral by global summation is not feasible, bu
short times the present results are in good agreement
those reported in Ref. 31.

In summary, it is possible to formulate an iterativ
scheme for evaluating the path integral of a low-dimensio
system coupled to a general dissipative bath if the influe
functional of the latter can be calculated at some level
approximation. Use of this idea in conjunction with th
FBSD methodology for evaluating anharmonic influen
functionals will lead to a powerful approach to the dynam
of polyatomic chemical systems. The combined pa
integral-semiclassical treatment offers two distinct adv
tages compared to fully semiclassical schemes: it avo
treating the important, highly quantum mechanical system
interest via the semiclassical approximation; and the se
classical evaluation of the influence functional requires o
short-time dynamics, over which FBSD is likely to be e

di-
ls

e-
ion

FIG. 2. Expectation value of the TLS position as a function of time
obtained with the iterative scheme described in this letter.~a! \Vb52,
j50.1 and\Vb50.05,j50.5.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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tremely accurate. Future publications will exploit these ide
in the context of solvation dynamics.

This work has been supported by the National Scie
Foundation under Grant No. 1-5-32189. I thank the Direc
and the researchers of the Theoretical and Physical Che
try Institute for their hospitality during my sabbatical lea
from the University of Illinois.
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