

Effect of probiotics on the intestinal microbiota of preterm and low birth weight infants: systematic review

Efeito dos probióticos no microbiota intestinal de bebês prematuros e com baixo peso ao nascer: revisão sistemática

Efecto de los probióticos en la microbiota intestinal de los recién nacidos prematuros y de bajo peso al nacer: revisión sistemática

DOI:10.34119/bjhrv7n2-184

Originals received: 02/19/2024 Acceptance for publication: 03/08/2024

Laressa Rios Cardoso

Master in Pharmaceutical Sciences Institution: Universidade Estadual de Feira de Santana Address: Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana - Bahia, CEP: 44036-900 E-mail: laressa_rios@hotmail.com

Letícia Cerqueira Pereira

Master's student in Pharmaceutical Sciences Institution: Universidade Estadual de Feira de Santana Address: Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana - Bahia, CEP: 44036-900 E-mail: leticia.cerqueira@hotmail.com

Andressa Rios Cardoso

Master in Pharmaceutical Sciences Institution: Universidade Estadual de Feira de Santana Address: Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana - Bahia, CEP: 44036-900 E-mail: andressariosc@gmail.com

Kaio Vinicius Freitas de Andrade

PhD in Public Health Institution: Universidade Estadual de Feira de Santana Address: Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana - Bahia, CEP: 44036-900 E-mail: kaiovinnicius@yahoo.com.br

Manoelito Coelho dos Santos Junior

PhD in Biotechnology Institution: Universidade Estadual de Feira de Santana Address: Avenida Transnordestina, s/n, Novo Horizonte, Feira de Santana - Bahia, CEP: 44036-900 E-mail: manoelito@uefs.br

ABSTRACT

Premature infants have an immature intestinal microbiota when compared to a full-term baby, colonized with a reduced number of beneficial bacterial species and, therefore, are more likely to have their microbiota populated by pathogenic species. The administration of probiotics can positively influence the intestinal colonization of premature babies. Thus, this study aimed to systematically review evidences of the effect of administering probiotics on the microbiota of premature newborns), intervention (probiotics), comparison (placebo or no treatment), outcome (changes in the microbiota of premature newborns), study type (randomized clinical trials). The studies were searched in the Cochrane Library, Medline via PubMed and Embase databases and, in a complementary way, through manual searches on Google Scholar and the Brazilian CAPES journal portal (www.periodicos.capes.gov.br). We included 23 studies involving 3,670 preterm infants, of which 65.2% (n=15) were classified as having a low risk of bias, 17.4% (n=4) with some risk of bias and 17.4% (n=4) with high risk of bias. Probiotics have been used in order to colonize the intestinal microbiota. Finally, some *Lactobacillus* and *Bifidobacterium* strains tested seem to have benefits and safety for the microbiota and health of premature newborns.

Keywords: effect, probiotics, premature, microbiota, Bifidobacterium, Lactobacillus.

RESUMO

Bebês prematuros possuem microbiota intestinal imatura quando comparados a bebês a termo, colonizados por um número reduzido de espécies bacterianas benéficas e, portanto, são mais propensos a ter sua microbiota povoada por espécies patogênicas. A administração de probióticos pode influenciar positivamente na colonização intestinal de bebês prematuros. Este estudo objetivou revisar sistematicamente as evidências sobre efeitos da administração e segurança na utilização de probióticos na microbiota de recém-nascidos prematuros. Foi da seguinte forma: população (recém-nascidos prematuros), intervenção desenhado (probióticos), comparação (placebo ou nenhum tratamento), desfecho (alterações na microbiota de recém-nascidos prematuros), tipo de estudo (ensaios clínicos randomizados). A busca dos estudos foi realizada na Biblioteca Cochrane, Medline via bases de dados PubMed e Embase e, de forma complementar, por meio de buscas manuais no Google Acadêmico e no portal de periódicos da CAPES. Foram incluídos 23 estudos envolvendo 3.670 prematuros, dos quais 65,2% (n=15) foram classificados com baixo risco de viés, 17,4% (n=4) com algum risco de viés e 17,4% (n=4) com alto risco de viés. Probióticos têm sido utilizados para colonizar a microbiota intestinal. Por fim, algumas cepas de Lactobacillus e Bifidobacterium testadas parecem trazer benefícios e serem seguras para a microbiota e saúde de recém-nascidos prematuros.

Palavras-chave: efeito, probióticos, prematuro, microbiota, Bifidobactéria, Lactobacilos.

RESUMEN

Los recién nacidos prematuros tienen una microbiota intestinal inmadura en comparación con los recién nacidos a término, colonizada por un número reducido de especies bacterianas beneficiosas, por lo que es más probable que su microbiota esté poblada por especies patógenas. La administración de probióticos puede influir positivamente en la colonización intestinal de los bebés prematuros. Este estudio tenía como objetivo revisar sistemáticamente las pruebas sobre los efectos de la administración y la seguridad de los probióticos en la microbiota de los recién nacidos prematuros. Se diseñó de la siguiente manera: población (recién nacidos prematuros), intervención (probióticos), comparación (placebo o ningún tratamiento), resultado (cambios en la microbiota de los recién nacidos prematuros), tipo de estudio (ensayos clínicos

aleatorizados). La búsqueda de estudios se realizó en la Cochrane Library, Medline a través de las bases de datos PubMed y Embase y, además, mediante búsquedas manuales en Google Scholar y en el portal de revistas CAPES. Se incluyeron 23 estudios con 3.670 prematuros, de los cuales el 65,2% (n=15) se clasificaron como de bajo riesgo de sesgo, el 17,4% (n=4) como de cierto riesgo de sesgo y el 17,4% (n=4) como de alto riesgo de sesgo. Los probióticos se han utilizado para colonizar la microbiota intestinal. Por último, algunas cepas de Lactobacillus y Bifidobacterium probadas parecen ser beneficiosas y seguras para la microbiota y la salud de los recién nacidos prematuros.

Palabras clave: efecto, probióticos, prematuros, microbiota, Bifidobacterias, Lactobacilos.

1 INTRODUCTION

The gut microbiota harbors numerous living microorganisms such as beneficial and pathogenic bacteria, fungi, archaea and bacteriophages. The balance of these microbiomes is important to perform functions such as barrier formation for protection against pathogens, preservation of the mucosa and maturation of immunity, which are important for the homeostasis of the human organism [1, 2].

Premature newborns with gestational age of less than 37 weeks have a fragile and vulnerable intestinal microbiota, which undergoes changes in its composition and functions, due to the influence of gastrointestinal immaturity, type of delivery, prolonged use of antibiotics and reduced breastfeeding. These factors can influence intestinal imbalance. Intestinal immaturity is characterized by impaired mucosal barrier function, resulting in increased intestinal permeability, which may affect the protection of the sterile fetal environment. Thus, babies are exposed to the hostile outside world and pathogenic bacteria before their barrier function is fully developed, which can result in morbidity and mortality [3, 4, 5, 6, 7].

Probiotics are living microorganisms, with different strains, which in adequate doses have positive effects on the intestine. Among the various types of probiotic strains, the most studied are Bifidobacterium and Lactobacillus, each one playing a role, such as modulation of the imbalance in the composition of the intestinal microbiota, prevention of uncontrolled growth of pathogens and alteration in intestinal permeability. Thus, the administration of probiotics can influence the promotion of intestinal microbiota colonization and healthy development in premature newborns [8, 9]. This study aimed to analyze the evidence of the effect and safety of probiotic supplementation on the microbiota of newborns with prematurity. For that, a systematic review was carried out.

2 MATERIALS AND METHODS

This review protocol was registered in PROSPERO (Prospective Systematic Reviews Register) (ID: CRD42022308753). This report was performed in accordance with the Preferred Reporting Items for Extended Systematic Reviews and Meta-analyses [10]. Ethical approval was not required.

To prepare the research question, the PICOT method was used: population (premature newborns), interventions (probiotics), comparison (placebo or no treatment), outcome (changes in the microbiota of premature newborns), type of study (randomized clinical trials). The study-oriented question was "Do probiotics have an effect on the microbiota of premature newborns?"

Participants of reviewed studies were premature newborns with a gestational age of less than 37 weeks, with extremely low birth weight (less than 1,000 g), very low birth weight (less than 1,500 g) or low birth weight (less than 2,500 g), born through cesarean section or vaginal delivery, any gender and ethnicity. Studies carried out in pregnant women, full-term babies (between 37 to 41 weeks and 6 days of gestation), and post-term babies (above 42 weeks of gestation) were excluded.

Intervention of interest was supplementation of probiotics with single strains or combination of strains, regardless of strain or dose. Studies carried out with the administration of prebiotics and other types of supplements or with a focus on drug treatments were excluded.

Comparators were placebo or no treatment. Primary outcome was improvement of the intestinal microbiota, measured by: increased numbers of beneficial bacteria and their intestinal activities; reduction of pathogenic species; improvement in intestinal permeability. Secondary outcomes were assessment of eventual adverse events and mortality/death. We reviewed only randomized clinical trials. Observational studies, systematic and narrative reviews were excluded.

Studies were searched in *The Cochrane Central Register of Controlled Trials* (*CENTRAL*) databases in the *Cochrane Library*, *Medline* via *PubMed* and *Embase*. Publications from the years 2000 to 2022 were selected, without language restrictions. In addition, manual searches were performed on Google Scholar, the Capes journal portal and on the reference lists of systematic reviews on the subject. Searches were updated in December 2022. Manual searches were performed in CAPES (www.periodicos.capes.gov.br), Google Scholar and in the reference lists of systematic reviews on the subject. Search strategies are reported in Table 1.

		Table 1: Database sea	arch strategy and ma	nual searches.				
Database	Keywords according to DeCS and MeSH	Total without filter	Total with the filter on the side applied	Publication date	Publication type	Species	Language	Selected
PubMed	"Effect" AND "Microbiota, Gastrointestinal" OR "Intestinal Flora" AND "Premature Infant" OR "Preterm Infant" AND "Probiótics" NOT "Prebiotics"	23,627 results	1,156 results	2000-2022	Clinical trial and randomized controlled trial	Humans	Without restriction	15
Cochrane Library	"Effect" AND "Microbiota, Gastrointestinal" OR "Intestinal Flora" AND "Premature Infant" OR "Preterm Infant" AND "Probiótics" NOT "Prebiotics"	2,001 results	1,978 results	2000-2022	Essay	-	Without restriction	2
Embase	"Effect" AND "probiotics" AND "microbiota" OR "gastrointestinal" AND "premature" OR "preterm"	188 results	45 results	2000-2022	Article	Fetus, newborn or infant	Without restriction	3
Manual sea	rches -		-	-	-	-	-	-
Google acadêmico	"Effect" AND "Microbiota, Gastrointestinal" AND "Preterm Infant" AND "Probiótics" AND"Randomized Controlled Trial"	13,300 results	1,450 results	2000-2022	"Summaries" and "all"	-	Without restriction	2
Portal CAPES	"Microbiota" AND "Preterm Infant" AND "Effect" AND "Randomized Controlled Trial" AND "Probiótics" NOT "systematic review"	44 results	44 results	2000-2022	Articles	-	Without restriction	1

Source: Author, 2023.

3 SELECTION PROCESS

The selection of studies was carried out independently and paired by two reviewers (CL and CA). A search was carried out in the selected databases and manual searches, in which the search results were analyzed through the title of the articles and, if available, the abstracts. In addition, duplicates and incompatible studies were excluded. Reviewers CL and CA compared selected data, and discrepancies were resolved by a third reviewer.

Selected articles were read in full to confirm pre-specified eligibility criteria, and information from included articles was collected and recorded on Microsoft Excel spreadsheets (including author/year, title, study site, study design, population, intervention and dosage, comparison, evaluated outcomes, treatment time) and in the Zotero software (reference manager) (author/year, title, base journal, URL and DOI).

The risk of bias of the included studies was analyzed according to the Cochrane risk of bias tool for randomized trials (RoB 2) using five domains: randomization process, deviations from intended interventions, outcome data, outcome measurement and selection of reported outcomes. All review steps were performed by two independent reviewers (CL and CA).

A qualitative synthesis (systematic review) was performed without a quantitative synthesis (meta-analysis). A table with study characteristics (author/year, participant profile, results and risk of bias) was presented, comparing the study variables with critical interpretation and validation of the applicability of the results.

4 RESULTS

4.1 STUDY SELECTION

We found 3,179 registers. A manual search identified a further 23 references. After reading titles, abstracts and removing duplicates, 2,289 potentially relevant publications were selected. However, 2,185 publications were excluded because they contained review, cohort or observational studies; studies with other supplements, foods, drugs or formula; studies with probiotic supplementation in term infants, children, adults or pregnant women; animal studies; studies related to pathologies in children or adults; microbiota transplantation studies.

The 104 full-text articles were retrieved and evaluated for eligibility. We excluded 81 articles that were not included because they were studies in full-term babies; studies that do not reach the proposed objective; non-randomized controlled studies; studies with prevention or incidence of sepsis or necrotizing enterocolitis; ongoing studies; studies with no results available. Finally, 23 randomized controlled trials (RCTs) were included in the systematic review. The flowchart of the study selection process is shown in Figure 1.

Figure 1: Study search and selection strategy flowchart.

Source: Author, 2023.

4.2 CHARACTERISTICS OF THE STUDIES

Characteristics of the included studies are given in Frame 1. The RCTs included a total of 3,670 patients and were conducted in 13 countries. Of the included studies, they used single-strain probiotics (n=10, 43.5%), combinations of probiotic strains (n=11, 47.8%) and analyzed both single-strain and combinations of strains (n=2, 8.7%). The comparison found in the studies was performed with placebo (n=21, 91.3%) and without treatment (n=2, 8.7%). Outcomes inclued changes in microbiota, composition, colonization and intestinal permeability. Treatment duration was less than 1 year in 3 studies, 1 year in 4 studies, greater than 1 year in 13 studies; 3 studies did not report that. The most recent studies were conducted in 2018 (n=2, 8.7%), 2019 (n=2, 8.7%), 2020 (n=1, 4.3%), 2021 (n=3, 13.1%) and 2022 (n=4, 17.4%).

4.3 RISK OF BIAS ASSESSMENT

Of the included studies, 65.2% (n=15) were considered as low risk of bias, 17.4% (n=4) considered as some risk of bias, and 17.4% (n=4) considered as high risk of bias. The studies were considered as low risk of bias for the randomization process domain (D1) (n=19, 82.6\%),

deviations from intended interventions (D2) (n=19, 82.6%), data of missing results (D3) (n=23, 100%), measuring results (D4) (n=23, 100%) and selecting the reported result (D5) (n=19, 82.6%). The methods used for random sequence generation were clearly described in all trials: stratified randomization (n=14, 60.9%); en bloc (n=4, 17.4%); computer-generated random lists (n=4, 17.4%); or draw of cards (n=1, 4.3%).

In 21 (91.3%) trials, treatment allocation was adequately concealed, most studies used sealed, opaque numbered envelopes. In the study [11], treatment allocation was conducted by a third party who was not involved in the study (nutritional service). In 8.7% (n=2) of the studies, allocation concealment was not clearly demonstrated or described [12, 13].

Only 8.7% of the studies had a baseline imbalance, which was a potential source of bias. In the first study, 24 babies (less than 1,500g) and 23 babies (1,500-1,999g) were enrolled in the treatment group, whereas in the control group there were 15 (less than 1,500g) and 9 (1,500-1,999g) [12]. The two groups compared in the study (TS and SS) had similar characteristics, TS group (n=87 preterms) and SS group (n=86 preterms), but when compared to the placebo group (REF) (n=29) preterms, there was a disproportion in the number of preterm infants [14]. And finally, in the last trial, 38 premature infants were registered in the probiotic-treated group and 28 premature infants in the placebo group [15].

Blinding of study participants, caregivers and evaluators was clearly made in 60.9% (n=14) of the trials. In 13.0% (n=3) of the trials, there was not enough information about the method of blinding participants or staff to make a judgment [13, 16, 17]. In the studies [15, 18], the participants and the team were blinded, but there was no information regarding the blinding of the evaluators. And in the trials [19, 20] participants and raters were blinded, but a research assistant (nurse) opened the envelope to reveal the study group.

The reported outcome data were satisfactory for 73.9% (n=17) of the included studies. Missing outcome data were missing in 26.1% (n=6) of the studies, but were balanced by sensitivity analysis [13, 15, 21, 22, 23, 24]. Selective reporting (reporting bias): In all studies, results pre-specified in the methods section were reported in the results section. In 17.4% (n=4) of the studies, there were multiple eligible outcome measures [13, 15, 18, 25].

The summary of the individual results is given in Table 2 (Appendix). Increase in beneficial bacteria was reported in 39.1% (n=9) of the studies, the alteration of pathogenic species was reported in only 4.3% (n=1) of the studies, the increase in beneficial bacteria and a reduction in pathogenic species was reported in 47.8% (n=11) of the studies, and an increase in beneficial bacteria and intestinal permeability were reported in only 8.7% (n=2) of the studies.

Figure 2: Risk of bias in the reviewed studies.

Source: Adapted by Cochrane RoB 2.0, 2023.

4.4 PRIMARY OUTCOME

The increase in beneficial bacteria was reported in 39.1% (n=9) of the studies, of which five of the trials address the increase in *Bifidobacterium*, one on the increase in *Lactobacillus*, and three of the trials with an increase in both bacteria (*Bifidobacterium* and *Lactobacillus*).

The probiotics that took part were *Bifidobacterium* (B. breve M-16, B. longum, B. longum subsp. Infants M-63, B. longum subsp. Longo BB536, BBG-001, B. lactis, B. bifidum, B. animalis subp. Lactis) present in 21 studies; Lactobacillus (L. rhamnosus GG- L. casei, L. plantarum, L. reuteri DSM, L. salivarius, L. acidophilus) present in 15 studies; Saccharomyces boulardii present in one study; and Streptococcus Trermophillus in two studies.

4.5 SECONDARY OUTCOMES

4.5.1 Eventual Adverse Events

In 52.2% (n=12) articles, there were no reports of adverse effects caused during the process. In 43.5% (n=10) articles, it was reported that no adverse events were associated with probiotic supplementation, including probiotic sepsis, abdominal distension, vomiting and diarrhea, in which supplementation would be interrupted. In only 4.3% (n=1) of the articles, there was the presence of abdominal distension and vomiting, but these were not caused by the administration of the probiotic, but by intercurrences.

4.5.2 Mortality/ Death

There was no information about mortality/death in 69.6% (n=16) of the articles during the process. In 26.1% (n=6) articles, mortality occurred during the experiment in patients receiving probiotics or placebo/no treatment, but in those that received supplementation, mortality was not attributed to probiotics, but to other causes, such as sepsis or necrotizing enterocolitis, candida, injuries, septic shock, hemorrhages, respiratory failure, among others. In only 4.3% (n=1) of the article there was no death.

5 DISCUSSION

This systematic review was undertaken to provide further data to support the use of probiotics in preterm infants, specifically *Lactobacillus* and *Bifidobacterium* both in single strains and in combinations of strains. For the bacteria to live and colonize the intestinal microbiota, the dosage of probiotics must reach the adequate amount to provide a health benefit.

Our results showed that premature babies supplemented with probiotics either in a single strain (*Bifidobacterium* or *Lactobacillus*) or in a combination of strains, provided beneficial

changes in the microbiota influencing positively for the abundance of *Lactobacillus* or *Bifidobacterium* or both strains, with or without reduction of pathogenic species in the intestinal microbiota.

In an observational study developed [34], samples from two cohorts were compared, in which preterm infants were supplemented with Infloran® (combination of *Bifidobacterium* and *Lactobacillus*), administered twice a day, compared to preterm infants not supplemented with probiotics (control group). The group supplemented with probiotics had an abundance of *Bifidobacterium* and a small amount of *Lactobacillus* was detected in the microbiota of preterm infants, in addition to a reduction in pathogenic species such as *Klebsiella*, *Escherichia*, *Enterobacter* and *Clostridium*. Thus, it is indicated that the combination of supplemented strains may persist in the microbiota of premature infants and/or stimulate the colonization of other *Bifidobacterium* and *Lactobacillus*.

Another observational study [35], with 76 babies enrolled, found that 31 premature newborns with a gestational age of less than 28 weeks were supplemented with a probiotic (Infloran: *Lactobacillus acidophilus* and *Bifidobacterium longum subspecies infantile*), compared with 35 preterm infants aged 28 to 31 weeks who were not supplemented and 10 healthy full-term infants without supplementation. In their results, supplemented preterm infants had a greater abundance of *Bifidobacterium* in the intestinal microbiota a few days after administration of probiotics compared to non-supplemented preterm infants and full-term infants. Also, *Lactobacillus* colonizatin increased by up to 4 months in all 3 groups.

As for the results of the non-randomized clinical trial [36], the administration of the probiotic *Bifidobacterium breve M-16V* led to the colonization in the intestinal microbiota of preterm infants with low birth weight for at least a few weeks, but the evidence of this colonization in longer time is limited. The intestinal microbiota of the group of infants supplemented showed a greater abundance of *Bifidobacterium* and lower *Proteobacteria* in the microbiota compared to the control group of non-supplemented preterm infants, where *Bifidobacterium* was significantly lower and *Proteobacteria* was higher.

Strengths of the systematic review include the robust methodology, comprehensive nature, and unique focus on RCT of probiotics in preterm infants. Limitations include lack of meta-analysis for a more reliable study; and few studies were found for the applied methodology, with some having unavailable results.

For rational decision-making and consideration of therapies in the future, information about the development of the microbiota in preterm infants is essential. Although studies on the

microbiota in preterm infants have been carried out, many are more specific for the analysis of pathologies and fail in prevention.

In a final consideration, it was observed that some tested strains of Lactobacillus and mainly, of Bifidobacterium have benefits for the intestinal microbiota of premature newborns, contributing to their health. The studies did not indicate risks associated with probiotics, since the safety data in most of the RCTs included in this analysis did not report adverse events during the process, in addition to the fact that the mortalities observed in some studies were due to other pathological causes, guaranteeing the safety of the probiotics.

REFERENCES

1 MOHAMMADKHAH, AI; SIMPSON, EB; PATTERSON, SG; FERGUSON JF. Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. **Children**, v. 5, n. 12, p. 160, 2018. DOI: 10.3390/children5120160

2 ROYO, SM; TARRAZÓ, M; GARCÍA-MANTRANA, I; GÓMEZ-GALLEGO, C; SALMINEM, S; COLLADO, MC. Shaping microbiota during the first 1000 days of life. **Probiotics and Child Gastrointestinal Health**, p. 3-24, 2019. DOI: 10.1007/5584_2018_312

3 PAULA, MB; CAMPBELL, CSG; ALVES, AFC; RIBEIRO FILHO, ES; FERREIRA, MIM; MARÇAL, FA. Microbiota intestinal infantil: do nascimento aos 5 anos de idade. **Brazilian Journal of Health Review**, v. 4, n. 6, p. 26235-26252, 2021. DOI:10.34119/bjhrv4n6-210.

4 TIRONE, C; PEZZA, L; PALADINI, Â; TANA, M; AURÍLIA, C; LIO, A; et al. Gut and lung microbiota in preterm infants: immunological modulation and implication in neonatal outcomes. **Frontiers in immunology**, v. 10, p. 2910, 2019. DOI: 10.3389/fimmu.2019.0291.

5 CASTELLANO, MGSR; TOFFOLO, MCF. O uso de probióticos na gestação – quando indicar? uma revisão integrativa. **Brazilian Journal of Health Review**, v. 5, n. 4, p. 12448-12463, 2022. DOI:10.34119/bjhrv5n4-041

6 CUNA, A; MOROWITZ, MJ; AHMED, I; UMAR, S; SAMPATH, V. Dynamics of the preterm gut microbiome in health and disease. **American Journal of Physiology-Gastrointestinal and Liver Physiology**, v. 320, n. 4, p. G411-G419, 2021. DOI: 10.1152/ajpgi.00399.2020

7 SANDERS, ME; AKKERMANS, LMA; HALLER, D; HAMMERMAN, C; HEIMBACH, J; HÖRMANNSPERGER, G; et al. Safety assessment of probiotics for human use. **Gut microbes**, v. 1, n. 3, p. 164-185, 2010. DOI:10.4161/gmic.1.3.12127

8 AZAD, M; SARKER, M; LI, TJ; YIN, J. Probiotic species in the modulation of gut microbiota: an overview. **BioMed research international**, v. 2018, 2018. DOI: 10.1155/2018/9478630

9 ALVES, J. L. B.; DE OLIVEIRA, Y; CARVALHO, NNC; CAVALCANTE, RGS; LIRA, MMP; DO NASCIMENTO, LCP; et al. Gut microbiota and probiotic intervention as a promising therapeutic for pregnant women with cardiometabolic disorders: Present and future directions. **Pharmacological Research**, v. 145, p. 104252, 2019. DOI:10.1016/j.phrs.2019.104252

10 MOHER, D.; LIBERATI A; TETZLAFF J; ALTMAN DG; THE PRISMA GROUP. Itens de relatório preferidos para revisões sistemáticas e meta-análises: a declaração PRISMA. PloS Med. 2009. DOI: 10.5123/S1679-49742015000200017

11 STRATIKI, Z; COSTALOS, C; SEVASTIADOU, S; KASTANIDOU, Ó; SKOUROLIAKOU, M; GIAKOUMATOU, A; et al. The effect of a *bifidobacter* supplemented bovine milk on intestinal permeability of preterm infants. **Earrly human development**. V.83, n.9, p. 575-579, 2007. DOI:10.1016/j.earlhumdev.2006.12.002

12 AGARWAL, R.; SHARMA, N.; CHAUDHRY, R.; DEORARI, A.; PAULO, V.K.; GEWOLB, I.H. et al. Effects of Oral *Lactobacillus GG* on Enteric Microflora in Low-Birth-Weight Neonates. **Revista de gastroenterologia e nutrição pediátrica**, v. 36, n. 3, pág. 397-402, 2003. DOI: 10.1097/00005176-200303000-00019

13 FLEMING, P; WILKS, M; EATON, S; PANTON, N; HUTCHINSON, R; AKYEMPON, A; et al. *Bifidobacterium breve BBG-001* e função da barreira intestinal em bebês prematuros: estudos exploratórios do estudo PiPS. **Pediatric Research**, v. 89, n. 7, pág. 1818-1824, 2021. DOI:10.1038/s41390-020-01135-5

14 ATHALYE-JAPE, G; ESVARAN, M; PATOLE, S; SIMMER, K; NATHAN, E; DOHERTY, D; et al. Effect of single versus multistrain probiotic in extremely preterm infants: a randomised trial. **BMJ open gastroenterology**, v. 9, n. 1, p. e000811, 2022. DOI:10.1136/bmjgast-2021-000811

15 PLUMMER, EL; BULACH, DM; MURRAY, GL; JACOBS, SE; TABRIZI, SN; GARLAND, SM; et al. Gut microbiota of preterm infants supplemented with probiotics: substudy of the ProPrems trial. **BMC microbiology**, v. 18, n. 1, p. 1-8, 2018. DOI:10.1186/s12866-018-1326-1

16 MANZONI, P; MOSTERT, M; LEONESSA, ML; PRIOLO, C; FARINA, D; MONETTI, C; et al. Oral supplementation with *Lactobacillus casei* subspecies *rhamnosus* prevents enteric colonization by *Candida* species in preterm neonates: a randomized study. **Clinical infectious diseases**, v. 42, n. 12, p. 1735-1742, 2006. DOI:10.1086/504324

17 SAMARA, J; MOOSAVI, S; ALSHAIKH, B; ORTEGA, VA; PETTERSEN, VK; FERDOUS, T; et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. **Cell Host & Microbe**, v. 30, n. 5, p. 696-711. e5, 2022. DOI:10.1016/j.chom.2022.04.005

18 PLUMMER, EL; DANIELEWSKI, J; GARLAND, SM; SU, J; JACOBS, SE; MURRAY, GL. The effect of probiotic supplementation on the gut microbiota of preterm infants. **Journal of medical microbiology**, v. 70, n. 8, 2021. DOI:10.1099/jmm.0.001403

19 ALSHAIKH, B; SAMARA, J; MOOSAVI, S; FERDOUS, T; SORAISHAM, A; DERSCH-MILLS, D; et al. Multi-strain probiotics for extremely preterm infants: a randomized controlled trial. **Pediatric Research**, p. 1-8, 2022. DOI:10.1038/s41390-022-02004-z

20 SAMARA, J. The Gut Microbiome of Premature Infants: An Ecological Analysis of a Probiotic Intervention Study. 2021. Dissertação de Mestrado. Cumming School of Medicine.

21 COSTELOE, K; HARDY, P; JUSZCZAK, E; WILKS, M; MILLAR, MR. *Bifidobacterium breve BBG-001* in very preterm infants: a randomised controlled phase 3 trial. **The Lancet**, v. 387, n. 10019, p. 649-660, 2016. DOI:10.1016/S0140-6736(15)01027-2

22 MARTÍ, M; SPRECKELS, JE; RANASINGHE, PD; WEJRYD, E; MARCHINI, G; SVERREMARK-EKSTRÖM, E; et al. Effects of *Lactobacillus reuteri* supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trial. **Cell reports medicine**, v. 2, n. 3, p. 100206, 2021. DOI: 10.1016/j.xcrm.2021.100206

23 PATOLE, S; KEIL, AD; CHANG, A; NATHAN, E; DOHERTY, D; SIMMER, K; et al. Effect of Bifidobacterium breve M-16V supplementation on fecal *Bifidobacteria* in preterm neonates--a randomised double blind placebo controlled trial . **Plos one**, v. 9, n. 3, pág. e89511, 2014. DOI:10.1371/jornal.pone.0089511

24 STRUS, M; HELWICH, E; LAUTERBACH, R; RZEPECKA-WEGLARZ, B; NOWICKA, K; WILINSKA, M; et al. Effects of oral probiotic supplementation on gut *Lactobacillus* and *Bifidobacterium* populations and the clinical status of low-birth-weight preterm neonates: a multicenter randomized, double-blind, placebo-controlled trial. **Infection and Drug Resistance**, v. 11, p. 1557, 2018. DOI:10.2147/IDR.S166348

25 MORENO-SANZ, B; MONTES, MT; MANZANO, S; ESPINOSA-MARTOS, I; CÁRDENAS, N; ESTEBAN, S; et al. Randomized, Double-Blind, Placebo-Controlled Study to Assess the Effect of Two Probiotics on the Preterms' Gut Microbiota. Journal of Pediatric Gastroenterology and Nutrition, v. 74, n. 6, p. e153-e159, 2022. DOI:10.1097/MPG.00000000003427

26 OSHIRO, T; NAGATA, S; WANG, C; TAKAHASHI, T; TSUJI, H; ASAHARA, T; et al. *Bifidobacterium* Supplementation of Colostrum and Breast Milk Enhances Weight Gain and Metabolic Responses Associated with Microbiota Establishment in Very-Preterm Infants. **Polo de Biomedicina**, v. 4, n. 3, pág. 1-10, 2019. DOI:10.1159/000502935

27 HAYS, S; JACQUOT, A; GAUTHIER, H; KEMPF, C; BEISSEL, A; PIDOUX, O; et al. Probiotics and growth in preterm infants: a randomized controlled trial, PREMAPRO study. **Clinical nutrition**, v. 35, n. 4, p. 802-811, 2016. DOI:10.1016/j.clnu.2015.06.006

28 SOURABH, D.; PALLAB, R.; ANIL, N. Comparison of Stool Colonization in Premature Infants by Three Dose Regimes of a Probiotic Combination: A Randomized Controlled Trial. **Am J Perinatol**, , 2015. DOI: 10.1055/s-0034-1395473

29 QIAO, LX; ZHU, WY; ZHANG, HY; WANG, H. Effect of early administration of probiotics on gut microflora and feeding in pre-term infants: a randomized controlled trial. **The Journal of Maternal-Fetal & Neonatal Medicine**, v. 30, n. 1, p. 13-16, 2017. DOI: 10.3109/14767058.2016.1163674

30 MOHAN, R; KOEBNICK, C; SCHILDT, J; SCHMIDT, S; MUELLER, M; POSSNER, M; et al. Effects of *Bifidobacterium lactis Bb12* supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. **Journal of Clinical Microbiology**, v. 44, n. 11, p. 4025-4031, 2006. DOI:10.1128/JCM.00767-06

31 LI, YF; ZHU, CR; GONG, XL; LI, HL; XIONG, LK; WANG, KJ; et al. Beneficial Effects of Probiotic Treatment on Gut Microbiota in Very Low Birth Weight Infants. **Pesquisa e prática em gastroenterologia**, 2019. DOI:10.1155/2019/3682836

32 CHRZANOWSKA-LISZEWSKA, D; SELIGA-SIWECKA, J; KORNACKA, MK. The effect of *Lactobacillus rhamnosus GG* supplemented enteral feeding on the microbiotic flora of preterm infants-double blinded randomized control trial. **Early human development**, v. 88, n. 1, p. 57-60, 2012. DOI:10.1016/j.earlhumdev.2011.07.002

33 ROUGÉ, C; PILOQUETE, H; BUTEL, MJ; BERGER, B; ROCHAT, F; FERRARIS, L; et al. Oral supplementation with probiotics in very-low-birth-weight preterm infants: a randomized, double-blind, placebo-controlled trial. **The American journal of clinical nutrition**, v. 89, n. 6, p. 1828-1835, 2009. DOI:10.3945/ajcn.2008.26919

34 ALCON-GINER, C; DALBY, MJ; CAIM, S; KETSKEMETY, J; SHAW, A; SIM, K; et al. A suplementação de microbiota com *Bifidobacterium* e *Lactobacillus* modifica a microbiota intestinal e o metaboloma do bebê prematuro: um estudo observacional. *Cell Rep. Med.* 2020. DOI:10.1016/j.xcrm.2020.100077

35 ESAIASSEN, E; HJERDE, E; CAVANAGH, JP; PEDERSEN, T; ANDRESEN, JH; RETTEDAL, SI; et al. Effects of probiotic supplementation on the gut microbiota and antibiotic resistome development in preterm infants. **Front. Pediatr.** 2018. DOI:10.3389/fped.2018.00347

36 HORIGOME, A; HISATA, K; ODAMAKI, T; IWABUCHI, N; XIAO, JZ; SHIMIZU, T. Colonization of supplemented *Bifidobacterium breve M-16V* in low birth weight infants and its effects on their gut microbiota weeks post-administration. Front Microbiol, 2021. DOI:10.3389/fmicb.2021.610080

APPENDIX

	Article	Author/year	Títle	Study location	Study design	Population	Intervention and dosage	Comparisor	Evaluated outcomes	Treatment time
	3	Athalye-Jape et al., 2022	Effect of single versus multistrain probiotic in extremely preterm infants: A randomised trial	Australia	Randomized, double-blind controlled trial	Premature newborns with gestational age less than 37 weeks n=173	SS probiotic group: B. breve M-16V (3×10 ⁹ UFC/day); TS probiotic group: Probiotic group TS: Mixture of B. breve M-16V, B. longum subsp. infantis M-63 and B. longum subsp. longo BB536 (3×10 ⁹ UFC/day).	Placebo REF Group	Analysis of the fecal microbiota	21 months
	4	Chrzanowska- Liszewska et al., 2012	The effect of Lactobacillus rhamnosus GG supplemented enteral feeding on the microbiotic flora of preterm infants-double blinded randomized control trial	Poland	Randomized, double-blind controlled trial	Premature newborns with gestational age less than 37 weeks n=47	Lactobacillus rhamnosus GG 6×10 ⁹ cells per unit	Placebo	Increase in the amount of bifidogenic flora in the stool; Decreased pathogenic colonization of the intestine.	12 months
	5	Costeloe et al., 2016	Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial	England	Phase 3 multicenter, randomized controlled trial	Premature newborns with gestational age less than 37 weeks n=1,310	<i>B breve</i> BBG-001 a daily dose of 8.2 to 9.2 log10 UFC	Placebo	Bacterial colonization	37 months
4	rticle A	uthor/year	Títle Stud	dy tion Stu	ıdy design	Population	ntervention and Compar	rison E	valuated Tr	eatment time

Frame 1: Characteristics of the included studies

6	Fleming et al., 2020	<i>Bifidobacterium</i> <i>breve BBG-001</i> and intestinal barrier function in preterm babies: Exploratory Studies from the PiPS Trial	England	Randomized controlled, placebo- controlled trial	Premature newborns with gestational age less than 37 weeks n=94	<i>Bifidobacterium b BBG-001</i> prob No dosage	breve biotic I	Placebo		Intestinal permeability; Composition of the intestinal microbiota.	39 months
7	Hays et al., 2015	Probiotics and growth in preterm infants: a randomized controlled trial	France	Prospective randomized, double-blind controlled study	Premature newborns with gestational age less than 37 weeks n=197	Probiotics (group Group P comprised to subgroups: P1 rece Bifidobacterium la P2 receivedBifidobacter longum and P3 rece B. lactis and B. lon, No dosage	P). three eived actis, rium eived gum.	Placebo		Evaluation of the administration of probiotics.	Not declared
8	Li et al., 2019	Beneficial Effects of Probiotic Treatment on Gut Microbiota in Very Low Birth Weight Infants	China	Randomized, double-blind controlled trial	Premature newborns with gestational age less than 37 weeks n=16	L. plantarum Ll 20%, B. longum Ll 40% and B. bif LK012 40%; probiotic cap contains 500mg of colony-forming units	K006 K014 idum each I psule 510 s	Placebo		Evaluation of bowel changes microbiota; Analysis of the intestinal microbial composition correlation.	16 months
Article	Author/year	Títle	Study location	Study design	Population	Intervention and dosage	Comp	parison	Evalu	ated outcomes	Treatment time
9	Manzoni et al., 2006	Oral supplementation with Lactobacillus casei subspecies rhamnosus prevents enteric colonization by Candida species in preterm	Italy	Prospective , , randomized, double-blind study	Premature newborns with gestational age less than 37 weeks n=80	Lactobacillus casei subespecies rhamnosus; 6 10 ⁹ ufc/day added to breast milk	Placeb	bo	Reduc of fu <i>Candi</i>	ction in the incidence ngal colonization by <i>ida sp</i>	12 months

		neonates: a										
10	Martí et al. 2021	Effects of Lactobacillus reuteri supplementation on on the gut ' microbiota in Si extremely preterm infants in a randomized placebo- controlled trial Si	Weden Pa pr m do ra co	art of a cospective, ulticenter, puble-blind, indomized ontrolled trial	Premature newborns with gestational age less than 37 weeks n=134	Pro Lac DSJ 10 ⁸	bbiotic ctobacillus reuteri M 17938 (1,25 × bactéria/day)	Place	bo	Analys probio of the	sis of the effect of the tic on the composition intestinal microbiota	24 months
11	Moreno-Sanz e al., 2022	Randomized, Double-blind, Placebo- controlled Study t to Assess the Effect of Two Probiotics on the Preterms' Gut Microbiota.	pain do co	andomized, ouble-blind ontrolled trial	Premature newborns with gestational age less than 37 weeks n=30	(1 L.s. PSJ UF sub PS1	10 ⁹ UFC de alivarius 11603 and 1 10 ⁸ C ofe B.longum osp. infantis 10402).	Place	bo	Coloni gastroi	ization of the intestinal tract	13 months
Article	Author/year	Títle	Study location	Study design	Population	n	Intervention dosage	and	Compariso	n	Evaluated outcomes	Treatment time
12	Mohan et al., 2006	Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double- blind, placebo- controlled, randomized study	Germany	Randomized, double-blind controlled tria	Premature newborns with gestational age less th 37 weeks n=69	l nan	2x10 ⁹ Bifidobacterium la Bb12 per gram formula powder (Ne FM 200 1st to 3rd day: 1,62 cells f 4th day: 4.8X10 ⁹ ce		Placebo		Modification of the intestinal microbiota; Reduced colonization of antibiotic-resistant organisms; Increased beneficial and pathogenic cell counts.	21 months
13	Oshiro et al., 2019	Bifidobacterium Supplementation of Colostrum and Breast	Japan	Blinded, randomized controlled tria	Premature al newborns		<i>B. breve (BBG-01)</i> viable cells): 10 ⁹	Placebo		Microbiota composition.	27 months

			Milk E Gain Respo with Establ Preter	Enhar and nses lishm	nces Weight Metabolic Associated Microbiota ent in Very- fants.					with gestation age less 37 wee n=35	onal s than ks							
14	Patole 2014	et al.,	Effect Bifido M-16V supple fecal i preter rando blind contro	bacte 7 ement bifido m miseo elled i	of erium breve aation on obacteria in neonatesa d double placebo trial	Australia	1	Randomi double-b controlled	zed, lind d trial	Premat newbor with gestatic age les 37 wee n=153	ure rns onal s than ks	Bifidobaa M-16V (36x10 ⁹ c	cterium breve probiotic cfu/day)	Placebo		Eval effec 16V leve Evic bific (incl <i>Bific</i> the s	luation of the ct of <i>B.breve M</i> ' on <i>B.breve</i> els in feces; dence of a 19 dogenic effect rease in <i>dobacterium</i> in stool).) months
Article		Author	/year		Study locat	ion	Stu loca	dy ation	Study	design	Popula	ation	Intervention dosage	and	Compariso	on	Evaluated outcomes	Treatment time
15		Plumme 2018	er et	al.,	Gut microl preterm supplemente probiotics: study oj ProPrems tr	biota of infants ed with sub- f the rial	Aus	stralia	Multice double randon control trial	entre, -blind, nized led	Prema newbo gestati less weeks n=66	ture rns with onal age than 37	Combination probiotic supplementatic (<i>Bifidobacteria</i> <i>longum subsp.</i> (BB-02, 300), <i>Strept</i> <i>thermophilus</i> 350 ×) and <i>Bifidoba</i> <i>animalis subs</i> (BB-12, 350)) with 1 × 1 organisms per a maltodextr powder)	of on <i>infantis</i> $\times 10^{6}$ <i>tococcus</i> (TH-4, 10^{6} <i>acterium</i> <i>p. lactis</i> $\times 10^{6}$ 0^{9} total 1.5 g, in in-based	Placebo		Development of the intestinal microbiota; Analysis of the intestinal bacterial microbiota.	2 months
16		Plumme 2021	er et	al.,	The effe probiotic supplementa the gut micro preterm infa	ct of ution on obiota of unts	Aus	stralia	This was pa open-la randon	study rt of an abel, nized	Prema newbo gestati less weeks	ture rns with onal age than 37	A combination probiotics at 1 day $[1 \times 10^9 \text{ or } totais \text{ of } B.$ subsp. infantis	ion of 1.5 g per rganisms <i>longum</i> s BB-02	Placebo		Microbiota composition.	23 months

				ct tr	ontrolled n=459		(300 x 10 ⁶ thermophilus (350 x 10 ⁶) animalis subsp BB-12 (350×10 ABC d probiotic p solgar) maltoc based powder), S. TH-4 and B. <i>lactis</i> ⁶ ; baby ophilus owder; lextrin-		
Article	Author/year	Title	Study location	Study design	Population	Interve dosage	ention and	Comparison	Evaluated outcomes	Treatment time
17	Qiao et al., 2016	Effect of early administration of probiotics on gut microflora and feeding in pre-term infants: a randomized controlled trial	China	Randomized, double-blind controlled trial	Premature newborns wit gestational ag less than 37 week n=60	Combin Bifidol Lactobu acidopi was 2x/day	ned probiotics of bacterium, acillus hilus >0.5*10 ⁷ UFC-	Placebo	Composition: Measurement of <i>Lactobacillus</i> and <i>Bifidobacterium</i> in the intestine	2 weeks
18	Rougé et al., 2009	Oral supplementation with probiotics in very-low-birth- weight preterm infants: a randomized, double-blind, placebo-controlled trial	France	Randomized, biocentric, double-blind controlled trial	Premature newborns wit gestational ag less than 37 week n=94	10 ⁸ lyo n unit e <i>L. rhan</i> s <i>B. long</i> maltodo	philized cells per of probiotic <i>nnosus GG</i> and <i>gum BB536</i> and extrin	Placebo	Composition of the intestinal microbiota.	22 months
19	Samara, 2021	The Gut Microbiome of Premature Infants: An Ecological Analysis of a Probiotic Intervention Study	Canadá	Randomized, open-label controlled trial	Prematures newborns wit gestational ag less than 37 week n=62	One 0. sachet c total C of (1.2X10 8X10 ⁸ 6X10 ⁸ infantis longum 10 ⁹	 5-g FloraBABY contains 4 billion FU of 4 species <i>Bifidobacterium</i> 0° CFU <i>B. breve</i>, CFU <i>B. bifidum</i>, CFU <i>B. longum</i> and 6X10⁸ <i>B</i>. together with CFU of 	Placebo	Colonization and composition of the microbiota.	Not declared

						Lacticaseibacillus rhamnosus, mixed with dextran.			
Article	Author/year	Title	Study location	Study design	Population	Intervention and dosage	Comparison	Evaluated outcomes	Treatment time
20	Samara et al., 2022	Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants	Canada	This study was part of an open- label, randomized controlled trial	Premature newborns with gestational age less than 37 weeks n=57	Florababy probiotic (0.5g/day): 4 strains of <i>Bifidobacterium</i> from species that are common and dominant in the infant intestine <i>B.</i> <i>breve</i> 1:2 3 10 ⁹ UFC, <i>B. bifidum</i> 8 3 10 ⁸ UFC, <i>B. bifidum</i> 8 3 10 ⁸ UFC and <i>B. longum</i> 63 10 ⁸) together with <i>Lacticaseibacillus</i> <i>rhamnosus</i> 13 10 ⁹ UFC	No treatment	Composition and functioning of the microbiome.	37 months
21	Sourabh et al., 2015	Comparison of Stool Colonization in Premature Infants by Three Dose Regimes of a Probiotic Combination: A Randomized Controlled Trial	India	Blinded, randomized controlled trial	Premature newborns with gestational age less than 37 weeks n=149	A and B: high dose (10 billion UFC: L. acidophilus , L. rhamnosus , B. longum , S. boulardii) C: low dose (1 billion UFC : L. acidophilus , L. rhamnosus , B. longum , S. boulardii)	D-Placebo	Colonization of feces.	Not declared
Article	Author/year	Title	Study location	Study design	Population	Intervention and dosage	Comparison	Evaluated outcomes	Treatment time
22	Stratiki et al., 2007	The effect of a bifidobacter supplemented	Greece	Prospective randomized,	Premature newborns with		Placebo	Decreased intestinal permeability.	24 months

		bovine milk on intestinal permeability of preterm infants		double-blind study	gestational age less than 37 weeks n=75	Supplemented with Bifidobacter lactis $(2 \times 10^7 \text{ ufc/g of powdered milk})$			
23	Strus et al., 2018	Effects of oral probiotic supplementation on gut Lactobacillus and Bifidobacterium populations and the clinical status of low-birth-weight preterm neonates: A multicenter randomized, double-blind, placebo-controlled trial	Poland	Multicenter, double-blind, randomized controlled trial	Premature newborns with gestational age less than 37 weeks n=177	Ffbaby ® probiotic in powder form (One dose contained 10 ⁶ UFC of a bacterial mixture including freeze-dried <i>Lactobacillus</i> <i>rhamnosus KL53A</i> and <i>Bifidobacterium</i> <i>brevePB04</i> and auxiliary substances: maltodextrin and ascorbic acid 2x/day	Placebo	Change in intestinal microbiota	12 months

Source: Author, 2023.

Table 2: Summary of results

Article	Autho	r/year	Profile of parti	cipants			Results	(Intervention+placebo or treatment)	Risk of bias
1	Agarw 2003	al et al.,	Treatment Birth weight I Mean gestation Mean weight Female: Male: 13 Birth weight Mean gestation Mean wei Female:12 Male: 11	ess than 1,500g onal age: 31s ght: 1,176g 11 t 1,500-1,999g nal age: 34.14s ght: 1745g	Control Birth weigh Mean gesta Mean y Female: Male:7 Birth wei Mean gesta Mean Female: Male:6	ht less than 1,500g ational age: 30.7s weight: 1190g 8 ght 1,500-1,999g tional age: 33.42s weight:1717g 3	Moderate preterm i Poor col 1,500g.	e colonization of <i>Lactobacillus GG (LGG)</i> in infants weighing 1,500 to 1,999g; lonization in preterm infants weighing less than	High risk of bias
2	Alshaikh et al., 2022 Treatment Mean gestational age: 25.8 Mean weight: 763 Female: 1 Male:16 Cle Author/year Profile of par			nal age: 25.8s ight: 763g 15	Control Mean gesta Mean Female Male:21	ControlElevation of Bifidobacterium and Lactobacillus;Iean gestational age: 25.6sMarked reduction of species of Candida spIean weight 751g.emale 10.			Low risk of bias
Article		Author/	year	Profile of partic	cipants			Results (Intervention+placebo or treatment)	Risk of bias
3		Athalye- 2022	Jape et al.,	Treatment Group Mean gestationa Mean weigl Female::41 Male:46 Group Mean gestationa Mean y Female::38 Male:48	TS al age: 26.3s nt: 870g SS l age: :26.2s weight::828g	Control Group Mean gestational a Mean weight: Female: Male:16	REF ge: 26.1s 810g 13	TS and SS groups: Effective in reducing dysbiosis (reducing gammaproteobacteria, clostridia, streptococcus proteobacteria); Elevating <i>Bifidobacterium</i> .	^g Some risk of bias
4		Liszews	ka et al., 2012	Treatment		Control		7th and 21st: increase in the number of LGG	Low risk of bias

				Mean gestational Mean weight: Female::8 Male:13	age: 29.62s 1,227.3g	Mean gestational 29.46s Mean weight: 1 Female::16 Male:10	age:	Day 42: low elevation of <i>LGG</i> with min difference to placebo. In addition to the increase <i>Enterobacteriaceae</i> and <i>Enterococcus sp</i> wit causing harm. May not change the picture pathogenic colonization	imal se of hout e of
5		Costel	oe et al., 2016	Treatment Mean gestationa Mean weight Female: Male:374	ıl age: 28s : 1,039g 276	Control Mean gestational a Mean weight: Female: Male:370	ge: 28s 1,043g 290	2 weeks: colonization of Bifidobacterium b BBG (B.breve BBG-001) greater than 36 we colonization remained high, and in the plac group there was an increase in the microbiota	reve beks: cebo
Article	Autho	r/year	Profile of partic	pants			Results	(Intervention+placebo or treatment)	Risk of bias
6	Fleming al., 2020et Fleming al., 2020Treatment Intestinal permeability (Suga absorption test/Bacteria translocation/ Stool alpha-J antitrypsin) Mean gestational age: 27.5: 26.93s/ 26.71 Mean weight: 900g/ 869g/ 970 Female: No information Male:No information Intestinal microbiot Mean weight: 890 Female:: No information Mean weight: 890 Female:: No information			eability (Sugar test/Bacterial Stool alpha-1- al age: 27.5s/ 26.71s 00g/ 869g/ 970g mation Male:No microbiota al age: 26.71s ght: 890g rmation tion	Control Intestinal p absorption translocation antitrypsin Mean gest 26.93s/ Mean weigh Female: Male:No intestinal Mean gesta Mean Female: No No informa	bermeability (Sugar test/Bacterial on/ Stool alpha-1-)) ational age: 27.5s/ 26.71s ht: 900g/ 869g/ 970g No information formation microbiota ational age: 26.71s weight::890g o information Male:s tion	Coloniz B.breve Increase no chan	ation of <i>Bifidobacterium</i> , with elevation of <i>BBG-001</i> ; ed loads of <i>enterococci</i> ; ge in intestinal permeability	Some risk of bias
7	Hays 2015	et al.,	Treatment P1/P2/P3 Mean gestation Mean weig Female:: No info Male:No informa	nal age: 29s ht: 1,170g rmation tion	Control Mean gest Mean Female:: No Male:No in	tational age: 29.4s weight::1,170g o information formation	Elevatio	on of <i>Bifidobacterium</i>	Low risk of bias
Article	ticle Author/year Profil			Profile of partti	cipants			Results (Intervention+placebo treatment)	or Risk of bias

				Treatment		Contro	al					
				Mean gestation	al are 20.3s	Mean	gestational	aue.	30 /s	Lactobacillus elevation: Reduction	of	
8		Lietal	2019	Mean Mean	weight:1 176g	Mean	weight	. age.	1 326g	proteobacteria and enterobacteria	Low risk of	hiac
0		Li et al.	, 2017	Female:	2 vergint. 1, 170g	Female	weight.	•	1,5205	proteobucierta and emerobacierta.	Low lisk of	onas
				Male:6	2	Male ³			5			
				Treatment		Contro						
				Mean gestation	nal age: 30s	Mean	gestational	206	298	Significant reduction of gastrointestir	al	
9		Manzon	ietal 2006	Mean weigh	ht: $1200g$	Mean	weight	. ""	1 170g	colonization of <i>Candida</i> sp	Some risk	of
Í		10Iunzon	li et uli, 2000	Female:	19	Female	:	•	20	continuation of Cantanaa sp	bias	
				Male:20		Male: 2	21					
				Treatment		Contro	ol					
				Mean gestation	al age: 25.5s	Mean	gestational	age:	25.5s	Increase in bacterial diversity a	nd	
10		Martí et	al., 2021	Mean weigh	ht: 727.5g	Mean	weigh	t:	763g	composition, elevation of <i>Lactobacillus</i> :	Low risk of	bias
			,	Female:31	e	Female	e:		19	Reductions of <i>Proteobacter</i>	a,	
				Male:23		Male:3	5			Enterobacteria and Staphylococcus.	,	
				Treatment		Contro	ol					
		Manana	Comp. of al	Mean gestation	nal age: 29s	Mean	gestational	lage	e: 29s	Lactobacillus and Bifidobacterii	m	
11		Moreno	-Sanz et al.,	Mean weigh	ht: 1,270g	Mean	weight:		1,150g	colonization; Significant reduction	of High risk of	bias
		2022		Female:8		Female	:7		-	Enterococcus and Coprococcus.	_	
				Male:6		Male:6	i					
				Treatment		Contro	ol				Low risk of	bias
				Mean gestation	al age: Less	Mean g	gestational ag	ge: Le	ess than	Increase in the number of Bifidobacterium	;	
12		Mohan	et al. 2006	than	37s	37s				Reduction of Enterobacteria a	nd	
12		Wionan	et al., 2000	Mean weight: N	o information	Mean v	weight: No in	nform	ation	Clostridium spp in the intestinal microbic	ta	
				Female:23		Female	20			of preterm infants with the use of probiotic	zs.	
				Male:14		Male:1	2					
Article	Autho	or/year	Profile of part	ticipants					Results	(Intervention+placebo or treatment)	Risk of bias	
			Treatment		Control		_					
	Oshiro	et al	Mean gestation	hal age: 28.1s	Mean gesta	tional	age: 2	8.2s			Low risk of bias	
13	2019	,	Mean wei	ght: 1.049g	Mean	weight:	1,0)02g	Elevatio	on Bifidobacterium		
			Female:15		Female:10							
			Male: 6		Male: /							
			Treatment	1 1 1	Control			2				
	14 Patole 2014	. 1	Mean gestation	al age: Less than	Mean gestation	nal age:	Less than 3	2.6s	T		. 1 . 6 1 .	
14		et al.,	52.68 Maar	-h.t. 1.000	Niean	weight:	1,0	025g	Increase	a levels of <i>B.breve</i> in the stool of preterm	Low risk of blas	
			Famalar ²²	gnt: 1,090g	remaie:35				infants s	supplemented with problotics		
			remaie:32		male: 41							
			Male: 45									

15	Plumn al., 20	ner et 18	Treatment Mean gestation Mean weig Female:19 Masculino: 19	nal age: 28.6s ght: 1,040g	Control Mean ges Mean Female:14 Male: 14	tational age: 27.5s weight: 1,000g	Bifidob abunda probiot Enteroo	acterium rates found in greater ince in premature infants who received ics, in addition to the reduction of coccus.	High risk of bias
16	Plummer et al., 2021 et Article Author/year		Treatment Mean gestation Mean weig Female:114 Male: 115	nal age: 28.6s ght: 1,058g	Control Mean ges Mean Female:117 Male: 113	tational age: 28.1s weight: 1,080g	Increas subsp.in probiot detectio groups.	red Bifidobacterium (B.longum nfants and B.animalis subsp lactis) in the ic group, and there were no differences in on of Streptococcus.thermophilus between	High risk of bias
Article		Author	/year	Profile of partt	icipants		1	Results (Intervention+placebo or treatment)	Risk of bias
17		Qiao et a	al., 2016	Treatment Mean gestationa Mean weight: Female: Male: 17	al age: 32.4s 1,653 g 13	Control Mean gestational age: Mean weight: 1,53 Female: Male: 16	32.1s 32 g 14	1st and 2nd weekend: Higher amounts of <i>Bifidobacterium</i> and <i>Lactobacillus</i>	Low risk of bias
18	18 Rougé et al., 20		et al., 2009	Treatment Mean gestationa Mean weigh Female: Male: 28	al age: 28.1s t: 1,115g 17	Control Mean gestational age: Mean weight: Female: Male: 26	28.1s 1,057g 23	<i>Bifidobacterium</i> and <i>Lactobacillus</i> colonization was higher in the experimental group. In addition to the reductions in <i>Clostridia</i> in the 1st week and <i>Enterococcus</i> in the 2nd week.	Low risk of bias
19		Samara,	2021	Treatment Mean gestationa Mean weig Female: Male: 16	al age: 25.8s ht: 763g 15	Control Mean gestational age: Mean weight: Female: Male: 20	25.6s 751g 11	Significantly higher number of <i>Bifidobacterium</i> cells (<i>B.breve, B.bifidum and B. longum subsp longum</i>); Reduction of <i>Candida sp.</i> in the probiotic group.	Some risk of bias
20		Samara	et al., 2022	Treatment Mean gestation 29s Mean weight:	al age: 23s- Less than	Control Mean gestational age: Mean weight: Less than Female: No information Male: No information	23s-29s 1,000g	High colonization of <i>Bifidobacterium</i> less than <i>B.infantis HA-116</i> in probiotic group for 6 months; Reduction of <i>Staphylococcus</i> and <i>Enterococcus</i> .	Low risk of bias

		1,000g Female: No information Male: No information			
Article	Author/year	Profile of partticipants		Results (Intervention+placebo or treatment)	Risk of bias
21	Sourabh <i>et</i> <i>al.</i> , 2015	Treatment Group A Mean gestational age: 30.64s Mean weight: 1,286.08g Female: 13 Male: 25 Group B Mean gestational age: 31.08s Mean weight: 1,335.97 g Female::15 Male: 23 Group C Mean gestational age: 30.89s Mean weight: 1,413.32 g Female: 18 Male: 20	Control Group D Mean gestational age: 30.82s Mean weight: 1,252.27 g Female: 12 Male: 23	High numbers in <i>Lactobacillus</i> <i>spp.</i> and <i>Bifdobacterium spp.</i> in the 3 probiotic groups compared to placebo. There was no difference in colonization between the probiotic groups, only Group A had a higher change.	Low risk of bias
22	Stratiki et al., 2007	Treatment Mean gestational age: 31s Mean weight: 1,500 g Female: 41 Male: 23	Control Mean gestational age: 30.5s Mean weight: 1,500g Female: 31 Male: 17	Increase in <i>Bifidobacterium</i> ; Significant change in intestinal permeability.	Low risk of bias
23	Strus et al., 2018	Treatment Mean gestational age: 29.73s Mean weight: 1,281.24 g Female: 47 Male: 42	Control Mean gestational age: 29.67s Mean weight: 1,350.11 g Female: 38 Male: 50	Weeks 2-3: Increased Bifidobacterium; Week 2-7; Increased Lactobacillus count.	Low risk of bias

Source: Author, 2023.