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Abstract: The presence of nonignorable missing response variables often leads to complex conditional
distribution patterns that cannot be effectively captured through mean regression. In contrast, quantile
regression offers valuable insights into the conditional distribution. Consequently, this article places
emphasis on the quantile regression approach to address nonrandom missing data. Taking inspiration
from fractional imputation, this paper proposes a novel smoothed quantile regression estimation
equation based on a sampling importance resampling (SIR) algorithm instead of nonparametric kernel
regression methods. Additionally, we present an augmented inverse probability weighting (AIPW)
smoothed quantile regression estimation equation to reduce the influence of potential misspecification
in a working model. The consistency and asymptotic normality of the empirical likelihood estimators
corresponding to the above estimating equations are proven under the assumption of a correctly
specified parameter working model. Furthermore, we demonstrate that the AIPW estimation equation
converges to an IPW estimation equation when a parameter working model is misspecified, thus
illustrating the robustness of the AIPW estimation approach. Through numerical simulations, we
examine the finite sample properties of the proposed method when the working models are both
correctly specified and misspecified. Furthermore, we apply the proposed method to analyze HIV—
CD4 data, thereby exploring variations in treatment effects and the influence of other covariates
across different quantiles.

Keywords: empirical likelihood; nonignorable missing; quantile regression; sampling importance
resampling

MSC: 62H25; 62F12

1. Introduction

Missing data analysis has gained significant attention in recent years. To analyze
missing data, it is crucial to understand the response mechanism that leads to missing data.
If the missingness of the variable of interest is conditionally independent of that variable,
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the response mechanism is considered to be random or ignorable. Otherwise, the response
mechanism is considered to be nonrandom or nonignorable. Dealing with nonrandom
missing data presents greater challenges, which are evident in two aspects: Firstly, the
assumed response model cannot be validated solely based on observed data; secondly, the
model parameters may be unidentifiable.

To obtain meaningful inferences from incomplete data with nonrandom missingness,
it is necessary to satisfy a set of identifying conditions [1,2]. Moreover, the accuracy of the
methods based on parameter models is greatly influenced by the correct specification of
the assumed parameter model [3]. Consequently, researchers aim to impose weaker model
assumptions on the response mechanism to achieve robust results. The semiparametric
response model was initially considered by Kim and Yu [4], but their proposed method
necessitated a validation sample to estimate the model parameters. Similarly, Shao and
Wang [5] examined the same semiparametric exponential tilting model and proposed a pa-
rameter estimation approach based on calibration estimation equations. A comprehensive
review of parameter estimation methods for nonrandom missing data is provided by Kim
and Shao [6].

Quantile regression, introduced by Koenker and Bassett [7], has become a widely
used statistical analysis tool. It offers more adaptability and flexibility compared to mean
regression. Notably, quantile regression does not require the assumption of error term
distribution and demonstrates robustness against heavy-tailed errors and outliers. Further-
more, by considering regressions at different quantiles of the response variable, quantile
regression enables the assessment of covariate effects at various quantiles and yields a more
comprehensive understanding of the conditional distribution. However, there is a scarcity
of literature on quantile regression for nonrandom missing data.

The nonsmoothness of the check function for standard quantile estimators makes
it impossible to directly estimate the asymptotic covariance matrix [8]. As a result, the
existing theoretical results for nonrandom missing mean regression cannot be directly
extended to quantile regression.

The idea of smoothing nondifferentiable objective functions can be traced back to
Horwitz [9], while Whang [10] introduced the smoothed empirical likelihood approach for
quantile regression. Luo et al. [11] extended the aforementioned method to analyze data
with random missingness; Zhang and Wang [12] further expanded it to handle cases of
nonignorable missingness.

However, on the one hand, this method relies on the assumption of a parametric
propensity missingness model, which introduces the risk of model misspecification. On the
other hand, this method corrects estimation biases caused by missing data through inverse
probability weighting but may not fully utilize the information from incomplete observations.

Regarding nonrandom missing data, previous studies have addressed the issue in
different regression settings. Specifically, Niu et al. [13] and Bindele and Zhao [14] focused
on estimation equation imputation in linear regression and rank regression, respectively.
In the context of quantile regression, Chen et al. [15] introduced three missing quantile
regression estimation equations: inverse probability weighting, estimation equation impu-
tation, and an enhanced approach combining both methods. It is important to note that
these studies assume a response mechanism with random missingness.

Moreover, the existing literature commonly utilizes kernel estimation methods [16] to
estimate the conditional means involved in the imputation estimation equation. However,
when the dimension of the covariates is high, the kernel estimation results can become
unstable. To overcome the curse of dimensionality associated with multivariate nonpara-
metric kernel estimation, Kim [17] proposed a parametric fractional imputation method for
handling missing data. Additionally, Riddles et al. [18] extended this method to address the
scenario of nonignorable missing data. They developed an EM algorithm based on a param-
eter working model derived from observed data and incorporated the parametric fractional
imputation (FI) method. Nevertheless, these approaches heavily rely on parameter-based
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response models, which renders them sensitive to model misspecification. Furthermore,
the likelihood-based EM algorithm is not directly applicable to quantile regression.

Utilizing estimation equations, Paik and Larsen [19] incorporated a working model
for observed data and employed a sampling importance resampling (SIR) algorithm to
estimate the missing data and corresponding estimation equations. Building upon this,
Wang et al. [20] and Song et al. [21] extended the logistic response model used in the
aforementioned approaches to a develop a semiparametric exponential tilt model. How-
ever, in the absence of knowledge about the tilting parameter, these methods relied on
validation samples.

In this paper, we propose a smoothed empirical likelihood approach for imputing
quantile regression estimation equations with nonignorable missing data based on a semi-
parametric response model. The novel estimation equation guarantees the second-order
differentiability of the objective function with respect to the parameter vector. The imputed
values for the missing data were derived from a parameter working model and obtained
using sampling importance resampling.

Although imputation estimation equations applying information from missing data
compared to IPW estimation equations can enhance estimation efficiency, both theoretical
and numerical experiments have shown that imputation estimation equations are sensitive
to misspecification of the parameter working model. Therefore, to mitigate the impact of
misspecification in the working model, this paper further proposes the AIPW smoothed
quantile regression estimation equation. It is demonstrated that, when the working model
is correctly specified, the asymptotic variance of the AIPW estimation equation shares the
same form as the asymptotic variance of the nonparametric model estimator. Furthermore,
even when the working model is misspecified, the estimates remain consistent.

The remaining sections of this paper are organized as follows. Section 2 establishes
the semi-parametric response model and the AIPW quantile regression estimation equa-
tion, along with the algorithmic procedure for estimating the skewness parameter and
quantile regression coefficients using importance resampling. Section 3 presents the large
sample properties of the parameter estimators. Section 4 demonstrates the finite sample
properties of the estimators through numerical simulations. Section 5 applies the proposed
methodology to analyze the HIV—CD4 dataset.

2. Proposed Method

Consider a linear quantile regression model as follows:

Yi = Z>i θτ + εi, i = 1, . . . , n,

where Yi is the response variable, Zi is a fully observed q-dimensional covariate vector, θτ

represents the unknown regression coefficient vector, εi denotes the random error term
satisfying P(εi ≤ 0|Zi) = τ, τ ∈ (0, 1), and the εi values are mutually independent. In the
subsequent discussion, we will abbreviate θτ as θ.

If the response variables Yi, i = 1, . . . , n are fully observed, the quantile regression
estimator of θ is obtained by minimizing the following equation:

θ̂ = arg min
θ∈Θ

1
n

n

∑
i=1

ρτ(Yi − Z>i θ), (1)

where ρτ(u) = u(τ− I(u < 0)) is the check function, and I(·) is the indicator function. For
a given τ, θ̂ satisfies the following estimation equation:

n

∑
i=1

ψ(Zi, Yi; θ) ≈ 0, (2)

where ψ(Zi, Yi; θ) = Ziψτ(Yi − Z>i θ) when Yi − Z>i θ 6= 0, and ψ(Zi, Yi; θ) = 0 otherwise.
Here, ψτ(u) = I(u < 0)− τ.
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In the scenario where the missingness of response variable Yi is nonignorable, let
δi denote the missing indicator. If Yi is missing, δi = 1; otherwise, δi = 0. (Zi, Yi, δi),
i = 1, . . . , n represents an independent and identically distributed sample from (Z, Y, δ).
We establish a semiparametric exponential tilting model for missing propensity as follows:

P(δ = 1|Z, Y) =
1

1 + exp(−g(X) + γY)
, (3)

where g(·) is an unspecified function, X ⊂ Z is a d-dimensional vector, and there exists an
instrumental variable V = Z/X that is unrelated to δ given (X, Y).

Let fκ(Y, Z|X), where κ ∈ 0, 1 denotes the conditional density of (Z, Y) of X when
δ = κ. Specifically, we have the following:

f0(Y, Z|X, γ) = f1(Y, Z|X)× O(X, Y)
E{O(X, Y)|X, δ = 1} , (4)

where O(X, Y) = P(δ=0|X,Y)
P(δ=1|X,Y) = exp(−g(X) + γY). For the quantile estimation equation

ψ(Y, Z; θ), let

ψeei(Z, Y, δ; θ, γ) = δψ(Y, Z; θ) + (1− δ)E(ψ(Z, Y; θ)|X, δ = 0, γ), (5)

it can be easily shown that E(ψ(Y, Z; θ)|X) = E(ψeei(Y, Z; θ)|X), where

E{ψ(Z, Y; θ)|X, δ = 0, γ} = E{δ exp(γY)ψ(Z, Y; θ)|Z}
E{δ exp(γY)|Z} := m0

ψ(X; θ, γ). (6)

The nonparametric kernel estimate of Equation (6) is given by

m̂0(X; θ, γ) =
n

∑
i=1

ωi(γ)ψ(Zi, Yi; θ),

where ωi(γ) = δi exp(γYi)Kh(X−X i)/ ∑n
j=1 δj exp(γYj)Kh(X−X j),Kh(u) = h−1K(u/h),

and K(·) is a d-dimensional kernel function with bandwidth h.
Due to the instability of the nonparametric multivariate kernel estimation of the afore-

mentioned conditional expectation, this paper adopts Monte Carlo methods to estimate
m0

ψ(X; θ, γ). For simplicity of discussion, we consider the parameter assumption of the
conditional distribution f (Y|Z, δ = 1; β) of the observed response. This assumption can be
verified easily using fully observed samples. Consequently, the conditional distribution of
the response with nonrandom missingness satisfies

f0(Y|Z; β, γ) = f1(Y|Z; β)× exp(γY)
E{exp(γY)|Z, δ = 1; β} . (7)

Let Y(j)
i , j = 1, . . . , M be independent and identically distributed samples from f (Y|Zi,

δ = 0; β, γ). According to the law of large numbers, as M→ ∞, we have

m̂0
ψ(Zi; θ, β, γ) =

1
M

M

∑
j=1

ψ(Zi, Y∗(j)
i (β, γ); θ)

p→ m0
ψ(Zi; θ, β, γ).

To obtain a set of random realizations from f0(Y|Z; β, γ), the SIR algorithm [19] can be
employed based on the parametric representation in (7) for a given (β, γ):

(1) Random samples Si = {Ỹ
(k)
i , k = 1, . . . , M2} are drawn from f (Y|Zi, δ = 1; β).
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(2) Calculate the adjustment weights for each sample point in S as

ωik(γ) =
exp(γỸ(k)

i )

1
M2

∑M2
j=1 exp(γỸ(k)

i )
, k = 1, 2, . . . , M2. (8)

(3) Resample from Si according to the probabilities ωi1(γ), . . . , ωiM2(γ) to obtain Y(1)
i , . . . ,

Y(M)
i . To ensure the convergence of the aforementioned process, it is crucial to have

M2 → ∞ and M/M2 → 0.

The SIR-based quantile regression estimation equation is given by

ψeei(Yi, Zi, δi; θ, β, γ) = δiψ(Zi, Yi; θ) + (1− δi)
1
M

M

∑
j=1

ψ(Zi, Y(j)
i (β, γ); θ).

Due to the nonsmoothness of the aforementioned estimation equation, obtaining the
sandwich estimator of the asymptotic covariance matrix directly is not feasible. Therefore,
this paper proposes using a smooth function G(Z>i θ−Yi) as a substitute for the indicator
function I(Yi − Z>i θ < 0) in the quantile estimation equation, thus resulting in a smooth
approximation of ψτ(Yi − Z>i θ):

ψh(Yi, Zi; θ) = Z>G(Z>i θ−Yi)− τ,

where Gh(u) = G(u/h), G(u) =
∫ u
−∞ K(v)dv, and K(·) is a kernel function defined in the

range [−1, 1].
For nonignorable missing data, we have the following representation for the smoothed

SIR-based quantile regression estimation equation:

ψeei
h (Yi, Zi, δi; θ, β, γ) = δiψh(Zi, Yi; θ) + (1− δi)

1
M

M

∑
j=1

ψh(Zi, Y(j)
i (β, γ); θ).

The estimation equation based on imputation is susceptible to the misspecification of
f (Y|Z, δ = 1; β). Due to the relative robustness of the semiparametric response model, we
consider the AIPW (augmented inverse probability weighting) estimation equation:

ψ
aipw
h (Yi, Zi, δi; θ, β, γ) =

δiZiψh(Zi, Yi; θ)

π(X i, Yi; ĝγ; γ)

+

(
1− δi

π(X i, Yi; ĝγ; γ)

)
· 1

M

M

∑
j=1

ψh(Zi, Y(j)
i (β, γ); θ),

where it can be proven that the AIPW estimation equation is consistent in the case of the
misspecification of the parameter model f (Y|Z, δ = 1; β).

In practice, (β, γ) are often unknown and need to be estimated separately. The maxi-
mum likelihood estimation of β, denoted as β̂, is the solution to the following score function:

n

∑
i=1

δi
∂ ln f (yi|xi, δi = 1; β)

∂β
= 0. (9)

Then, we consider the estimation of the tilting parameter γ. The semiparametric missing
propensity model is analyzed by considering two estimation approaches for the tilting
parameter γ: the profile two-step generalized method of the moments estimation and
the kernel regression estimation for the nonparametric component g(·). To estimate the
skewness parameter γ, we define the profile estimation equation as follows:

ξ(Zi, Yi, δi; gγ, γ) =

{
δi

π(X i, Yi; gγ, γ)
− 1
}

h(V i) := ξi(gγ, γ), (10)
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where h(V) is an arbitrary specified function of the instrumental variable V , and gγ(·)
satisfies the following:

exp(−gγ(X i)) =
E(1− δi|X i)

E{δi exp(γYi)|X i}
.

Under the assumption of a correctly specified missingness mechanism, it holds that
E{ξi(gγ, γ)} = 0, and the vector ξi(gγ, γ) is overidentified with respect to γ. The profile
two-stage generalized method of the moments estimation for γ is given by the following:

γ̂ = arg min
γ∈R

ξ̄(ĝγ, γ)>W−1
n ξ̄(ĝγ, γ),

where ξ̄(ĝγ, γ) = 1
n ∑n

i=1 ξ(Zi, Yi, δi; ĝγ, γ), and Wn = 1
n ∑n

i=1 ξ(Zi, Yi, δi; ĝγ, γ)⊗2. The
estimator ĝγ(·) represents the kernel regression estimate of g(·) and satisfies the follow-
ing equation:

exp(−ĝγ(X̂ i)) =
∑n

j=1(1− δj)Kh(X̂ j − X̂ i)

∑n
j=1 δj exp(γYi)Kh(X̂ j − X̂ i)

,

where Kh(u1, . . . , ud) represents the d-dimensional kernel function with a bandwidth h.
Define ψ̂

(l)
hi (θ, β̂, γ̂) and l = 1, 2, which satisfy the following:

ψ̂
(1)
hi (θ, β̂, γ̂) =δiψh(Zi, Yi; θ) + (1− δi)m̂0

ψh
(Zi; θ, β̂, γ̂),

ψ̂
(2)
hi (θ, β̂, γ̂) =

δi
π(X i, Yi; ĝγ̂; γ̂)

ψh(Zi, Yi; θ) +

(
1− δi

π(X i, Yi; ĝγ̂; γ̂)

)
m̂0

ψh
(Zi; θ, β̂, γ̂),

where m̂0
ψh
(Zi; θ, β̂, γ̂) = 1

M ∑M
j=1 ψh(Zi, Y∗(j)

i (β̂, γ̂); θ).

Let pi represent the probability mass of ψ̂
(l)
hi (θ, β̂, γ̂), where i = 1, 2, · · · , n. The

empirical log-likelihood ratio function with respect to θ is defined as follows:

R̂(l)(θ) = −2 sup

{
n

∑
i=1

log(npi)

∣∣∣∣pi ≥ 0,
n

∑
i=1

pi = 1,
n

∑
i=1

piψ̂
(l)
hi (θ, β̂, γ̂) = 0

}
.

Using the method of Lagrange multipliers, it can be shown that R̂(l)(θ) can be expressed
as follows:

R̂(l)(θ) = 2
n

∑
i=1

log{1 + λ>ψ̂
(l)
hi (θ, β̂, γ̂)}, (11)

where λ satisfies the following:

1
n

n

∑
i=1

ψ̂
(l)
hi (θ, β̂, γ̂)

1 + λ>ψ̂
(l)
hi (θ, β̂, γ̂)

= 0.

The empirical likelihood estimators of the quantile regression coefficients based on the

two proposed estimation equations in this paper, denoted as θ̂
(l), l = 1, 2, are given by

the following:

θ̂
(l)

= arg min
θ

R̂(l)(θ).

3. Theoretical Analysis

To elucidate the theoretical properties of the proposed estimators in this paper, we
first define the matrix as follows:
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A1 =E
{

π(X, Y)ψ(Z, Y; θ0)
⊗2 + (1− π(X, Y))m0

ψ(Z; θ0)
⊗2
}

,

A2 =E
{

π(X, Y)−1{ψ(Z, Y; θ0)−m0
ψ(Z; θ0)}⊗2 + m0

ψ(Z; θ0)
⊗2
}

,

B1 =Var(H1Ψ(β0) + H2Φ(γ0)), B2 = Var(H3Φ(γ0)),

T l =Al + Bl , l = 1, 2,

H1 =E{(1− δ)Cov0(ψ(Z, Y; θ0), s(Z, Y; β0)|Z)},
H2 =E{(1− δ)Cov0(ψ(Z, Y; θ0), Y|Z)},

H3 =E
{
(1− δ)(Y−m0

Y(X))(ψ(Z, Y; θ0)−m0
ψ(Z; θ0))

}
.

(C1) (a) The density of Z is bounded and has continuous and bounded second-order
derivatives; (b) the density of Z and the propensity π(Z, Y, γ0) are bounded away
from 0 ; and (c) E{exp(2γY)} is finite and E{π(Z, Y, γ0) | Z} 6= 1 almost surely.

(C2) LetKh(u) = K(u/h)/hd and K denote a generic notation for a d-dimensional kernel
function, and the value of d is determined by the context of use. K is a bounded,
uniformly continuous, symmetric function of the m′th order satisfying the following
conditions:

∫
K(s)ds = 1, s = (s1, . . . , sd),

∫
st

lK(s)ds = 0, and
∫

sm
l K(s)ds 6= 0

for any l = 1 . . . , d and t = 1, . . . , m− 1.
(C3) The bandwidth sequence h satisfies nh2d → ∞, nhd/ log n → ∞, and nh2m → 0 as

n→ ∞; the order m satisfies m ≥ 2 and 2m > d.

(C4) Let W(γ) = E{ξ(gγ, γ)⊗2} and Ξ(γ) = E{(1− δ)(h(V)−m0
V (X, γ)(Y−m0

Y(X, γ))},
Λ(Z, Y, δ, γ) =

(
δ

π(X,Y) − 1
)
(h(V) − m0

V (X, γ)), where m0
V (X, γ) = E{h(V)|X,

δ = 0; γ}, and m0
Y(X, γ) = E{Y|X, δ = 0; γ}:

Φ(Z, Y, δ, γ) = −
(

Ξ(γ)>W(γ)−1Ξ(γ)
)−1

Ξ(γ)>W(γ)−1Λ(Z, Y, δ, γ),

E{Φi(γ0)}2 < ∞, ∂Φi(γ)/∂γ exists at γ0, E
{

supγ ‖ξ(gγ, γ)‖
}
< ∞, γ0 is the unique

solution to E{ξ(gγ, γ)} = 0, and W(γ0) is positive definite.
(C5) {(Zi, Yi, δi) : i = 1, . . . , n} are independent and identically distributed random vectors.

The support of θ denoted byB is a compact set in Rq, and θ0 ∈ B is the unique solution
to E{ψ(Zi, Yi, θ)} = 0. Furthermore, ‖∂ψ(Zi, Yi, θ)/∂θ‖,

∥∥∥∂2ψ(Zi, Yi, θ)/∂θ∂θ>
∥∥∥ and

‖ψ(Zi, Yi, θ)‖3 are bounded by an integrable function H(x, y) within a neighbor-
hood of θ0.

(C6) For all ε in a neighborhood of zero and for almost every Z, F(ε | Z), f (ε | Z) and
f (ε | Z, δ = 0) to exist, they are bounded away from zero and are r times contin-
uously differentiable with r ≥ 2. There exists a function C(Z) such that

∣∣∣ f (s)(ε | Z)
∣∣∣,

and∣∣∣ f (s)(ε | Z, δ = 0)
∣∣∣ ≤ C(Z) for s = 0, 2, . . . , r, for almost all Z and ε in a neigh-

borhood of zero, and E
[
C(X)‖X‖2] < ∞.

(C7) The kernel function K(·) is a probability density function such that (a) it is bounded and
has a compact support; (b) K(·) is an rth order kernel, i.e., K(·) satisfies

∫
ujK(u)du = 1

if j = 0; 0 if 1 ≤ j ≤ r− 1, and CK if j = r for some constant Ck 6= 0; and (c) we let
G̃(u) =

(
G(u), G2(u), . . . , GL+1(u)

)
for some L ≥ 1, where G(u) =

∫
ṽ<u K(v)dv.

For any ι ∈ RL+1 satisfying ‖ι‖ = 1, there is a partition of [−1, 1],−1 = a0 <
a1 < · · · aL+1 such that ι>G̃(u) is either strictly positive or strictly negative within
(al−1, al) for l = 1, . . . , L + 1.

(C8) The positive bandwidth parameter h satisfies nh2r → 0 and nh/ log(n) → ∞ as
n→ ∞.

(C9) Z has a bounded support, E‖Z‖4 < ∞ and the matrices Γ and T l ; additionally,
l = 1, 2 are nonsingular.
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(C10) Under complete observation of (Zi, Yi) for i = 1, . . . , n, the unique solution β̂ to the
score equation in (3) satisfies

√
n
(

β̂− β0

)
d→ N(0, Σ),

for some Σ for sufficiently large n.

To ensure the requirements of Lemma 8.11 by Newey and McFadden [22] and Theorem
6.18 by Van [23], the conditions (C1)–(C4), which are commonly found in the literature on
missing data and nonparametric method [24,25], are primarily employed. These conditions
encompass the following: (1) random equivalence and continuity conditions; (2) linearity
conditions on the objective function with respect to nonparametric components and con-
vergence rate conditions for nonparametric estimators; and (3) the differential continuity
condition of the estimating equations with respect to the parameter of interest. Conditions
(C5)–(C9) ensure the consistency and asymptotic normality of the empirical likelihood
estimator for quantile regression smoothing [10]. To simplify the discussion on the asymp-
totic properties of maximum likelihood estimation in the working model, we introduce
condition (C10).

Under the fulfillment of the assumed conditions, we define the following:

√
n(γ̂− γ0) =

1√
n

Φi(γ0) + op(1),

√
n(β̂− β0) =

1√
n

Ψi(β0) + op(1).

In addition, we have the following lemma, whose proof is given in the Appendix A:

Lemma 1. Under conditions (C5)–(C9), we have

E{ψh(Zi, Yi; θ0)} = O(hr),

E{m0
ψh
(Zi; θ0)} = E{m0

ψ(Zi; θ0)}+ O(hr).

Lemma 2. Under the assumption conditions (C1)–(C10), with the notation from Section 3, the
following results hold as n→ ∞:

(1)
1√
n

n

∑
i=1

ψ
(l)
hi (θ0, β̂, γ̂)

d→ N(0, T l); (2)
1
n

n

∑
i=1

ψ
(l)
hi (θ0, β̂, γ̂)

p→ V l ;

(3)
1
n

n

∑
i=1

∂ψ
(l)
hi (θ0, β̂, γ̂)

∂θ>
p→ Γ; (4)max

i
‖ψ(l)

hi (θ0, β̂, γ̂)‖ = op(n1/2).

Theorem 1. Under conditions (C1)–(C10), if the parameter working model is correctly specified,
as n→ ∞ for l = 1, 2, we have

√
n
(

θ̂
(l) − θ0

)
d→ N

(
0, Γ−1T lΓ

−>
)

,

where Γ = E
{

f (0 | Z)ZZ>
}

.

If there is no missing data, we have P(δ|Z, Y) = 0, which implies that H1, H2, and H3
are all zero. Additionally, we have

A1 = A2 = E
{

ψ(Z, Y, θ0)
⊗2
}
= τ(1− τ)E

{
ZiZ>i

}
.

The above results are consistent with the asymptotic normality conclusion of classical
quantile regression.
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The different forms of Λ1 and Λ2 indicate that if the parameter working model

f (Y|Z, δ = 1; β) is misspecified, θ̂
(1) is no longer consistent, while θ̂

(2) remains a con-
sistent estimator of θ0. The following procedure demonstrates the double robustness of the
AIPW estimation equation. For misspecified f (Y|Z, δ = 1) values, there exists C(Z; θ, γ̂)
such that

m̂0
ψ(Zi; θ, β̂, γ̂) = C(Zi; θ, γ̂) + op(1).

This illustrates the double robustness property of the AIPW estimation equation.
It can be shown that

1√
n

n

∑
i=1

ψ̂
(l)
hi (θ, β̂, γ̂) =

1√
n

n

∑
i=1

δiψ(Zi, Yi; θ)

π(X i, Yi; ĝγ̂, γ̂)

+

{
1− δi

π(X i, Yi; ĝγ̂, γ̂)

}
C(Z; θ, γ̂) + op(1)

=
1√
n

n

∑
i=1

δiψ(Zi, Yi; θ)

π(X i, Yi; ĝγ̂, γ̂)
+ op(1)

=:
1√
n

n

∑
i=1

ψ̂
ipw
hi (θ, β̂, γ̂) + op(1).

If π(X i, Yi) is correctly specified, the IPW estimation equation is consistent, which implies
that the AIPW quantile regression estimation equation remains consistent in this case.

Theorem 2. Under the conditions of Theorem 1, if the parameter working model is correctly
specified, for l = 1, 2 and as n→ ∞,

R̂(l)(θ0)
d→ r(l)1 χ2

1·1 + r(l)2 χ2
1·2 + · · ·+ r(l)q χ2

1·q,

where r(l)i are the eigenvalues of A−1
l Λl . χ2

1·1, χ2
1·2, . . . , χ2

1·q represent q independent standard χ2

distributed random variables.

First, if there is no data missingness, we have T l = Al = τ(1− τ)E
{

ZZ>
}

, which

leads to R̂(l)(θ)
d→ χ2

q, and the Wilks’ Theorem holds. Furthermore, it is worth noting that
if β and γ are known, we still have T l = Al , and in this case, the Wilks’ Theorem still holds.
The above conclusion is consistent with Zhao [26].

4. Simulation Study

To investigate the finite-sample properties of the proposed method, this study con-
ducted numerical simulations under both correctly specified and misspecified working
model scenarios.

4.1. Simulation 1: Correctly Specified Working Model

In the numerical simulation, we generated a random vector (x, y, δ), where x is the
independent variable, y is the response variable of interest, and δ is the indicator variable
for the observation of y. When δ = 1, y has observed values; otherwise, the observation of
y is missing. Let x ∼ N(0, 0.5), and generate the observed response variable y according to
the following equation:

y = µ(x) + e,

where µ(x) = −1 + x. We considered two different distributions for the random error
term e: (a) N(0, 0.9) and (b) N(0, 0.49(1 + x2)). For the working model f (y|x, δ = 1; β),
the former follows a homoscedastic structure N(µ(x), σ2

1 ), while the latter follows a het-
eroscedastic structure N(µ(x), σ2

2 (x)).
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The indicator variable δ follows a Bernoulli distribution with parameter p, i.e., δ ∼
Bernoulli(1, p). The conditional probability of δ given (x, y) is defined as follows:

p(φ) = P(δ = 1|x, y) = {1 + exp(−φ0 − φ1y)}−1,

where (φ0, φ1) = (0.8,−0.2). In this case, the missingness mechanism for the response
variable y is nonrandom, with x serving as a missingness instrument. The average observed
rate in the sample was approximately 73%.

We establish a quantile regression model of the response variable y on x as follows:

Qτ(y|x) = θ0 + θ1x,

where τ represents the quantile of interest, specifically τ = (0.25, 0.5, 0.75).
Consider the following five quantile regression estimation equations:

(1) Full Estimation Equation: ψfull
h (xi, yi; θ) = ψh(xi, yi; θ);

(2) Complete Case (CC) Estimation Equation: ψcc
h (xi, yi, δi; θ) = δiψh(xi, yi; θ);

(3) IPW Estimation Equation: ψ
ipw
h (xi, yi, δi; θ, φ̂);

(4) EEI Estimation Equation: ψeei
h (xi, yi, δi; θ, φ̂, β̂);

(5) AIPW Estimation Equation: ψ
aipw
h (xi, yi, δi; θ, φ̂, β̂).

To generate a sample of size n = 500 that meets the requirements of the simulation,
we can use the law of total probability and express f (y|x) as follows:

f (y|x) = P(δ = 1|x) f (y|x, δ = 1) + P(δ = 0|x) f (y|x, δ = 0),

where

f (y|x, δ = 0) = f (y|x, δ = 1)× O(x, y)
E(O(x, Y)|x, δ = 1)

.

Under the specified nonrandom missingness mechanism, we have O(x, y) = exp(−φ0 − φ1y)
for the homoscedastic case of f (y|x, δ = 1) = N(µ, σ2

1 ). In this case, we can express the ratio
of the conditional probabilities as follows:

P(δ = 0|x)
P(δ = 1|x) = E(O(x, y)|x, δ = 1) = exp

(
φ0 − φ′0

)
,

where φ′0 = − 1
2σ2

1
(2µσ2

1 φ1 + σ4
1 φ2

1). Thus, we have f (y|x, δ = 0) = N(µ + σ2
1 φ1, σ2

1 ) and

P(δ = 1|x) = 1 + exp(φ0 − φ′0)
−1.

Since x is completely observed, we can draw a sample of size n = 500 from the
mixed distribution of f (y|x). A similar approach can be applied under the heteroscedastic
assumption.

It should be noted that the response variable y originates from a distribution with
a complex, mixed form. As a result, discussing the true values of the parameters (θ0, θ1)
poses a formidable challenge. This complexity renders it difficult to assess the performance
of the estimation methods using conventional measures such as bias or the root mean
squared error (RMSE). Consequently, we introduce the following approxmate relative
evaluation metrics:

ARE(Method∗, Full) =
ARMSE(Method∗)

ARMSE(Full)
,

where ARMSE(Method∗) =
√

SD(Method∗)2 + (Mean(Method∗)−Mean(Full))2.
Tables 1 and 2 summarize the mean and variance of the five coefficient estimates at

different quantiles based on 1000 Monte Carlo simulations under the homoscedastic case (a)
and heteroscedastic case (b) of f (y|x, δ = 1). From the estimation results, it can be observed
that the coefficient estimates based on complete observations have larger bias compared
to the other estimation methods. When the working model f (y|x, δ = 1; β) was correctly
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specified, the proposed imputation estimates yielded smaller variances compared to the
IPW estimates. In this case, the performance of the AIPW estimates was similar to the IPW
estimates. Comparing the results at different quantiles, it can be seen that the variances
of the five estimation methods at the 0.5 quantile were smaller than those at the 0.25 and
0.75 quantiles, which is due to the larger sample size at the central quantile compared to the
tails. Under the homoscedastic assumption, the variances of the estimates at the 0.25 and
0.75 quantiles were similar. Under the existing missing mechanism, as the value of the
response variable y increased, the missing propensity also increased, thereby indicating
higher missing rates at the upper quantiles. Consequently, the estimation variances of the
IPW and AIPW estimates were higher at the high quantile of τ = 0.75 compared to the low
quantile of τ = 0.25. However, proper imputation could greatly improve the estimation
efficiency at the high quantile of τ = 0.75. This improvement was more pronounced under
the heteroscedastic model. These results demonstrate that the imputation estimates are
nearly unbiased when the working model is correctly specified and have higher estimation
efficiency compared to the IPW and AIPW estimates.

Table 1. Monte Carlo mean, standard deviation (SD), and approximate relative performance (ARE)
of the five methods for error term (a).

FULL CC EEI IPW AIPW

θ0 θ1 θ0 θ1 θ0 θ1 θ0 θ1 θ0 θ1

τ = 0.25 Mean −1.606 1.009 −1.652 1.002 −1.598 1.008 −1.605 1.008 −1.608 1.008
SD 0.054 0.105 0.063 0.123 0.049 0.095 0.062 0.121 0.061 0.122

ARE 1.000 1.000 1.445 1.173 0.919 0.905 1.148 1.152 1.130 1.162
τ = 0.5 Mean −0.950 1.010 −0.999 1.002 −0.953 1.008 −0.950 1.009 −0.950 1.008

SD 0.049 0.098 0.057 0.116 0.044 0.089 0.057 0.117 0.057 0.118
ARE 1.000 1.000 1.534 1.186 0.900 0.908 1.163 1.194 1.163 1.204

τ = 0.75 Mean −0.298 1.009 −0.349 1.001 −0.310 1.008 −0.297 1.008 −0.293 1.008
SD 0.052 0.107 0.061 0.126 0.046 0.097 0.063 0.130 0.062 0.131

ARE 1.000 1.000 1.529 1.180 0.914 0.907 1.212 1.215 1.196 1.224

Table 2. Monte Carlo mean, standard deviation (SD), and approximate relative performance (ARE)
of the five methods for error term (b).

FULL CC EEI IPW AIPW

θ0 θ1 θ0 θ1 θ0 θ1 θ0 θ1 θ0 θ1

τ = 0.25 Mean −1.503 1.004 −1.534 1.004 −1.492 1.005 −1.502 1.006 −1.507 1.005
SD 0.045 0.099 0.052 0.112 0.041 0.088 0.051 0.109 0.051 0.110

ARE 1.000 1.000 1.345 1.131 0.943 0.889 1.134 1.101 1.137 1.111
τ = 0.5 Mean −0.968 1.004 −1.000 0.0997 −0.970 1.003 −0.968 1.004 −0.968 1.003

SD 0.040 0.092 0.046 0.104 0.036 0.081 0.046 0.105 0.047 0.106
ARE 1.000 1.000 1.401 1.133 0.901 0.881 1.150 1.141 1.175 1.152

τ = 0.75 Mean −0.433 1.006 −0.467 0.996 −0.447 1.007 −0.432 1.007 −0.428 1.006
SD 0.044 0.101 0.051 0.119 0.039 0.090 0.053 0.124 0.052 0.123

ARE 1.000 1.000 1.392 1.182 0.942 0.891 1.205 1.228 1.187 1.218

4.2. Simulation 2: Misspecification of the Working Model

In practical situations, the true data generation mechanism is unknown, and it is
challenging to accurately specify the working model f (y|x, δ = 1; β) for the observed data.
In this study, we investigated the finite sample properties of the proposed imputation
estimator and calibration estimator under the misspecification of the working model. The
simulation model includes two covariates: X1 ∼ N(0, 1) and X2 ∼ Exp(0.2). Given the
covariates, the response variable Y is generated as follows:

Y = 1 + X1 + X2 + 0.25(2 + X2)ε,
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where ε ∼ N(0, 1), and X1, X2, and ε are mutually independent.
In this simulation setup, the error term distribution of Y is heteroscedastic. The missing

data mechanism for Y is nonrandom and follows

P(R = 1|X, Y) =
1

1 + exp(−0.1 + 0.5X2
1 + 0.15Y)

.

The average observed rate in the model was approximately 73%, and X2 served as an
instrumental variable. We generated a random sample of size n = 500 denoted as
(X i, Yi, δi) : i = 1, . . . , n. For the aforementioned simulation model, we consider the follow-
ing quantile regression model:

Qτ(Y|X) = (1, X>)θ0(τ),

where θ0(τ) = (1 + 0.5Qτ(ε), 1, 1 + 0.25Qτ(ε))>.
Under the aforementioned data generating mechanism, obtaining an explicit expres-

sion for f (Y|X, δ = 1; β) is challenging and requires specifying the working model based
on the observed data. In this simulation model, we consider two possible working models:
(1) N(µ̂(X), σ̂2) and (2) N(µ̂(X), (0.5+ 0.25X2)

2). Figures 1 and 2 illustrate that the residual
distribution of the working model (1) exhibited peakedness, thus violating the normality
assumption and indicating model misspecification. In contrast, working model (2) took
into account the correct specification of the variance.

Figure 1. Histogram of the residual distribution for the parameter working model N(µ̂(X), σ̂2).
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Figure 2. QQ plot of the residual distribution for the parameter working model N(µ̂(X), σ̂2).

The estimation results of the five types of quantile regression estimates obtained from
1000 random simulations at different quantiles are summarized in Tables 3–5. These tables
include two types of imputation estimates based on the parameter working models (1)
and (2), as well as the corresponding AIPW estimates based on the parameter working
models (1) and (2), and the combined estimation equations. The results show that the
imputation estimates based on the erroneously specified working model (1) exhibited
significant estimation bias. On the other hand, although the working model (2) was also
misspecified, it took into account the heteroscedasticity in the conditional distribution of the
response variable, thus resulting in smaller estimation bias compared to model (1) and better
estimation performance. These findings highlight the sensitivity of imputation methods to
misspecified working models. Across the three quantiles, the IPW estimates performed
well, thus indicating the robustness of the semiparametric response assumption. Even
in the presence of misspecified parameter working models, both of the AIPW estimates
had similar median absolute deviations to IPW, which were significantly smaller than the
misspecified imputation estimates, thereby demonstrating the robustness of the AIPW
estimation. Comparing the two AIPW estimates, it is observed that the estimate based on
the correctly specified parameter working model had smaller estimation bias and higher
estimation efficiency.
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Table 3. The bias (Bias), standard deviation (SD), and median absolute deviation (MAD) of the five
types of quantile regression coefficient estimates at τ = 0.25.

Method
θ0 θ1 θ2

Bias SD MAD Bias SD MAD Bias SD MAD

full −0.021 0.100 0.067 0.002 0.069 0.046 0.004 0.038 0.026
cc 0.001 0.122 0.086 −0.003 0.079 0.052 0.020 0.041 0.032

ipw −0.039 0.149 0.081 −0.001 0.103 0.053 0.006 0.065 0.029
eei.0 −0.362 0.158 0.358 0.019 0.098 0.067 0.047 0.044 0.049
eei.1 −0.003 0.137 0.093 0.002 0.082 0.054 0.003 0.043 0.029

aipw.0 −0.026 0.120 0.086 0.002 0.081 0.054 0.005 0.041 0.028
aipw.1 −0.024 0.115 0.082 0.002 0.078 0.052 0.005 0.040 0.027

Table 4. The bias (Bias), standard deviation (SD), and median absolute deviation (MAD) of the five
types of quantile regression coefficient estimates at τ = 0.5.

Method
θ0 θ1 θ2

Bias SD MAD Bias SD MAD Bias SD MAD

full 0.001 0.087 0.056 0.001 0.064 0.044 0.001 0.034 0.022
cc 0.157 1.089 0.076 −0.039 0.398 0.048 −0.003 0.151 0.027

ipw 0.029 0.103 0.067 −0.017 0.395 0.047 −0.001 0.065 0.024
eei.0 −0.089 0.118 0.104 0.006 0.076 0.048 0.013 0.039 0.026
eei.1 0.007 0.127 0.085 0.001 0.077 0.049 0.001 0.039 0.026

aipw.0 −0.008 0.159 0.066 0.001 0.110 0.047 0.002 0.037 0.025
aipw.1 −0.002 0.124 0.069 0.003 0.079 0.046 0.002 0.036 0.024

Table 5. The bias (Bias), standard deviation (SD), and median absolute deviation (MAD) of the five
types of quantile regression coefficient estimates at τ = 0.75.

Method
θ0 θ1 θ2

Bias SD MAD Bias SD MAD Bias SD MAD

full 0.019 0.095 0.063 0.001 0.072 0.048 −0.001 0.037 0.025
cc 0.048 0.117 0.082 −0.003 0.080 0.054 0.009 0.041 0.029

ipw 0.011 0.246 0.070 0.002 0.079 0.051 0.001 0.049 0.026
eei.0 0.092 0.127 0.106 −0.003 0.084 0.055 −0.009 0.041 0.029
eei.1 0.019 0.131 0.084 −0.001 0.081 0.054 −0.002 0.0419 0.029

aipw.0 −0.047 0.510 0.073 0.020 0.361 0.052 0.001 0.072 0.026
aipw.1 −0.017 0.424 0.072 0.006 0.248 0.052 −0.001 0.064 0.025

5. Real Data Application

We applied our proposed method to the data of 2139 HIV-infected patients enrolled
in the ACTG175 study [27]. The ACTG175 study evaluated the efficacy of monotherapy
or combination therapy in HIV-infected patients with CD4 cell counts between 200 and
500 cells/mm³. Following the studies by Davidian et al. [28] and Zhang et al. [29], we
categorized all the treatment regimens into two groups. The first group consisted of the
standard zidovudine (ZDV) monotherapy arm, while the second group included three
newer treatment arms: ZDV and dual nucleoside analogue (ddl), ZDV and zalcitabine
(ddC), and ddl monotherapy. The first group comprised 532 subjects, while the second
group comprised 1697 subjects. We investigated the effect of the treatment arm (trt, 0 = ZDV
monotherapy only) on the τ quantile of the CD4 cell count (CD496) measured at baseline and
adjusted for the baseline CD4 cell count (CD40) and other baseline covariates, including
age, weight, race (0 = Caucasian), gender (0 = female), history of reverse transcriptase
inhibitor use (0 = no), and whether the subject discontinued treatment before 96 weeks
(offtrt, 0 = no).
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Consider fitting a linear quantile regression model as follows:

Qτ(CD496|X) =β1(τ) + β2(τ)trt + β3(τ)CD40 + β4(τ)age + β5(τ)weight

+ β6(τ)race + β7(τ)gender + β8(τ)history + β9(τ)offtrt.

The dataset used in this study is sourced from the R package “speff2trial”. The study
population consists of 1522 Caucasian individuals and 617 non-Caucasian individuals,
with 1171 males and 368 females. The average age of the participants is 35 years, with a
standard deviation of 8.7 years. Among the participants, 1253 individuals had a history of
antiretroviral therapy, and 776 individuals discontinued treatment before the 96th week.

Due to attrition during the study period, approximately 37% of the participants have
missing values for the variable CD496. Although complete measurements of other variables
related to CD496, such as baseline CD4 and CD8 cell counts CD40 and CD80, as well as
CD4 and CD8 cell counts at 20± 5 weeks CD420 and CD820, were obtained at baseline
and follow-up visits, these variables may not fully explain the propensity for participants
to drop out. In other words, we cannot assume that the missingness of CD496 is random.
Therefore, in our analysis, we consider a more comprehensive semiparametric nonrandom
missingness mechanism:

P(R = 1|X, S, Y) = π(S, Y) =
1

1 + exp(g(S) + γY)
,

where S represents the set of variables associated with attrition, and g(S) is a function
capturing the relationship between these variables and the missingness indicator R.

Figure 3 displays the histograms of the observed CD496 and its logarithm. From the
figure, it can be observed that the conditional distribution f (y|X, R = 1) of observed CD496
is right-skewed. However, the logarithmic transformation did not result in improved
symmetry, thus indicating that the normality assumption did not hold. In our analysis,
we can assume that CD496 follows a truncated normal distribution with left truncation at
0, where its mean is primarily determined by the influence of eight covariates and three
auxiliary variables.

The parameters β in the working model f (y|X, R = 1; β) are estimated using the trun-
cation regression model in R package "truncreg". The parameter γ in π(S, Y) is estimated
using the method of the profile generalized method of moments (GMMs).

Figures 4 and 5 illustrate the normality properties of the residuals from the truncated
regression working model. Visually, the distribution of residuals appears to be symmetric.
The calculated sample skewness is 0.05, thus indicating a slight deviation from perfect
symmetry. The Q-Q plot reveals that the distribution of residuals has a kurtosis less than 3.
Further computation reveals a kurtosis of 2.11, thus indicating that the residual distribution
is flatter than a standard normal distribution.

Table 6 presents the estimates of the quantile regression coefficients and corresponding
95% confidence intervals at the τ = 0.25, 0.5, 0.75 quantile levels. The four estimation
methods considered include complete case (CC) estimation, inverse probability weighting
(IPW) estimation, multiple imputation (MI) estimation, and augmented inverse probability
weighting (AIPW) estimation. The MI estimation is based on averaging over L = 20 ran-
domly generated imputations. Confidence intervals for the coefficient estimates were
obtained using the bootstrap method with B = 200 resampling iterations.
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Figure 3. Histogram of complete observed data CD496 in ACTG175.

Figure 4. Histogram of residuals from the parameterized working model.
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Figure 5. Q-Q plot of residuals from the parameterized working model.

From Table 6, it can be observed that for the three given quantile levels and four
estimation methods, patients receiving the three new combined treatment methods had
significantly higher CD4 cell counts at 96± 5 weeks compared to the traditional treatment
method. In other words, the new treatment methods had significantly slowed down the
progression of AIDS compared to the traditional method. Comparing the four estimation
methods, it is evident that the complete case estimation overestimated the performance
of the treatment group. The results of the IPW estimation and AIPW estimation were
similar and higher than the imputation estimation. When comparing the treatment effects
at different quantile levels, both the IPW estimation and imputation estimation reflected a
decreasing trend in treatment effect from the 0.25th to the 0.75th quantile. Although the
AIPW estimation and complete case estimation did not show a similar trend, the coefficient
estimates of the AIPW estimation also indicate a more significant improvement in treatment
effect for patients at lower quantiles.

Upon examining the effects of the other covariates, it is found that for all four estima-
tion methods, the baseline CD4 level CD40 had a positive impact on the CD4 cell count
at 96± 6 weeks, while patients with a history of antiretroviral therapy or early treatment
discontinuation exhibited poorer CD4 cell levels at 96± 5 weeks. In comparison to the
covariates directly related to the disease progression mentioned above, the effects of age,
weight, race, gender, and other covariates on the CD4 cell count at 96± 6 weeks were
minimal. The impact directions and significance obtained from different methods were
also not consistent. Therefore, although these variables needed to be considered in the
modeling process, conclusions regarding their effects should be drawn with caution.
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Table 6. Analysis results of the ACTG175 dataset.

Covariate
AIPW Estimator IPW Estimator EEI Estimator CC Estimator

Est CI Est CI Est CI Est CI

τ = 0.25
intercept −0.527 (−0.576, −0.478) −0.493 (−0.656, −0.362) −0.528 (−0.708, −0.416) −0.509 (−0.671, −0.386)

age −0.001 (−0.019, 0.021) 0.001 (−0.058, 0.056) 0.091 (0.029, 0.141) −0.006 (−0.061, 0.059)
wtkg 0.007 (−0.012, 0.026) 0.029 (−0.025, 0.083) −0.147 (−0.198, −0.085) 0.031 (−0.025, 0.091)
race −0.057 (−0.091, −0.022) −0.089 (−0.218, 0.026) −0.056 (−0.152, 0.032) −0.092 (−0.204, 0.027)

gender −0.002 (−0.042, 0.037) −0.061 (−0.148, 0.075) 0.024 (−0.079, 0.176) −0.057 (−0.131, 0.076)
history −0.231 (−0.266, −0.197) −0.234 (−0.349, −0.142) −0.216 (−0.293, −0.123) −0.227 (−0.331, −0.134)
offtrt −0.549 (−0.584, −0.513) −0.528 (−0.716, −0.416) −0.399 (−0.449, −0.268) −0.553 (−0.717, −0.434)
CD40 0.474 (0.459, 0.489) 0.496 (0.446, 0.549) 0.472 (0.416, 0.506) 0.493 (0.442, 0.543)

trt 0.367 (0.332, 0.401) 0.369 (0.254, 0.475) 0.239 (0.168, 0.344) 0.377 (0.261, 0.479)
τ = 0.5

intercept −0.072 (−0.144, −0.001) −0.006 (−0.221, 0.199) 0.025 (−0.128, 0.147) −0.008 (−0.253, 0.180)
age −0.021 (−0.042, −0.001) −0.045 (−0.091, 0.031) 0.134 (0.076, 0.179) −0.051 (−0.091, 0.029)

wtkg −0.005 (−0.024, 0.012) 0.016 (−0.035, 0.091) −0.175 (−0.210, −0.104) 0.016 (−0.032, 0.095)
race −0.084 (−0.121, −0.041) −0.115 (−0.251, 0.017) −0.051 (−0.182, 0.049) −0.134 (−0.246, 0.013)

gender −0.013 (−0.068, 0.042) −0.046 (−0.212, 0.113) −0.002 (−0.116, 0.096) −0.066 (−0.197, 0.108)
history −0.243 (−0.279, −0.208) −0.276 (−0.406, −0.148) −0.217 (−0.285, −0.099) −0.287 (−0.407, −0.160)
offtrt −0.384 (−0.422, −0.345) −0.493 (−0.621, −0.302) −0.321 (−0.383, −0.183) −0.500 (−0.623, −0.331)
CD40 0.509 (0.493, 0.529) 0.531 (0.481, 0.597) 0.523 (0.492, 0.571) 0.517 (0.478, 0.585)

trt 0.372 (0.329, 0.415) 0.366 (0.254, 0.524) 0.231 (0.136, 0.306) 0.385 (0.261, 0.530)
τ = 0.75
intercept 0.456 (0.397, 0.515) 0.553 (0.319, 0.721) 0.591 (0.506, 0.896) 0.547 (0.328, 0.692)

age 0.037 (0.013, 0.059) 0.005 (−0.051, 0.068) 0.181 (0.119, 0.223) 0.009 (−0.051, 0.069)
wtkg 0.026 (0.004, 0.047) 0.045 (−0.009, 0.102) −0.163 (−0.207, −0.106) 0.046 (−0.007, 0.106)
race −0.122 (−0.158, −0.087) −0.182 (−0.291, −0.057) −0.095 (−0.131, 0.068) −0.188 (−0.289, −0.056)

gender 0.018 (−0.029, 0.066) −0.039 (−0.183, 0.114) 0.041 (−0.205, 0.132) −0.037 (−0.195, 0.084)
history −0.207 (−0.242, −0.173) −0.250 (−0.350, −0.139) −0.221 (−0.306, −0.109) −0.255 (−0.348, −0.143)
offtrt −0.214 (−0.251, −0.177) −0.403 (−0.559, −0.230) −0.226 (−0.358, −0.114) −0.457 (−0.579, −0.266)
CD40 0.557 (0.536, 0.577) 0.566 (0.514, 0.674) 0.539 (0.489, 0.589) 0.559 (0.505, 0.649)

trt 0.283 (0.235, 0.330) 0.316 (0.181, 0.438) 0.142 (0.118, 0.179) 0.318 (0.203, 0.447)
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6. Discussion

In this study, we address the bias in quantile regression estimates by constructing im-
putation and AIPW estimation equations, with both involving the estimation of conditional
means under nonrandom missingness. Many existing methods rely on kernel regression
to estimate conditional means. However, nonparametric estimation methods may suffer
from the curse of dimensionality when the dimension of the covariates is high. Paik and
Larsen [19] proposed using importance resampling to obtain Monte Carlo estimates of
conditional means, and Song et al. [21] further applied this method to estimation equations.
In this study, we extend these methods to quantile regression and overcome the theoretical
and computational challenges caused by the nonsmoothness of the checking function in
classical quantile regression by employing convolution smoothing.

Common parameter working models are based on linear regression for observed
data. Song et al.’s [21] simulation results showed that model misspecification does not
lead to estimation bias. However, their simulation study was based on a regression model
that satisfied the Gauss–Markov assumption, with missing response variables following
a normal distribution with homoscedasticity concerning the covariates. Misspecification
was reflected in the estimation of the mean or location variables. However, the advantages
of quantile regression are more evident in situations involving skewness, heavy tails, and
heteroscedasticity. In this study, our simulation results under heteroscedasticity showed
that imputation estimation based on the assumption of a linear regression working model
leads to significant estimation bias, while the AIPW estimation equation can mitigate the
impact of model misspecification. We also provide theoretical proof of the consistency of
AIPW estimation.

Our simulation results demonstrate that, under the ideal scenario of correctly specified
parameter working models, the imputation estimator is more efficient than the IPW and
AIPW estimators. The AIPW estimator based on the correctly specified model was found
to be more efficient than that based on the misspecified model. Therefore, in practical
applications, it is crucial to appropriately specify the parameter working model based on
the observed data. Fortunately, the effectiveness of the model specification can be assessed
using various methods such as Q-Q plots and histograms. For the observed response
conditional distributions that do not conform to the linear regression assumption, a Box–
Cox transformation can be applied to approximate a normal parameter working model.
If such a parameter working model is difficult to obtain, the AIPW estimator proposed
in this study can still provide relatively reliable estimates. This is because the proposed
response mechanism model is semiparametric and offers certain flexibility. However, the
response model constructed in this study does not consider the interaction effects between
covariates X and the response variable Y or the potential nonlinear effects of the response
variable Y on the missingness propensity.
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Appendix A

Appendix A.1. Proof of Lemma 1

E{ψh(Zi, Yi, θ0)} =E{Zi{Gh(Z>i θ0 −Yi)− τ}}
=E{Zi{G(−εi/h)− τ}}

=E
{

Zi

{∫
u<−εi/h

K(u)du− τ

}}
=E
{

ZiE
{∫

Iεi<−hu(εi)K(u)du− τ
∣∣Zi

}}
=E
{

Zi

{∫
F(−hu|Zi)K(u)du− τ

}}
.

By assumption (C7), we can utilize a Taylor expansion, thus yielding∫
F(−hu|Zi)K(u)du

=F(0|Zi) +
∫ r

∑
k=1

F(k)(0|Zi)
(−h)rur

r!
K(u)du +

∫
F(r+1)(−h̃u|Zi)

(−h)r+1ur+1

(r + 1)!
K(u)du

=F(0|Zi) +
∫

F(r)(0|Zi)
(−h)rur

r!
K(u)du +

∫
F(r+1)(−h̃u|Zi)

(−h)r+1ur+1

(r + 1)!
K(u)du

=τ +
∫

f (r−1)(0|Zi)
(−h)rur

r!
K(u)du +

∫
f (r)(−h̃u|Zi)

(−h)r+1ur+1

(r + 1)!
K(u)du, h̃ ∈ [0, h].

Thus, we have

E{ZiGh(Z>i θ−Yi)− τ} =(−h)r

r!
E{Zi f (r−1)(0|Zi)}

∫
urK(u)du

+ E[Zi f (r)(−h̃u|Zi)urK(u)du]O(hr+1).

By assumption (C6), we have∥∥∥∥E
[

Zi

{∫
f (r)(−h̃u|Zi)urK(u)du

}]∥∥∥∥ ≤ E
[∫

C(Z)‖Z‖urK(u)du
]
= O(1).

Therefore,

E{ψh(Zi, Yi; θ0)} =
(−h)r

r!
CKE[Zi f (r−1)(0|Zi)] + o(hr).
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Similarly, we have

E{m0
ψh
(Zi; θ0)}

=E[E{ψh(Zi, Yi; θ0)|Zi, δi = 0}]

=E[E{Zi{Gh(Z>i θ0 −Yi)− τ}|Zi, δi = 0}]
=E[E{Zi{Gh(−εi/h)− τ}|Zi, δi = 0}]

=E
[

E
{

Zi

{∫
u<−ε i/h

K(u)du− τ

}
|Zi, δi = 0

}]
=E
[

E
{

Zi

{∫
Iε i<−hu(εi)K(u)du− τ

}
|Zi, δi = 0

}]
=E
[

E
{

Zi

{∫
F(−hu|Zi, δi = 0)K(u)du− τ

}
|Zi, δi = 0

}]
.

Based on the assumptions and the Taylor expansion, we have∫
F(−hu|Zi, δi = 0)K(u)du

=F(0|Zi, δi = 0) +
∫ r

∑
k=1

F(k)(0|Zi, δi = 0)
(−h)rur

r!
K(u)du

+
∫

F(r+1)(−h̃u|Zi, δi = 0)
(−h)r+1ur+1

(r + 1)!
K(u)du

=F(0|Zi, δi = 0) +
∫

F(r)(0|Zi, δi = 0)
(−h)rur

r!
K(u)du

+
∫

F(r+1)(−h̃u|Zi, δi = 0)
(−h)r+1ur+1

(r + 1)!
K(u)du

=F(0|Zi, δi = 0) +
∫

f (r−1)(0|Zi, δi = 0)
(−h)rur

r!
K(u)du

+
∫

f (r)(−h̃u|Zi, δi = 0)
(−h)r+1ur+1

(r + 1)!
K(u)du, h̃ ∈ [0, h].

Notice that
E[E{Zi{F(0|Zi, δi = 0)− τ}|Zi, δi = 0}]

=E
[

ZiE{I(Yi < Z>i θ0)− τ}|Zi, δi = 0
]

=E
[

E{Zi{I(Yi < Z>i θ0)− τ}|Zi, δi = 0}
]

=E{m0
ψ(Zi; θ0)},

which implies

E{m0
ψh
(Zi; θ0)}

=E[E{ψh(Zi, Yi; θ0)|Zi, δi = 0}]

=E{m0
ψ(X i; θ0)}+

(−h)r

r!
E{Zi f (r−1)(0|Zi, δi = 0)}

∫
urK(u)du

+ E[Zi{ f (r)(−h̃u|Zi, δi = 0)urK(u)du}]O(hr+1).

Under the assumption conditions, we have∥∥∥∥E
[

Zi

{∫
f (r)(−h̃u|Zi, δi = 0)urK(u)du

}]∥∥∥∥ ≤ E
[∫

C(Z)‖Z‖urK(u)du
]
= O(1),

which implies

E{m0
ψh
(Zi; θ0)} = E{m0

ψ(Zi; θ0)}+
(−h)r

r!
CKE[Zi f (r−1)(0|Zi, δi = 0)] + o(hr).
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Appendix A.2. Proof of Lemma 2
To prove (1), we can perform a simple calculation. We have

1√
n

n

∑
i=1

ψ
(1)
hi (θ0, β̂, γ̂) =

1√
n

n

∑
i=1

δiψh(Zi, Yi; θ0) + (1− δi)m̂0
ψh
(Zi; θ0, β̂, γ̂)

=
1√
n

n

∑
i=1

δiψh(Zi, Yi; θ0) + (1− δi)m0
ψh
(Zi; θ0, β0, γ0)

+
1√
n

n

∑
i=1

(1− δi){m̂0
ψh
(Zi; θ0, β0, γ0)−m0

ψh
(Zi; θ0, β0, γ0)}

+
1√
n

n

∑
i=1

(1− δi){m̂0
ψh
(Zi; θ0, β̂, γ̂)− m̂0

ψh
(Zi; θ0, β0, γ0)}

=
1√
n

n

∑
i=1

δiψh(Zi, Yi; θ0) + (1− δi)m0
ψh
(Zi; θ0, β0, γ0)

+
1√
n
(1− δi)

{
∂m̂0

ψh
(Zi; θ0, β∗, γ∗)

∂β>

}>
(β̂− β0)

+
1√
n
(1− δi)

{
∂m̂0

ψh
(Zi; θ0, β∗, γ∗)

∂γ

}>
(γ̂− γ0) + op(1)

=
1√
n

n

∑
i=1

Ii1 +
1√
n

n

∑
i=1

Ii2 +
1√
n

n

∑
i=1

Ii3 + op(1).

Based on the fact that E{ψh(Zi, Yi; θ0)} = O(hr) and

E{m0
ψh
(Zi; θ0, β0, γ0)} = E{m0

ψ(Zi; θ0, β0, γ0)}+ O(hr), (A1)

we have
EIi1 = E{ψh(Zi, Yi; θ0)} = O(hr).

Additionally, we have

EI2
i2 =E

[
ZiZ>i {δiGh(Z>i θ0 −Yi) + (1− δi)E{Gh(Z>i θ0 −Yi)|Zi, δi = 0}}⊗2

]
,

According to the assumptions, as n→ ∞,

lim
nh2r→0

EI2
i1 =E

[{
δiψ(Zi, Yi; θ0) + (1− δi)m0

ψ(Zi; θ0)
}⊗2

]
=E
[
π(X i, Yi)ψ(Zi, Yi; θ0)

⊗2 + (1− π(X i, Yi))m0
ψ(Zi; θ0)

⊗2
]

:=A1,

thus yielding
1√
n

n

∑
i=1

Ii1
d→ N(0, A1).

For Ii2, we have

1√
n

n

∑
i=1

Ii2 =
1
n

n

∑
i=1

(1− δi)

{
∂m̂0

ψh
(Zi; θ0, β∗, γ∗)

∂β>

}>√
n(β̂− β0)

=
1
n

n

∑
i=1

(1− δi)

{
∂m0

ψh
(Zi; θ0, β∗, γ∗)

∂β>

}>√
n(β̂− β0) + op(1).
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where

lim
nh2r→0

E

(1− δi)

{
∂m0

ψh
(Zi; θ0, β∗, γ∗)

∂β>

}>
=E{(1− δi)Cov0(ψ(Zi, Yi; θ0), s(Zi, Yi; β0)|Zi)}+ op(1).

Let H1 = E{(1− δi)Cov0(ψ(Zi, Yi; θ0), s(Zi, Yi; β0)|Zi)}. By the assumption, we have

β̂− β0 = Op(n−1/2) and
√

n(β̂− β0)
d→ N(0, Σ). Therefore, as n→ ∞,

1√
n

n

∑
i=1

Ii2
d→ N(0, H1ΣH>1 ).

Similarly, let H2 = E{(1− δi)Cov0(ψ(Zi, Yi; θ0), Y|Zi)}. According to Shao [5], we have

γ̂− γ0 = Op(n−1/2) and
√

n(γ̂− γ0)
d→ N(0, σ2). Thus, as n→ ∞,

1√
n

n

∑
i=1

Ii3
d→ N(0, σ2H⊗2

2 ).

It can be shown that E{Ii1 + Ii2} = op(1). We have(
1√
n

n

∑
i=1

Ii1

)
·
(

1√
n

n

∑
i=1

Ii2

)
=

1
n

n

∑
i=1

Ii1 Ii2 +
1
n

n

∑
i 6=j

n

∑
j=1

Ii1 Ij2.

where

1
n

n

∑
i=1

Ii1 Ii2 =
1
n

n

∑
i=1

ψ
(l)
h (Zi, Yi, δi; θ0, β0, γ0)

{
∂m̂0

ψh
(Zi; θ0, β∗, γ∗)

∂β>

}>
(β̂− β0)

=op(1),

1
n

n

∑
i 6=j

n

∑
j=1

Ii1 Ij2 =
1
n ∑

i 6=j

n

∑
j=1

ψ
(1)
hi (θ0, β0, γ0)

{
∂m0

ψh
(Z j; θ0, β0, γ0)

∂β>

}>
(β̂− β0)

+ op(n−1/2).

For i 6= j, ψ
(1)
hi (θ0, β0, γ0) and

{
∂m0

ψh
(Z j ;θ0,β0,γ0)

∂β>

}
are independent; therefore,

E
[
ψ
(1)
hi (θ0, β0, γ0)

]
= O(hr).

E

{∂m0
ψh
(Z j; θ0, β0, γ0)

∂β>

}>(β̂− β0) = Op(n−1/2).

By the assumption, we have 1
n ∑n

i 6=j ∑n
j=1 Ii1 Ij2 = (n− 1)O(hr)Op(n−1/2) = Op(n1/2hr) =

op(1). Hence, we can conclude that
(

1√
n ∑n

i=1 Ii1

)
·
(

1√
n ∑n

i=1 Ii2

)
= op(1), which implies

Cov(
1√
n

n

∑
i=1

Ii1,
1√
n

n

∑
i=1

Ii2) = o(1).

Similarly, we can show that Cov
(

1√
n ∑n

i=1 Ii1, 1√
n ∑n

i=1 Ii3

)
= o(1). Consequently,

Cov(
1√
n

n

∑
i=1

Ii1,
1√
n

n

∑
i=1

(Ii2 + Ii3)) = o(1).
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To establish the asymptotic properties of
(

1√
n ∑n

i=1 Ii2

)
·
(

1√
n ∑n

i=1 Ii3

)
, we employ

Taylor expansions, thus yielding the following:

√
n(γ̂− γ0) =

1√
n

n

∑
i=1

(γ0) + op(1),
√

n(β̂− β0) =
1√
n

n

∑
i=1

Ψi(β0) + op(1).

Consequently, as n→ ∞, we have

1√
n
(Ii2 + Ii3)

d→ N(0, B1),

where B1 := Var(H1Ψ(β0) + H2Φ(γ0)). Furthermore, we obtain

1√
n

n

∑
i=1

ψ
(1)
hi (θ0, β̂, γ̂)

d→ N(0, T1),

where T1 = A1 + B1.
To investigate the asymptotic properties of 1√

n ∑n
i=1 ψ

(2)
hi (θ0, β̂, γ̂), we have

1√
n

n

∑
i=1

ψ
(2)
hi (θ0, β̂, γ̂)

=
1√
n

n

∑
i=1

ψ
(2)
hi (θ0, β0, γ0)

+
1√
n

n

∑
i=1

{
δi

π(X i, Yi; ĝγ0 , γ0)
− δi

π(X i, Yi)

}{
ψh(Zi, Yi; θ0)−m0

ψh
(Zi; θ0)

}
+

1√
n

n

∑
i=1

{
δi

π(X i, Yi; ĝγ̂, γ̂)
− δi

π(X i, Yi; ĝγ0 , γ0)

}{
ψh(Zi, Yi; θ0)−m0

ψh
(Zi; θ0)

}
+ op(1)

=
1√
n

n

∑
i=1

Li1 +
1√
n

n

∑
i=1

Li2 +
1√
n

n

∑
i=1

Li3 + op(1).

Similar to the previous proof, as n→ ∞, we have

1√
n

n

∑
i=1

Li1
d→ N(0, A2),

where A2 = E
{

π(X i, Yi)
−1(ψ(Zi, Yi; θ0)−m0

ψ(Zi; θ0))
⊗2
}
+ E

{
m0

ψ(Zi; θ0)
⊗2
}

.

To analyze the asymptotic behavior of 1√
n Li2, we have

1√
n

Li2 =
1√
n

n

∑
i=1

{
1− δi

π(X i, Yi)

}{
E
{

ψh(Zi, Yi; θ0)−m0
ψh
(Zi; θ0)|X i, δi = 0

}}
+ op(1)

=op(1).

According to the analysis, we can conclude that 1√
n Li2 converges to zero in probability, i.e.,

1√
n Li2 = op(1).

To establish the asymptotic properties of 1√
n ∑n

i=1 Li3, we have
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1√
n

n

∑
i=1

Li3

=
1√
n

n

∑
i=1

δi
∂π−1(X i, Yi; ĝγ, γ)

∂γ

{
ψh(Zi, Yi; θ0)−m0

ψh
(Zi, θ0)

}
(γ̂− γ0)

=
1√
n

n

∑
i=1

δi

{
ψh(Zi, Yi; θ0)−m0

ψh
(Zi, θ0)

}
exp(−ĝγ0(X i) + γ0Yi){Yi − m̂0

Y(X i; γ0)}(γ̂− γ0)

=
1√
n

n

∑
i=1

δiO(X i, Yi)
{

ψh(Zi, Yi; θ0)−m0
ψh
(Zi, θ0)

}
{Yi −m0

Y(X i; γ0)}(γ̂− γ0) + op(1)

=:H3
√

n(γ̂− γ0) + op(1),

where H3 = E
{
(1− δ)(Y−m0

Y(X))(ψ(Z, Y; θ0)−m0
ψ(Z; θ0))

}
.

According to the Slutzky theorem, we have

1√
n

n

∑
i=1

Li3
d→ N(0, B2),

where B2 = Var(H3Φ(γ0)). Similarly to the previous proof, it can be shown that

Cov(
1√
n

n

∑
i=1

Li1,
1√
n

n

∑
i=1

Li3) = op(1),

which implies that, as n→ ∞,

1√
n

n

∑
i=1

ψ̂
(2)
hi (θ0, β̂, γ̂)

d→ N(0, T2),

where T2 = A2 + B2.
To prove (2), we first establish the asymptotic property of 1

n ∑n
i=1 ψ̂

(1)
hi (θ0, β̂, γ̂)⊗2. By

the law of large numbers and the fact that γ̂− γ0 = op(1) and β̂− β0 = op(1), we have

1
n

n

∑
i=1

ψ̂
(1)
hi (θ0, β̂, γ̂)⊗2 =

1
n

n

∑
i=1

ψ
(1)
hi (θ0, β0, γ0)

⊗2 + op(1).

As n→ ∞, under the assumption, we have

lim
nh2r→0

E
{[

δiψh(Zi, Yi; θ0) + (1− δi)m0
ψh
(Zi; θ0)

]⊗2
}

= lim
nh2r→0

E
[
δiψh(Zi, Yi; θ0)

⊗2 + (1− δi)m0
ψh
(Zi; θ0)

⊗2
]

+ lim
nh2r→0

E
[
2δi(1− δi)ψh(Zi, Yi; θ0)m0

ψh
(Zi; θ0)

]
=E
[
δiψ(Zi, Yi; θ0)

⊗2 + (1− δi)m0
ψ(Zi; θ0)

⊗2 + 2δi(1− δi)ψ(Zi, Yi; θ0)m0
ψ(Zi; θ0)

]
=E
[
δiψ(Zi, Yi; θ0)

⊗2 + (1− δi)m0
ψ(Zi; θ0)

⊗2
]

:=A1.

Therefore,
1
n

n

∑
i=1

ψ̂
(1)
hi (θ0, β̂, γ̂)⊗2 p→ A1.



Mathematics 2023, 11, 4906 26 of 31

Similarly, for 1
n ∑n

i=1 ψ̂
(2)
hi (θ0, β̂, γ̂)⊗2, we have

1
n

n

∑
i=1

ψ̂
(2)
hi (θ0, β̂, γ̂)⊗2 =

1
n

n

∑
i=1

ψ
(2)
hi (θ0, β0, γ0)

⊗2 + op(1).

As n→ ∞, under the assumption, we have

lim
nh2r→0

E

{[
δi

π(X i, Yi)
{ψh(Zi, Yi; θ0)−m0

ψh
(Zi; θ0)}+ m0

ψh
(Zi; θ0)

]⊗2
}

= lim
nh2r→0

E
{[

δi
π(X i, Yi)2 {ψh(Zi, Yi; θ0)−m0

ψh
(Zi; θ0)}⊗2 + {m0

ψh
(Zi; θ0)}⊗2

]}
=E
{

π(X i, Yi)
−1{ψ(Zi, Yi; θ0)−m0

ψ(Zi; θ0)}⊗2 + {m0
ψ(Zi; θ0)}⊗2

}
=A2.

Therefore, we have
1
n

n

∑
i=1

ψ̂
(2)
hi (θ0, β̂, γ̂)

p→ A2.

Next, we prove (3). Note that, for l = 1, 2, we have

E
{

∂

∂θ>
ψ
(l)
hi (θ0, β0, γ0)

}
= E

{
∂

∂θ>
ψh(Zi, Yi; θ0)

}
=E
{

∂

∂θ>
ZiGh(Z>i θ−Yi)

}
= E

{
∂

∂θ>
Zi

∫
I(Yi < Z>i θ0 − uh)K(u)du

}
=E
{

∂

∂θ>
Zi

∫
FY(Z>i θ0 − uh)K(u)du

}
= E

{
Zi

∫
∂

∂θ>
FY(Z>i θ0 − uh)K(u)du

}
=E
{

ZiZ>i
∫

fY(Z>i θ0 − uh)K(u)du
}

= E
{

ZiZ>i fY(Z>i θ0|Zi)
}
+ op(1)

=E
{

ZiZ>i f (0|Zi)
}
+ op(1) := Γ + op(1).

By the law of large numbers, as n→ ∞, we have 1
n ∑n

i=1
∂ψ̂

(l)
hi (θ0,β̂,γ̂)

∂θ>
p→ Γ.

Finally, we demonstrate (4). From

n−1(maxi ‖ψ̂
(l)
hi (θ0, β̂, γ̂)‖)2

n−1 ∑n
i=1 ψ̂

(l)
hi (θ0, β̂, γ̂)⊗2

→ 0,

it can be easily shown that, for l = 1, 2, maxi ‖ψ̂
(l)
hi (θ0, β̂, γ̂)‖ = op(n1/2).

Proof of Theorem 1. By applying the Lagrange multiplier method, we obtain the empirical
log-likelihood ratio function with respect to the parameter vector θ:

R̂(l)(θ) = 2
n

∑
i=1

log{1 + λ>ψ̂
(l)
hi (θ, β̂, γ̂)},

where λ = λ(θ) is the solution to the following equation:

g(λ) =
1
n

n

∑
i=1

ψ̂
(l)
hi (θ, β̂, γ̂)

1 + λ>ψ̂
(l)
hi (θ, β̂, γ̂)

.
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In other words, θ̂ simultaneously satisfies the following two equations:

T(l)
1n (θ, λ) =

1
n

n

∑
i=1

ψ̂
(l)
hi (θ, β̂, γ̂)

1 + λ>ψ̂
(l)
hi (θ, β̂, γ̂)

,

T(l)
2n (θ, λ) =

1
n

n

∑
i=1

{∂ψ̂
(l)
hi (θ, β̂, γ̂)/∂θ>}λ

1 + λ>ψ̂
(l)
hi (θ, β̂, γ̂)

.

Note that T(l)
1n (θ̂, 0) = n−1 ∑n

i=1 ψ̂
(l)
hi (θ̂), and T(l)

2n (θ̂, 0) = 0. Under the assumption
conditions, according to Lemma A.1 in Newey and Smith [30] and Theorem 1(a) in Leng
and Tang Leng [31], it can be shown that θ̂ is a consistent estimator of θ0. By Taylor
expanding T(l)

1n (θ̂, λ) and T(l)
2n (θ̂, λ) around (θ0, 0), we have

0 =T(l)
1n (θ0, 0) +

∂T(l)
1n (θ0, 0)

∂θ>
(θ̂− θ0) +

∂T(l)
1n (θ0, 0)

∂λ
λ + op(un),

0 =T(l)
2n (θ0, 0) +

∂T(l)
2n (θ0, 0)

∂θ>
(θ̂− θ0) +

∂T(l)
2n (θ0, 0)

∂λ
λ + op(un),

where un = ‖θ̂− θ0|+ |λ‖.
The above equations can be rewritten as follows:

(
λ

θ̂− θ0

)
=

− 1
n ∑n

i=1 ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2 1

n ∑n
i=1

∂ψ̂
(l)
hi (θ0,β̂,γ̂)

∂θ>

1
n ∑n

i=1
∂ψ̂

(l)
hi (θ0,β̂,γ̂)

∂θ>
0


−1

(
− 1

n ∑n
i=1 ψ̂

(l)
hi (θ0, β̂, γ̂) + op(un)

op(un)

)
.

Based on the results of Lemma 2, we have

√
n(θ̂(l) − θ0) =

{
− 1

n

n

∑
i=1

∂ψ̂
(l)
hi (θ0, β̂, γ̂)

∂θ>

}−1
1√
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂) + op(1).

Therefore, for l = 1, 2 and as n→ ∞, we have

√
n(θ̂(l) − θ0)

d→ N(0, Γ−1T lΓ
−>).

Proof of Theorem 2. First, we note that ‖λ‖ = Op(n−1/2). Let λ = λ(θ0) = ρu, where
u = λ/‖λ‖ and ‖u‖ = 1. We have

0 =
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

1 + λ(θ)>ψ̂
(l)
hi (θ0, β̂, γ̂)

=
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

1 + ρu>ψ̂
(l)
hi (θ0, β̂, γ̂)

=
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)− 1

n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>uρ

1 + ρu>ψ̂
(l)
hi (θ0, β̂, γ̂)

,
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By multiplying both sides of the equation by u>, we obtain

‖u> 1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)‖

=
1
n

n

∑
i=1

u>ψ̂
(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>uρ

1 + ρu>ψ̂
(l)
hi (θ0, β̂, γ̂)

≥ 1

1 + ρ maxi |ψ̂
(l)
hi (θ0, β̂, γ̂)|

1
n

n

∑
i=1

u>ψ̂
(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>uρ.

Thus, we can conclude that

1
n

n

∑
i=1

u>ψ̂
(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>uρ ≤ ‖u> 1

n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)‖{1 + ρ max

i
‖ψ̂(l)

hi (θ0, β̂, γ̂)‖}.

Based on Lemma 2, we have

ρu>Alu + op(1) ≤ Op(n−1/2)1 + ρop(n1/2).

Consequently, it follows that ρ = Op(n−1/2). Furthermore, we can observe that

max
i
‖λ>ψ̂

(l)
hi (θ0, β̂, γ̂)‖ ≤ ‖λ‖max

i
‖ψ̂(l)

hi (θ0, β̂, γ̂)‖ = Op(n−1/2)op(n1/2) = op(1).

By expanding the function g(λ), we obtain

0 = g(λ) =
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

[
1− λ>ψ̂

(l)
hi (θ0, β̂, γ̂) +

[λ>ψ̂
(l)
hi (θ0, β̂, γ̂)]2

(1 + ηi)3

]

=
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)− λ

1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2

+
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

[λ>ψ̂
(l)
hi (θ0, β̂, γ̂)]2

(1 + ηi)3 ,

where ηi ∈ (0, λ>ψ̂
(l)
hi (θ0, β̂, γ̂)). From the fact that maxi ‖λ>ψ̂

(l)
hi (θ0, β̂, γ̂)‖ = op(1), it

follows that |ξi| = op(1).
Note that ∥∥∥∥∥ 1

n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

[λ>ψ̂
(l)
hi (θ0, β̂, γ̂)]2

(1 + ηi)3

∥∥∥∥∥
≤

maxi ‖ψ̂
(l)
hi (θ0, β̂, γ̂)‖

1−maxi |ξi|
‖λ> 1

n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2λ‖

=op(n1/2)Op(n−1) = op(n−1/2).

Therefore,

λ =

{
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2

}−1{
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

}
+ ζ,

where ‖ζ‖ = op(n−1/2).
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By expanding R̂(l)(θ0) around θ0 using a Taylor series, we obtain

R̂(l)(θ0) =2
n

∑
i=1

[
λ>ψ̂

(l)
hi (θ0, β̂, γ̂)− 1

2
[λ>ψ̂

(l)
hi (θ0, β̂, γ̂)]2 +

1
3
[λ>ψ̂

(l)
hi (θ0, β̂, γ̂)]3

(1 + ξi)3

]

=2λ>
n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)−

n

∑
i=1

λ>ψ̂
(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>λ

+
2
3

n

∑
i=1

[λ>ψ̂
(l)
hi (θ0, β̂, γ̂)]3

(1 + ξi)3 .

Similarly,∣∣∣∣∣ n

∑
i=1

[λ>ψ̂
(l)
hi (θ0, β̂, γ̂)]3

(1 + ξi)3

∣∣∣∣∣ ≤maxi ‖λ>ψ̂
(l)
hi (θ0, β̂, γ̂)‖

1−maxi |ξi|
‖λ>ψ̂

(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>λ‖

=op(1)nOp(n−1) = op(1).

Therefore, we obtain

R̂(l)(θ0) = 2λ>
n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)−

n

∑
i=1

n

∑
i=1

λ>ψ̂
(l)
hi (θ0, β̂, γ̂)ψ̂

(l)
hi (θ0, β̂, γ̂)>λ + op(1).

By combining the previous results, we can express

R̂(l)(θ0) =n

{
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

}>{
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2

}−1

− nζ>
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2ζ + op(1).

Here, nζ> 1
n ∑n

i=1 ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2ζ = nop(n−1/2)op(n−1/2) = op(1). Thus,

R̂(l)(θ0) =n

{
1√
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)

}>{
1
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)⊗2

}−1

·
{

1√
n

n

∑
i=1

ψ̂
(l)
hi (θ0, β̂, γ̂)>

}
+ op(1).

Based on the results (1) and (2) of Lemma 2, it can be easily demonstrated that, as n
tends to infinity, the asymptotic distribution of R̂(l)(θ0) follows a linear combination of
independent chi-squared random variables:

R̂(l)(θ0)
d→ r(l)1 χ2

1·1 + r(l)2 χ2
1·2 + · · ·+ r(l)q χ2

1·q,

where r(l)i represents the eigenvalues of A−1
l T l . Here, χ2

1·1, χ2
1·2, . . . , χ2

1·q denote q indepen-
dent standard chi-squared distributed random vectors. This completes the proof of the
theorem.
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