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mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen
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Abstract

Charge injection (extraction) at an interface plays a crucial role to organic electron-

ics because this injection (extraction) heavily affects the device performance. One

of the most efficient way to optimize energy barriers of the injection (extraction)

is modifying the work function of electrodes. In this dissertation, we investigate

the modification of work function of Au(111) and Ag(111) induced by the dithiol-

terminated polyethylene glycol (PEG(thiol)) as well as a dependence of the work

function change on different numbers of PEG repeat units.

We find that the work function of the Au(111) is reduced by a monolayer of

PEG(thiol) molecules. Overall, our calculations indicate that the work function

change is mainly induced by (i) the charge rearrangement due to chemisorption and

(ii) the intrinsic dipole moment of the PEG(thiol) monolayer. The magnitude of

the latter contribution noticeably depends on the number of repeat units and, thus,

causes a variation in the reduction of the work function. The oscillatory behavior

reflects a pronounced odd-even effect. As a result, the work function of the metal

electrode would be controlled by considering the odd-even effect.

Unfortunately, the convergence of the self-consistent field iteration is not guar-

anteed for our investigated systems. To make the smooth convergence, a mixing

algorithm, which is applicable to FP-LAPW method, is devised. We add the Kerker

preconditioner as well as further improvements to Pulay’s direct inversion in the it-

erative subspace. Using this method, one can avoid charge sloshing and noise in the

exchange-correlation potential. This method is also implemented in the exciting

code. We observe that the implementation works reliably, and is robust.

In a system used the Ag(111) surface, a structure including two vacancies in

the substrate layer is the most stable. We find the decrease of the work function

of the Ag(111) surface is always presented. Similar to the Au(111) case, the odd-

even effect is revealed, arising from the dipole moment of the molecular layer. On

the contrary, contributions to the work function modification between both metal

surfaces are significantly different due to a reconstruction of the Ag surface as well

as a different adsorption geometry.





Zusammenfassung

Die Ladungsinjektion (-extraktion) an einer Schnittstelle spielt in der organischen

Elektronik eine entscheidende Rolle, da sie die Leistung des Bauelements stark bee-

influsst. Eine der effizientesten Methoden zur Optimierung der Energiebarrieren für

die Injektion ist die Modifikation der Austrittsarbeit der Elektroden. In dieser Dis-

sertation untersuchen wir die Modifikation der Austrittsarbeit von Au(111) durch

dithiol-terminiertes Polyethylenglykol (PEG(thiol)) sowie deren Abhängigkeit von

der Anzahl der PEG-Wiederholungseinheiten.

In beiden Fällen beobachten wir, dass die Austrittsarbeit des Au(111) durch eine

Monoschicht PEG(thiol)-Moleküle reduziert wird. Unsere Berechnungen zeigen,

dass diese Änderung der Austrittsarbeit hauptsächlich durch (i) die Ladungsum-

lagerung aufgrund der Chemisorption und (ii) das intrinsische Dipolmoment der

PEG(thiol)-Monoschicht verursacht wird. Die Größe des letzteren Beitrags hängt

spürbar von der Anzahl der Wiederholungseinheiten ab und bewirkt somit eine Vari-

ation in der Reduktion der Austrittsarbeit. Das oszillatorische Verhalten spiegelt

einen ausgeprägten Odd-Even-Effekt wider. Dadurch kann die Austrittsarbeit der

Metallelektrode unter Berücksichtigung des Odd-Even-Effekts gesteuert werden.

Die Konvergenz der selbstkonsistenten Felditeration für unsere Systeme ist nicht

garantiert. Um die Konvergenz zu verbessern, schlagen wir die Verwendung eines

speziell auf die FP-LAPW-Methode zugeschnittenen Mischalgorithmus vor. Diese

Implementierung hat sich als zuverlässig und robust erwiesen.

In einem auf Ag(111) basierenden System zeigt sich, dass eine Struktur mit

drei Leerstellen in der Substratschicht besonders stabil ist. Dabei ist eine kon-

tinuierliche Abnahme der Austrittsarbeit des Ag(111) feststellbar. Ähnlich wie

beim Au(111) manifestiert sich der Odd-Even-Effekt, der auf das Dipolmoment der

Molekularschicht zurückzuführen ist. Im Gegensatz dazu zeigen die Beiträge zur

Veränderung der Arbeitsfunktion zwischen den beiden Metalloberflächen aufgrund

einer Rekonstruktion der Ag-Oberfläche und unterschiedlicher Adsorptionsgeometrie

signifikante Unterschiede.
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이 학위논문을 나의 가족에게 바칩니다.
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1. Introduction

The interface between an organic material and an electrode plays a crucial role in

the properties of organic devices such as organic light-emitting diodes (OLEDs),

organic photovoltaics (OPVs), and organic field-effect transistors (OFETs) [1, 2].

Sometimes, such devices suffer from poor charge-injection (extraction) which leads

to limited performance [3–6]. In order to improve device performance noticeably,

the corresponding energy barrier should be optimized. To do it, various treatments

have been proposed: typical ways [7] are to dope the organic semiconductor, or to

tune the substrate work function [8].

For the latter approach, the highest occupied molecular orbital (HOMO) of the

organic semiconductor is required to match with the work function of the anode.

Similarly, the difference between the lowest unoccupied molecular orbital (LUMO)

energy level and the cathode needs to be small. For this purpose, it is desirable to

use high- and low-work function materials for anode and cathode, respectively [9].

For instance, one widely uses low work-function metals like Ca, Mg, and Al as

the cathode [10–12]. Unfortunately, these metals cause an unstable performance of

devices due to intense chemical reactions or oxidation by oxygen or water [12, 13].

Other metals like Ag and Au are chemically stable, but one cannot use them directly

as the cathode due to the large energy barriers for charge-injection (extraction)

induced by their high work function. One can overcome this shortcoming by tuning

the electrode work function via an interlayer at the organic/electrode interface [14–

17]. Polymers, metal oxides, inorganic salts, and self-assembled monolayers (SAMs)

are commonly used as the interlayers that lead to modification of the electrode’s

work function by inducing a dipole at the interface [3, 5, 12,18–20].

Recently, experimental works have provided a promising way to improve the

performance of OPVs, OLEDs, and OFETs using polyethylene glycol (PEG) em-

ployed as the interlayer [21–26]. According to experimental studies [21–24,26,27], a

self-generated interlayer is formed by the interaction between PEG-based additives

and electrodes. The additives are blended with the organic semiconductor, and

they can migrate to the interface. This self-generating approach is useful to fabri-
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cate devices. However, since the spontaneously generated interlayer is created at a

buried organic/metal interface, measuring precisely the energy level alignment or its

structure is an experimentally difficult task [27]. A SAM made by PEG molecules

can be an alternative interlayer. One can directly capture electronic and structural

properties at the interface between such a SAM and an electrode. Indeed, SAMs

are able to chemically control the physical properties of the interface. A number

of studies have showed that SAMs consisting of alkanethiols and phenylthiols can

adjust the properties of the electrodes [9, 20, 28–33]. In this context, the questions

arise if the SAM formed by PEG affects the properties of the electrode, and how

mechanism of the interface modification by this SAM works. In this dissertation,

we model dithiol-terminated PEG (PEG(thiol)) adsorbed on an electrode surface,

such as Au(111) and Ag(111), by performing first-principles calculations using all-

electron full-potential code exciting [34]. We investigate the impact of the PEG

molecule as well as its length on the modulation of the electrode’s work function.

In the investigated systems, a self-consistent solution is often hard to achieve

within the DFT simulations because the charge density in the systems strongly fluc-

tuates during a self-consistent field (SCF) iteration due to numerical problems, such

as charge-sloshing [35–42] and noisy potentials in the low-density region [43, 44].

These density oscillations lead to a slow convergence or even a divergence. To

suppress the charge-sloshing instability that stems mainly from the Hartree poten-

tial, one uses a Kerker preconditioner [37] in the mixing schemes, e.g., the Pu-

lay method [45, 46]. This preconditioner leads to a stable SCF cycle. Unfortu-

nately, the mixing methods that utilize the preconditioner are mainly developed for

planewave/pseudopotential methods. Thus, preconditioners for all-electron methods

are still needed. To tackle the numerical problems, we propose a mixing algorithm for

full-potential (FP) all-electron calculations in the linearized augmented planewave

(LAPW) method. We reformulate the Kerker preconditioner in a such way that it

is applicable in FP-LAPW calculations. Furthermore, we implement the modified

Pulay mixing with this preconditioner in the exciting code and investigate its

performance.

Molecular crystals and organic/inorganic systems are often van der Waals (vdW)

bound [48]. For example, the interactions between the adsorbed molecule and the

substrate are mostly governed by the vdW force in the physisorption case. In case

of chemisorption, especially SAMs adsorbed on a substrate system, the vdW force

can play a crucial role for the interface geometry by affecting the molecular tilting

angle as well as the molecular distortion [49, 50]. Thus, one cannot neglect vdW

interactions for obtaining reliable structural features and energies [47,51,52]. How-
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ever, semi-local density-functional theory cannot describe correctly the long-range

electron correlations [53]. Methods therefore are required to reliably capture the

vdW interactions within the DFT framework. For this purpose, various methods

have been proposed [54–63]. A common approach for computing the long-range dis-

persion energy is DFT-D2 proposed by Grimme [54,55]. It corrects the total energy

obtained in a DFT calculation by adding a semi-empirical correction term consist-

ing of a sum over pairwise atomic interactions. The DFT-D2 method sometimes

fails due to the fact that it neglects the effects of different chemical or geometrical

environments surrounding each individual atom. In addition, the method is a semi-

empirical correction and neglects many-body effects. To overcome this problem,

Ambrosetti et al . devised a method beyond the pairwise interactions for a micro-

scopic description of the frequency-dependent polarizability which is termed many-

body dispersion (MBD@rsSCS). [59,61]. This method includes both a non-additive

many-body vdW energy and long-range screening contributions. We implement this

scheme in the exciting code. Afterwards, we employ the MBD@rsSCS and the

semi-empirical method DFT-D2 [55] to our investigated systems.

The outline of this dissertation is given as follows: Chapter 2 starts with a general

description of organic electronics devices, particularly organic light-emitting diodes

(OLEDs). The discussion of the charge injection OLEDs is also presented. Sub-

sequently, theoretical aspects of the interface energetics at metal/organic interfaces

for physisorption and chemisorption cases are presented.

Chapter 3 provides a theoretical background of density-functional theory. At

first, we present the many-body problem. Afterwards, a concept of the density-

functional theory is discussed including the Kohn-Sham equation and approxima-

tions. We discuss mixing methods for quickly converging SCF calculations. In

this chapter, three common mixing approaches are described: linear mixing, Pu-

lay mixing, and multisecant Broyden mixing. Further, we introduce three methods

for including the vdW interactions in the DFT framework: DFT-D2, Tkatchenko-

Scheffler (TS) [57], and MBD@rsSCS methods.

In Chapter 4, we introduce the full-potential linearized augmented planewave

(FP-LAPW) method in detail. First, this chapter explains APW and LAPW basis

sets, and introduces the concept of local orbitals. We then provide the treatment of

the potential and the charge density in the FP-LAPW, followed by the evaluation of

the Hartree potential that can be calculated using the pseudo-charge method. This

method can be also exploited for a new mixing method discussed in Chapter 5.

In Chapter 5, we explain how the proposed mixing algorithms and the MBD@rsSCS

method are adapted to the FP-LAPW and implemented in the exciting code. We
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further give a mathematical perspective used for aforementioned implementations,

and show their performance of with benchmark studies. Firstly, the newly im-

plemented mixing approach and existing methods are tested for the 2×2 Au(111)

surface with a vacancy, and for the Pd(111) surface with 15 atomic layers. Next, we

apply various vdW corrections including the implemented MBD@rsSCS on layered

materials, particularly, graphite and hexagonal boron nitride. We also compare our

results with experimental values as well as benchmarks from other papers.

In Chapter 6, the structural and electronic properties of a layer of PEG(thiol)

molecules adsorbed on Au(111) and Ag(111) are discussed. First, we briefly de-

scribe polyethylene glycol derivatives. An investigation of the work-function change

depending on different numbers of PEG repeat units is given. We analyse the nature

of the work-function change in terms of its contributions: bond dipole, molecular

dipole, and surface-relaxation contributions. For PEG(thiol) on Au(111), we show

how the adsorption structure and work-function modification vary depending on the

choice of the vdW correction. Two different coverage patterns are further compared

to analyze these properties.





Part I

Background



2. Metal/organic interfaces

2.1 Organic electronics: OLEDs

Organic electronics have attracted considerable research interest due to its great

potential for applications, such as organic light emitting diodes (OLEDs), organic

photovoltaics (OPVs), and organic field effect transistors (OFETs). OLEDs are the

most representative organic electronics device. We therefore focus in this section on

OLEDs as an example.

LUMO

HOMO
++

--

Anode CathodeOrganic

EF

EF--++

--

++

E

Figure 2-1: Illustration of an OLED.

Figure 2-1 shows a schematic illustration of an OLED structure. OLEDs com-

prise electrodes and organic semiconducting layers between the electrodes. In this

device, electrons from the cathode are injected into the organic material. Similarly,

hole injection is provided from the anode, where a transparent electrode such as

transparent conducting oxides (TCOs) is commonly used [64]. The injected elec-
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trons and holes create electron-hole pairs, followed by generating a photon after the

recombination process. The photon is emitted through the transparent electrode,

and its energy depends on the difference between the highest occupied molecular or-

bital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the organic

material. These energy levels can be controlled by doping of the organic material

or using a multilayer device structure [65–67].

OLEDs consisting of only one organic layer commonly lead to an inefficient

performance due to an unbalanced charge transport [68, 69], namely, holes in an

organic material typically exhibit a higher mobility than electrons. Therefore, the

holes can be either moved easily toward the opposite electrode without forming

electron-hole pairs, or such pairs are formed near the electrode, causing a carrier

quenching effect. To address this drawback, a multilayered heterojunction structure

including electron- and hole-injection (transport) layers has been considered for

OLEDs [70,71]. Those layers prevent the charge from directly reaching the opposite

electrode.

As mentioned in the introduction, energy levels of the organic material, i.e.,

HOMO and LUMO, should be matched with the work function of adjacent elec-

trode to enhance the device performance. For this purpose, the anode requires high

work function material. Indeed, indium tin oxide (ITO) is widely used as the an-

ode due to high conductivity and transparency properties [72]. Surface treatment

with UV-ozone and oxygen plasma increase the corresponding work function by the

modification of the interfacial composition [72,73]. For the cathode, low work func-

tion materials are desired. Li, Ca, Mg, and Al have a low work function, but they

are chemically very reactive and easily oxidized [12, 13], leading to limited device

performance. An alternative is to introduce a layer between the cathode and the

organic semiconductor, e.g., LiF, NaF, and MgF2 [74–77], to enhance the stability

of the OLEDs by modifying the electrode’s work function.

2.1.1 Charge-injection

A charge-injection barrier ∆b is defined as the energy difference between the Fermi

level of the electrodes and the energy level of the organic material such as HOMO.

A large charge-injection barrier at the interface results in poor efficiency of the de-

vice. The charges can overcome the barrier through thermally assisted tunneling or

electric-field induced tunneling [78]. The injection current density J at the interface

is given without applied field [78,79] by

J ≈ Nµ exp

[
− q∆b

kBT

]
, (2-1)
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and with a field [78,79] by

J ≈ Nµ exp

[
− q∆b

kBT

]{
exp

[
qV

kBT

]
− 1

}
. (2-2)

Here, q, µ, N , and T are the charges, their mobility, density of states, and the

temperature, respectively. kB is the Boltzmann constant. V indicates the applied

voltage. Eqs. 2-1 and 2-2 demonstrate that a small injection-barrier leads to a large

injection current because J depends on ∆b. The charge injection at the interface

can be optimized by increasing the temperature or the electric field. A high energy

consumption, however, is required to produce high temperature or a strong electric

field. Thus, this approach is difficult to apply to the device. Other approaches to

improve the injection are to control the charge-transport properties µ, N , and ∆b.

Unfortunately, the possibilities to tune µ and N are limited because they depend

on the material. Minimizing ∆b, therefore, is the simplest and most efficient way to

improve the charge injection.

2.2 Interface energetics

We can estimate the charge-injection barrier by the difference between the electrode

work function and the energy levels of the organic semiconductor as described in

Sec. 2.1.1. The barrier can be modified by changing the interface properties, e.g., a

metal work-function shift, caused by interface dipole formation [3, 5, 12,19,80].

In Fig. 2-2, the energy levels of a simple metal/organic interface are displayed.

Here, we assume vacuum level alignment for the interface energetics. Evac is the

energy of the vacuum level. One defines the work function of the metal as the energy

difference between Evac and the Fermi level Ef , i.e., Φ = Evac − Ef . The energy

difference between the HOMO and Evac defines the ionization potential (IP), whereas

the difference between the LUMO and Evac corresponds to the electron affinity

(EA). Experimentally, one can measure Φ and IP using ultraviolet photoemission

spectroscopy (UPS) [81]. When Ef is located between the HOMO and LUMO of an

organic semiconductor, the electron- and hole-injection barriers (∆e and ∆h) can be

expressed as

∆e = Φ− EA, (2-3)

and

∆h = IP − Φ, (2-4)

respectively. In the case of the interface without an interface dipole, the energy of the

vacuum level is not shifted. This indicates that the modification of the work function
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LUMO

HOMO

Φ

EF

Evac

Φ𝑚𝑜𝑑

Metal

Δ𝑒

Δℎ

EAIP

Figure 2-2: Schematic energy levels of a metal/organic semiconductor interface,

representing the work function Φ, the vacuum level Evac, Fermi level EF , the ion-

ization potential IP , and the electron affinity EA. ∆e and ∆h are electron- and

hole-injection barriers.

LUMO

HOMO

Φ

EF

Evac

Φ𝑚𝑜𝑑

Metal

Δ𝑒

Δℎ

Δ

IP EA

Figure 2-3: Schematic energy levels of a metal/organic semiconductor interface with

an interface dipole.
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Φmod is equivalent to Φ. In fact, vacuum-level alignment in metal/organic interfaces

is not realistic because interface dipoles may be formed by charge rearrangement or

charge transfer or chemical reaction in actual devices [2, 82]. Due to the interface

dipole ∆, the vacuum level and the energy levels of the organic material are shifted.

When a dipole is formed at a metal/organic interface, as shown in Fig. 2-3, ∆e and

∆h become

∆e = Φ− EA−∆, (2-5)

∆h = IP − Φ + ∆. (2-6)

In this case, the magnitude of ∆ corresponds to that of the work function change

∆Φ = Φ − Φmod. This reflects that the interface dipole modifies the work function

of the metal surface. One can obtain the minimized ∆e (∆h) by reducing (raising)

the work function of the metal surface. In other words, the modulation of the metal

work function due to the interface dipole may result in a small charge-injection

barrier.

An interface dipole can be induced by several factors, including charge transfer,

chemical interaction, and a permanent dipole [2]. Charge transfer between the

metal surface and organic molecules leads to the formation of positive and negative

charges at the interface. Sometimes, a new chemical bond between the organic and

the metal is formed, and the bond causes a charge redistribution. Due to such a

charge redistribution, a dipole is induced.

2.2.1 Weakly interacting interfaces

Physisorbed organic molecules interact with a metal surface by weak van der Waals

forces, as they do not form covalent bonds with the surface. The charge density of a

metal surface before physisorption is schematically shown in Fig. 2-4 (a). The charge

density of the nuclei (p(z)) drops abruptly to zero at the metal surface, behaving

like a step function. On the other hand, the charge density of the electrons (n(z))

leaks out from the metal surface into the vacuum region [83]. This leakage results

in a lack of charge density inside the metal.

This charge inhomogeneity leads to a dipole at the surface, termed surface dipole.

As shown in Fig. 2-4 (b), the surface dipole can be defined as the difference in

electrostatic potential upon going from the bulk across the metal surface: ∆φ =

φout − φin. The bulk chemical potential µbulk is expressed as the difference of Ef

and φin [84]. Accordingly, one can calculate the work function Φ of the metal surface

as

Φ = ∆φ− µbulk. (2-7)
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Figure 2-4: A schematic illustration of (a) charge density of the nuclei (blue) and

electrons (red) and (b) electrostatic potential of a metal surface as a function of

the distance from the surface z . This figure is adapted based on an illustration in

Ref. [14].

µbulk does not change as a consequence of physisorption. A physisorbed organic

molecule induces a change in ∆φ and Φ due to the charge rearrangement of the

electrons. This behavior is known as push-back effect or cushion effect [85, 86]. Ac-

cording to the push-back effect, the charge density of the electrons is pushed back

into the metal surface due to physisorption. The effect originates from Pauli re-

pulsion that occurs when the wave functions of adsorbed molecules and a metal

overlap [87]. To avoid this overlap, the electrons of the metal between the molecules

and the surface are pushed into the surface. Consequently, the surface dipole is

lowered, and this causes a decreased work function.

The adsorption-induced potential shift can be obtained by a model using a con-

tinuous density of states (DOS) of an organic material [88]. To describe this DOS,

Oehzelt et al . approximated it by a Gaussian peak. For instance, the energy distri-

butions of the HOMO and LUMO are specified with peaks centered at EH and EL,

and their standard deviations σH and σL. One can quantify the transferred charge

by integrating the charge density ρ. Following Ref. [88], the charge density can be

written as

ρ(z) =e · n ·

{∫
dE · fH(E) ·DH(E)[E + eV (z)]

−
∫
dE · fL(E) ·DL(E)[E + eV (z)]

}
,

(2-8)

where n is the number of molecules per unit area. f is the Fermi distribution
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function defined as follows

fH(E) =
1

1
gH
e
−E−EF

kBT + 1
, fL(E) =

1

1
gL
e
E−EF
kBT + 1

. (2-9)

D is the energy distribution based on a Gaussian shape. L and H indicate the

LUMO and HOMO, respectively. The electrostatic potential V can be computed by

solving the Poisson equation as follows:

∇[ε(z)∇V (z)] = −ρ(z)

ε0

, (2-10)

where ε and ε0 denote the permittivity of the organic materials and the vacuum,

respectively.

2.2.2 Strongly interacting interfaces

In chemisorbed systems, an organic molecule strongly interacts with the metal sur-

face by forming chemical bonds at the interface. The electronic structure of this

strongly interacting case is different to that of the case described in Sec. 2.2.1. In

general, a dipole at the interface is induced by the charge rearrangement due to the

chemical bond, resulting in an up or down shift of the vacuum level [2, 14, 89].

Due to the charge rearrangement, a partial charge is transferred between metal

surface and adsorbed molecules. Note that the charge transfer occurs from the

material with higher chemical potential to the one with lower chemical potential.

The chemical potentials of the metal and the organic molecule are given as [14,89]:

µmetal = −Φ, (2-11)

µmol = −IP + EA

2
. (2-12)

One is able to compute Eqs. 2-11 and 2-12 using values of Φ, IP, and EA obtained

from a DFT calculation. To estimate the magnitude of the dipole, one considers the

amount of charge transfer, ∆N : [14]

∆N =
1

2

µmetal − µmol
ηmetal + ηmol

, (2-13)

with η being the absolute hardness which can be calculated by differentiating the

chemical potential with respect to N [90]:

η =
1

2

∂µ

∂N
. (2-14)

η in Eqs. 2-13 and 2-14 varies depending on the material. ∆N causes a vacuum

level shift, which in turn results in a change in the work function. Unfortunately,
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this model does not include the contribution of the intrinsic dipole of the adsorbed

organic molecule. The potential change caused by the intrinsic molecular dipole can

be obtained through the Helmholtz equation in the following manner [28,91]:

∆Vmol =
eµ⊥
ε0A

, (2-15)

Here, µ⊥ is the dipole of the molecular layer relative to the surface normal. ε0, A, and

e represent the vacuum permittivity, a unit area, and the charge, respectively. ∆Vmol

is proportional to µ⊥, and ∆Vmol is one of the contributions for the modification of

the work function.

Another contribution leading to a change in the work function is the dipole due

to the chemisorption-induced charge rearrangement as discussed above. This dipole

is referred as bond dipole (BD) [9,28,91,92]. The charge rearrangement stems from

the push-back effect as explained in Sec. 2.2.1 and the formation of the chemical

bond at the interface, and this rearrangement can be calculated using DFT as

∆ρ = ρtot − (ρmol + ρmetal), (2-16)

where ρtot, ρmol, and ρmetal are charge densities of the total combined system, the

molecular layer, and the metal surface, respectively. One can compute the bond

dipole contribution ∆VBD by employing Eq. 2-10.

The last contribution to the work function modification is the work function

change of the isolated metal surface due to the surface relaxation caused by chemisorp-

tion ∆Vrelax−metal. The relaxed surface causes a change in the charge distribution,

thus, modifying the work function. As a result, the modification of the work func-

tion ∆Φ due to chemisorption of the organic molecules can be described as the sum

of these contributions [92–94]:

∆Φ = ∆VBD + ∆Vmol + ∆Vrelax−metal. (2-17)
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In this chapter, we first introduce the many-body problem to describe a system that

has interactions of atomic nuclei and electrons. However, due to the complexity of

this many-body problem, it is difficult to obtain a solution numerically. To address

this issue, we turn to density-functional theory (DFT), which recasts the problem in

terms of the electron density instead of the wave function. The concept of using den-

sity functionals for a many-body system was proposed by Thomas and Fermi [95,96].

In 1964, Hohenberg and Kohn [97] established a mathematical foundation required

for the DFT. A year later, Kohn and Sham [98] provided a practical procedure to

make the DFT broadly applicable. Nowadays, the DFT has become the most widely

used approach for calculating electronic structure in materials science.

3.1 Many-body problem

The stationary electronic ground state of a system with interacting electrons and

nuclei is described by the time-independent Schrödinger equation:

HΨ(R, r) = EΨ(R, r), (3-1)

where Ψ is the wave function of this system, and E is the energy. Here, R =

{RI , I = 1, . . . , Nnuc}, and r = {ri, i = 1, . . . , Nel} are the positions of atomic nuclei

and electrons, respectively. The many-body Hamiltonian of the system, H, contains

the kinetic energy operator as well as the Coulomb interaction. It is given by

H = −
∑
i

∇2
i

2
−
∑
I

∇2
I

2MI

+
1

2

∑
i 6=j

1

|ri − rj|
−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

, (3-2)

where MI is the nucleus mass and ZI is the charge of the nucleus I. The first and

second terms of Eq. 3-2 denote the kinetic energy operator for the electrons and

nuclei, respectively. The third and fourth terms, in turn, describe the Coulomb in-

teraction between electrons, and between electrons and nuclei, respectively. The last

term describes the Coulomb repulsion between nuclei. The nuclei are much heavier

and move much slower than the electrons. Thus, the electrons follow adiabatically
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the motion of the nuclei, that is, they move in the potential created by fixed nuclei.

The decoupling of those two motions is known as the Born-Oppenheimer approxi-

mation [99]. Following the approximation, we can split the full problem into two

parts: the electronic and nuclei ones. In particular, one is able to decouple their de-

grees of freedom by factorizing the total wave function: Ψ(r,R) = Ψe(r; R)ΨN(R).

Here, the electronic wave function Ψe(r; R) depends on electronic coordinates as

well as parametrically on nuclear coordinates. In the same manner, the Hamilto-

nian in Eq 3-2 can be separated: H = He+HN . The solution of the electron problem

has a dependence on nuclear coordinates. For any given nuclear configuration, the

Coulomb repulsion between the nuclei becomes a constant in He and has no ef-

fect on Ψe(r; R). Despite the simplification introduced by the Born-Oppenheimer

approximation, further approximations are required to solve the electronic problem.

3.2 Kohn-Sham theory

Following the Hohenberg-Kohn theorems [97], the exact ground state energy is de-

termined in terms of a functional of the ground state density:

E[ρ] = FHK [ρ] +

∫
ρ(r)V (r)dr, (3-3)

where FHK [ρ] is a universal functional, which consists of the kinetic energy and

the energy of the electron-electron interaction. V (r) is the external potential due

to nuclei which uniquely determines the ground state density. According to the

Hohenberg-Kohn theorems, all electronic properties of a system can be obtained

from the ground state density, but the theorems did not provide any way to de-

termine the ground state density. Kohn and Sham proposed a practical method to

address this issue [98]. The method presents an auxiliary system of non-interacting

electrons wherein the electron density is equivalent to that of a real system of inter-

acting electrons. The energy functional for fictitious non-interacting particles can

be rewritten as

E[ρ] = Ts[ρ] +

∫
ρ(r)V (r)dr + J [ρ] + Exc[ρ]. (3-4)

Here, Ts denotes the kinetic energy of the non-interacting electron system, and it is

given as

Ts[ρ] = −1

2

N∑
i

〈
ψi
∣∣∇2
∣∣ψi〉 . (3-5)

J is the Hartree energy:

J [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′, (3-6)
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and Exc is the exchange–correlation energy that can be obtained by the energy

differences between the interacting and non-interacting cases:

Exc = T − Ts + U − J. (3-7)

The electron density of Nel non-interacting electrons is defined as

ρ(r) =

Nel∑
i=1

|ψi(r)|2 , (3-8)

where ψi is a single-particle wave function, which is a solution of the Kohn-Sham

Hamiltonian. Following the Hohenberg-Kohn theorems [97], the energy functional

should be minimized as follows:

− 1

2
∇2ψi(r) +

{
v̂(r) +

δJ [ρ]

δρ
+
δExc[ρ]

δρ
− εi

}
ψi(r) = 0, (3-9)

where εi is the Lagrange multiplier. We define the effective Kohn-Sham potential

v̂eff :

v̂eff (r) = v̂(r) +
δJ [ρ]

δρ
+
δExc[ρ]

δρ

= v̂(r) +

∫
ρ(r′)

|r− r′|
dr′ + v̂xc(r).

(3-10)

Equation 3-9 leads to the single-particle Schrödinger equation referred to as Kohn-

Sham equation: (
−1

2
∇2 + v̂eff (r)

)
ψKSi (r) = εKSi ψKSi (r). (3-11)

One can obtain the ground state density by solving this equation. Since the exact

exchange-correlation functional Exc[ρ] is formally still unknown, we need to consider

approximations for Exc[ρ].

3.3 The exchange-correlation functional

Various approximations of the exchange-correlation functional have been proposed,

and they are categorized in Jacob’s ladder proposed by Perdew [100]. This lad-

der consists of five rungs: (1) local-density approximation (LDA), (2) generalized-

gradient approximations (GGA), (3) meta-GGAs, (4) hybrid functionals that con-

tain contributions from the Fock or range-separated exchange and depend on oc-

cupied orbitals, (5) functionals that depend on all orbitals, occupied as well as

unoccupied. The higher is the step of the ladder, the higher is the accuracy of the

functional. However, the higher steps are also more computationally demanding

than the steps below.
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3.3.1 Local-density approximation

The local-density approximation (LDA) is derived from a homogeneous electron gas

(HEG) model. The LDA was initially developed by Kohn and Sham [98]. In the

LDA, the exchange-correlation energy density per electron at a position is equivalent

to the exchange-correlation energy density per electron of the HEG. The exchange-

correlation functional is a sum of the exchange functional ELDA
x [ρ] and correlation

functional ELDA
c [ρ], and it reads

ELDA
xc [ρ] =

∫
ρ(r)εxc[ρ(r)] dr

=

∫
ρ(r)εx[ρ(r)] dr +

∫
ρ(r)εc[ρ(r)] dr = ELDA

x [ρ] + ELDA
c [ρ],

(3-12)

where εxc in Eq. 3-12 represents the exchange-correlation energy density per electron

in the HEG. An analytical expression of ELDA
x [ρ] was derived in Ref. [101] and is

given by

ELDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3dr. (3-13)

ELDA
c [ρ] can be obtained through a parametrization of accurate quantum Monte

Carlo (QMC) calculations [102], as in Vosko-Wilk-Nusair (VWM) [103], Perdew-

Zunger (PZ) [104], and Perdew-Wang (PW) [105]. Despite the simple approxima-

tions, the LDA works successfully for a number of materials. This success is at-

tributed to the facts [106, 107] that the spherically averaged exchange-correlation

hole is precisely reproduced and the correct sum rule is satisfied for the LDA

exchange-correlation hole, i.e.,
∫
d3r

′
ρLDAxc (r, r

′
) = −1.

3.3.2 Generalized-gradient approximation

One improves over the LDA by incorporating the gradient of the electronic density in

the exchange-correlation functional, and this approach is known as the generalized-

gradient approximation (GGA) [108, 109]. The exchange-correlation functional of

the GGA can be expressed as

EGGA
xc [ρ] =

∫
fGGA[ρ(r),∇ρ(r)] dr

=

∫
ρ(r)εx[ρ(r)]Fxc(rs, s, t) dr,

(3-14)

where εx reflects the exchange energy density used in Eq. 3-12. Fxc is an enhancement

factor expressed in terms of a dimensionless reduced gradient, s. Here, s is defined

as

s =
|∇ρ(r)|

2(3π2)1/3ρ(r)4/3
. (3-15)
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A number of GGA functionals with the different Fxc have been reported: Becke88

[110], Lee-Yang-Parr (LYP) [111], Pewdew-Wang (PW) [112], and Perdew-Burke-

Ernzerhof (PBE) [113]. The Becke88, PW, and PBE are highly popular functionals.

Unlike the Becke functional, PW and PBE use non-empirical parameters for the ex-

change enhancement factor Fx. Compared to the PW approach, PBE has a simpler

form and derivation, but it yields similar results [113]. Therefore, we mainly employ

the PBE functional for our calculations.

In the PBE, the exchange energy functional EPBE
x [ρ] is given by

EPBE
x [ρ] =

∫
ρ(r)εx[ρ(r)]F PBE

x (s) dr. (3-16)

F PBE
x is the simplified exchange enhancement factor:

F PBE
x (s) = 1 + κ− κ

(1 + µs2/κ)
, (3-17)

where κ and µ are non-empirical parameters determined by physical conditions. The

correlation energy functional EPBE
c [ρ], in turn, takes the form

EPBE
c [ρ] =

∫
ρ(r)[εc(rs) +H(rs, t)] dr, (3-18)

where t is another dimensionless reduced gradient, which is given by

t =
|∇ρ(r)|

2(4kF/π)1/2ρ(r)
. (3-19)

The gradient contribution H in Eq. 3-18 is defined as

H(rs, t) = γ ln

{
1 +

β

γ
t2

[
1 + At2

1 + At2 + A2t4

]}
, (3-20)

where

A =
β

γ
[exp(−εc/γ)− 1]−1, (3-21)

and β = 0.066725, γ = (1− ln2)/π2.

Overall, these GGA functionals provide an improvement of results over the LDA

for numerous properties. In spite of successful applications to many systems, the

GGA and LDA functionals have deficiencies such as the unphysical self-interaction

error and missing van der Waals interaction, which result in incorrect electronic

properties [53, 114,115].

3.4 Van der Waals interactions

Van der Waals (vdW) interactions play a crucial role in weakly interacting systems

like organic crystals or layered structures. Unfortunately, conventional DFT calcu-

lations are prone to fail to describe long-range vdW interactions as the exchange-

correlation functional does not capture such interactions. To address this problem,
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one adds an inter-atomic potential to the energy obtained by the DFT. The total

energy, including such a dispersion, can be expressed as

Etot = EDFT + Edisp, (3-22)

where Edisp represents the long-range dispersion energy. A number of theoretical

approaches have been developed to compute the dispersion energy within the DFT

[54–63]. In this section, we focus on the DFT-D2 method proposed by Grimme

[55], the Tkatchenko-Scheffler (TS) functional [57], and the many-body dispersion

method [61].

3.4.1 The DFT-D2 approach

The DFT-D2 method uses an atom-pairwise additive model, and its long-range

dispersion energy is given as

Edisp = −1

2
s6

∑
ij

C ij
6

(rij)6
fd(rij), (3-23)

where s6 represents a global scaling factor that depends on the exchange-correlation

functional. In general, one sets s6 = 0.75 for the PBE functional. rij is the in-

teratomic distance between i–th and j–th atoms. fd is a damping function that

prevents singularities for small interatomic distances, and it reads

fd(rij) =
1

1 + exp [−d(rij/sRRij − 1)]
, (3-24)

where d is a damping factor that is set to 20, Rij is the sum of the atomic van der

Waals radii, i.e., Rij = Ri + Rj, and sR is a scaling parameter that is fixed to one

in this approach. We obtain the C ij
6 coefficients from a geometric mean of atomic

dispersion values, C ii
6 :

C ij
6 =

√
C ii

6 C
jj
6 . (3-25)

This method, which has negligible computational cost, performs well and yields

accurate results of binding energies in a wide range of materials. Nevertheless,

DFT-D2 has limitations. This method does not include chemical or geometrical

environments surrounding each individual atom, but just employs static C ii
6 as well

as Ri. DFT-D3 can tackle this shortcoming. In contrast to the DFT-D2 method,

the dispersion coefficients C ij
6 are geometry-dependent. This can be computed by

employing the concept of fractional coordination numbers.
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3.4.2 TS approach

Tkatchenko and Scheffler [57] devised a density-dependent atom-pairwise approach

(TS). Since this method employs the same pairwise interatomic contributions as

DFT-D2, the long-range dispersion energy in the TS scheme can also be computed

with the equation used in the DFT-D2 (see Eq. 3-23). The difference between the

DFT-D2 and TS methods is how dispersion coefficients and van der Waals radii are

evaluated. For the TS method, the coefficients and radii are rescaled. The dispersion

coefficients C ii
6 in a solid can be calculated as follows:

C ii
6 = C ii

6,free

(
V eff
i

V free
i

)2

, (3-26)

where
V effi

V freei

indicates the ratio between the effective volume of atom i in a solid and

the volume of free atom. To compute the ratio, one uses Hirshfeld partitioning [116]:

V eff
i

V free
i

=

∫
r3wi(r)ρ(r)dr3∫
r3ρfreei (r)dr3

, (3-27)

where the weight for atom i, wi(r), takes the form

wi(r) =
ρfreei (r)∑
j ρ

free
j (r)

. (3-28)

The C ij
6 coefficients are estimated by the Slater−Kirkwood formula [117] in the

following way:

C ij
6 =

2C ii
6 C

jj
6[

αj
αi
C ii

6 +
αj
αi
Cjj

6

] . (3-29)

Here, the static polarizability of atom i, αi, is defined as

αi = αfreei

V eff
i

V free
i

. (3-30)

The Fermi-type damping function (see Eq. 3-24) is also employed in the TS method.

For this damping function, one defines rescaled van der Waals radii Ri similar to

Eq. 3-26 and Eq. 3-30 as

Ri = Rfree
i

(
V eff
i

V free
i

)1/3

. (3-31)

The damping parameter d is set to 20, which is the same as for the DFT-D2 case,

and sR = 0.94 is adopted in the case of the PBE functional. In addition, the global

scaling factor s6 is determined to be one. The values of αfree and Rfree correspond to

a free-atom polarizability and van der Waals radii, respectively. They are tabulated

in Refs. [118,119].
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3.4.3 Many-body dispersion

The atom-pairwise additive models discussed in Secs. 3.4.1 and 3.4.2 sometimes

fail to capture dispersion interactions for systems where the many-body nature is

essential because they neglect many-body effects as well as screening effects. The

many-body dispersion (MBD) method has been developed to incorporate these ef-

fects in a van der Waals correction [61]. The MBD approach considers a system

of quantum harmonic oscillators (QHOs). In practice, each atom in a system cor-

responds to a single QHO. The QHO is characterized by a screened polarizability,

ᾱi, and its characteristic frequency, ω̄i. For a system of coupled QHOs, one is able

to compute the many-body dispersion energy using the coupled fluctuating dipole

model (CFDM). The corresponding Hamiltonian is expressed as

H = −1

2

N∑
i=1

∇2
χi

+
1

2

N∑
i=1

ω̄i
2χ2

i +
N∑
i=1

ω̄i ω̄j

√
ᾱi ᾱjχiTijχi , (3-32)

where χi denotes the mass-weighted dipole moment of the QHO. The first and

second terms of Eq. 3-32 are the kinetic and potential energy of an individual QHOs,

respectively. The last term represents dipole-dipole interaction between QHOs. The

dipole-dipole interaction tensor, Tij, in Eq. 3-32 is expressed as

Tij = ∇ri ⊗∇rjW (rij), (3-33)

in which W (rij) is the range-separated Coulomb potential [120] that attenuates

short-range interoscillator interactions:

W (rij) =
1− exp

[
−(rij/R̄ij)

β
]

rij
, (3-34)

with R̄ij = R̄i+R̄j. Here, the range-separated parameter β depends on the exchange-

correlation functional. The optimal β for the PBE functional is 2.56 [61]. The many-

body dispersion energy can be obtained by diagonalizing the 3N × 3N Hamiltonian

matrix in Eq. 3-32, and the energy can be expressed as the difference between the

zero-point energy of coupled QHOs and that of uncoupled QHOs:

Edisp =
1

2

3N∑
i=1

√
λi −

3

2

N∑
i=1

ω̄i, (3-35)

where λi are the Hamiltonian matrix eigenvalues.

The many-body dispersion energy can alternatively be computed by employing a

range-separation approach in a dipole-dipole interaction tensor [59]. For this method

which is referred to as MBD@rsSCS, one separates the self-consistently screened
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atomic polarizabilities into short-range and long-range parts. The dispersion energy

is given as

Edisp =

∫ ∞
0

dω

2π
Tr{ln(1−ALR(ω)TLR)}. (3-36)

Here, TLR and ALR denote the long-range interaction tensor and frequency-dependent

polarizability, respectively. Unfortunately, the method was designed for finite non-

periodic systems. Therefore, calculations of large supercells are required to ob-

tain the converged dispersion energy, resulting in high computational cost. Such a

method is not applicable in systems under periodic boundary conditions, such as

solid state systems. To overcome this drawback, a reciprocal space implementation

of the approach has been derived [60]. A detailed derivation of the MBD@rsSCS

method for periodic systems will be discussed in Sec. 5.3.

3.5 Solving the Kohn-Sham equation

The Kohn-Sham equation (see. Eq. 3-11) defines a non-linear eigenvalue problem

because the effective potential v̂eff (r) has a dependence on the wave function ob-

tained from the electron density. To solve this, we need an iterative procedure that

employs a linear problem with a fixed potential v̂in
eff (r). The procedure is performed

until self-consistency is achieved, and it is known as the self-consistent field cycle.

Figure 3-1 shows the self-consistent field cycle to obtain a solution of the Kohn-

Sham equation. First, an initial input potential v̂in
eff (r) obtained from an initial guess

density ρin(r) is constructed, and then one can solve Eq. 3-11 to obtain the wave

functions ψKSi (r). From the ψKSi (r), an output density ρout(r) can be computed and,

subsequently, this is used to calculate the effective potential v̂out
eff (r). One can obtain

ground state properties when effective input and output potentials are equivalent.

If the potentials are different, v̂out
eff (r) is served as v̂in

eff (r) for the next iteration. In

practice, this iterative process is repeatedly performed until convergence criteria are

reached between two consecutive iterations, and v̂in
eff (r) ≈ v̂out

eff (r).

For the self-consistent loop, the convergence is not guaranteed when only v̂out
eff (r)

is directly used as the input of the next iteration. Thus, a new input potential is

constructed by using both v̂out
eff (r) and v̂in

eff (r). A common approach for the new

potential is to mix v̂out
eff (r) and v̂in

eff (r) at every step. One can also achieve self-

consistency in the electron density by applying this mixing based on the density

instead of the potential.
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Figure 3-1: Flow chart of the self-consistent field cycle to solve the Kohn-Sham

equations.
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3.6 Mixing

Typically, the mixing accelerates convergence of self-consistent field iterations. A

number of different mixing methods have been developed [45, 46, 121–128]. In this

section, we describe linear mixing, Pulay mixing, and multisecant Broyden methods.

For the sake of convenience, we use v instead of v̂eff .

3.6.1 Linear mixing

Linear mixing is the simplest method, and it contains a damping parameter α. This

mixing is defined as follows:

vin
i+1(r) = vin

i (r) + α
[
(vout
i (r)− vin

i (r)
]
, (3-37)

In general, α is a value in the range between 0 and 1. There is no mixing in the case

of α = 0. The efficiency of this mixing depends on α. Indeed, the optimal α varies

with respect to modeled systems. For example, for semiconductors and insulators,

the convergence becomes faster with a larger value of α, while a smaller value is

suitable for metallic systems [129]. However, such significantly small value causes

rather slow convergence.

3.6.2 Pulay mixing

Pulay mixing [45, 46] typically outperforms linear mixing, and sometimes it is re-

ferred to as direct inversion in the iterative subspace (DIIS). The main idea of Pu-

lay mixing is to store past iterations’ input potentials vin
i (r) and residuals Ri =

vout
i (r)−vin

i (r) to construct the optimal potential as well as the corresponding resid-

ual. They are given as

vin
opt = Σiωiv

in
i

Rin
opt = ΣiωiR

in
i ,

(3-38)

where ωi is the weight coefficient, and it needs to be constrained:

Σiωi = 1. (3-39)

With this constraint, one can find ωi that minimize the norm of the residual Rin
opt

[38, 39]:

ωi =
ΣjA

−1
ji

ΣjkA
−1
kj

, (3-40)

where

Aij =

∫
Rin
j (r)Rin

i (r)d3r. (3-41)
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The (i+1)-th potential can generally be updated as

vin
i+1 = vin

opt + αRin
opt, (3-42)

where α is the parameter as discussed in Sec. 3.6.1. Likewise, this parameter im-

proves the efficiency of convergence.

3.6.3 Multisecant Broyden mixing

Another method showing an improvement over linear mixing is Broyden mixing

[121]. This mixing uses an estimated Jacobian from previous iterations, and an

updated potential is expressed as

vin
i+1 = vin

i − J −1
i Ri, (3-43)

where J denotes the Jacobian, and Ri is the residual. In addition, the mixing

consists of two types depending on how the Jacobian is updated: Broyden type–1

and type–2 [121]. The Broyden type–1 directly constructs the Jacobian. After this,

one can invert the Jacobian to apply Eq. 3-43. The Broyden type–2 constructs

the inverse Jacobian H = J −1, which can be directly used in Eq. 3-43. To reduce

computational cost for the construction of these Jacobians, one needs to use an

approximation of these Jacobians that satisfies the secant equation:

Ji (vin
i − vin

i−1) = Ri −Ri−1, (3-44)

and

Hi (Ri −Ri−1) = vin
i − vin

i−1. (3-45)

Like the standard Broyden mixing, multisecant Broyden mixing considers stored

input potentials and residuals of m previous iterations. Newly updated Jacobians

of the standard Broyden mixing satisfy the secant equation for only recent poten-

tials and residuals, while those of the multisecant Broyden mixing satisfy all secant

equations over the entire m in the following manner:

Ji Si = Yi, (3-46)

and

Hi Yi = Si. (3-47)

Si and Yi are matrices of differences of the input potential and the residual, and

they are defined as

Si =
[
∆vin

i−m+1,∆v
in
i−m+2, · · · ,∆vin

i

]
Yi = [∆Ri−m+1,∆Ri−m+2, · · · ,∆Ri] .

(3-48)
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These Jacobians can be analytically estimated as [35,124]

Ji = Ji−1 + (Yi − Ji−1Si)(S
T
i Si)

−1STi , (3-49)

for the multisecant Broyden type-1 method and

Hi = Hi−1 + (Si −Hi−1Yi)(Y
T
i Yi)

−1Y T
i , (3-50)

for its type-2 method.

Marks and Luke devised a method where scaling, regularization and precon-

ditioning techniques are added in the multisecant Broyden mixing [124, 130]. An

updated potential method is given by

vin
i+1 = vin

i − A0(I − Yi−1Ai)Ri − Si−1AiRi, (3-51)

where Ai depends on the type of method. A0 represents an initial inverse Jacobian

estimate, and this can be approximated as A0 = σI, where σ is a dynamic step

length. Marks and Luke confirmed that including preconditioning and regularization

approaches in Ai improves a performance [124]. For the multisecant Broyden type-1

method, Ai can be constructed as

Ai = Ψi

(
ΨiŜ

T
i−1Ŷi−1Ψi + αI

)−1

ΨiŜ
T
i−1Ωi, (3-52)

where α is the regularization parameter [131]. Ψi is a diagonal matrix and it renor-

malizes Yi. Here, one defines Ŝi = ΩiSi and Ŷi = ΩiYi with the preconditioner Ωi.

This method has been initially implemented in WIEN2k [132]. In exciting [34], a

simplified variant of it, which does not involve scaling and an approach for control-

ling the step size, has been implemented.

3.6.4 Charge sloshing

Although various mixing methods, such as the Pulay mixing and multisecant Broy-

den mixing, accelerate and stabilize convergence of SCF iterations in a wide range

of systems, some cases still show instabilities to reach self-consistency due to charge

sloshing [35–42], i.e., the charge density oscillates during iterations. Charge sloshing

is particularly problematic in metallic systems with a large unit cell. The error in

the output potential is given by

δvout
KS (G) =

∑
G

4π

G2
χ(|G|)δvin

KS(G). (3-53)

It can be clearly seen in Eq. 3-53 that because of G−2 in the Hartree potential, the

error diverges quadratically at small nonzero G components. Therefore, the change
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Figure 3-2: An illustration of charge sloshing for the Pd(111) surface. Plane-

averaged charge densities after 5– (red), 10– (blue), and 15– (green) iterations that

are performed by linear mixing. For comparison, the fully converged charge density

(gray) obtained by a robust mixing is shown.
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in the input potential δvin is amplified. This is the main source of the charge sloshing.

Such an issue is worse for large unit cells that have extremely small G. In the case

of insulating systems, the susceptibility can be expressed as χ(|G|) ∝ G−2 [133].

The susceptibility cancels out G−2 in the Hartree potential. On the other hand,

the susceptibility of metallic systems is a constant, therefore, this cannot suppress

pronounced charge sloshing.

Figure 3-2 demonstrates the charge sloshing instability in Pd(111) with five

atomic layers. We use the linear mixing algorithm in this calculation. In the fig-

ure, the gray curve denotes the self-consistent charge density, which is obtained by

another robust mixer. We observe that the charge density largely fluctuates within

the Pd slab during iterations. For example, the density at the 10–th iteration is

more localized at the bottom side of the slab, while it is mainly distributed at the

upper side in the case of 15–th iterations. Therefore, the linear mixing does not lead

to the converged density, and does not reach self-consistency due to the oscillatory

behavior.

To address this charge sloshing problem, numerous methods have been intro-

duced [36–39, 134–136]. Typically, one considers the Kerker preconditioner [37],

which stabilizes SCF convergence for large-scale metallic systems. The precondi-

tioner is given in reciprocal space as

P (G) = α
G2

G2 + λ2
, (3-54)

with the screening parameter λ. When G is quite big, the right-hand side of Eq. 3-54

becomes equal to α, and then conventional mixing methods are performed. On the

other hand, when G is small, P (G) ∼ αG2/λ2, which leads to damping of potentials

in the mixing.



4. Electronic structure methods

The Kohn-Sham equations can be solved with a variety of methods. We will focus on

the family of the full-potential all-electron methods based on linearised augmented

plane waves (FP-LAPW). They enable a highly precise description of the electronic

structure. These methods take into account the behavior of wave functions that

vary rapidly and in some cases oscillate in the vicinity of nuclei.

4.1 The APW method

The augmented plane-wave (APW) approach was proposed by Slater [137]. In this

method, a unit cell consists of spheres centered at atomic positions known as muffin-

tin (MT) spheres and the interstitial region (I). Figure 4-1 displays the space

division of a unit cell. The basis functions are described differently, depending on

these regions. They are defined as follows:

φG+k(r) =


1√
Ω
ei(G+k)r r∈ I∑

lm

AG+k
lmα ulα(rα)Ylm(r̂α) r∈ MTα,

(4-1)

where G are reciprocal lattice vectors, Ω is the volume of the unit cell, and l and m

are the azimuthal quantum number and the magnetic quantum number, respectively.

k is the Bloch vector and rα is the difference between r and the center position of

atoms labelled α, i.e., rα = r − Rα. In the interstitial region, planewaves are

employed, whereas spherical harmonics and radial functions expand φG+k(r) inside

MT spheres. Almα are coefficients that match the basis functions between MTs and

I at the atomic sphere boundary. With the Rayleigh expansion, AG+k
lmα is given as

AG+k
lmα =

4π√
Ω
ei(G+k)RαilY ∗lm(Ĝ + k)

jl(|G + k| rα)

ulα(rα)
, (4-2)

where jl(kr) are spherical Bessel functions. To obtain ulα(rα), one solves the radial

Schrödinger equation with the spherically averaged potential v(r):[
−1

2

d2

dr2
+
l(l + 1)

2r2
+ v(r)− εik

]
rulα(rα) = 0. (4-3)



4.2 The LAPW method 43

MT MT MT

MT MT MT

I

Figure 4-1: Muffin-tin (MT) spheres and their surrounding interstitial region (I) in

the unit cell.

One solves the Kohn-Sham equation in Eq. 3-11 by expanding the Kohn-Sham

wave functions in terms of the basis set. The Kohn-Sham wave functions are ex-

pressed as:

ψik(r) =
∑
G

Ck
iGφG+k(r). (4-4)

With the APW basis, the Kohn-Sham equation transforms into

HkCk = εkSkCk, (4-5)

where Sk and Hk are the overlap and Hamiltonian matrices, respectively. They are

constructed as

Hk
GG’ = 〈φG+k| −

1

2
∇2 + v̂eff (r) |φG’+k〉 , (4-6)

and

Sk
GG’ = 〈φG+k|φG’+k〉 . (4-7)

Equations 4-6 and 4-7 have an implicit dependence on the eigenenergy of the secular

equation, since the APW basis is constructed using εik. Thus, Eq. 4-5 is non-linear

in the energy. Therefore, the APW method is computationally inefficient.

4.2 The LAPW method

To avoid the shortcoming of the APW approach, the Linearized Augmented Planewave

(LAPW) method was introduced by Andersen [138]. To eliminate the dependence of

the basis on the eigenenergy, one introduces the energy derivative of ulα(rα, ε), i.e.,

u̇lα(rα, εlα) = ∂ulα(rα, ε)/∂ε, where εlα is a fixed linearization energy. The LAPW
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basis is given by

φLAPWG+k (r) =


1√
Ω
ei(G+k)r r∈ I∑

lm

[
AG+k
lmα ulα(rα, εlα) + BG+k

lmα u̇lα(rα, εlα)
]
Ylm(r̂α) r∈ MTα,

(4-8)

One determines two coefficients Almα and Blmα to ensure continuity of value and

slope of φLAPWG+k (r) at the boundary between MTs and I.

Two cutoff parameters are introduced: (i) the planewave cutoff Gmax and (ii) the

maximum angular momentum in the MT spheres, lmax. lmax restricts the spherical

harmonics expansion in the basis functions of MTs. Gmax determines the size of the

basis, and thus controls the accuracy of calculations [also the lm expansion is also

important for the precision]. However, as shown in Eq. 4-8, the basis set has also a

dependence on the muffin-tin sphere radius RMT . For a given level of accuracy, the

bigger is RMT , the smaller Gmax is required, since the wave functions away from the

nuclei are easier to describe than nearby the nuclei. In practice, therefore, one uses

a dimensionless parameter Rmin
MTGmax, where Rmin

MT denotes the smallest muffin-tin

sphere radius of a species in a system.

4.3 The APW+lo method

The LAPW basis does not depend on the Kohn-Sham energies, but it requires an

increased number of basis functions compared to the APW to attain the same level

of accuracy. Such a property is explained by the continuous first derivative at the

muffin-tin boundary. An alternative method has been proposed to combine the

advantages of the APW and LAPW methods [139]. In this method, a set of local

orbitals (lo) is added to the APW basis (APW+lo). The APW+lo is composed of

two types basis functions. One is the original basis functions of Eq. 4-1 with fixed

energies εlα in the following manner:

φG+k(r) =


1√
Ω
ei(G+k)r r∈ I∑

lm

AG+k
lmα ulα(rα, εlα)Ylm(r̂α) r∈ MTα,

(4-9)

The other is the local orbitals (lo) that can be expressed as

φlo(r) =

0 r∈ I[
Alolmαulα(rα, εlα) + Blo

lmαu̇α(rα, εlα)
]
Ylm(r̂α) r∈ MTα,

(4-10)

The two coefficients Alolmα and Blo
lmα satisfy the following conditions: (i) zero value of

the local orbitals at the atomic sphere boundary and (ii) normalization of the local
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orbitals
∫

Ω

∣∣φlo(r)
∣∣2 dr = 1. Using this APW+lo method, the wave functions in the

MT region become

ψik(r) =
∑
G

∑
lm

Ck
iGA

G+k
lmα ulα(rα, εlα)

+
∑
lm

Ck[Alolmαulα(rα, εlα) + Blo
lmαu̇α(rα, εlα)]Ylm(r̂α).

(4-11)

One can also include higher-order derivatives of ulα(rα, ε) in this method, e.g.,

φlo(r) =
[
Alolmαulα(rα, εlα) + Blo

lmαülα(rα, εlα)
]
Ylm(r̂α), (4-12)

where the coefficients are determined by the same requirements as described above.

Equation 4-12 can be represented by combinations of u̇lα(rα, εlα) and ülα(rα, εlα).

4.4 Potential and density formalism in FP-LAPW

The full-potential LAPW method [141, 142] does not use shape approximations in

the interstitial region and muffin-tin spheres for the full-potential and charge density,

which are applied to the Kohn-Sham equation. In the interstitial and muffin-tins,

one expands the potential (and density) into planewaves and spherical harmonics,

respectively:

v(r) =


∑
G

vI(G)eiGr r∈ I∑
lm

vαlm(r)Ylm(r̂) r∈ MTα,
(4-13)

and

ρ(r) =


∑
G

ρI(G)eiGr r∈ I∑
lm

ραlm(r)Ylm(r̂) r∈ MTα.
(4-14)

The electron density under periodic boundary conditions is constructed as

ρ(r) =
∑
k

ωk

∑
i

fik |ψik(r)|2 , (4-15)

where fik represents the occupation factor, and ωk is the weight of the k-point.

4.4.1 Evaluation of the Hartree potential

After ρ(r) is constructed, one evaluates the Hartree potential vH(r). vH(r) is deter-

mined via the Poisson equation:

∇2vH(r) = −4πρ(r). (4-16)
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In reciprocal space, the solution of the Poisson equation is straightforwardly

vH(G) =
4πρ(G)

G2
. (4-17)

However, in the FP-LAPW scheme, ρ(r) varies significantly near the nuclei. This

indicates that a Fourier transformation of ρ(r) is neither easy nor fast to perform.

Therefore, directly computing vH(r) based on Eq. 4-17 is inefficient. This drawback

can be addressed via the pseudo-charge method proposed by Weinert [143]. In this

method, one constructs a smooth pseudo-charge density ρ̄(r) that yields the correct

electrostatic potential vH in the interstitial region. The charge density in the muffin-

tin spheres contributes to the potential in the interstitial region as follows:

v(r) =
∞∑
l=0

l∑
m=−l

4π

2l + 1

qαlm
rl+1

Ylm(r̂α), (4-18)

where the multipole moments qαlm are defined as

qαlm =

∫
Sα

Y ∗lm(r̂)rlρ(r)dr. (4-19)

According to the pseudo-charge method, ρ(r) is substituted with the pseudo-charge

density ρ̄(r). ρ̄(r) is defined as a sum of the interstitial density and the density

in each muffin-tin sphere that is replaced by a smooth one ρ̃α(r): ρ(r) → ρ̄(r) =

ρI(r) +
∑
α

ρ̃α(r). Note that the multipole moments of ρ̄(r) and ρ(r) are identical.

The potential in the interstitial region becomes

vI(r) =
∑
G

4π

G2
ρ̄(G)eiGr. (4-20)

For Eq. 4-20, one performs the Fourier transform of ρ̃α(r), given by

ρ̃α(G) =
4π

Ω
e−iG·R

α
∞∑
l=0

l∑
m=−l

(−i)l

(2l + 1)!!

(2l + 2n+ 3)!!jl+n+1(GRα)

Rl+n+1
α Gn+1

Ylm(Ĝ)q̃αlm,

(4-21)

where n is a parameter, and jl(r) represent the Bessel functions of the first kind. In

case of G = 0, Eq. 4-21 transforms into

ρ̃α(0) =

√
4π

Ω
q̃α00. (4-22)

The potential in the muffin-tin region is determined by the Dirichlet boundary

value problem. We obtain this potential by employing the Green’s function method

[144]. The Green’s function reads

G(r, r′) =
∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

(
1− r2l+1

>

R2l+1
α

)
Y ∗lm(r̂′)Ylm(r̂), (4-23)
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with r< (r>) being the larger (smaller) value of r and r′, and the normal derivative

of G(r, r′) is given by

∂G
∂n′

=
∂G
∂r′

∣∣∣∣
r′=Rα

= − 4π

R2
α

∞∑
l=0

l∑
m=−l

Y ∗lm(r̂′)Ylm(r̂)
rl

Rl
α

.

(4-24)
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5. Implementation and applications

We present the development and implementation of advanced mixing methods with

the Kerker preconditioner as well as the inverse Kerker metric. We further imple-

ment a range-separated (rs) many-body dispersion method under periodic bound-

ary conditions that involves the self-consistent screening (SCS) of polarizabilities

(MBD@rsSCS).

5.1 Advanced mixers

5.1.1 Kerker method in LAPW

As discussed in Sec. 3.6.4, calculations of metallic systems with a large unit cell

fail because a small change of vin
i can cause a significant change of vout

i at small G

components. Such an issue, known as charge-sloshing [35–42] leads to large charge

fluctuations during the self-consistency iterations. The Kerker preconditioner can

remarkably stabilize calculations and accelerate self-consistency [37]. The mixing

involving the preconditioner is referred to as to Kerker mixing and it is given as

vin
i+1(G) = vin

i (G) + α
G2

G2 + λ2

(
vout
i (G)− vin

i (G)
)
, (5-1)

where λ is a parameter. The implementation of Eq. 5-1 is straightforward in the

planewave method, but not as simple in other methods. As described in Chapter 4,

the unit cell consists of the interstitial region and atomic spheres (MTα). In general,

one can evaluate the potential and density as Eqs. 4-13 and 4-14. The potential

and density are expanded into spherical harmonics series in the muffin-tin spheres,

while the expansion in terms of planewaves is carried out in the interstitial region.

Thus, applying a Fourier transform to the potential or density is impractical for

this method. In other words, it is not appropriate to calculate directly vin
i+1 using

Eq. 5-1.
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We reformulate Eq. 5-1 into a real space representation to make it compatible

with the FP-LAPW method. The equation then becomes

vin
i+1(r) = vin

i (r) + α
(

1 + λ2
[
∇2 − λ2

]−1
) (
vout
i (r)− vin

i (r)
)
. (5-2)

The operator K̂ = [∇2 − λ2]
−1

is not directly applicable to a function. Instead, we

evaluate V (r) = K̂f(r) with some function f(r) by solving the screened Poisson

equation as follows: (
∇2 − λ2

)
V (r) = f(r). (5-3)

For example, when f(r) = −4πρ(r), V (r) is equivalent to the potential induced by

the charge density ρ(r) assuming screened Coulomb interaction. Therefore, we can

apply the operator by treating Eq. 5-3 like it is an electrostatic problem, where we

use ρ(r) = −
[
vout
i (r)− vin

i (r)
]
/4π as an input. Afterwards, V (r) can be obtained.

The screened Poisson equation can be solved via Weinert’s pseudo-charge method

[143]. Originally, it was used to evaluate the Hartree potential in the FP-LAPW

method, as explained in Sec. 4.4.1. However, Ref. [145] showed that the screened

Poisson equation can also be solved in the same manner. Although that study,

which uses Weinert’s algorithm, was focused on implementing the screened exchange

in a hybrid exchange-correlation functional, the algorithm is also suitable for our

implementation. We outline essential steps of the method below.

We note that the input charge density for this pseudo-charge method has the

same form as Eq. 4-13. In the first step, a smooth pseudo-charge density ρ̄(r), which

can easily perform the Fourier transform, substitutes the charge density ρ(r). The

pseudo-charge density can be expressed as

ρ̄(r) =
∑
G

ρGe
iGr +

∑
α

ρ̃α(r). (5-4)

The first term of Eq. 5-4 represents the interstitial density. Dissimilar to Eq. 4-13, in

Eq. 5-4 planewaves are extended into the muffin-tin spheres . The smoothly varying

density ρ̃α(r) is constructed in the muffin-tin spheres, and it is given by

ρ̃α(r) =
∞∑
l=0

l∑
m=−l

Qα
lmYlm(r̂)σαlm(r), (5-5)

where Qα
lm are constants that are obtained such that multipole moments of ρ̄(r)

are equal to those of ρ(r). In the case of the screened Coulomb interaction, the

multipole moments inside the muffin-tin spheres are defined as follows:

qαlm =
(2l + 1)!!

λl

∫
Sα

Y ∗lm(r̂)il(λr)ρ(r)dr, (5-6)
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where il(r) are the modified spherical Bessel functions of the first kind. Due to the

interstitial charge density being extended into the muffin-tin spheres, the multipole

moments qαlm are modified. These modified multipoles q̃αlm are given as

q̃αlm = Qα
lm

(2l + 1)!!

λl

∫
Sα

il(λr) ρ(r) σαlm(r)dr. (5-7)

One can define q̃αlm as the difference between the multipoles inside the muffin-tin

spheres and those of the extended interstitial charge: q̃αlm = qαlm − qIαlm, where qIαlm

reads:

qIαlm =
∑
G

4π(2l + 1)!!ilR2
α

λl(G2 + λ2)
ρGe

iG·Rα

Y ∗lm(Ĝ)

× (λjl(GRα)il−1(λRα)−Gjl−1(GRα)il(λRα)) ,

(5-8)

with jl(r) being the spherical Bessel functions of the first kind. For G = 0, Eq. 5-8

becomes

δl0
√

4π
R2
αi1(λRα)

λ
ρ0. (5-9)

Next, an arbitrary function in Eq. 5-5 is expressed as

σαlm(r) = rl
(

1− r2

R2
α

)n
. (5-10)

Here, n = RαGmax
2

is generally used [146], whereas we find that results are less

sensitive to n = RαGmax
4

for our cases. With these formulas, we analytically carry

out a Fourier transform of ρ̃α(r), and it reads

ρ̃α(G) =
4π

Ω
e−iG·R

α
∞∑
l=0

l∑
m=−l

(−i)l

(2l + 1)!!

λl+n+1jl+n+1(GRα)

il+n+1(λRα)Gn+1
Ylm(Ĝ)q̃αlm. (5-11)

For G = 0, Eq. 5-11 becomes

ρ̃α(0) =

√
4π

Ω

(λRα)n+1

(2n+ 3)!!in+1(λRα)
q̃α00. (5-12)

After performing the Fourier transform of Eq. 5-4, the interstitial potential using

the pseudo-charge density can be expressed by

VI(G) =
4π

G2 + λ2
ρ̄(G). (5-13)

We obtain the potential inside the muffin-tin region by solving the Dirichlet

boundary-value problem with the original density ρ(r). For this, a Green’s function

method [144] is employed, and the potential can be written as

V α(r) =

∫
MTα

G(r, r′)ρ(r′)dr′ − R2
α

4π

∮
Sα

VI(Rα)
∂G
∂n′

dΩ′, (5-14)
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where the Green’s function is given by

G(r, r′) =4πλ
∞∑
l=0

l∑
m=−l

il(λr<)kl(λr>)

×
(

1− il(λr>)kl(λRα)

kl(λr>)il(λRα)

)
Y ∗lm(r̂′)Ylm(r̂).

(5-15)

Its normal derivative at the atomic sphere boundary is expressed as

∂G
∂n′

=
∂G
∂r′

∣∣∣∣
r′=Rα

= − 4π

R2
α

∞∑
l=0

l∑
m=−l

Y ∗lm(r̂′)Ylm(r̂)
il(λr)

il(λRα)
,

(5-16)

where kl(r) are the modified spherical Bessel functions of the second kind, and r<

(r>) is the maximum (minimum) value between r and r′.

The algorithm described in this section does not apply only to the mixing of

potentials. For example, instead of the potentials, Eq. 5-2 can also be performed

with input and output densities. Also in the case of density mixing, the procedure

of solving the screened Poisson equation remains unchanged.

5.1.2 Revised Pulay mixing

As described in Sec. 3.6.2, in the Pulay method, Eq. 3-41 is computed over the whole

unit cell, i.e., the interstitial region and muffin-tin spheres. When the generalized-

gradient approximation (GGA) is employed, noisy potentials in the interstitial region

may be observed, especially in slab calculations with vacuum. This numerical noise

has an effect on the calculation of the weights ωi, and it prevents obtaining the

optimal potential in Eq. 3-38. To solve this issue, we replace Eq. 3-41 with

Aij =
∑
α

∫
MTα

Rin
j (r)Rin

i (r)d3r. (5-17)

In other words, we consider only the muffin-tin part of the residuals at this step.

This indicates that Rin
opt is minimized within the muffin-tin spheres. The summation

of the residual shown in Eq. 3-38 is, nevertheless, carried out over the whole unit cell.

Unlike the potential case, a negligible level of noise in the charge density is observed

in the interstitial region. Therefore, Eq. 5-17 is not necessary for mixing densities.

In this dissertation, Eqs. 3-41 and 5-17 are used for the density and potential mixing.

We refer to the method employing this approach as simple Pulay.

The Kerker preconditioner, as discussed in Sec. 5.1.1, can also be used in the

Pulay method to address charge-sloshing [38, 39, 41, 42]. In this case, the typical
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Pulay in Eq. 3-42 transforms into

vin
i+1(G) = vin

opt(G) + α
G2

G2 + λ2
Rin

opt(G). (5-18)

This form of the equation is almost consistent with Eq. 5-1 and can be evaluated

exploiting the same idea as discussed in Sec. 5.1.1. We apply this preconditioner only

in the first n self-consistent field iterations and Eq. 3-42 is thereafter. We employ

five iterations (n = 5) in our calculations. The convergence behavior of this method

depends on the choice of mixing parameters, α and λ. α is set to 0.4 throughout

this dissertation. For the screening parameter λ, studies using the Thomas-Fermi

screening wavenumber kTF have been reported [147,148]. We evaluate it by following

Ref. [148]:

kTF ≈
√

4πN(εF ), (5-19)

where N(εF ) is the density of states at the Fermi energy.

Another approach to suppress charge sloshing is to introduce the inverse Kerker

metric in Eq. 3-41 [38,39]. The inverse Kerker metric is given by

Aij =
∑
G

R∗,ini (G)
G2 + λ′2

G2
Rin
j (G). (5-20)

It was basically designed for the planewave basis. Therefore, applying this metric to

the FP-LAPW directly is impractical. We tackle this problem by considering a sim-

ilar procedure used for the Kerker mixing (see Sec. 4.4.1). Rj(G)/G2 is the Hartree

potential when the charge density corresponds to ρ(r) = −Rj(G)/4π. Equation 5-20

can be transformed into a real space representation as

Aij =

∫ ∫
Rin
i (r)

(
δ(r− r′)− λ′2

4π

1

|r− r′|

)
Rin
j (r′)d3r′d3r. (5-21)

Equation 5-21 corresponds to Eq. 5-20 when integrals are evaluated in the entire

unit cell. We consider this metric for the mixing of densities. The modified Pulay

method, using the Kerker preconditioner and the inverse Kerker metric, is referred

to as Pulay-KP in this dissertation.

5.2 Applications of implemented mixing schemes

To evaluate the robustness and efficiency of the implemented mixing methods in the

exciting code [34], we construct a test suite. Metal surfaces are suitable for numer-

ical tests since such metallic systems are prone to charge sloshing (see Sec. 3.6.4).

Thus, we consider two metal surfaces as the test samples: (i) the 2 × 2 Au(111)

surface with a vacancy and (ii) the Pd(111) surface. The former contains five layers

of Au(111) (termed 5L-(2×2)Au(111)-V), and the latter consists of 15 atomic layers

(termed 15L-Pd(111)). Figure 5-1 shows both structures.
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Au Pd vacancy
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b
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⋮

Figure 5-1: Left: Top view (top) and side view (bottom) of a 2× 2 Au(111) surface

with a vacancy. Right: Top view (top) and side view (bottom) of a Pd(111) surface

with 15 layers. The unit cells are indicated by black lines.

5.2.1 Computational details

To create these slabs, we employ lattice constants of 4.19 Å and 3.95 Å for Au and

Pd, respectively. These slabs are not relaxed further. The vacuum spacing along the

z direction corresponds to 30 Å and 20 Å for the investigated Au and Pd surfaces,

respectively. This choice is made to avoid spurious interactions between replica of

the slabs.

The muffin-tin radii are set to RAu
MT = 2.4 bohr and RPd

MT = 1.9 bohr. A value

of RMTGmax = 7 is employed for the LAPW cutoff for both cases. Exchange and

correlation effects are approximated by the PBE parameterization [113] of the GGA.

For comparison, we also adopt the Perdew-Wang parametrization [105] of the LDA.

We employ a planewave cutoff of Gv
max = 18 bohr−1 for both benchmark systems.

The Brillouin zone (BZ) is sampled with a 4 × 4 × 1 and a 10 × 10 × 1 k-grid

for 5L-(2 × 2)Au(111)-V and 15L-Pd(111), respectively. The self-consistent field

iterations are performed until the difference of the total energy and residual norm
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between two successive iterations is below 10−6. Potentials (densities) and residuals

from previous steps (m) are stored for simple Pulay, Pulay-KP, and a variant of

the multisecant Broyden method, which is termed msec. In the case of the 5L-(2 ×
2)Au(111)-V system, stored potentials and residuals of m = 12 are used. Further,

m = 30 is employed for the 15L-Pd(111) calculations, since large m results in a

stable performance.
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Number of iterations
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a
]
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Linear mixing

Kerker mixing

Figure 5-2: Comparison of total energy (in Ha) convergence of linear and Kerker

mixings for 5L-(2 × 2)Au(111)-V.

5.2.2 2×2 Au(111) surface with a vacancy

In this section, we verify the convergence behavior of the implemented mixing algo-

rithms for 5L-(2 × 2)Au(111)-V. First, linear mixing and Kerker mixing are tested

with the mixing of potentials. Here, the mixing parameters in Eqs. 3-37 and 5-1 are

set to α = 0.4 for both methods and λ = 1.0 bohr −1 for the Kerker mixing. The

change of the total energy between two successive iterations, ∆E, for these methods

is illustrated in Fig. 5-2. Our result clearly shows that the linear mixing not only

does not reach to a required convergence threshold during 100 iterations, but also

that this quantity oscillates overall within 104 – 105 Ha. The huge fluctuation of ∆E

is attributed to large changes in the effective Kohn-Sham potential. In the muffin-tin

spheres, the potential changes dramatically. This has a significant influence on the

radial functions in the LAPW basis set. Due to their nodal structure, large changes

of the total energy are caused.
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Figure 5-3: Exchange-correlation potential and corresponding charge density (blue

lines) of 5L-(2 × 2)Au(111)-V along the z axis. The exchange-correlation potential

from PBE (top) and LDA (bottom) are displayed as black and red lines, respectively.

Compared to the linear mixing, the Kerker mixing achieves rather stable conver-

gence. This implies that the charge sloshing instability is restrained. However, this

method is too slow to be practical.

Another problem leading to the slow convergence for 5L-(2 × 2)Au(111)-V is

the noisy GGA potential in the vacuum region. To illustrate this, we present the

self-consistent exchange-correlation potentials vxc(r) and the corresponding electron

densities of 5L-(2 × 2)Au(111)-V obtained by LDA and GGA in Fig. 5-3. The

densities are similar, whereas the exchange-correlation potentials are significantly

different. For the LDA case, an overall smooth potential is observed in the entire unit

cell, showing only slight oscillations in the low-charge density region (ρ < 10−4 bohr).

The noise in the GGA potential is ascribed to the gradient term (∇ρ/ρ4/3), which

tends to cause large changes in the low-charge density region [44]. We perform

additional tests with an increased LAPW cutoff of RMTGmax = 8.5, a planewave

cutoff of Gv
max = 32 bohr−1, and a k-mesh of 10 × 10 × 1. According to our
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Figure 5-4: Comparison of total energy ((a) and (b)) and residual norm ((c) and

(d)) convergence of the methods msec, simple Pulay, and Pulay-KP for 5L-(2 ×
2)Au(111)-V by using potential ((a) and (c)) and density ((b) and (d)) mixing.
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numerical tests, the noisy GGA potential remains unchanged. This confirms that

GGA calculations of systems in the low-density region, such as slabs with vacuum,

show more unstable convergence than the LDA case upon potential mixing.

Our simple Pulay and revised Pulay methods are less affected by these short-

comings. To prove this, we compare the total energy and residual norm convergence

for both schemes and the msec scheme with the mixing of potentials (see Figs. 5-4 (a)

and (c)). We note that unlike an initial method introduced by Mark and Luke [124],

“unpredicted components” for adjusting step size and “scaling” of the potential (or

density) between the inside and outside muffin-tin spheres are not included in the

msec method. We expect that the convergence will become more stable and faster

if the msec scheme considers these elements. All considered methods reach the total

energy tolerance within 25–50 iterations compared to the linear and Kerker mix-

ings discussed in Fig. 5-2. The convergence of the residual norm with those three

methods is slightly slower than that of the total energy. The simple Pulay and

Pulay-KP methods converge faster than the msec scheme, which does not handle

the noisy potential.

Density mixing can also be applied to this test case. In Fig. 5-4 (b) and (d),

we present the convergence behavior of the total energy and the residual norm. We

observe that the selected convergence thresholds cannot be achieved within the first

100 iterations for the simple Pulay and msec methods. On the other hand, the

Pulay-KP method reaches self-consistency in 36 and 24 steps, respectively. Overall,

Pulay-KP is robust and outperforms the other considered methods.

5.2.3 Pd(111) surface with 15 atomic layers

To further investigate the convergence, we choose 15L-layer Pd(111) as the second

benchmark system. This system is not only metallic with a large unit cell, but also

has a high density of states near the Fermi level. Thus, a more pronounced charge-

sloshing instability is to be expected [35, 149]. A comparison of the convergence of

the total energy and residual norm with three schemes, i.e., simple Pulay, msec,

and Pulay-KP, is provided in Fig. 5-5. Regardless of whether density or potential

mixing is considered, only Pulay-KP converges in this test case.

The other two methods fail to converge for either type of mixing. In particular,

msec for the density mixing case cannot finish the self-consistency iterations as it

produces an unphysical density. In contrast, Pulay-KP requires 35 (density) and 36

(potential) steps to achieve the target energy tolerance, respectively. In addition, the

convergence of the residual norm computed by this Pulay-KP method is completed

in 32 (density) and 38 (potential) iterations. These results imply that the charge-
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Figure 5-5: Comparison of total energy ((a) and (b)) and residual norm ((c) and (d))

convergence of the methods msec, simple Pulay, and Pulay-KPfor 15L-Pd(111) by
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sloshing is well suppressed by reducing long-wavelength variations. As a result,

this method significantly improves its efficiency and robustness compared to the

standard Pulay method and the msec method.
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5.3 MBD@rsSCS for periodic systems

The MBD@rsSCS scheme incorporates many-body dispersion and screening effects.

To prevent double counting of long-range screening effects, a range-separation (rs)

approach is introduced in this MBD@rsSCS method [59]. In this regard, the dipole-

dipole interaction tensor is separated into short-range and long-range parts. The

short-range screening in the MBD@rsSCS is determined by the screened polarizabil-

ity obtained from the polarizability of free atoms. The screened polarizability can

be computed by solving the self-consistent screening (SCS). Finally, the many-body

long-range dispersion energy is evaluated using the polarizability and long-range

dipole-dipole interaction tensor. The computation of the dispersion energy is out-

lined in three major steps:

(1) Calculation of the Tkatchenko-Scheffler (TS) atomic polarizability from the po-

larizability of free atoms

(2) Evaluation of the self-consistently screened polarizability based on the short-

range dipole-dipole interaction

(3) Computation of the long-range dispersion energy using the screened polarizabil-

ity

Unfortunately, the MBD@rsSCS approach was originally designed to be applied only

to non-periodic systems, which requires large supercells for calculations. Thus, the

MBD@rsSCS method was not suited for periodic systems. To be able to treat them,

a reciprocal space implementation of the MBD@rsSCS scheme has been proposed

[60]. In this section, we describe the implementation of the MBD@rsSCS for periodic

systems in exciting and test its performance.

5.3.1 TS atomic polarizability

At first, we evaluate the Tkatchenko-Scheffler (TS) atomic polarizability, αTS [57].

As explained in Sec. 3.4.2, it is defined as

αTS
i = αfreei

V eff
i

V free
i

, (5-22)

where αfree, V eff

V free
are the polarizability of the free atom and the ratio between

the effective volume of an atom in a molecule and the volume of the free atom,

respectively. The atomic volume is obtained from the Hirshfeld partitioning as
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follows [116]:

V eff
i

V free
i

=

∫
r3wi(r)ρ(r)dr3∫
r3ρfreei (r)dr3

. (5-23)

Here, ρ(r) is the charge density of a system and ρfreei (r) is the electron density of

the neutral free atom i. The Hirshfeld weight w(r) is determined as

wi(r) =
ρfreei (r)∑
j ρ

free
j (r)

. (5-24)

Another useful atomic parameter for the MBD@rSCS is the rescaled van der Waals

radius, given by

RvdW,i = Rfree
i

(
V eff
i

V free
i

)1/3

, (5-25)

where Rfree indicates the free-atom vdW radius.

5.3.2 Self-consistently screened polarizability

According to the range-separation method [59, 60], the self-consistently screened

polarizability, α̃SCS, is calculated by employing the short-range part of the dipole-

dipole interaction, TSR, as follows:

α̃SCS(ω) = αTS(ω)
(
1−TSR(ω)α̃SCS(ω)

)
, (5-26)

where αTS(ω) is the frequency dependent polarizability:

αTS
i (ω) =

αTS
i

1 + (ω/ωi)2
. (5-27)

The characteristic frequency ω of an atom i in Eq. 5-27, is written as

ωi =
4

3

C ii
6,free

(αfreei )2
(5-28)

where C ii
6,free is the free-atom dispersion coefficient.

In the next step, we define the short-range dipole-dipole interaction tensor in

Eq. 5-26 as

Tab
SR,ij(ω) =

∑
L

′(1− f(SvdW,ij, rij,L))∂rai,L∂r
b
j,L

[
erf(rij,L/σij(ω)

rij,L

]
. (5-29)

Here, L are all translations of a unit cell, and rij is a distance between atoms i and

j. a and b represent the Cartesian components of rij. σi is the Gaussian function’s

width of atom i in the following manner:

σi(ω) =

(√
2

π

αTS
i (ω)

3

)1/3

. (5-30)
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The effective correlation length between atoms i and j is defined as σij(ω) =√
σi(ω) + σj(ω). The summation in Eq. 5-29 is performed until rij,L is smaller than

a defined cutoff distance, Rcut. Following Ref. [60], we use a value of Rcut = 120 Å

that causes negligible change in the dispersion energies compared to larger Rcut

values. One considers a Fermi-type damping function to reduce interactions when

distances between atoms are too small:

f(SvdW,ij, rij,L) =
1

1 + exp[−d(rij,L/SvdW,ij − 1)]
, (5-31)

with d being a parameter, which we fix to 6. SvdW corresponds to the sum of

van der Waals radii of atoms i and j, RvdW, with another parameter β, i.e., SvdW =

β(RvdW,i+RvdW,j). β has been optimized with a value of 0.83 for the PBE functional

[59].

The solution of Eq. 5-26 can be obtained by partial contraction of the screened

non-local polarizability matrix, as suggested in Refs. [60, 61, 150]:

α̃SCS
i (ω) =

N∑
j=1

Ãij(ω), (5-32)

where Ãij is given by

Ãij(ω) =

[
1

αTS
i (ω)

δijδab + Tab
SR,ij(ω)

]−1

. (5-33)

α̃SCS is used for calculating the long-range dispersion energy.

5.3.3 Long-range dispersion energy

The adiabatic connection fluctuation-dissipation (ACFD) theorem provides the ex-

act correlation energy [151] that reads

Ec = − 1

2π

∫ ∞
0

dω

∫ 1

0

dλTr[(χλv − χ0v)], (5-34)

where χλ(r, r
′, iω) and χ0(r, r′, iω) indicate the response function of an interacting

system and the bare response function obtained from Kohn–Sham orbitals, respec-

tively. v(r, r′) = 1/|r− r′| is the Coulomb potential and λ is the coupling strength.

χλ is commonly approximated using the random-phase approximation (RPA). In

the RPA, the interacting response function χRPAλ can be described via the self-

consistent Dyson equation: χRPAλ = χ0 +χ0λvχ
RPA
λ . Employing the Dyson equation

and integrating over λ in Eq. 5-34, the correlation energy in RPA is written as [152]

Ec = − 1

2π

∫ ∞
0

dω

∞∑
n=2

1

n
Tr[(χ0v)n]. (5-35)
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One can substitute χ0, which has a high computational cost, with the atomic re-

sponse functions based on quantum harmonic oscillators. With this replacement, the

long-range dispersion energy for periodic systems can be expressed as follows [60]:

Edisp = −
∑
k

wk

∫ ∞
0

dω

2π
Tr{ln(1−ALR(ω)TLR(k))}, (5-36)

where wk denotes the weighting factor of k -points. We construct ALR using the

screened isotropic polarizability α̃SCS,iso:

AabLR,ij(ω) = α̃SCS,iso
i (ω)δijδab, (5-37)

where α̃SCS,iso corresponds to one-third of the trace of the screened polarizability in

Eq 5-32. It then becomes

α̃SCS,iso
i =

1

3
Tr
[
α̃SCS
i (ω)

]
. (5-38)

TLR in Eq. 5-36 is the long-range dipole-dipole interaction tensor that includes the

damping function f(S̃vdW,ij, rij,L) and the full-range second-order interaction tensor.

The tensor is given by

Tab
LR,ij(k) =

∑
L

′f(S̃vdW,ij, rij,L)Tab
ij,L · e−ik ·L, (5-39)

with

Tab
ij =

3raijr
b
ij − δabr2

ij

r5
ij

. (5-40)

Similar to SvdW discussed in Sec. 5.3.2, S̃vdW is defined as

S̃vdW = β(R̃vdW,i + R̃vdW,j). (5-41)

The van der Waals radii of the screened atoms R̃vdW is determined by

R̃vdW,i = RvdW,i

(
α̃SCS,iso
i

αTS
i

)1/3

. (5-42)

It should be stressed that the dispersion energy depends on the number of k -points.

Therefore, convergence tests of the dispersion energy with respect to the number of

k -points are necessary.

To compute interatomic forces for structure optimizations, we consider the dispersion-

energy gradient:

Fdisp =
∑
k

wk

∫ ∞
0

dω

2π
Tr{[1−ALR(ω)TLR(k)]−1∇[ALR(ω)TLR(k)]}. (5-43)

In Appendix A, a detailed expression of the interatomic forces is given.
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5.4 Application of the MBD@rsSCS

We demonstrate the performance of our implementation of the MBD@rsSCS in

exciting for layered materials where van der Waals interactions are essential. We

consider three test cases: (i) graphite, (ii) hexagonal boron nitride (h-BN), and (iii)

graphite fluoride.

5.4.1 Computational details

The experimental in-plane lattice parameters of a = 2.46 Å [153] and 2.50 Å [154]

are taken for graphite and h-BN calculations, respectively. In the case of graphite

fluoride, following Ref. [155], a value of a = 2.582 Å is used. The muffin-tin radii

for atomic spheres are set to RC
MT = 1.2 bohr, RB

MT = 1.2 bohr, RN
MT = 1.2 bohr,

and RF
MT = 1.1 bohr. A value of RMTGmax = 8 is used and the Brillioun zone

(BZ) sampling is carried out with a 16 × 16 × 8 k-point mesh for all cases. All

calculations are performed using the Perdew-Berke-Ernzerhof (PBE) functional for

the semi-local part of xc effects.

Top view Side view

d

C

Figure 5-6: Top view (left) and side view (right) of graphite. The black line repre-

sents the unit cells. d is the interlayer distance.

5.4.2 Graphite

The structure of graphite is displayed in Fig. 5-6. The optimized interlayer distance

dopt and binding energy Eb with various vdW corrected methods and experimental

values are listed in Table 5-1. Our implemented MBD@rsSCS provides values of

Eb = 49 meV/atom and dopt = 3.42 Å which are very close to other theoretical results
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Table 5-1: Optimized interlayer distance dopt and binding energy Eb for graphite.

Property Method exciting Theory Experiment

dopt PBE 4.40 4.42 [157] 3.354 [153]

(Å) DFT-D2 3.22 3.23 [157,158]

TS 3.33 3.33 [158], 3.34 [159]

vdW-DF 3.61 [156] -

MBD@rsSCS 3.42 3.41 [60]

Eb PBE 1 1 [157] 52±5 [160]

(meV/atom) DFT-D2 57 57 [157], 57 [158]

TS 83 82 [157], 85 [158]

vdW-DF 51 [156] -

MBD@rsSCS 49 48 [60]

computed with MBD@rsSCS [60]. The calculated results agree with experimental

values although dopt is slightly overestimated. In previous theoretical studies, DFT-

D2 [55] provides a reasonable Eb, whereas dopt is slightly underestimated. The TS

approach [57] yields the closest dopt to the experimental value among considered

methods, but it largely overestimates Eb. On the other hand, vdW-DF yields a

reasonable value of Eb but dopt is rather far from the experimental value. The

MBD@rsSCS method gives slightly larger dopt, but it is better than the DFT-D2

and vdW-DF methods. We note that the vdW correction, in which both values of

Eb and dopt are close to the experiment, is only the MBD@rsSCS method. Overall,

our results demonstrate this MBD@rsSCS approach is the most reliable among those

considered for the graphite system.

5.4.3 Hexagonal boron nitride

We investigate hexagonal boron nitride (h-BN) as our second example. h-BN has

a layered structure like graphite. However, there are noticeable differences in the

electronic properties and stacking patterns between h-BN and graphite. For exam-

ple, graphite is a semimetal whereas h-BN is an insulator with a large band gap.

Moreover, while an AB stacking sequence is found for graphite, h-BN exhibits an

AA’ stacking where boron atoms are bound to nitrogen atoms in adjacent layers.

Figure 5-7 illustrates the h-BN structure. The computational and experimental

data of Eb and dopt are shown in Table 5-2. An experimental value of Eb has yet to

be reported. All methods overestimate Eb in comparison with the RPA scheme (39

meV/atom) [162, 163]. Comparing dopt among different vdW correction methods,
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Figure 5-7: Top view (left) and side view (right) of h-BN. The black line represents

the unit cells. d is the interlayer distance.

DFT-D2 shows a small value, while vdW-DF yields a comparably large dopt. This

trend is the same as in the graphite case (see Sec. 5.4.2). Here, dopt obtained by

MBD@rsSCS coincides well with the experimental value compared to other meth-

ods. This further indicates that this MBD@rsSCS represents an improvement over

the pairwise-additive model.

Table 5-2: Optimized interlayer distance dopt and binding energy Eb for h-BN.

Property Method exciting Theory Experiment

dopt PBE 4.29 - 3.331 [154,161]

(Å) DFT-D2 3.09 3.09 [157]

TS 3.31 3.32 [159]

vdW-DF 3.58 [156] -

MBD@rsSCS 3.32 3.30 [60]

Eb PBE 2 - -

(meV/atom) DFT-D2 77 77 [157]

TS 85 87 [159]

vdW-DF 51 [156] -

MBD@rsSCS 62 59 [60]

5.4.4 Graphite fluoride

Graphite fluoride is a derivative of graphite where covalent bonds between carbon

and fluorine atoms are formed [164]. Experimental and theoretical studies have
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shown that its most stable conformation consists of chair-type cyclohexane rings

with an AA stacking sequence [155, 165]. Four atoms are contained in the unit

cell, and we display the AA stacked graphite fluoride in Fig. 5-8. Our MBD@rsSCS

approach yields the optimal interlayer separation of dopt = 5.91 Å as well as a binding

energy of Eb = 25 meV/fu. These values are the same as those computed with the

same method implemented in the Vienna ab initio simulation package (VASP) [166].

We compare the values with those of the RPA reference [155, 166]: dopt = 5.88 Å

and Eb = 35 meV/fu. Eb and dopt obtained by the MBD@rsSCS are reasonably

close to that from the RPA.

Top view Side view

d

F

C

Figure 5-8: Top view (left) and side view (right) of graphite fluoride. The black

line represents the unit cells. d is the interlayer distance. Gray- and green-colored

balls denote carbon and fluorine atoms, respectively.



6. Organic/metal interfaces

In this chapter, we discuss the results of a calculation on dithiol terminated PEG

(PEG(thiol)) on two metallic surfaces, Au(111) and Ag(111), and investigate how

the molecule affects their work functions. The impact of the PEG molecular length

and the molecular arrangement on the work-function change is also studied.

6.1 Polyethylene glycol derivatives

Polyethylene glycol (PEG) has been generally used for a variety of applications,

especially in the pharmaceutical field [167]. PEG is chemically inert due to its

hydrophilic properties. Moreover, it is a non-toxic and safe material [168]. Due to

these properties, PEG-based derivatives can enhance water-solubility and stability of

nanoparticles by modulating their surfaces [169–171]. In recent years, some of these

derivatives have been used for organic electronics devices [21–27,172]. These experi-

mental studies have revealed that interlayers consisting of these derivatives are spon-

taneously formed between organic semiconductors and metal surfaces like Ag, Al,

and Au. The performance of devices is improved by PEG-based interlayers that tune

the work function at the interface [22,25,27]. Such PEG additives have higher sur-

face energy, e.g., ∼ 43 mJ/m2 for PEG [173] compared to that of organic materials,

e.g., ∼ 33 mJ/m2 for diketopyrrolopyrrole thieno[3,2-b] thiophene D–A copolymer

(DPP-T-TT) [25], ∼ 26 mJ/m2 for poly(9,9-dioctylfluorene-alt-benzothiadiazole)

(F8BT) [174], ∼ 27 mJ/m2 for poly(3-hexylthiophene-2,5-diyl) (P3HT) [175], and

∼ 38 mJ/m2 for phenyl C61-butyric acid methyl ester (PCBM) [173]. When fab-

ricating devices, the derivatives are accumulated at the bottom of a metal/organic

interface and do not move to the organic/air interface [176].

All PEG derivatives have polar O–C bonds in their backbones. The difference

among these derivatives is their end groups. We note that the end groups of such

derivatives do not always have an affinity to metal surfaces [21]. For example,

PEG(alcohol) and PEG(acetate) do not form an interlayer at a Au/organic interface,

whereas PEG(thiol) interacts with a Au surface. In this chapter, we examine the
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Figure 6-1: Chemical structure of PEG(thiol) with n = 1–4. σ and i indicate the

mirror plane and the inversion center, respectively.

PEG(thiol), which has the highest affinity with a Au surface among these PEG

derivatives. We also adopt n = 1–4 repeat units in the backbone. All considered

PEG(thiol) molecules are illustrated in Fig. 6-1. The molecules with odd n have a

vertical mirror plane while an inversion center is found for even n.

Regarding the electronic properties, we depict the molecular orbitals, HOMO

and LUMO, of PEG(thiol) with n = 1 in Fig. 6-2. The electron distribution of the

HOMO is localized at the S atoms and shows a non-bonding state of p orbitals. A

non-bonding state of p orbitals is also observed for the O atom. In addition, sp

hybridization is formed between C atoms and adjacent H atoms. The LUMO is

distributed along the molecular backbone.

HOMO LUMO

Figure 6-2: Frontier molecular orbitals, HOMO and LUMO, of PEG(thiol) with

n = 1.
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6.2 PEG(thiol) adsorbed on Au(111)

6.2.1 Computational details

First, we describe the PEG(thiol) molecules adsorbed on Au(111) with various num-

bers of repeat units of the PEG chain (n = 1–4) [n-PEG(thiol)@Au(111)]. In

Fig. 6-3, we display this structure. Typically, the molecular packing density on

the surface has a great influence on the adsorption geometry. At high-coverage, an

ordered self-assembled monolayer (SAM) of PEG(thiol) molecules can be formed

due to van der Waals interactions [29]. In this chapter, the high-coverage limit is

considered. According to scanning tunneling microscopy (STM) and grazing in-

cidence X-ray diffraction (GIXD) experiments, a mixture of the (
√

3 ×
√

3)R30◦

structure and its related c(4 × 2) overlayer is observed for thiolate deposited on

Au(111) [177, 178]. The relative ratio of these structures is varied by temperature

and the length of the molecular chain [178]. For long molecules, the relative propor-

tion of the (
√

3×
√

3)R30◦ structure is larger than the other. We therefore employ

the (
√

3 ×
√

3)R30◦ surface unit cell. Since a study of thioaromatic monolayers

deposited on the Au(111) system has revealed that those molecules are arranged

in a herringbone structure [179], we also adopt a p(
√

3 × 3) unit cell that hosts

two molecules. The molecular coverage in this unit cell is identical to that in the

(
√

3 ×
√

3)R30◦ case. In the bottom panel of Fig. 6-3, the p(
√

3 × 3) structure is

depicted with the molecules arranged in a herringbone-like pattern.

To model the Au(111) surface, a repeated-slab containing four atomic layers is

used in our calculations. We construct the slab with a lattice constant of 4.192 Å.

The two bottom layers are not relaxed. The structural optimization of the two top

layers and the PEG molecules is terminated when the maximum force on each atom

is below 0.055 eV/Å. To prevent interactions between the periodic images, a vacuum

space of at least 14 Å is used.

The DFT calculations are carried out using the exciting code. We setRAu
MT = 2.1

bohr, RS
MT = 1.6 bohr, RO

MT = 1.1 bohr, RC
MT = 1.1 bohr, and RH

MT = 0.7 bohr

for the muffin-tin radii, respectively. For the smallest muffin-tin sphere, a value of

RMTGmax = 3 is adopted. This value corresponds to 4.29 bohr−1 of the planewave

cutoff Gmax in the interstitial region. The sampling of the Brillouin zone (BZ) is

performed with a 5 × 5 × 1 and a 5 × 3 × 1 k-point grid for the (
√

3×
√

3)R30◦ and

p(
√

3× 3) overlayer structures, respectively. A total-energy convergence criterion of

10−6 Ha is used for the self-consistent field cycles. We employ the GGA in the PBE

parameterization [113] to describe the semi-local part of exchange and correlation
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Figure 6-3: Top view and side view of the PEG(thiol) molecules adsorbed on the

Au(111) in (
√

3 ×
√

3)R30◦ (middle) and p(
√

3 × 3) (bottom) surface unit cells. θ

is the tilting angle between the PEG backbone and the surface normal. d indicates

the height from the S atom to the average position of the Au surface atoms.
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effects. To consider long-range correlation effects, we employ the DFT-D2 as well

as the many-body dispersion (MBD@rsSCS) methods. The implemented Pulay-KP

mixer, which is described in Sec. 5.1, is adopted, and we discuss the convergence

of this method in Appendix B. In all investigated systems, the Pulay-KP method

requires 30 iterations to achieve self-consistency, regardless of n.

6.2.2 Adsorption geometry

Table 6-1 lists the structural properties of the optimized PEG(thiol)@Au(111) struc-

tures with different numbers of PEG repeat units. The chemically bound S atoms

are slightly shifted from the hollow site toward the bridge site after structural relax-

ation, as illustrated by the top views of Fig. 6-3. This agrees with various theoretical

studies of thiolate adsorbed on Au(111) [180–182]. In the (
√

3×
√

3)R30◦ case, the

tilting angle θ between PEG(thiol) molecules and the surface normal is 29.5 – 31.9◦

depending on the length of the PEG backbone. Similar values have been reported in

the case of n-alkanethiols on a Au surface [183,184]. The two PEG(thiol) molecules

are tilted by 33.3◦ and 33.6◦, i.e., 33.5◦ on average in the p(
√

3 × 3) structure. We

observe 1.93 – 1.95 Å of adsorption heights d between the S atom and the average

position of the topmost surface atoms with different numbers of repeat units for

the (
√

3 ×
√

3)R30◦ structure. The corresponding values in the p(
√

3 × 3) pattern

are 1.98 Å and 1.94 Å , i.e., an average value of 1.96 Å. Similar θ and d results

are obtained in both overlayer patterns. Nevertheless, less curved molecules in the

p(
√

3× 3) pattern are found in comparison with the (
√

3×
√

3)R30◦ case, thus, the

molecules in the p(
√

3× 3) pattern have an upright conformation.

Table 6-1: Adsorption geometry of PEG(thiol) molecules adsorbed on the Au(111)

surface using the MBD@rsSCS and the DFT-D2 for van der Waals corrections on

top of the PBE.

Repeat units MBD@rsSCS DFT-D2

n θ [◦] d [Å] θ [◦] d[Å]

(
√

3×
√

3)R30◦

1 31.9 1.94 35.3 1.92

2 29.5 1.95 32.0 1.93

3 31.3 1.94 32.3 1.92

4 30.7 1.93 30.7 1.92

p(
√

3 × 3)

1 33.5 1.96 - -
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Figure 6-4: Plane-averaged electrostatic potential of the system consisting of a

PEG(thiol) monolayer adsorbed on Au(111) obtained with the MBD@rsSCS ap-

proach. We set the Fermi level to zero.

6.2.3 The change of the work-function

We investigate the PEG(thiol) molecule-induced change of the work function of

Au(111). The plane-averaged electrostatic potential energy for the system with

n = 1 is shown in Fig. 6-4. We define the work function of the slab as

Φ = Evac − Ef , (6-1)

where Evac and Ef are the electrostatic potential energies at the vacuum level and

the Fermi level, respectively.

One can compute the averaged electrostatic potential V̄ in xy-planes as follows:

V̄ (z) =
1

A

∫ ∫
V (x, y, z)dxdy, (6-2)

with A and V being the surface area and the total electrostatic potential. In asym-

metric slabs such as our investigated systems, this electrostatic potential should be

discontinuous between the two sides of the slab due to a surface dipole. However,

an artificial electric field is caused under periodic boundary conditions, removing

this discontinuity. To compensate for the artificial electric field, a dipole correction

is introduced in Eq. 6-2 [185]:

Vdip(z) = 4πm

(
z

zm
− 1

2

)
, (6-3)
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Table 6-2: PEG(thiol)-induced change in work function, ∆Φ, and its main com-

ponents for different numbers of repeat units of the PEG backbone, n. All results,

obtained using MBD@rsSCS and DFT-D2, are given in eV.

Repeat units MBD@rsSCS DFT-D2

n ∆Φ ∆VBD ∆VSAM ∆Vrelax−Au ∆Φ ∆VBD ∆VSAM ∆Vrelax−Au

(
√

3×
√

3)R30◦

1 -0.76 -1.08 0.36 -0.04 -0.24 -1.01 0.79 -0.02

2 -1.11 -1.06 0.00 -0.05 -0.82 -1.00 0.22 -0.04

3 -0.39 -1.12 0.78 -0.05 -0.26 -1.06 0.84 -0.04

4 -1.16 -1.10 0.00 -0.06 -0.95 -1.02 0.08 -0.01

p(
√

3 × 3)

1 -0.37 -0.96 0.64 -0.05 - - - -

where zm and m denote the size of the unit cell in the z direction and the surface

dipole moment, respectively.

As shown in Fig. 6-4, different vacuum levels are found at both sides of the slab.

On the metal side, the work function of the gold surface ΦAu can be obtained, and

it is ΦAu = 5.15 eV. This value is in a good agreement with an UPS experiment

value of 5.15 eV [186] and theoretical studies, where values of 5.15 eV [187] and

5.12 eV [188] were obtained. The other side of the slab reflects the work function

of the PEG molecule-covered surface, and a value of Φmod = 4.39 eV is found.

The change in the work function due to the adsorbed PEG molecules is determined

by the difference between ΦAu and Φmod: ∆Φ = ΦAu − Φmod = −0.76 eV. ∆Φ,

depending on n, is listed in Table 6-2. One can find two noticeable features: (i) a

significant reduction of the Au(111) work function for all considered systems and (ii)

an oscillatory behavior of ∆Φ, depending on n. A larger-work function modification

is observed for even numbers of repeat units. This phenomenon is referred to as an

odd-even effect [29, 30].

To understand this work-function modification, we decompose ∆Φ in the follow-

ing manner [92–94,189]:

∆Φ = ∆VBD + ∆VSAM + ∆Vrelax−Au, (6-4)

where ∆VBD is the contribution of a dipole between the PEG(thiol) and Au(111)

induced by S–Au chemical bonding and ∆VSAM is the contribution due to the in-

trinsic dipole of the PEG(thiol) monolayer perpendicular to the surface. ∆Vrelax−Au

reflects the work-function change of the isolated Au surface due to surface relax-

ation induced by the adsorbed PEG(thiol). We can obtain ∆VSAM through the
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Figure 6-5: Left: Plane-averaged charge redistribution, ∆ρ, (right axis) and its

change of potential energy (left axis), due to the bond dipole (BD) caused by ad-

sorption of 1-PEG(thiol) molecules. A positive (negative) value of ∆ρ indicates

accumulation (depletion) of charge density. Right: Electrostatic potential energy of

a free-standing 1-PEG(thiol) layer. All quantities are calculated by the MBD@rsSCS

method.

electrostatic potential step across the free-standing PEG(thiol) layer. One likewise

defines ∆Vrelax−Au as the potential energy step between the two different vacuum

levels of the isolated Au(111) surface. ∆VBD can be computed by employing the

charge density redistribution resulting from the formation of chemical bonding that

leads to the shift in the electrostatic potential ∆V . So, to obtain ∆VBD, we solve

the Poisson equation with the plane-averaged density change ∆ρ.

d2∆V

dz2
= −4π∆ρ. (6-5)

Here, ∆VBD corresponds to the potential step between the two sides of the slab (see

Fig. 6-5).

When the bonding is formed between the PEG(thiol) molecules and the Au(111)

suface, there is a replacement of the S–H bond of thiol by the S–Au bond, and H2

is released [29,190]. Therefore, ∆ρ becomes

∆ρ = ρtot − (ρSAM + ρsurf − ρH), (6-6)

where ρtot is the plane-averaged charge density of the total system. ρSAM , ρsurf , and

ρH represent the plane-averaged charge densities of the molecular layer saturated

with H atoms, the bare Au(111) slab, and the isolated H layer, respectively.

We note that ∆Φ,∆VBD,∆VSAM , and ∆Vrelax−Au in Eq. 6-4 can be represented

in terms of dipole moments, which are computed from the corresponding nuclear

charges and self-consistent densities. After some algebra, the difference between the
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Figure 6-6: Net charge transfer Q for the adsorption of 1-PEG(thiol) molecules on

a Au(111) surface.

right-hand and left-hand sides of Eq. 6-4 is only the dipole moment of the isolated

layer of H atoms. Since a H atom has a zero dipole moment along the z direction

due to symmetry, we confirm that the summation of ∆VBD,∆VSAM , and ∆Vrelax−Au

is consistent with ∆Φ.

In Fig. 6-5, we present plots of ∆VBD and ∆VSAM computed by the MBD@rsSCS

method for the 1-PEG(thiol)@Au(111) system. The plane-averaged ∆VBD and ∆ρ

along the z-direction are shown in the left panel. Strong fluctuations of the lat-

ter are observed at the interface region. This further indicates that ∆ρ is mostly

localized in the vicinity of the interface between the topmost Au layer and the S

atom. An accumulation of charge density is found in the topmost Au layer, while

the density is depleted right above it. The values of the three contributions to

∆Φ for 1-PEG(thiol)@Au(111) are ∆VBD = −1.08 eV, ∆VSAM = 0.36 eV, and

∆Vrelax−Au = 0.04 eV, respectively. According to our results, ∆VBD plays a crucial

role on ∆Φ. On the other hand, ∆Vrelax−Au is negligible compared to ∆VBD and

∆VSAM . The bond dipole induced by the charge-density rearrangement is accom-

panied by charge transfer. To calculate the net charge transfer Q, ∆ρ is integrated

over the z direction as follows [28,94,191]:

Q(z) =

∫ z

−∞
∆ρ(z′)dz′. (6-7)

Q provides the total amount of charge moved from right to left in a plane at position

z. In other words, a positive (negative) value of Q implies right-to-left (left-to-right)
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charge transfer. Figure 6-6 shows a profile of Q for the 1-PEG(thiol) molecules

adsorbed on Au(111). We observe positive Q between the sulfur atom and the

second Au layer, i.e., charge is transferred from the S atom to the surface. In

Fig. 6-6, a maximum of Q = 0.11 e is found across the interface.

Next, we discuss how the three contributions, which determine ∆Φ, are changed

depending on n and the origin of the prominent odd-even effect. We list ∆Φ, ∆VBD,

∆VSAM , and ∆Vrelax−Au in Table 6-2. ∆VBD has negative values in all cases, but

the difference among the values is small compared to ∆Φ. This implies that ∆VBD

does not affect the odd-even effect. We can clarify the insensitivity of ∆VBD to

1-PEG(thiol)@Au(111) 2-PEG(thiol)@Au(111)

z

3-PEG(thiol)@Au(111) 4-PEG(thiol)@Au(111)

Figure 6-7: Charge-density redistribution of PEG(thiol)@Au(111) for different num-

bers of PEG backbone repeat units (n). Blue and red isosurfaces depict charge accu-

mulation and charge depletion, respectively. An isosurface value of 0.0045 e/bohr3

is used.
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n by charge-density redistribution plots for different values of n shown in Fig. 6-7.

They fluctuate mainly at the interface as mentioned before. Interestingly, the charge

redistribution is similar regardless of n. This implies a minor difference of ∆VBD

among n. The values of ∆Vrelax−Au are similar regardless of n and negligibly small.

Thus, the surface relaxation induced by the adsorption has also no impact on the

odd-even effect.

In contrast to ∆VBD and ∆Vrelax−Au, ∆VSAM contributes dominantly to the

pronounced odd-even effect. Positive values are observed for odd n, whereas they are

zero in the case of even n. The latter originates from inversion symmetry within the

PEG(thiol), as shown in Fig. 6-1. Due to symmetry, the intrinsic molecular dipole

moment vanishes. We conclude that the odd-even effect is attributed to the dipole

moment of PEG(thiol) with respect to the surface normal. The corresponding bond

dipole caused by the charge redistribution upon adsorption and surface relaxation

play a minor role in the effect.

Previous studies on n-alkanethiols and CF3-terminated n-alkanethiols adsorbed

on a Au surface have also shown a similar tendency to such an odd-even effect of ∆Φ

depending on their molecular length. It was shown to result from the difference in

dipole orientation induced by their molecular terminal moieties [30,31]. Noteworthy,

∆Φ variations between odd and even molecular length of n-alkanethiols and CF3-

terminated n-alkanethiols are significantly smaller than those of the PEG(thiol)

molecules [31], i.e., maximally 0.3 eV for the former and 0.77 eV for the latter.

Since vdW forces are important to describe not only organic/metal interfaces

[48, 49, 191], but also intermolecular interactions [192], we investigate the influence

of the choice of the vdW correction on the work function modification. To this

extent, additional calculations are performed using the atom-pairwise dispersion

corrected DFT-D2 method [55]. In Fig. 6-8 and Table 6-2, we report the obtained

structural features and the work function modification. We find that the tilting

angles θ computed with the MBD@rsSCS method are smaller than those obtained

by the DFT-D2 method. The differences between both corrections are larger at

shorter molecular lengths, and they decrease as the length increases, exhibiting the

same value at n = 4. As shown in Fig. 6-8 (a), unlike the DFT-D2 case, θ obtained

from the MBD@rsSCS method is not sensitive to the length of the backbone, and its

difference between short and long molecules is only a few degrees. In general, short

(longer) molecules have weaker (stronger) screening. Therefore, screening effects

have a slight influence on θ. We obtain d of 1.92–1.93 Å and 1.93–1.95 Å computed

by the DFT-D2 and MBD@rsSCS methods, respectively. The differences in the

adsorption heights d are small between those corrections.
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Figure 6-8: Structural and electronic properties of PEG(thiol) molecules deposited

on Au(111) as a function of repeat units, n, obtained with DFT-D2 (red) and

MBD@rsSCS (blue): (a) tilting angle, θ, (b) work function modification, ∆Φ, (c)

potential energy change at the interface, ∆VBD, and (d) change in potential energy

along the PEG(thiol) molecules, ∆VSAM .
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Overall, ∆Φ shows a qualitatively similar tendency in both methods (shown in

Fig. 6-8 (b)). For example, a reduction of the work function is observed for all

four n and a prominent odd-even effect is also revealed. However, ∆Φ obtained

from the MBD@rsSCS method is larger than the one from the DFT-D2 method. In

MBD@rsSCS, the difference of ∆Φ between even values of n amounts to 0.05 eV.

On the other hand, we observe a larger difference of 0.37 eV between n = 1 and

n = 3. We find that the PEG(thiol) molecules with n = 1 are more bent and twisted

than the molecules with other values of n. Compared to the MBD@rsSCS method,

the difference between odd n is only 0.02 eV in the case of the DFT-D2 method.

Therefore, we conclude that the smaller screening of the short molecule is crucial in

the MBD@rsSCS results.

The other contributions, ∆VBD and ∆VSAM , computed with both approaches

are given in Figs. 6-8 (c) and 6-8 (d). In both methods, the values of ∆VBD are

similar. On the contrary, ∆VSAM caused by the intrinsic dipole moment of the

PEG(thiol) layer depends on the type of vdW corrections. The variations in the

geometry of the adsorbed PEG(thiol) molecules involving the tilting angle between

results from MBD@rsSCS and DFT-D2 methods cause this difference. Particularly,

in the case of even n, ∆VSAM results in non-zero values for the DFT-D2 method,

while those obtained with the MBD@rsSCS method are basically zero. In the DFT-

D2 approach, the relaxed molecules have a curved and banana-like shape, unlike

those obtained from the MBD@rsSCS method. A finite dipole moment is found due

to the absence of inversion symmetry in the molecules. This causes a potential shift,

∆VSAM . There are many differences between the results of the two vdW corrections,

nonetheless, the main message is the same.

Lastly, we study how the p(
√

3× 3) pattern changes the work function of either

Au(111). We list the modified work-function and corresponding individual contri-

butions in Table 6-2. Similar to the (
√

3 ×
√

3)R30◦ overlayer, a decreased work

function is obtained for the p(
√

3 × 3) overlayer. The value of ∆Φ amounts to

−0.37 eV, which is approximately half of that in the (
√

3×
√

3)R30◦ overlayer with

n = 1. Fewer distorted PEG molecules in the herringbone pattern, compared to the

(
√

3 ×
√

3)R30◦ overlayer, result in this difference. Interestingly, ∆Φ is similar to

that in the (
√

3×
√

3)R30◦ case for n = 3. The values of corresponding contributions,

∆VBD and ∆VSAM are slightly smaller in comparison with the structure. However,

we find that the differences of these contributions are canceled out, causing nearly

identical work function modification.

According to calculations obtained by the MBD@rsSCS and DFT-D2 methods

for the (
√

3 ×
√

3)R30◦ pattern, ∆Φ are similar for n values with the same parity
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when the adsorption molecules are less distorted and are in an upright configura-

tion. We expect that the herringbone pattern exhibits similar behavior, thus, both

overlayer structures provide similar work function changes when n is bigger than

one. As explained in Sec. 6.2.1, the p(
√

3 × 3) and (
√

3 ×
√

3)R30◦ structures can

exist simultaneously on the Au surface creating a disordered structure. From our

results, for n > 1 we anticipate that the modification of the work function in this

disordered phase is nearly the same as the case of the p(
√

3 × 3) or (
√

3×
√

3)R30◦

structure.

6.3 PEG(thiol) adsorbed on Ag(111)

6.3.1 Computational details

Silver is an alternative material that can be used as an electrode, exhibiting the

highest electrical and thermal conductivity among all metals at 293 K. For the gold

substrate, as described in Sec. 6.2, we consider the system of a SAM consisting of

PEG(thiol) molecules adsorbed on the Ag(111) surface, termed PEG(thiol)@Ag(111)

with the same numbers of repeat unit, i.e., n = 1 − 4. An experimental study of

low-energy electron diffraction (LEED) has shown that a (
√

7×
√

7)R10.9◦ overlayer

of thiolate molecules is formed at high-coverage [193–196]. A reconstruction of the

Ag(111) surface induced by thiolate has been reported experimentally [197–200].

We thus employ the (
√

7×
√

7)R10.9◦ surface unit cell for our calculations. Based

on this structure, the reconstruction of its topmost layer is considered with 2, 3, and

4 vacancies in the substrate. Such structures consist of three PEG(thiol) molecules

per unit cell. For the sake of comparison, a (
√

3×
√

3)R30◦ unit cell having only one

PEG molecule is also employed. All considered structures are displayed in Fig. 6-9.

The Ag(111) surface is modeled with a four-layer slab, and the two topmost layers

are relaxed. A vacuum space of at least 14 Å along the perpendicular direction

is employed to minimize interactions between periodic images of the investigated

system. We adopt an in-plane lattice constant of 4.16 Å for the Ag surface. The

relaxation of atomic positions is performed until the maximum force reaches less

than 0.01 eV/Å. The BZ is sampled with a 5 × 5 × 1 and a 8 × 8 × 1 k-point grid

for the (
√

7×
√

7)R10.9◦ and (
√

3×
√

3)R30◦ structures, respectively.

The calculations are computationally demanding in the FP-LAPW method be-

cause the size of the surface unit cell is large. Therefore, the calculations of the

PEG(thiol)@Ag(111) system are performed using the Vienna ab initio simulation

package (VASP) [39]. A many-body dispersion correction for the van der Waals in-
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Figure 6-9: Structures of PEG(thiol) molecules adsorbed on the Ag(111) surface in

(a) (
√

3×
√

3)R30◦ (b) – (e) (
√

7×
√

7)R10.9◦ with substrate vacancies: (b) v = 0,

(c) v = 2, (d) v = 3, and (e) v = 4. (f) Side view of the (
√

7×
√

7)R10.9◦ structure

with two vacancies. θ and d are the tilting angle between the PEG backbone and the

surface normal and the adsorption height between the average position of S atoms

and that of surface atoms, respectively. n indicates the number of repeat units of

the PEG chain.
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teractions is not implemented in VASP (version 5.3.2). Thus, to consider long-range

correlation effects, we use the semi-empirical DFT-D2 functional. The energy cutoff

for the plane wave basis set is set to 700 eV to solve the Kohn-Sham equations.

For the exchange-correlation functional, we use the GGA in the PBE parametriza-

tion [113].

6.3.2 Adsorption geometry

To investigate the stability of investigated structures, the adsorption energy is cal-

culated. The adsorption energy per adsorbed PEG(thiol) is given by

Eads =
Etot − (Esurf +mEmol)

m
+
EH2

2
, (6-8)

where Etot is the total energy of PEG(thiol)@Ag(111), Esurf and Emol represent the

total energies of the bare Ag(111) slab and the gas-phase PEG molecule saturated

with a H atom, respectively. m indicates the number of molecules in the unit cell.

EH2 is the energy of the isolated hydrogen molecule. In systems with substrate

vacancies, the adsorption energy is changed due to surface reconstruction. The

energy to reconstruct the Ag surface is given by

Erec = Esurf − EAg(111) + vEbulk
Ag . (6-9)

Here, Esurf and EAg(111) are the total energies of the reconstructed and unrecon-

structed surfaces, respectively. Ebulk
Ag reflects the total energy of bulk Ag per atom

and v is the number of vacancies. Finally, we can compute the net adsorption energy

using Eqs. 6-8 and 6-9 as

Enet
ads = Eads +

Erec
m

. (6-10)

In Table 6-3, we list the corresponding values of Eads, Erec, and Ebulk
ads of our

systems with one repeat unit of the PEG backbone (1-PEG(thiol)@Ag(111)). In the

Table 6-3: Adsorption energy Eads, reconstruction energy Erec, and net adsorption

energy Enet
ads for various Ag surface structures involving surface vacancies.

Surface structure vacancy Eads [eV] Erec [eV] Enet
ads [eV]

(
√

7×
√

7)R10.9◦ - -1.21 - -1.21

(
√

7×
√

7)R10.9◦ 2 -1.70 1.13 -1.32

(
√

7×
√

7)R10.9◦ 3 -1.87 1.72 -1.29

(
√

7×
√

7)R10.9◦ 4 -1.72 1.48 -1.22

(
√

3×
√

3)R30◦ - -1.08 - -1.08
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Ag3S3 unit

Figure 6-10: Top view of the relaxed PEG(thiol)@Ag(111) structure with two va-

cancies. For the sake of convenience, we do not show the molecular backbone. Ag3S3

units are surrounded by the hexagonal shape formed by Ag atoms of the topmost

layer.

case of the (
√

3×
√

3)R30◦ structure, the net adsorption energy is much higher than

that in all calculations of (
√

7×
√

7)R10.9◦. Thus, the (
√

7×
√

7)R10.9◦ structure

is energetically more stable than (
√

3 ×
√

3)R30◦. This result explains why the

former structure is experimentally observed. In the (
√

7×
√

7)R10.9◦ structure, the

net adsorption energy of the reconstructed surface with four vacancies is close to

that of the unreconstructed surface. Overall, the lowest net adsorption energy is

obtained for the structure including the surface reconstruction with two vacancies.

This structure thereby exhibits higher stability than other structures and supports

recently reported experimental results of the reconstruction of the Ag(111) surface

due to the adsorption of thiolate as mentioned above [197–200].

Our calculations show that the S atoms of the head group in three PEG(thiol)

molecules occupy three adsorption sites: slightly shifted hollow sites of (i) hcp, (ii)

fcc, and (iii) atop sites. As shown in Fig. 6-10, we observe triangular shapes formed

by three adsorbed molecules as well as by three Ag atoms of the topmost layer next

to the molecules. A scanning tunneling microscopy (STM) experiment of sulfurs

deposited on Ag(111) shows these Ag3S3 units [201]. In addition, a hexagonal-like

arrangement of Ag atoms surrounds each of these Ag3S3 units, and this arrangement

has also been reported in Refs. [202] and [203].

The optimized structural parameters in the (
√

7×
√

7)R10.9◦ structure with two

vacancies, referred to as PEG(thiol)@Ag(111)-2v, are listed in Table 6-4. Accord-

ing to our calculations, the averaged tilting angle θ of the PEG(thiol) molecules
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Table 6-4: Adsorption geometry properties of PEG(thiol)@Ag(111) containing two

vacancies.

Repeat units (n) 1 2 3 4

θ [◦] -13.58 -12.14 -11.05 -10.29

d [Å] 1.11 1.11 1.11 1.11

relative to the surface normal is −11.77◦. This value is similar with that found for

n-alkanethiols on the silver surface [194]. θ is insensitive to n, nevertheless, it is

insignificantly getting smaller as n increases. Interestingly, in comparison with the

PEG(thiol)@Au(111) system discussed in Sec. 6.2.2, this system yields negative val-

ues of θ irrespective of n. The adsorption height d remains unchanged while altering

the molecular length. This vertical height is slightly smaller than the experimental

value of 1.23±0.07 Å obtained by normal-incidence X-ray standing wave (NIXSW)

analysis [198].

To understand the nature of interactions between the molecules and the Ag

surface, we examine total and partial density of states (DOS) in Fig. 6-11. The

reconstruction in the topmost layer causes the slightly narrower DOS of the Ag

component. The broadening of the PEG(thiol) states compared to the pristine

monolayer indicates interactions between the molecules and the surface, such as the

formation of new chemical bonds. As shown in Fig. 6-11 (b), Ag d-states of the

first layer in the total system are wider compared to those in the clean Ag surface,

and an overlap of the PDOS between the S atoms and the topmost layer is found.

Therefore, the Ag–S bonds are attributed to interactions among s- and p-states of

the S atoms and s-, p-, and d-states of the Ag atoms.

6.3.3 The change of the work-function

In this section, we discuss how the deposited PEG(thiol) molecules affect the work

function of the Ag(111) surface and compare the results with the PEG(thiol)@Au(111)

system. We firstly evaluate the work function of the surface, ΦAg. The plane-

averaged electrostatic potential of 1-PEG(thiol)@Ag(111)-2v is illustrated in Fig. 6-

12. Our calculation yields a value of ΦAg = 4.43 eV, which is reasonably close to that

measured by an experiment (4.46± 0.02 eV) [204]. Like the PEG(thiol)@Au(111)

system, a PEG(thiol)-induced work function modification ∆Φ is found. The values

of ∆Φ with respect to n are summarized in Table 6-5 and Fig. 6-13 (a). Similar

to the PEG(thiol)@Au(111) case, a decrease in the metal work function is found

in all cases. Moreover, the variation of ∆Φ in the range from −0.10 to −0.33 eV,
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Figure 6-11: (a) Total DOS of the clean Ag(111) surface, 1-PEG(thiol)@Ag(111)-

2v, and the adsorbed PEG(thiol) molecules. (b) Partial DOS of s-, p-, and d-states

of the topmost layer of clean Ag (top) and the total system (middle), and adsorbed

S atoms (bottom). We set the Fermi level to zero.
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Figure 6-12: Plane-averaged electrostatic potential of PEG(thiol) adsorbed on

Ag(111) with n = 1. The Fermi level is set to zero.

depending on n, indicates an odd-even effect. The difference of ∆Φ between odd

and even n is 0.23 eV at maximum, which is remarkably lower than that of the

system using a Au(111) surface.

As described in Sec. 6.2.3, the work function modification arises from three contri-

butions: (i) ∆VBD due to the formation of chemical bonds that results in the charge

rearrangement, (ii) ∆VSAM due to the intrinsic dipole of the PEG(thiol) molecular

layer, and (iii) ∆Vrelax−Ag due to the molecule-induced surface relaxation including

the reconstruction. ∆Φ can be expressed as a summation of these contributions:

∆Φ = ∆VBD + ∆VSAM + ∆Vrelax−Ag. (6-11)

Table 6-5 and Fig. 6-13 show the corresponding quantities. It should be noted

that the same approaches used in Sec. 6.2.3 are exploited to compute the values of

the corresponding contributions. ∆VSAM and ∆Vrelax−Ag are negative, while ∆VBD

is positive. In contrast, ∆Φ of the PEG(thiol)@Au(111) is mainly dominated by

∆VBD.

Figure 6-13 (b) exhibits that ∆VBD increases the Ag work function for all n. The

positive values indicate metal-to-molecule electron transfer at the interface. In the

case of the Au(111) surface, an opposite situation (molecule-to-metal electron trans-

fer) is encountered as explained in Sec. 6.2.3. For example, the Au work function

is reduced by ∆VBD and the charge is transferred from the S atoms of head group

molecules to the Au surface. Similar to PEG(thiol)@Au(111), the values of ∆VBD



90 Organic/metal interfaces

Table 6-5: Work function change ∆Φ of 1-PEG(thiol)@Ag(111)-2v caused by

PEG(thiol) molecules and its three contributions for various numbers of repeat units

of the PEG molecular chain, n. All values are in eV.

Repeat units (n) ∆Φ ∆VBD ∆VSAM ∆Vrelax−Ag

1 -0.31 0.45 -0.39 -0.37

2 -0.10 0.44 -0.18 -0.36

3 -0.33 0.43 -0.39 -0.37

4 -0.23 0.46 -0.32 -0.37

are very similar regardless of the molecular backbone length. The pronounced odd-

even effect thus does not come from ∆VBD. ∆Vrelax−Ag amounts to approximately

−0.37 eV as shown in Fig. 6-13 (c). These values are considerably lower than those

in the PEG(thiol)@Au(111) case, which exhibits negligible values. Like ∆VBD, the

differences of ∆Vrelax−Ag among n are tiny. Therefore, we conclude that the recon-

struction of the Ag surface induced by the adsorption of PEG(thiol) molecules has

little impact on the odd-even effect.

Unlike ∆VBD and ∆Vrelax−Ag, ∆VSAM is sensitive to n, manifesting the odd-

even effect. This implies that the dipole moment of the PEG(thiol) monolayer

perpendicular to the surface contributes to the pronounced odd-even effect on ∆Φ.

A similar trend is obtained in the case of PEG(thiol)@Au(111). However, we find

that there is a significant difference between the systems of Ag(111) and Au(111).

∆VSAM decreases the work function of the former, whereas it increases that of the

latter. Such a difference is caused by the difference of the adsorption geometry, such

as tilting angle θ as discussed above. For example, the molecules are adsorbed on

Ag(111) in an opposite orientation to the Au(111) surface.
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Figure 6-13: (a) Change in work function ∆Φ, (b) bond-dipole-induced potential

energy change ∆VBD, (c) potential-energy change across the PEG(thiol) monolayer,

and (d) work-function shift of the reconstructed Ag surface for PEG(thiol) adsorbed

onto Ag(111) with respect to n.





7. Conclusions and summary

Organic electronics devices face fundamental challenges due to poor charge injection

(extraction) at an organic/electrode interface. The most effective way to avoid this

drawback is adjusting the work function of electrodes. Indeed, interlayers between

an active layer and cathode have a significant influence on the cathode work function,

thus, impacting the performance of such devices. To explain physics and chemistry

behind this effect, we have performed the DFT calculations for Au(111) and Ag(111)

covered by a PEG(thiol) monolayer with different numbers of repeat units in the

PEG molecular backbone.

Van der Waals interactions heavily contribute to the adsorption geometry of the

interface. In order to consider the interactions, we have employed the DFT-D2 and

MBD@rsSCS methods, and have carried out a reciprocal space implementation of

the latter method in the exciting code. Further, we have applied the MBD@rsSCS

method to three test cases: graphene, h-BN, and graphite fluoride. The many-

body effects as well as screening effects are included in MBD@rsSCS. Our results

have confirmed that the inclusion of MBD@rsSCS yields an improvement of the

adsorption energy and the interlayer distance over standard PBE and other methods.

This indicates that this MBD@rsSCS method is accurate. Therefore, the many-

body dispersion effects play an essential role in accurately predicting and designing

materials.

Since our systems suffer from poor convergence of self-consistent field iteration,

it is necessary to consider a newly devised mixing algorithm. To ensure smooth

convergence, the Kerker preconditioner and inverse Kerker metric are reconstructed

to be applied in the FP-LAPW method. The modified Pulay mixing including these

approaches has been implemented in exciting. We have compared the performance

of this method with that of other methods: simple Pulay and msec. In benchmark

cases, particularly metallic systems with large unit cells, the implemented mixing

algorithm provides an improvement of convergence over other methods with density

and potential mixings. We have demonstrated that issues of charge-sloshing and

noisy potentials are addressed, and this mixing outperforms the simple Pulay and
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msec methods. Thus, it is robust and the most efficient. For our investigated

systems, we have used the implemented mixing method.

According to our results, the tilting angles of approximately 30 ◦ have been

observed between PEG(thiol) and the surface normal in PEG(thiol)@Au(111). The

computed adsorption distance between the S atom and the average position of the

first layer atoms amounts to ∼ 1.93 Å. These structural parameters are similar

irrespective of the PEG backbone length. The obtained results have revealed that

the PEG(thiol) molecules always decrease the work function of the Au(111) surface.

This reduction reflects the minimizing charge injection (extraction) energy barriers.

Interestingly, the modification of the work function varies in range from −0.24 eV

to −0.95 eV depending on the number of molecular repeat units in the case of

the DFT-D2 scheme. This range is corrected from −0.39 eV to −1.16 eV by the

MBD@rsSCS scheme. This work function shift results from the bond dipole due

to the adsorption-induced charge rearrangement at the interface. In fact, the work

function of the Au(111) surface is less reduced for an odd number of repeat units of

the PEG(thiol) molecules, whereas the work function change is larger for an even

number. This variation is known as an odd-even effect. We have found that the

profound odd-even effect mostly originates from the intrinsic dipole moment of these

molecules.

The importance of the molecular arrangement pattern has been studied by con-

sidering a p(
√

3× 3) unit cell, which has a herringbone-like pattern of molecules in

the 1-PEG(thiol)@Au(111) system. According to our MBD@rsSCS calculations, the

parameters of the adsorption geometry are similar to those in the (
√

3 ×
√

3)R30◦

pattern. In addition, a reduced work function has been also observed. Its magnitude

is larger than that in (
√

3×
√

3)R30◦ with one repeat unit. On the other hand, both

surface unit cells yield nearly identical work function change when the number of

repeat units is larger than one.

We have investigated different structures of PEG(thiol) adsorbed on Ag(111).

These calculations have been performed by the VASP code, and we have used the

DFT-D2 method for van der Waals forces. We have found that a reconstructed

(
√

7 ×
√

7)R10.9◦ surface unit cell involving two vacancies on the topmost layer

is the most energetically stable structure. In addition, the PEG(thiol) molecules

are tilted by ∼ −12◦ with respect to the surface normal. The orientation of these

molecules is opposite compared to PEG(thiol)@Au(111). The adsorbed PEG(thiol)

molecules lead to a decrease in the work function of the Ag surface regardless of

molecular length. Like the PEG(thiol)@Au(111) case, a pronounced odd-even effect

is observed on the work function modification depending on the number of repeat
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units, and this effect arises from the contribution of the molecular layer dipole. All

contributions to this work function change differ considerably from those in the

corresponding Au case.





Part III

Appendix



A. Interatomic forces of 
MBD@rsSCS

The interatomic forces for structure optimizations can be expressed as

Fdisp =
∑
k

wk

∫ ∞
0

dω

2π
Tr{[1−ALR(ω)TLR(k)]−1∇[ALR(ω)TLR(k)]}, (A-1)

where

∇[ALR(ω)TLR(k)] = ALR(ω)∇TLR(k) +∇ALR(ω)TLR(k). (A-2)

We differentiate Eq. A-2 in terms of Cartesian components of atomic positions, raα.

A.1 ∇ALR(ω)

At first, we calculate the derivative of ALR(ω) with regard to raα as follows:

∂AbcLR,ij(ω)

∂raα
=
∂α̃SCS,iso

i (ω)

∂raα
δijδbc. (A-3)

Following Eq. 5-32, Eq. A-3 transforms into

∂α̃SCS,iso
i (ω)

∂raα
=

1

3

∑
a′

N∑
j=1

∂Ãa
′a′
ij (ω)

∂raα
. (A-4)

The derivative of Ã(ω) in terms of raα is proposed by Ref. [205], and it reads

∂Abcij
∂raα

=
N∑
i′,j′

∑
b′,c′

Abb
′

ii′
∂T b

′c′

SR,i′j′

∂raα
Ac
′c
j′j

=
∑
b′c′

N∑
j′

Abb
′

iα

∂T b
′c′

SR,αj′

∂raα
Ac
′c
j′j +

∑
b′c′

N∑
i′

Abb
′

ii′
T b
′c′

SR,i′α

∂raα
Ac
′c
αj .

(A-5)

For the sake of convenience, we refer to Ã as A, and ω is not written in Eq. A-5.

One can obtain the derivative of short-range dipole-dipole interaction tensor in this

manner:

∂T abSR,ij
∂rai

=
∑
L

′

{
(1− f(SvdW,ij, rij,L))

∂τ abSR,ij
∂rai

− ∂f(SvdW,ij, rij,L)

∂rai
τabSR,ij

}
, (A-6)
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where

τabSR,ij =−
∑
L

′3r
a
ij,Lr

b
ij,L − (rij,L)2δab

(rij,L)5

(
erf

(
rij,L
σij

)
− 2√

π

rij,L
σij

exp

[
−
(
rij,L
σij

)2
])

+
4√
π

1

(σij)3

raij,Lr
b
ij,L

(rij,L)2
exp

[
−
(
rij,L
σij

)2
]
.

(A-7)

The derivative of τSR,abij reads

∂τ abSR,ij
∂rai

= −
∂τ abSR,ij
∂raj

=
∑
L

′

[
− 3

(
(1 + 2δab)

rbij,L
(rij,L)5

− 5
(raij,L)2rbij,L

(rij,L)7

)
erf

(
rij,L
σij

)

+
(1 + 2δab)√

π

rbij,L
(rij,L)4

1

σ3
ij

(
6σ2

ij + 4(rij,L)2
)
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[
−
(
rij,L
σij

)2
]

− 1√
π

(raij,L)2rbij,L
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1

σ5
ij

(
30σ4

ij + 20σ2
ij(rij,L)2 + 8(rij,L)4

)
exp

[
−
(
rij,L
σij

)2
]]

.

(A-8)

In the case of a 6= b 6= c, Eq. A-8 becomes

∂τ abSR,ij
∂rci

= −
∂τ abSR,ij
∂rcj

=
∑
L

′

[
− 3

(
δab

rcij,L
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− 5
raij,Lr

b
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c
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)
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(
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c
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(
30σ4

ij + 20σ2
ij(rij,L)2 + 8(rij,L)4
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exp

[
−
(
rij,L
σij

)2
]]
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(A-9)

The derivative of the damping function f in Eq. A-6 is constructed using the chain

rule as

∂f(SvdW,ij, rij,L)

∂rai
=
∂f(SvdW,ij, rij,L)

∂rij,L

∂rij,L
∂rai

= − d

SvdW,ij

raij,L
rij,L

f 2(SvdW,ij, rij,L)exp[−d(rij,L/SvdW,ij − 1)].

(A-10)



100 Interatomic forces of MBD@rsSCS

A.2 ∇TLR(k )

Next, as described in Ref. [60], the derivatives of TLR(k) with regard to raα is defined

as follows:
∂T bcLR,ij(k)

∂raα
=(δαi − δαj)

∑
L

′

{
∂T bcij,L
∂raij,L

f(S̃vdW,ij, rij,L)

+ T bcij,L
∂f(S̃vdW,ij, rij,L)

∂raα

}
e−2πik ·L.

(A-11)

where
∂T bcij,L
∂raij,L

= −
15raij,Lr

b
ij,Lr

c
ij,L − 3r2

ij(r
a
ijδbc + rbijδca + rcijδab)

r7
ij,L

. (A-12)

Since S̃vdW depends on atomic positions unlike SvdW in Eq. A-10,
∂f(S̃vdW,ij ,rij,L)

∂raα
can

be computed as follows:

∂f(S̃vdW,ij, rij,L)

∂raα
=
∂f(S̃vdW,ij, rij,L)

∂rij,L

∂rij,L
∂raα

+
∂f(S̃vdW,ij, rij,L)

∂S̃vdW,ij

S̃vdW,ij

∂raα
. (A-13)

The expression on the first right-hand side in Eq. A-13 is similar to Eq. A-10:

∂f(S̃vdW,ij, rij,L)

∂rij,L

∂rij,L
∂raα

=(δαj − δiα)
d

S̃vdW,ij

raij,L
rij,L

× f 2(S̃vdW,ij, rij,L)exp[−d(rij,L/S̃vdW,ij − 1)].

(A-14)

On the one hand, the second term is given by

∂f(S̃vdW,ij, rij,L)

∂S̃vdW,ij

S̃vdW,ij

∂raα
=− d rij,L

(S̃vdW,ij)2
f 2(S̃vdW,ij, rij,L)

× exp[−d(rij,L/S̃vdW,ij − 1)]
S̃vdW,ij

∂raα
,

(A-15)

where
S̃vdW,ij

∂raα
= β

(
S̃vdW,i

∂raα
+
S̃vdW,j

∂raα

)

= β

(
S̃vdW,i

α̃SCS,iso
i

∂α̃SCS,iso
i

∂raα
+
S̃vdW,j

α̃SCS,iso
j

α̃SCS,iso
j

∂raα

)
.

(A-16)

In Eq. A-16,
∂α̃SCS,iso

i

∂raα
explicitly matches Eq. A-4.
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Figure B-1: Convergence of total energy for PEG(thiol)@Au(111) with respect to

different numbers of repeat units in the molecule chain, n.

We compare the total energy convergence using potential mixing for three mixing

methods: Pulay-KP, simple Pulay, and msec. We find that the Pulay-KP and

simple Pulay methods reach a desired threshold within 50 iterations, while the

msec method does not converge. Overrall, the Pulay-KP method performs faster

than simple Pulay, converging in 30 steps for all n cases.
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[139] E. Sjöstedt, L. Nordström, and D. J. Singh, Solid State Commun. 114, 15

(2000).

[140] D. Singh, Phys. Rev. B 43, 6388 (1991).

[141] D.R. Hamann, Phys. Rev. Lett. 42, 662 (1979).

[142] E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman, Phys. Rev. B 24,

864 (1981).

[143] M. Weinert, J. Math. Phys. 22, 2433 (1981).

[144] J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999.

[145] F. Tran, P. Blaha, Phys. Rev. B 83, 235118 (2011).

[146] D. J. Singh and L. Nordström, Planewaves, Pseudopotentials and the LAPW

Method, 2nd ed., Springer, Berlin (2006).

[147] P. Bendt and A. Zunger, Phys. Rev. B 26, 3114 (1982).

[148] Y. Zhou, H. Wang, Y. Liu, X. Gao, H. Song, Phys. Rev. E 97, 033305 (2018).

[149] S. Mohr, M. Eixarch, M. Amsler, M. J. Mantsinen, and L. Genovese, Nucl.

Mater. Energy 15, 64 (2018).

[150] M. A. Blood-Forsythe, T. Markovich, R. A. DiStasio, Jr., R. Car, A. Aspuru-

Guzik, Chem. Sci. 7, 1712 (2016).

[151] D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884 (1977).



BIBLIOGRAPHY 115

[152] X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K.

Reuter, and M. Scheffler, New. J. Phys. 14, 053020 (2012).

[153] Y. X. Zhao and and I. L. Spain, Phys. Rev. B 40, 993 (1989).

[154] S. Pease, Acta Crystallogr. 5, 356 (1952).
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[162] A. Marini, P. Garćıa-González, and A. Rubio, Phys. Rev. Lett. 96, 136404

(2006).

[163] T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Phys.

Rev. Lett. 108, 235502 (2012).
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