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Abstract: In the O(n) loop model on random planar maps, we study the depth—in
terms of the number of levels of nesting—of the loop configuration, bymeans of analytic
combinatorics. We focus on the ‘refined’ generating series of pointed disks or cylinders,
which keep track of the number of loops separating the marked point from the boundary
(for disks), or the two boundaries (for cylinders). For the general O(n) loop model, we
show that these generating series satisfy functional relations obtained by a modification
of those satisfied by the unrefined generating series. In amore specific O(n)modelwhere
loops cross only triangles and have a bending energy, we explicitly compute the refined
generating series. We analyse their non generic critical behavior in the dense and dilute
phases, and obtain the large deviations function of the nesting distribution, which is
expected to be universal. Using the framework of Liouville quantum gravity (LQG), we
show that a rigorous functional KPZ relation can be applied to the multifractal spectrum
of extreme nesting in the conformal loop ensemble (CLEκ ) in the Euclidean unit disk,
as obtained by Miller et al. (Ann Probab 44(2):1013–1052, 2016, arXiv:1401.0217),
or to its natural generalisation to the Riemann sphere. It allows us to recover the large
deviations results obtained for the critical O(n) random planar map models. This offers,
at the refined level of large deviations theory, a rigorous check of the fundamental fact
that the universal scaling limits of random planar map models as weighted by partition
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functions of critical statistical models are given by LQG random surfaces decorated by
independent CLEs.

1. Introduction

The enumeration of planar random maps, which are models for discretised surfaces, de-
veloped initially from the work of Tutte [143–145]. The discovery of matrix model tech-
niques [27] and the development of bijective techniques based on coding by decorated
trees [38,131] led in the past 30 years to a wealth of results. An important motivation
comes from the physics conjecture that the geometry of large random maps is universal,
i.e., there should exist ensembles of random metric spaces depending on a small set
of data (like the central charge and a symmetry group attached to the problem) which
describe the continuum limit of random maps. Two-dimensional quantum gravity aims
at the description of these random continuum objects and physical processes on them,
and the universal theory which should underlie it is Liouville quantum gravity, possi-
bly coupled to a conformal field theory [71,75,98,126]. Understanding rigorously the
emergent fractal geometry of such limit objects is nowadays a major problem in mathe-
matical physics and in probability theory. Another important problem is to establish the
convergence of discrete random planar maps towards such limit objects. Solving various
problems of map enumeration is often instrumental in this program, as it provides useful
probabilistic estimates.

As of now, the geometry of large random planar maps with faces of bounded degrees
(e.g., quadrangulations) is fairly well understood, thanks to recent spectacular progress.
In particular, their scaling limit is the so called Brownian map [105,106,110,111,113],
with its convergence in the Gromov–Hausdorff sense established by Le Gall and Mier-
mont in Refs. [106,111]. Another major progress is the recent construction by Miller
and Sheffield, via the so called quantum Loewner evolution [118], of a metric structure

for Liouville quantum gravity (at Liouville parameter γ =
√

8
3 ), and the proof that it is

indeed equivalent to that of the Brownian planar map [112,114–116].
This universality class is often called in physics that of pure gravity. Recent progress

generalised part of this understanding to other universality classes, those of planar maps
containing faces whose degrees are drawn from a heavy tail distribution. In particular,
the limiting object is the so-called α-stable map, which can be coded in terms of stable
processes whose parameter α is related to the power law decay of the degree distribution
and to the Hausdorff dimension of the random map [17,18,108].

The next class of interestingmodels concerns randommaps equippedwith a statistical
physics model, like the Ising model [23,93], percolation [94], the O(n) model [17,
18,54,55,65–68,74,100,103], the Q-Potts model [14,19,39,146], or non intersecting
random walks [50,56]. The O(n) model admits a famous representation in terms of
loops [45,124] with n being the fugacity per loop. It is also well known, at least on
fixed lattices [11,42,49,70,124,125,142], that the critical Q-state Potts model, via its
Fortuin–Kasteleyn (FK) cluster representation, can be reformulated as a fully packed
loop model with a fugacity

√
Q per loop; for planar random maps this equivalence is

explained in detail in [19,138]. The interesting feature of the O(n) or Potts models is
that they give rise to universality classes which depend continuously on n or Q, as can be
detected at the level of critical exponents [1,42,48,54,55,60,72,74,100,103,122–124,
128–130]. The famous KPZ relations [98] (see also [40,44]) relate the critical exponents
of these models on a fixed regular lattice, with the corresponding critical exponents on
random planar maps, as was repeatedly checked for a series of models [52,54,55,93,
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98,100]. In the framework of Liouville quantum gravity, the KPZ relations have now
been mathematically proven for the Liouville measure defined as the (renormalised)
exponential of the Gaussian free field (GFF) times a parameter γ ∈ [0, 2] [62], as well as
in the context of Mandelbrot multiplicative cascades [9,13] and Gaussian multiplicative
chaos [8,59,127].

It is widely believed that after a Riemann conformal map to a given planar domain,
the correct conformal structure for the continuum limit of random planar maps weighted
by the partition function of a critical statistical model is described by the theory of
Liouville quantum gravity (LQG), coupled to the conformal field theory (CFT) rep-
resenting the conformally invariant model at its critical point (see, e.g., the reviews
[71,75,121] and [53,107]). In a more probabilistic setting, one expects the continuum
limit after conformal embedding to be some form of Liouville random surface decorated
by Schramm–Loewner evolution (SLE) paths.

There are now several senses in which random planar maps with statistical models
have been rigorously proved to converge to LQG surfaces, as path-decorated metric
spaces in the self-avoiding walk and percolation models cases [82,83,112], as mated
pairs of trees [79,80,96,109,138], or as Tutte discrete embedding of so-called mated-
CRTmaps [85], using results for the continuummating of continuum random trees (CRT)
[57,117]. This approach was recently extended to graph distances [78] and randomwalk
[84] on random planar maps.

The first instance was the proof by Sheffield [138] in the infinite volume case of
the convergence of quadrangulations equipped with the FK clusters of a critical Potts
model to LQG decorated by SLE, while the finite/sphere case was recently studied in
[81,86,87]. The convergence is here in the so-called peanosphere topology, obtained
from the mating of trees approach [57,117] (see also [77]).

In the case of the O(n) model, the configuration of critical loops after the Riemann
conformal mapping is expected to be described in the continuous limit by the conformal
loop ensemble CLEκ [136,139]. It depends on the continuous index κ ∈ ( 83 , 8) of the
associated Schramm–Loewner evolution (SLEκ ), with the correspondence

n = 2 cosπ
(
1− 4

κ

)

for n ∈ (0, 2] [51,52,90,138]. In Liouville quantum gravity, the CLEκ is coupled to
an independent GFF, which both govern the random measure with Liouville parameter
γ = min

(√
κ, 4√

κ

)
, and the conformal welding of SLEκ curves according to the LQG-

boundary measure [53,57,63,117,137]; see also [6]).
Yet, except for the pure gravity n = 0, γ 2 = 8

3 case, little is known on the metric
properties of large random maps weighted by an O(n) model, even from a physical
point of view. In this work, we shall rigorously investigate the nesting properties of
loops in those maps. From the point of view of 2d quantum gravity, it is a necessary,
albeit perhaps modest, step towards a more complete understanding of the geometry of
these large random maps. For instance, one should first determine the typical ‘depth’
(i.e., the number of loops crossed) on a random map before trying to determine how
deep geodesics are penetrating the nested loop configuration. While this last question
seems at present to be out of reach, its answer is expected to be related to the value of the
almost sure Hausdorff dimension of large randommaps with an O(n)model, a question
which is under active debate (see, e.g., Refs. [2,3,43,47,78]).

An early study of the depth via a transfer matrix approach can be found in the work by
Kostov [101,102]. Our approach is based on analytic combinatorics, and mainly relies
on the substitution approach developed in [17,18], and uses transfer matrices as an
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intermediate step. For instance, we compute generating series of cylinders (planar maps
with two boundary faces) weighted by sP , where P is the number of loops separating
the two boundaries. This novel type of results has a combinatorial interest per se; we
find that the new s variable appears in a remarkably simple way in the generating series.
While the present article is restricted to the case of planar maps, the tools that we present
are applied in Ref. [22] to investigate the topology of nesting in maps of arbitrary genus,
number of boundaries and marked points.

Wealso relate the asymptotics of our results in the critical scaling limit of large number
of loops and large volume, to extreme nesting in CLEκ in a bounded planar domain in
C, as obtained by Miller, Watson and Wilson in Ref. [120], who built on earlier works
[33,34,46,97,134]. The large deviations functions, obtained here for nesting on random
planar maps, are rigorously shown to be identical to some transforms, in Liouville
quantum gravity, of the Euclidean large deviations functions for CLEκ in the disk, as
obtained inRef. [120],whichwe also generalise to theRiemann sphere. These transforms
represent subtle extensions of the KPZ relation. By matching continuous sets of critical
exponents, i.e.,multifractal spectra, our results strongly support the conjecture that CLE
observed in Liouville quantum gravity describes the scaling limit of the loop ensemble
on large maps carrying a critical O(n) model.

Notations. If F and G are non zero and depend on some parameter ε→ 0,

• F � G means that ln F ∼ lnG;
• F

.� G means that F = eO(1)G;
• F

.∼ G means there exists C > 0 independent of ε such that F ∼ CG.

If F is a formal series in some parameter u, [um] F is the coefficient of um in F .

2. General Definitions, Reminders and Main Results

2.1. The O(n) loop model on random maps. We start by reminding the definition of the
model, following the presentation of Refs. [17,18].

2.1.1. Maps and loop configurations. A map is a finite connected graph (possibly with
loops and multiple edges) drawn on a closed orientable compact surface, in such a way
that the edges do not cross and that the connected components of the complement of the
graph (called faces) are simply connected. Maps differing by an orientation-preserving
homeomorphism of their underlying surfaces are identified, so that there are countably
many maps. The map is planar if the underlying surface is topologically a sphere. The
degree of a vertex or a face is its number of incident edges (counted with multiplicity).
To each map we may associate its dual map which, roughly speaking, is obtained by
exchanging the roles of vertices and faces. Form ≥ 1, amap with m boundaries is a map
with m distinguished faces, labeled from 1 to m. By convention all the boundary faces
are rooted, that is to say for each boundary face f we pick an oriented edge (called a root)
having f on its right. The perimeter of a boundary is the degree of the corresponding
face. Non boundary faces are called inner faces. A triangulation with m boundaries
(resp. a quadrangulation with m boundaries) is a map withm boundaries such that each
inner face has degree 3 (resp. 4).

Given a map, a loop is an undirected simple closed path on the dual map (i.e., it
covers edges and vertices of the dual map, and hence visits faces and crosses edges of
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Fig. 1. A planar triangulation with a boundary of perimeter 8 (with root in red, the distinguished face being
the outer face), endowed with a loop configuration (drawn in green)

the original map). This is not to be confused with the graph-theoretical notion of loop (an
edge incident twice to the same vertex), which plays no role here. A loop configuration is
a collection of disjoint loops, and may be viewed alternatively as a collection of crossed
edges such that every face of the map is incident to either 0 or 2 crossed edges. When
considering maps with boundaries, we assume that the boundary faces are not visited
by loops. Finally, a configuration of the O(n) loop model on random maps is a map
endowed with a loop configuration, see Fig. 1 for an example.

Remark 2.1. In the original formulation in Refs. [66,67,74,100,103], the loops cover
vertices and edges the map itself. Our motivation for drawing them on the dual map is
that it makes our combinatorial decompositions easier to visualise.

2.1.2. Statistical weights and partition functions. Colloquially speaking, the O(n) loop
model is a statistical ensemble of configurations in which n plays the role of a fugacity
per loop. In addition to this “nonlocal” parameter, we need also some “local” parameters,
controlling in particular the size of the maps and of the loops. Precise instances of the
model can be defined in various ways.

The simplest instance is the O(n) loop model on random triangulations [66,67,
74,100,103]: here we require the underlying map to be a triangulation, possibly with
boundaries. There are two local parameters g and h, which are the weights per inner
face (triangle) which is, respectively, not visited and visited by a loop. The Boltzmann
weight attached to a configuration C is thus w(C) = nLgT1hT2 , with L the number of
loops of C , T1 its number of unvisited triangles and T2 its number of visited triangles.

A slight generalisation of this model is the bending energy model [18], where we
incorporate in the Boltzmann weight w(C) an extra factor αB , where B is the number
of pairs of successive loop turns in the same direction, see Fig. 2. Another variant is
the O(n) loop model on random quadrangulations considered in [17] (and its “rigid”
specialisation). Finally, a fairly general model encompassing all the above, and amenable
to a combinatorial decomposition, is described in [18, Section 2.2]. We now define the
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Fig. 2. Top row: local weights for the O(n) loop model on random triangulations. Bottom row: in the bending
energy model, an extra weight α is attached to each segment of a loop between two successive turns in the
same direction

partition function. Fixing an integer m ≥ 1, we consider the ensemble of allowed
configurations where the underlying map is planar and has m boundaries of respective
perimeters �1, �2, . . . , �m ≥ 1 (called perimeters).Wewillmainly be interested inm = 1
(disks) and m = 2 (cylinders). The corresponding partition function is then the sum of
the Boltzmann weights w(C) of all such configurations. We find convenient to add an
auxiliary weight u per vertex, and define the partition function as

F (m)
�1,...,�m

= δm,1δ�1,0 u +
∑
C

u|V (C)|w(C), (2.1)

where the sum runs over all desired configurations C , and |V (C)| denotes the number
of vertices of the underlying map of C , also called volume. By convention, the partition
function for m = 1 includes an extra term δ�1,0 u, which means that we consider the
map consisting of a single vertex on a sphere to be a planar map with one boundary of
perimeter zero. We also introduce the shorthand notation

F� ≡ F (1)
� . (2.2)

2.2. Phase diagram and critical points. When we choose the parameters to be real
positive numbers such that the sum (2.1) converges, we say that the model is well
defined (it induces a probability distribution over the set of configurations). Under mild
assumptions on themodel (e.g., the face degrees are bounded), this is the case for u small,
and there exists a critical value uc above which the model ceases to be well defined:

uc = sup{u ≥ 0 : F (m)
�1,...,�m

<∞}. (2.3)

It is not difficult to check that uc does not depend on m and �1, �2, . . . , �m ≥ 1. If
uc = 1 (resp. uc > 1, uc < 1), we say that the model is at a critical (resp. subcritical,
supercritical) point.

At a critical point, the partition function has a singularity at u = 1, and the nature
(universality class) of this singularity is characterised by some critical exponents, to be
discussed below. For n ∈ (0, 2), three different universality classes of critical points
may be obtained in the O(n) loop model on random triangulations [100], which we call
generic, dilute and dense.



Nesting Statistics in the O(n) Loop Model 1131

g

h

subcritical

dense
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Fig. 3. Qualitative phase diagram of O(n) loop model on random maps: there is a line of critical points
separating the subcritical and supercritical phase. Critical points may be in three different universality classes:
generic, dilute and dense

The generic universality class is that of “pure gravity”, also obtained in models
of maps without loops. The location of these points in the (g, h) plane forms the phase
diagram of themodel, displayed qualitatively on Fig. 3, and established in [18]—see also
the earlier works [66,67,74,100,103]. For the bending energy model, the phase diagram
is similar for α not too large, but as α grows the line of non generic critical points shrinks
and vanishes eventually [19, Section 5.5]. The same universality classes, and a similar
phase diagram, is also obtained for the rigid O(n) loop model on quadrangulations [17],
and is expected for more general loop models, where g and h should be thought as a
fugacity per empty and visited faces, respectively.

2.3. Critical exponents. We now discuss some exponents that characterise the different
universality classes of critical points of the O(n) loop model. Some of them are well
knownwhile others are introduced here for the purposes of the study of nesting (for com-
pleteness all definitions are given below). In the case of the dilute and dense universality
classes, the known exponents are rational functions of the parameter:

b = 1

π
arccos

(n
2

)
, (2.4)

which decreases from 1
2 to 0 as n increases from 0 to 2. Let us mention that b is closely

related to the so-called coupling constant g appearing in the Coulomb gas description
of the O(n)model on regular lattices, the relation being g = 1 + b (dilute) or g = 1− b
(dense).

Before entering into definitions, we summarise the exponents on Table 1. An entry •
indicates that the exponent is unknown.At the time ofwriting, there is no consensus about
the value of the Hausdorff dimension dH in the physics literature, although a so-called
Watabiki formula has been proposed (see e.g., [2,3,26,47] and references therein) and
critically analysed in view of recent mathematical results [43,78]. All other exponents
can be derived rigorously in the O(n)model on triangulations, as well as the model with
bending energy, and are expected to be universal. We actually reprove these results in
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Table 1. Summary of the critical exponents for the O(n) model on random maps as functions of b =
1
π arccos

( n
2
)

Exponent Subcrit. Generic Dilute Dense n = 0 Perc. Ising 3-Potts KT

b b b 1
2

1
3

1
4

1
6 0

γstr − 1
2 −b − b

1−b −1 − 1
2 − 1

3 − 1
5 0

c 0 1− 6b2
1+b 1− 6b2

1−b −2 0 1
2

4
5 1

κ 4
1+b

4
1−b 8 6 16

3
24
5 4

c 1 1
1−b 2 3

2
4
3

6
5 1

a 3
2

5
2 2 + b 2− b 3

2
5
3

7
4

11
6 2

dH 2 4 • • • 4 • • •
d
gasket
H 2 4 3 + 2b 3− 2b 2 7

3
5
2

8
3 3

ν 0 0 1
2 − b 1−2b

2(1−b) 0 1
4

1
3

4
10

1
2

Pure gravity corresponds to the n = 0 model in the dilute phase, critical percolation to the n = 1 model in
the dense phase, the critical Ising model and its interfaces to both the n = 1 model in the dilute phase (for
spin clusters) and the n = √2 model in the dense phase (for FK clusters). The Kosterlitz–Thouless transition
is that of the n = 2 model where the dilute and dense exponents are identical. More generally, the critical
Q-Potts model and its FK cluster boundaries correspond to the O(n = √Q) model in the dense phase

the course of the article—the only new statement concerns ν—for the dense and dilute
phases of the model with bending energy.

2.3.1. Volume exponent. The singularity of the partition function in the vicinity of a
critical point is captured in the so-called string susceptibility exponent γstr:

F�|sing .∼ (1− u)1−γstr , u → 1, (2.5)

where � is fixed, and F�|sing denotes the leading singular part in the asymptotic expansion
of F� around u = 1. As u is coupled to the volume, the generating series of maps with
fixed volume V behaves as:

[uV ] F� .∼ V γstr−2, V →∞. (2.6)

provided a delta-analyticity condition can be checked. In the context of the O(n) loop
model, γstr may take the generic value− 1

2 , already observed in models of maps without
loops (n = 0); the dilute value −b; and the dense value − b

1−b . In all cases we consider,
γstr is comprised between −1 and 0. Let us recall the celebrated KPZ relation [98]

γstr = c− 1−√(1− c)(25− c)

12
, (2.7)

linking the string susceptibility exponent to the central charge c of conformal field
theory. For completeness, we also indicate in Table 1 the value of the κ parameter for
the corresponding conformal loop ensemble (see Sect. 2.6).

The parameter c ∈ [1, 2) defined by:

c := −γstr
b

(2.8)

will play an important role in this paper (note that it has nothing to do with c).
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Fig. 4. The gasket of the map depicted in Fig. 1

2.3.2. Perimeter exponent. Another exponent is obtained as we keep u = 1 fixed but
take one boundary to be of large perimeter. Clearly, this requires F� to be finite for all
�, hence the model to be either subcritical or critical, since γstr ∈ (−1, 0). We have the
asymptotic behavior:

F�
.∼ γ �+

�a
, �→∞, (2.9)

where γ+ is a non universal constant, and a is a universal exponent comprised between
3
2 and 5

2 , which can take more precisely four values for a given value of n: 3
2 (subcritical

point), 5
2 (generic critical point), 2 + b (dilute critical point) and 2 − b (dense critical

point).

2.3.3. Gasket exponents. Consider a disk D with one boundary face and a loop config-
uration. The gasket of D [17] is the map formed by the vertices and edges which are
exterior to all the loops, see Fig. 4.

In Corollary 6.8, we will combine known properties of the generating series of disks
in the model with bending energy to show that the probability that a vertex chosen at
random uniformly in a disk of volume V and finite perimeter belongs to the gasket
behaves as

P
[• ∈ gasket

∣∣ V ] .∼ V−ν, V →∞ , (2.10)

with ν = c( 12 − b), modulo the check of a delta-analyticity condition.
Relying on thework of LeGall andMiermont [108],we showed in [17] that the almost

sure fractal dimension of the gasket when V →∞, denoted dgasketH , is equal to 3− 2b
in the dense phase, 3 + 2b in the dilute phase. This exponent can also be extracted from
Kostov [101, Section 4.2]—where g is the Coulomb gas coupling constant gmentioned
above. This contrastswith thewell knownvalue dH = 4 for the fractal dimension of disks
at the generic critical point. We can only expect dH > dgasketH . Reference [47] relates it
to the value of yet another critical exponent, which expresses how deep geodesics enter
in the nested configuration of loops.
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2.4. Main results on randommaps. This paper is concernedwith the statistical properties
of nesting between loops. The situation is simpler in the planar case since every loop
is contractible, and divides the underlying surface into two components. The nesting
structure of large maps of arbitrary topology is analysed in the subsequent work [22].

In the general O(n) loop model, the generating series of disks and cylinders have
been characterised in [17,18,21], and explicitly computed in the model with bending
energy in [18], building on the previous works [20,66,67]. This characterisation is a
linear functional relation which depends explicitly on n, accompanied by a nonlinear
consistency relation depending implicitly on n. We remind the steps leading to this
characterisation in Sects. 3 and 4. In particular, we review in Sect. 3 the nested loop
approach developed in [17], which allows enumerating maps with loop configurations in
terms of generating series of usualmaps.We then derive in Sect. 4 the functional relations
for maps with loops as direct consequences of the well known functional relations for
generating series of usual maps. The key to our results is the derivation in Sect. 4.4
of an analogous characterisation for refined generating series of pointed disks (resp.
cylinders), in which the loops which separate the origin (resp. the second boundary)
and the (first) boundary face are counted with an extra weight s each. We find that the
characterisation of the generating series is only modified by replacing n with ns in the
linear functional relation, while keeping n in the consistency relation. Subsequently, in
the model with bending energy, we can compute explicitly the refined generating series,
in Sect. 5. We analyse in Sect. 6 the behavior of those generating series at a non generic
critical point which pertains to the O(n) model. In the process, we rederive the phase
diagram of the model with bending energy. More precisely, we perform an analysis of
singularity in the canonical ensemble where the Boltzmann weight u coupled to the
volume tends to its critical value, which is equal to 1 when suitably normalised. In order
to convert it to large volume asymptotics, we establish in Appendices I.2 and J a property
of delta-analyticity of the generating series with respect to u, which partially relies on
the explicit solution (see Theorem 5.3) for the generating series of disks. One of our
main result is then Theorem 6.10 in the text, restated below.

Theorem 2.2. Fix (g, h, α) and n ∈ (0, 2) such that the model with bending energy
achieves a non generic critical point for the vertex weight u = 1. In the ensemble of
random pointed disks of volume V and perimeter L, the distribution of the number P
of separating loops between the marked point and the boundary face behaves when
V →∞ as:

P

[
P = ⌊ c ln V

π
p
⌋ ∣∣∣ V , L = �

]
.� (ln V )−

1
2 V−

c
π
J (p),

P

[
P = ⌊ c ln V2π p

⌋∣∣∣ V , L = 
V c
2 ��
]

.� (ln V )−
1
2 V−

c
2π J (p),

where

J (p) = p ln

(
2

n

p√
1 + p2

)
+ arccot(p)− arccos

(
n

2

)
.

In the above estimates, � and p are bounded and bounded away from 0 as V →∞.

We expect this result to be universal among all O(n) loop models at non generic critical
points. The explicit, non universal finite prefactors in those asymptotics are given in the
more precise Theorem 6.10. We establish a similar result in Sect. 7 and Theorem 7.1 for
the number of loops separating the boundaries in cylinders. Note that our derivation of



Nesting Statistics in the O(n) Loop Model 1135

1 2 3 4
p

0.5

1.0

1.5

Fig. 5. The function J (p) for n = 1, n = √2 (Ising) and n = √3 (3-Potts). The larger is the value of n, the
smaller is the slope when p→∞

these theorems relies on the results of [18], some of which were justified using numerical
evidence rather than formal arguments. See Remark 5.4 below.

The large deviations function has the following properties (see Fig. 5):

• J (p) ≥ 0 for positive p, and achieves its minimum value 0 at popt = n√
4−n2 .

• J (p) is strictly convex, and J ′′(p) = 1
p(p2+1)

.
• J (p) has a slope ln(2/n) when p→∞.
• When p→ 0, we have J (p) = arcsin

( n
2

)
+ p ln

( 2p
n

)
+ O(p).

In Sect. 6.3, we prove a central limit theorem for fluctuations P near its typical value.
It is consistent with the Gaussian behavior of the large deviations function around its
minimum popt.

Proposition 2.3. In pointed disks as above, the number of separating loops between the
marked point and the boundary face behaves almost surely like

cpopt
jπ ln V , withGaussian

fluctuations of order O(
√
ln V ):

P − cpopt
jπ ln V√
ln V

−→ N (0, σ 2), popt = n√
4− n2

, σ 2 = 23− j nc

π(4− n2)
3
2

.

with j = 1 if we keep L finite, or j = 2 if we scale L = 
� V c
2 � for a finite positive �.

Establishing the critical behavior of the generating series and the phase diagram
requires analyzing special functions related to the Jacobi theta functions and elliptic
functions in the trigonometric limit. The aformentioned variable q is the elliptic nome.
The lengthy computations with these special functions are postponed to Appendices
to ease the reading. In Sect. 8, we generalise these results to a model where loops are
weighted by independent, identically distributed random variables. Lastly, Sect. 9, the
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content of which is briefly described below, uses a different perspective, and re-derives
the above results on random maps from the Liouville quantum gravity approach. The
latter is applied to similar earlier results obtained in Ref. [120] for a CLEκ in the unit
disk.

2.5. Relation with other works. We now mention some closely related works, which
appeared after the initial version of this paper was posted on the arXiv.

Chen et al. [36] proposed an alternative study of the nesting, and proved the conver-
gence of the nesting tree (see Sect. 3.2) labeled by loop perimeters in rigid O(n) loop
model on random quadrangulations, to an explicit multiplicative cascade. This rigid
O(n)model is a variant of the one studied in the present article, for which an analogous
explicit analysis can be carried out—the seeds of the computation are in [17]—and lead
to the same Theorem 2.2 and Proposition 2.3. Reference [36] has proposed a heuris-
tic argument confirming the result of Theorem 2.2 from the properties of the offspring
distribution of the cascade.

A detailed study of the rigid O(n) loop model on random bipartite maps was per-
formed by Budd (with some input by Chen) in a series of works. Budd’s first observa-
tion [30] was an unexpected connection between planar maps and lattice walks on the
slit plane. An extension of his construction relates walks onZ

2 with a controlled winding
angle around the origin to the rigid O(n) loop model. This led to new results [31] on the
counting of simple diagonal walks on Z

2 with a prescribed winding angle, hinging on
the explicit diagonalisation of certain transfer matrices acting on a �2-space which are
closely related to the transfer matrices considered in the present article. Finally, the pa-
per [32] extends to loop-decoratedmaps the peeling process of (undecorated) Boltzmann
maps introduced in [29]. This approach brings many results:

• a formal justificationof the phase diagramof the rigidmodel, see also [37,Chapter II]
and Remark 5.4 below,
• a characterisation of the scaling limit of the perimeter process, which implies in turn
the convergence of a certain rescaled first passage percolation distance,
• exact and asymptotic results on the number of separating loops in a pointed rooted
map, which are consistent with our own results (see Appendix I), and also include
the case n = 2.

2.6. Comparison with CLE properties. It is strongly believed that, if the random disks
were embedded conformally to the unit diskD, the loop configurationwould be described
in the thermodynamic V → ∞ limit by the conformal loop ensemble in presence
of Liouville quantum gravity. On a regular planar lattice, the critical O(n)-model is
expected to converge in the continuum limit to the universality class of the SLEκ /CLEκ ,
for

n = 2 cos
[
π
(
1− 4

κ

)]
n ∈ (0, 2]

{
κ ∈ ( 83 , 4], dilute phase
κ ∈ [4, 8), dense phase

(2.11)

and the same is expected to hold at a non generic critical point in the dilute or dense phase
on a random planar map. Although both conjectures are not yet mathematically fully
established, we may try to relate the large deviations properties of nesting, as derived in
the critical regime in the O(n) loop model on a random planar map, to the corresponding
nesting properties of CLEκ , in order to support both conjectures altogether.
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Using the so-called Coulomb gas method for critical O(n) and Potts models, Cardy
and Ziff provided the first prediction, numerically verified, for the expected number of
loops surrounding a given point in a finite domain [34]. Elaborating on this work and
on Refs. [33,46,97,134], Miller et al. [120] (see also [119]) were able to derive the
almost sure multifractal dimension spectrum of extreme nesting in the conformal loop
ensemble. Let � be a CLEκ in D. For each point z ∈ D, let Nz(ε) be the number of
loops of � which surround the ball B(z, ε) centered at z and of radius ε > 0. For ν > 0,
define

�ν = �ν(�) :=
{
z ∈ D : lim

ε→0

Nz(ε)

ln(1/ε)
= ν

}
.

The almost-sure Hausdorff dimension of this set is given in terms of the distribution
of conformal radii of outermost loops in CLEκ . More precisely, let U be the connected
component containing the origin in the complement D\L of the largest loop L of �
surrounding the origin in D, and CR(0,U) its conformal radius from 0. The cumulant
generating function of T := − ln(CR(0,U)) was computed independently in unpub-
lished works [33,46,97], and rigorously confirmed in Ref. [134]. It is given by

κ(λ) := lnE

[
eλT
]
= ln

⎛
⎜⎜⎝

− cos( 4π
κ
)

cos

(
π

√(
1− 4

κ

)2
+ 8λ

κ

)

⎞
⎟⎟⎠ , (2.12)

for λ ∈ (−∞, 1− 2
κ
− 3κ

32 ). The symmetric Legendre–Fenchel transform,∗κ : R → R+
of κ is defined by

�
κ(x) := sup

λ∈R
(λx −κ(λ)) . (2.13)

The authors of [120] then define

γκ(ν) :=
{
ν�

κ(1/ν), if ν > 0
1− 2

κ
− 3κ

32 if ν = 0,
(2.14)

which is right-continuous at 0. Then, for κ ∈ ( 83 , 8), the Hausdorff dimension of the set
�ν is almost surely [120, Theorem 1.1],

dimH�ν = max(0, 2− γκ(ν)).

As a Lemma for this result, the authors of Ref. [120] estimate, for ε→ 0, the asymptotic
nesting probability around point z,

P(Nz(ε) ≈ ν ln(1/ε) | ε) � εγκ (ν), (2.15)

where the sign ≈ stands for a growth of the form (ν + o(1)) ln(1/ε), and where �
means an asymptotic equivalence of logarithms. In Sect. 9, we consider the unit disk
in Liouville quantum gravity (LQG), i.e., we equip it with a random measure, formally
written here as μγ = eγ hd2z, where γ ∈ [0, 2] and h is an instance of a GFF on D, d2z
being the Lebesgue measure. The random measure μγ is called the Liouville quantum
gravity measure. We define accordingly δ := ∫B(z,ε) μγ as the (random) quantum area
of the ball B(z, ε). In this setting, the KPZ formula, which relates a Euclidean conformal
weight x to its LQG counterpart � [62], reads

x = Uγ (�) := γ 2

4
�2 +

(
1− γ 2

4

)
�. (2.16)
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Studying extreme nesting in LQG then consists in looking for the distribution of
loops of a CLEκ around the same ball B(z, ε), the latter being now conditioned to have
a given quantum measure δ, and to measure this nesting in terms of the logarithmic
variable ln(1/δ), instead of ln(1/ε). We thus look for the probability,

PQ (Nz ≈ p ln(1/δ) | δ) , p ∈ R+, (2.17)

which is the analogue of the left-hand side of (2.15) in Liouville quantum gravity, and
which we may call the quantum nesting probability.

By taking into account the distribution of the Euclidean radius ε for a given δ [61,62],
we obtain two main results, a first general one deriving via the KPZ relation the large
deviations in nesting of a CLEκ in LQG from those in the Euclidean disk D, as derived
in Ref. [120], and a second one identifying these Liouville quantum gravity results to
those obtained here for the critical O(n) model on a random map.

Theorem 2.4. In Liouville quantum gravity, the cumulant generating functionκ (2.12)
with κ ∈ ( 83 , 8), is transformed into the quantum one,

Q
κ := κ ◦ 2Uγ , (2.18)

whereκ is given by (2.12) andUγ is the KPZ function (2.16), with γ = min
(√

κ, 4√
κ

)
.

The Legendre–Fenchel transform, Q�
κ : R → R+ of Q

κ is defined by

Q�
κ (x) := sup

λ∈R

(
λx −Q

κ (λ)
)
.

The quantum nesting distribution (2.17) in the disk is then, when δ→ 0,

PQ
(
Nz ≈ p ln(1/δ) | δ) � δ�(p),

�(p) =
⎧
⎨
⎩

pQ�
κ

( 1
p

)
, if p > 0

3
4 − 2

κ
if p = 0 and κ ∈ ( 83 , 4]

1
2 − κ

16 if p = 0 and κ ∈ [4, 8).

Corollary 2.5. The generating function associated withCLEκ nesting in Liouville quan-
tum gravity is explicitly given for κ ∈ ( 83 , 8) by

Q
κ (λ) = κ ◦ 2Uγ (λ) = ln

⎛
⎝ cos

[
π(1− 4

κ
)
]

cos
[
π
( 2λ
c +

∣∣1− 4
κ

∣∣) ]
⎞
⎠ , c = max{1, κ4 },

λ ∈ [ 12 − 2
κ
, 34 − 2

κ

]
for κ ∈ ( 83 , 4

] ; λ ∈ [ 12 − κ
8 ,

1
2 − κ

16

]
for κ ∈ [4, 8).

Remark 2.6. �(p) is right-continuous at p = 0.

Remark 2.7. Theorem 2.4 shows that the KPZ relation can directly act on an arbitrary
continuum variable, here the conjugate variable in the cumulant generating function
(2.12) for the CLEκ log-conformal radius. This seems the first occurrence of such a role
for the KPZ relation, which usually concerns scaling dimensions.
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Remark 2.8. As the derivation in Sect. 9 will show, the map κ �→ Q
κ in (2.18) to

go from Euclidean geometry to Liouville quantum gravity is fairly general: the compo-
sition of  by the KPZ function Uγ would hold for any large deviations problem, the
large deviations function being the Legendre–Fenchel transform of a certain generating
function .

Theorem 2.9. The quantum nesting probability of a CLEκ in a proper simply connected
domain D � C, for the number Nz of loops surrounding a ball centered at z and
conditioned to have a given Liouville quantum area δ, has the large deviations form,

PQ
(
Nz ≈ cp

2π
ln(1/δ)

∣∣∣ δ
)
� δ

c
2π J (p), δ→ 0,

where c and J are the same as in Theorem 2.2.

A complementary result concerns the case of the Riemann sphere. The extreme
nestings of CLE for this geometry is written in Theorem 9.8 and seems to be new. After
coupling to LQG, we obtain

Theorem 2.10. On theRiemann sphere Ĉ, the large deviations function �̂which governs
the quantum nesting probability,

P
Ĉ

Q
(
N ≈ p ln(1/δ) | δ) � δ�̂(p), δ→ 0,

is related to the similar function � for the disk topology, as obtained in Theorem 2.4,
by

�̂(2p) = 2�(p).

From Theorem 2.9, we get explicitly,

P
Ĉ

Q
(
N ≈ cp

π
ln(1/δ)

∣∣∣ δ
)
� δ

c
π
J (p), δ→ 0,

where c and J are as in Theorem (2.2).

Remark 2.11. The reader will have noticed the perfect matching of the LQG results for
CLEκ in Theorems 2.4, 2.9 and 2.10 with the main Theorem 2.2 for the O(n)model on
a random planar map, with the proviso that the first ones are local versions (i.e., in the
δ→ 0 limit), while the latter one gives a global version (i.e., in the V →∞ limit).

3. First Combinatorial Results on Planar Maps

3.1. Reminder on the nested loop approach. We remind that F� is the partition function
for a loop model on a planar map with a boundary of perimeter �. The nested loop
approach describes it in terms of the generating series Fp = Fp(g1, g2, . . .) of usual
maps (i.e., without a loop configuration) which are planar, have a rooted boundary of
perimeter p, and counted with a Boltzmann weight gk per inner face of degree k (k ≥ 1)
and an auxiliary weight u per vertex. To alleviate notations, the dependence on u is left
implicit in most expressions. By convention, we assume that boundaries are rooted. We
then have the fundamental relation [18]

F� = F�(G1,G2, . . .), (3.1)
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Fig. 6. Left: schematic representation of a loop configuration on a planar map with one boundary. Right: the
associated nesting tree (the red vertex corresponds to the gasket)

where the Gk’s satisfy the fixed point condition

Gk = gk +
∑
�′≥0

Ak,�′F�′(G1,G2, . . .) = gk +
∑
�′≥0

Ak,�′ F�′ , (3.2)

where Ak,� is the generating series of sequences of faces visited by a loop, which are
glued together so as to form an annulus, in which the outer boundary is rooted and has
perimeter k, and the inner boundary is unrooted and has perimeter �. Compared to the
notations of [18], we decide to include in Ak,� the weight n for the loop crossing all
faces of the annulus. We call Gk the renormalised face weights.

Throughout the text, unless it is specified in the paragraph headline that we are
working with usual maps, the occurrence of F will always refer to F(G1,G2, . . .).

3.2. The nesting graphs. In this paragraph, we introduce a notion of nesting graph
attached to a configuration C of the O(n)model. Although this level of generality is not
necessary for this article (see the discussion at the end of this paragraph), we include it
to put our study in a broader context.

Let us cut the underlying surface along every loop, which splits it into several con-
nected components c1, . . . , cN . Let T be the graph on the vertex set {c1, . . . , cN } where
there is an edge between ci and c j if and only if they have a common boundary, i.e.,
they touch each other along a loop (thus the edges of T correspond to the loops of C).

If the map is planar, T is a tree called the nesting tree of C , see Fig. 6. Each loop
crosses a sequence of faces which form an annulus. This annulus has an outer and inner
boundary, and we can record their perimeter on the half edges of T . As a result, T is
a rooted tree whose half edges carry non negative integers. If the map has a boundary
face, we can root T on the vertex corresponding to the connected component containing
the boundary face. Then, for any vertex v ∈ T , there is a notion of parent vertex (the one
incident to v and closer to the root) and children vertices (all other incident vertices). We
denote �(v) the perimeter attached to the half-edge arriving to v from the parent vertex.
In this way, we can convert T to a tree T ′ where each vertex v carries the non negative
integer �(v).

The nesting tree is closely related to the gasket decomposition introduced in [17,18].
Consider the canonical ensemble of disks in the O(n) model such that vertices receive
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a Boltzmann weight u, and the probability law it induces on the tree T ’. The probability
that a vertex v with perimeter � has m children with perimeters {�1, . . . , �m} is:

P�→�1,...,�m =
1

m!

∑
k1,...,km≥0

[∏m
i=1 Aki ,�i F�i

]
∂gk1

· · · ∂gkmF�(g1, g2, . . .)

F�
.

We see that T ′ forms a Galton–Watson tree with infinitely many types. For the rigid
O(n)model on planar quadrangulation of a disk [17], the situation is a bit simpler as the
inner and outer perimeters of the annuli carrying the loops coincide. We therefore obtain
a random tree with one integer label for each vertex, whose convergence at criticality
was studied in [36] (see Sect. 2.5).

If one decides to consider a map M with a given finite set of marked elements—e.g.,
boundary faces or marked points—, one can define the reduced nesting tree (Tred,p) by:

(i) For each mark in M , belonging to a connected component ci , putting a mark on
the corresponding vertex of T ;

(ii) erasing all vertices in T which correspond to connected components which, in the
complement of all loops and of the marked elements in M , are homeomorphic to
disks; this step should be iterated until all such vertices have disappeared;

(iii) replacing any maximal simple path of the form v0 − v1 − · · · − vp with p ≥ 2
where (vi )

p
i=1 represent connected components homeomorphic to cylinders, by a

single edge

v0
p− vp

carrying a length p. By convention, edges which are not obtained in this way carry
a length p = 1.

The outcome is a tree, in which vertices may carry the marks that belonged to the
corresponding connected components, and whose edges carry positive integers p. By
construction, given a finite set of marked elements, one can only obtain finitely many
inequivalent Tred.

In the subsequent article [22], the first-named author and Garcia–Failde analyse the
probability that a given topology of nesting tree is realised, conditioned on the lengths
of the arms, as well as the generalisation to non simply connected maps. In the present
article, we focus on the case of two marks: either a marked point and a boundary face,
or two boundary faces. Then, the reduced nesting graph is either the graph with a single
vertex (containing the two marked elements) and no edge, or the graph with two vertices
(each of them containing a marked element) connected by an arm of length P ≥ 0.
Our goal consists in determining the distribution of P , which is the number of loops
separating the two marked elements in the map (the pruning consisted in forgetting all
information about the loops which were not separating). Yet, the tools we shall develop
are important steps in the more general analysis of [22].

3.3. Maps with two boundaries. Wedenote F (2)
�1,�2

the partition function for a loopmodel
on a random planar map with 2 labeled boundaries of respective perimeters �1, �2, and
similarly F (2)

�1,�2
≡ F (2)

�1,�2
(g1, g2, . . .) for the partition function of usual maps. Such
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maps can be obtained from disks by marking an extra face and rooting it at an edge. At
the level of partition functions, this amounts to:

F (2)
�1,�2

= �2
∂

∂g�2
F�1, F (2)

�1,�2
= �2

∂

∂g�2
F�1 . (3.3)

Differentiating the fixed point relation (3.1), we can relate F (2)
�1,�2

to partition functions
of usual maps:

F (2)
�1,�2

= F (2)
�1,�2

+
∑
k≥1
�≥0

F (2)
�1,k

Rk,� F
(2)
�,�2

, (3.4)

where we have introduced the generating series Rk,� = Ak,�/k, which now enumer-
ate annuli whose outer and inner boundaries are both unrooted. In this equation, the
evaluation of the generating series of usual maps at Gk given by (3.2) is implicit.

3.4. Separating loops and transfer matrix. We say that a loop in a map M with 2
boundaries is separating if after its removal, each connected component contains one
boundary. The combinatorial interpretation of (3.4) is transparent: the first term counts
cylinders where no loop separates the two boundaries, while the second term counts
cylinders with at least one separating loop (see Fig. 7).

With this remark, we can address a refined enumeration problem. We denote by
F (2)
�1,�2

[s] the partition function of cylinders carrying a loopmodel, with an extra weight s
per loop separating the two boundaries. Obviously, the configurations without separating
loops are enumerated by F (2)

�1,�2
. If a configuration has at least one separating loop, let

us cut along the first separating loop, and remove it. It decomposes the cylinder into:
a cylinder without separating loops, that is adjacent to the first boundary; the annulus
that carried the first separating loop; a cylinder with one separating loop less, which is
adjacent to the second boundary. We therefore obtain the identity:

F (2)
�1,�2

[s] = F (2)
�1,�2

+ s
∑
k≥1
�≥0

F (2)
�1,k

Rk,� F
(2)
�,�2
[s]. (3.5)

We retrieve (3.4) when s = 1, i.e., when separating and non separating loops have the
sameweight.We remind for the last time thatF’s should be evaluated at the renormalised
face weights Gk .

Although it is not essential and will rarely be used in the body of this article, we
point out that these relations can be rewritten concisely with matrix notations. Let F(2)s

(resp. R) be the semi-infinite matrices with entries F (2)
�1,�2

[s] (resp. R�1,�2 ) with row and
column indices �1, �2 ≥ 0, with the convention that R0,�2 = 0. It allows the repackaging
of (3.5) as:

F(2)s = F (2) + s F (2)RF(2)s . (3.6)

Therefore:

F(2)s = 1

1− s F (2)R
F (2). (3.7)

Then, �s = (1− s F (2)R)−1 acts as a transfer matrix, where the inverse at least makes
sense when s is considered as a formal variable. Equations (3.6) and (3.7) also appear
in the early work of Kostov [101].
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· · ·

F (2)

F(2)
s

sR

F (2) F (2) F (2)

sR sR sR

Fig. 7. Illustration of (3.6)

3.5. Pointed maps. Remind that u denotes the vertex weight. In general, a partition
function Z• of pointed maps can easily be obtained from the corresponding partition
function Z of maps:

Z• = u
∂

∂u
Z . (3.8)

We refer to the marked point as the origin of the map. Let us apply this identity to
disks with loops. We have to differentiate (3.1) and remember that the renormalised face
weights depend implicitly on u:

F•� = F•� +
∑
k≥1
�′≥1

F (2)
�,k Rk,�′ F

•
�′ . (3.9)

Obviously, the first term enumerates disks where the boundary and the origin are not
separated by a loop.

Let us introduce a refined partition function F•� [s] that includes a Boltzmann weight
s per separating loop between the origin and the boundary. Cutting along the first (if
any) separating loop starting from the boundary and repeating the argument of § 3.4, we
find:

F•� [s] = F•� + s
∑
k≥1
�′≥0

F (2)
�,k Rk,�′ F

•
�′ [s]. (3.10)

If we introduce the semi-infinite line vectors F•s (resp. F•
s ) whose entries are F•� [s]

(resp. F•� [s]) for � ≥ 0, (3.10) can be written in matrix form:

F•s = F• + s F (2)RF•s . (3.11)

The solution reads:

F•s =
1

1− s F (2)R
F• = �s F•, (3.12)

involving again the transfer matrix.
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4. Functional Relations

4.1. Morenotations: boundary perimeters. It is customary to introducegenerating series
for the perimeter of a boundary. Here, we will abandon the matrix notations of § 3.4
unless explicitly mentioned, and rather introduce:

F(x) =
∑
�≥0

F�
x�+1

, F(x) =
∑
�≥0

F�

x�+1
, (4.1)

which enumerate disks with loops (resp. usual disks) with a weight x−(�+1) associated
to a boundary of perimeter �, and similarly the generating series of pointed disks

F•(x) =
∑
�≥0

F•�
x�+1

, F•(x) =
∑
�≥0

F•�
x�+1

(4.2)

and the generating series of pointed disks in which a weight sP is included when the
boundary and the marked point are separated by P loops:

F•s (x) =
∑
�≥0

F•� [s]
x�+1

(4.3)

Likewise, for the generating series of cylinders, we introduce:

F(2)(x1, x2) =
∑

�1,�2≥1

F (2)
�1,�2

x�1+11 x�2+12

,

F(2)s (x1, x2) =
∑

�1,�2≥1

F (2)
�1,�2

[s]
x�1+11 x�2+12

,

F (2)(x1, x2) =
∑

�1,�2≥1

F (2)
�1,�2

x�1+11 x�2+12

, (4.4)

etc. We will also find convenient to introduce generating series of annuli1:

R(x, z) =
∑
k+�≥1

Rk,� x
k z�,

A(x, z) =
∑
k≥1
�≥0

Ak,� x
k−1 z� = ∂xR(x, z). (4.5)

1 Our definition for A differs by a factor of n/x from the corresponding A in [18].



Nesting Statistics in the O(n) Loop Model 1145

4.2. Reminder on usual maps. The properties of the generating series of usual disks
F(x) have been extensively studied. We now review the results of [18]. We say that a
sequence of nonnegative weights (u, g1, g2, . . .) is admissible if for any � ≥ 0, we have
F•� <∞; by extension, we say that a sequence of real-valued weights (u, g1, g2, . . .)k≥1
is admissible if (|u|, |g1|, |g2|, . . .) is admissible. Then,F(x) satisfies the one-cut lemma
and a functional relation coming from Tutte’s combinatorial decomposition of rooted
maps:

Proposition 4.1. If (u, g1, g2, . . .) is admissible, then the formal series F(x) is the
Laurent series expansion at x = ∞ of a holomorphic function in a maximal domain of
the form C\γ , where γ = [γ−, γ+] is a segment of the real line depending on the vertex
and the face weights. Its endpoints are given by γ± = s ± 2

√
r where r and s are the

unique formal series in the variables u and (gk)k≥1 such that:

∮

C(γ )
dx

2iπ

(
x −∑k≥1 gk xk−1

)

σ(x)
= 0,

−2u +
∮

C(γ )
dx

2iπ

x
(
x −∑k≥1 gk xk−1

)

σ(x)
= 0. (4.6)

where σ(x) = √
x2 − 2sx + s2 − 4r and C(γ ) is a contour surrounding (and close

enough to) γ in the positive direction. Besides, the endpoints satisfy |γ−| ≤ γ+, with
equality iff gk = 0 for all odd k’s.

Remark 4.2. The relations (4.6) are equivalent to [18, Equation 6.22] after simple alge-
braic manipulations. In fact, r and smay be interpreted combinatorially as certain series
of pointed rooted maps, see e.g. [25]. In particular, we have

F•1 = u s, F•2 = u (s2 + 2r). (4.7)

Fromnowon,we shall use the samenotation for the formal series and the holomorphic
function.

Proposition 4.3. F(x) behaves like u
x + O( 1

x2
) when x →∞, like O

(√
x − γ±

)
when

x → γ±, and its boundary values on the cut satisfy the functional relation:

∀x ∈ γ̊ , F(x + i0) + F(x − i0) = x −
∑
k≥1

gk x
k−1 (4.8)

where γ̊ := (γ−, γ+). If γ− and γ+ are given, there is a unique holomorphic function
F(x) on C\γ satisfying these properties.

Although (4.8) arises as a consequence of Tutte’s equation and analytical continua-
tion, it has not received a direct combinatorial interpretation yet.

With Proposition 4.1 in hand, the analysis of Tutte’s equation for generating series
of maps with several boundaries, and their analytical continuation, has been performed
in a more general setting in [16,21]. The outcome for usual cylinders (see also [21,64])
is the following:
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Proposition 4.4. If (gk)k≥1 is admissible, the formal series F (2)(x, y) is the Laurent
series expansion of a holomorphic function in (C\γ )2 when x, y →∞, where γ is as
in Proposition 4.1. We have the functional relation, for x ∈ γ̊ and y ∈ C\γ :

F (2)(x + i0, y) + F (2)(x − i0, y) = − 1

(x − y)2
.

It is subjected to the growth condition F (2)(x, y) ∈ O((x − γ±)−
1
2 ) when x → γ+ for

fixed y ∈ C\γ , and a similar condition when x and y are exchanged.

4.3. Reminder on maps with loops. The relation (3.1) between disks with loops and
usual disks allows carrying those results to the loop model. We say that a sequence of
face weights (gk)k≥1 and annuli weights (Ak,l)k,l≥0 is admissible if the sequence of
renormalised face weights (Gk)k≥1 given by (3.2) is admissible as it is meant for usual
maps. We say it is subcritical if the annuli generating series A(x, z) is holomorphic in a
neighborhood of γ ×γ , where γ is the segment determined by (4.6) for the renormalised
face weights. Being strictly admissible is equivalent to being admissible and not in the
non generic critical phase in the terminology of [17]. In the remaining of Sects. 4 and 5,
we always assume strict admissibility.

In particular, F(x) satisfies the one-cut property (Proposition 4.1) on this segment
γ , which now depends on face weights (gk)k and annuli weights (Ak,l)k,l . And, its
boundary values on the cut satisfy the functional relation:

Proposition 4.5. For any x ∈ γ̊ ,

F(x + i0) + F(x − i0) +
∮

C(γ )
dz

2iπ
A(x, z)F(z) = x −

∑
k≥1

gk x
k−1. (4.9)

With Proposition 4.1 in hand, the analysis of Tutte’s equation for the partition func-
tions of maps having several boundaries in the loop model, and their analytical continu-
ation, has been performed in [16,21]. In particular, one can derive a functional relation
for F(2)(x1, x2), which matches the one formally obtained by marking a face in Propo-
sition 4.5 while considering the contour C(γ ) independent of the face weights.

Proposition 4.6. The formal series F(2)(x, y) is the Laurent series expansion of a holo-
morphic function in (C\γ )2 when x, y →∞, with γ as in Proposition 4.5. Besides, it
satisfies the functional relation, for x ∈ γ̊ and y ∈ C\γ :

F(2)(x + i0, y) + F(2)(x − i0, y) +
∮

C(γ )
dz

2iπ
A(x, z)F(2)(z, y) = − 1

(x − y)2
. (4.10)

It is subjected to the growth condition F(2)(x, y) ∈ O
(
(x − γ±)−

1
2
)
when x → γ± and

y ∈ C\γ , and a similar condition when x and y are exchanged.

By similar arguments for the differentiation of (4.9) with respect to the vertex weight
u, one can derive for the generating series of pointed rooted disks a linear functional
equation. This equation is in fact homogeneous because the right-hand side in (4.9) does
not depend on u, which leads to
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Proposition 4.7. For any x ∈ γ̊ ,

F•(x + i0) + F•(x − i0) +
∮

C(γ )
dz

2iπ
A(x, z)F•(z) = 0. (4.11)

It is subjected to the growth conditions F•(x) = u
x + O( 1

x2
) when x →∞ and F•(x) ∈

O
(
(x − γ±)−

1
2
)
when x → γ±.

4.4. Separating loops. The functional relations for the refined generating series (cylin-
ders or pointed disks) including a weight s per separating loop, are very similar to those
of the unrefined case.

Proposition 4.8. At least for |s| < 1 and for s = 1, the formal series F(2)s (x, y) is the
Laurent expansion of a holomorphic function in (C\γ )2 when x, y →∞, and γ is the
segment already appearing in Proposition 4.5 and is independent of s. For any x ∈ γ̊

and y ∈ C\γ , we have:

F(2)s (x + i0, y)+F(2)s (x − i0, y)+ s
∮

C(γ )
dz

2iπ
A(x, z)F(2)s (z, y) = − 1

(x − y)2
. (4.12)

It is subjected to the growth condition F(2)s (x, y) ∈ O((x − γ±)−
1
2 ) when x → γ+ for

fixed y ∈ C\γ , and a similar one when x and y are exchanged.

Proposition 4.9. At least for |s| < 1 and for s = 1, the formal series F•s (x) is the
Laurent expansion of a holomorphic function in (C\γ ). It has the growth properties

F•s (x) = u
x + O( 1

x2
) when x → ∞, and F•s (x) ∈ O

(
(x − γ±)−

1
2
)
when x → γ±.

Besides, for any x ∈ γ̊ , we have:

F•s (x + i0) + F•s (x − i0) + s
∮

C(γ )
dz

2iπ
A(x, z)F•s (z) = 0. (4.13)

Proof. Let us denote F(2)[P], the generating series of cylinders with exactly P separating

loops (discarding the power of s), and F(2)[−1] ≡ 0 by convention. In particular

F(2)s =
∑
P≥0

F(2)[P] s
P (4.14)

We first claim that for any P ≥ 0, F(2)[P](x, y) defines a holomorphic function in (C\γ )2,
and satisfies the functional relation: for any x ∈ γ̊ and y ∈ C\γ ,

F(2)[P](x + i0, y) + F(2)[P](x − i0, y)

= − δP,0

(x − y)2
+
∮

C(γ )
dz1
2iπ

F (2)(x, z1)
∮

C(γ )
dz2
2iπ

A(z1, z2)F(2)[P−1](z2, y)
(4.15)

The assumption of strict admissibility guarantees that A(ξ, η)—and thus its ξ -antideri-
vative R(ξ, η)—is holomorphic in a neighborhood of γ × γ , ensuring that the contour
integrals in (4.15) are well defined. Let us momentarily accept the claim.
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Since F(2)(x, y) = F(2)s=1(x, y), by dominated convergence we deduce that F(2)s (x, y) is
an analytic function of s—uniformly for x, y ∈ C\γ—with radius of convergence at
least 1. Then, we can sum over P ≥ 0 the functional relation (4.15) multiplied by sP :
the result is the announced (4.12), valid in the whole domain of analyticity of F(2)s as
a function of s. Let F(2),||(x, y) be the generating series of cylinders for face weights
(|gk |)k and annuli weight (|Ak,l |)k,l . As the latter are strictly admissible by assumption,
F(2),|| satisfies the growth condition in Proposition 4.6. Since we have for (s, x, y) in
the aforementioned domain of analyticity the bound |F(2)s (x, y)| ≤ F(2),||(|x |, |y|), we
deduce that F(2)s (x, y) also satisfies the growth condition.

The claim is established by induction on P . Since F(2)[0] = F (2), the claim follows
by application of Proposition 4.4 for usual cylinders with renormalised face weights,
i.e., vanishing annuli weights in the functional relation (4.10). We however emphasise
that the cut γ is determined by Proposition 4.5, thus depends on annuli weights via the
renormalised face weights.

Assume the statement holds for some P ≥ 0. We know from the combinatorial
relation (3.6) that:

F(2)[P+1] = F (2)RF(2)[P] (4.16)

with thematrix notations of § 3.4. The analytic properties ofF (2) and ofF(2)[P]—as known
from the induction hypothesis—allows the rewriting:

F(2)[P+1](x, y) =
∮

C(γ )
dz1
2iπ

F (2)(x, z1)
∮

C(γ )
dz2
2iπ

R(z1, z2)F(2)[P](z2, y). (4.17)

The expression on the right-hand side emphasises that the left-hand side, though initially
defined as a formal Laurent series in x and y, can actually be analytically continued to
(C\γ )2. Besides, for x ∈ γ̊ and y ∈ C\γ , we can compute the combination:

F(2)[P+1](x + i0, y) + F(2)[P+1](x − i0, y)

=
∮

C(γ )
dz1
2iπ

(F (2)(x + i0, z1) + F (2)(x − i0, z1)
) ∮

C(γ )
dz2
2iπ

R(z1, z2)F(2)[P](z2, y)

= −
∮

C(γ )
dz1
2iπ

1

(x − z1)2

∮

C(γ )
dz2
2iπ

R(z1, z2)F(2)[P](z2, y)

= −
∮

C(γ )
dz2
2iπ

∂xR(x, z2)F(2)[P](z2, y).

and we recognise A(x, z2) = ∂xR(x, z2). Hence the statement is valid for F(2)[P+1] and
we conclude by induction. We thus have established the functional equation in Proposi-
tion 4.8.

The proof of Proposition 4.9 is similar, except that we useF•[0] = F• for initialisation,
and later, the combinatorial relation (3.11) instead of (3.6). �

4.5. Depth of a vertex. We now consider the depth P of a vertex chosen at random
in a disk configuration of the loop model. P is by definition the number of loops that
separate it from the boundary. This quantity gives an idea about how nested maps in the
loop model are. Equivalently, P is the depth of the origin in an ensemble of pointed disk
configurations. We can study this ensemble in the microcanonical approach—i.e., fixing
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the volume equal to V and the perimeter equal to L—or in the canonical approach—
randomising the volume V with a weight uV and the perimeter with a weight x−(L+1).

In the canonical approach, the generating function of the depth distribution can be
expressed in terms of the refined generating series of § 3.5:

E[sP ] = F•s (x)
F•(x)

. (4.18)

In the microcanonical approach, the probability that, in an ensemble of pointed disks
of volume V and perimeter L , the depth takes the value P reads:

P
[
P
∣∣ V, L] = [uV · x−(L+1) · sP ] F•s (x)

[uV · x−(L+1)] F•(x)
.

5. Computations in the Loop Model with Bending Energy

We shall focus on the class of loop models on triangulations with bending energy (see
§ 2.1.2) studied in [18], for which the computations can be explicitly carried out. The
annuli generating series in this model are:

R(x, z) = n ln
( 1

1− αh(x + z)− (1− α2)h2xz

)
,

A(x, z) = n

ς(z)− x
= n

( ς ′(x)
z − ς(x)

+
ς ′′(x)
2ς ′(x)

)
,

(5.1)

where:

ς(x) = 1− αhx

αh + (1− α2)h2x
(5.2)

is a rational involution. In terms of the loop model, h is the weight per triangle crossed
by a loop, α is the bending energy, and we assume they are both non negative. Note that,
for α = 1, we have ς(x) = 1

h − x , so ς ′′(x) = 0. In general:

ς ′′(x)
2ς ′(x)

= − 1

x + α
(1−α2)h

= − 1

x − ς(∞)
.

If we assume ς(γ ) ∩ γ = ∅ and f is a holomorphic function in C\γ such that f (x) ∼
c f /x when x →∞, we can evaluate the contour integral:

∮

C(γ )
dz

2iπ
A(x, z) f (z) = −nς ′(x) f (ς(x)) + nc f

ς ′′(x)
2ς ′(x)

. (5.3)

5.1. Preliminaries. Technically, the fact that A(x, z) is a rational function with a single
pole allows for an explicit solution of the model, and the loop model with bending
energy provides a combinatorial realisation of such a situation. We review the solution
of the functional equations for strictly admissible weights (see Sect. 4), which amounts
to requiring ς(γ ) ∩ γ = ∅ or equivalently

γ+ < γ ∗+ :=
1

h(α + 1)
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The techniques to solve these functional equations have already been developed in [18]
slightly generalising [15,20,67], and we refer to these works for more details. In the
next Sect. 6, we will study the non-generic critical weight by taking the limit γ+ → γ ∗+
in these solutions.

The key to the solution is the use of an elliptic parametrisation x = x(v). It depends
on a parameter τ = iT which is completely determined by the data of γ± and ς(γ±).
The domain C\(γ ∪ ς(γ )) will be the image via v �→ x(v) of the rectangle (Fig. 8)

R := {v ∈ C, Re v ∈ (− 1
2 ,

1
2

]
, Im v ∈ (0, T )}, (5.4)

with values:
x(τ ) = x(−τ) = γ+, x

(
τ + 1

2

) = x
(− τ + 1

2

) = γ−,
x(0) = ς(γ+), x

( 1
2

) = x
(− 1

2

) = ς(γ−).
(5.5)

We let
R̂ = {v ∈ C, Re v ∈ (− 1

2 ,
1
2

]
, Im v ∈ [0, T ]}. (5.6)

and say that x is in the physical sheet when v(x) ∈ R. For x in the physical sheet, we
have

v(ς(x)) = τ − v(x).

We call v∞ the point corresponding to x = ∞ in the physical sheet. With our assump-
tions, the involution ς is decreasing and we have γ+ < γ ∗+ < ς(γ+). Therefore, the point
∞ can be to the right of ς(γ+) and to the left of ς(γ−), or to the right of ς(γ−) and to
the left of γ−, that is

v∞ ∈
[
0, 12

] ∪ [ 12 , 12 + τ
]

At least when we have ς−1(∞) /∈ (−γ ∗+ , γ ∗+ ), that is when α > 1
2 , we must be in the

second situation:
v∞ = 1

2 + τw∞, w∞ ∈ (0, 1) (5.7)

When α = 1, by symmetry we must have w∞ = 1
2 .

Remark 5.1. For simplicity, we will assume in the remaining of the text that (5.7) is
satisfied unless explicitly mentioned otherwise, i.e. that α is not too small; the main
conclusions of our study are not affected when v∞ belongs to

[
τ, 12 + τ

]
, but some

intermediate steps of analysis of the critical regime are a bit different.

The function v �→ x(v) is analytically continued for v ∈ C by the relations:

x(−v) = x(v + 1) = x(v + 2τ) = x(v). (5.8)

This parametrisation allows the conversion [18,67] of the functional equation:

∀x ∈ γ̊ , f (x + i0) + f (x − i0)− n ς ′(x) f (ς(x)) = 0 (5.9)

for an analytic function f (x) in C\γ , into the functional equation:
∀v ∈ C, f̃ (v +2τ)+ f̃ (v)− n f̃ (v + τ) = 0, f̃ (v) = f̃ (v +1) = − f̃ (−v), (5.10)
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0

γ+

ς(γ+)

γ−

ς(γ−)

τ = iT 1
2 + τ

1
2

γ−

ς(γ−)

− 1
2 + τ

− 1
2

∞
1
2 + τw∞

Fig. 8. The rectangleR in the v-plane. We indicate the image of special values of x in purple, and the image
of the cut γ in red. The left (resp. right) panel is the image of Im x > 0 (resp. Im x < 0)

for the analytic continuation of the function f̃ (v) = f (x(v))x ′(v). The second condition
in (5.10) enforces the continuity of f (x) on R\γ . We set:

b = arccos(n/2)

π
. (5.11)

The new parameter b ranges from 1 to 0 when n ranges from −2 to 2, and b = 1
2

corresponds to n = 0. We emphasise the following uniqueness property which we
will use repeatedly. It can be traced back to [67] but we reproduce the argument for
completeness.

Lemma 5.2. If n ∈ (−2, 2), there is at most one solution f (v) to the equation

∀v ∈ C, f (v + 2τ) + f (v)− n f (v + τ) = 0, f (v) = f (v + 1)

which is an entire function of v.

Proof. If f is a solution, the functions

f±(v) = f (v)− e±iπb f (v + τ)
1− e±iπb

satisfy f±(v + 1) = f±(v) = e∓iπb f (v + τ) for v ∈ C. Since b is real-valued, f+ and
f− must be bounded entire functions, so must be constant by Liouville’s theorem. The
pseudo-periodicity condition in the τ direction then implies f± = 0 hence f = 0. �

Solutions of the first two equations of (5.10) with prescribed divergent part at pre-
scribed points in R̂ can be built from a fundamental solution ϒb, defined uniquely by
the properties:

ϒb(v + 1) = ϒb(v), ϒb(v + τ) = eiπbϒb(v), ϒb(v) ∼
v→0

1

v
. (5.12)

Its expression and main properties are reminded in Appendix D. In combination with
Lemma 5.2 this provides an effective way to solve the functional equations.
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Remark We will encounter the linear equation with non zero right-hand side given by
a rational function g(x):

f (x + i0) + f (x − i0)− n ς ′(x) f (ς(x)) = g(x). (5.13)

It is enough to find a particular solution in the class of rational functions and subtract
it from f (x) to obtain a function f hom(x) satisfying (5.13) with vanishing right-hand
side. This can be achieved for n �= ±2 by:

f hom(x) = f (x)− 1

4− n2

(
2g(x) + nς ′(x)g(ς(x))

)
. (5.14)

5.2. Disk and cylinder generating series. We now review the results of [18] for the gen-
erating series of disks F(x) for subcritical weights. LetG(v) be the analytic continuation
of

x ′(v)F(x(v))− ∂

∂v

(
2V(x(v)) + nV(ς(x(v)))

4− n2
− nu ln

[
ς ′(x(v))

]

2(2 + n)

)
, (5.15)

where V(x) = x2
2 −

∑
k≥1 gk xk

k collects the weights of empty faces. In the model

we study, empty faces are triangles counted with weight g each, so V(x) = x2
2 − g x3

3 .
However, there is no difficulty in including Boltzmann weights for empty faces of higher
(bounded) degree as far as the solution of the linear equation is concerned, so we shall
keep the notation V(x). Note that the last term in (5.15) is absent if α = 1. Let us
introduce (g̃k)k≥1 as the coefficients of expansion:

∂

∂v

(
− 2V(x(v))

4− n2
+
2u ln x(v)

2 + n

)
=
∑
k≥0

g̃k
(v − v∞)k+1

+ O(1), v→ v∞ (5.16)

Their expressions for themodel where all faces are triangles are recorded in Appendix C.

Theorem 5.3 (Disks [18]). We have:

G(v) =
∑
k≥0

1

2

g̃k
k!

∂k

∂vk∞

[
ϒb(v + v∞) + ϒb(v − v∞)−ϒb(−v + v∞)−ϒb(−v − v∞)

]
.

The endpoints γ± are determined by the two conditions:

G(τ + ε) = 0, ε = 0, 12 , (5.17)

which follow from the finiteness of the generating series F(x) at x = γ±.

Ifα = 1, the 4 terms expression can be reduced to 2 terms using τ−v∞ = v∞ mod Z

and the pseudo-periodicity of the special function ϒb.

Remark 5.4. We refer to the original paper for the derivation of Theorem 5.3. In all rigor,
the conditions (5.17)may yield several solutions for the cut endpoints γ±, and the correct
choice corresponds to the solution which lead to a series F with positive coefficients.
The original paper used numerical evidence as a justification. For the rigid case [17], a
formal justification was later provided in [32] via two theorems, due to Timothy Budd
and Linxiao Chen respectively, see also [37, Chapter II]. Here we consider the bending
energy model, to which these theorems do not apply directly. In Appendix H, we prove
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the analogue of Budd’s theorem for the bending energy model, for n ∈ (0, 2). To keep
a bound on the size of this paper, we do not prove the analogue of Chen’s theorem, but
we believe that there should be no unsurpassable obstacle in generalising his approach.
Such an argument is also necessary to justify completely the phase diagram of themodel.

Remarkably, the generating series of pointed disks and of cylinders have very simple
expressions.

Proposition 5.5 (Pointed disks). Define G•(v) as the analytic continuation of:

x ′(v)F•(x(v)) + ∂

∂v

(
nu ln[ς ′(x(v))]

2(2 + n)

)
. (5.18)

(for α = 1 the last term is absent). We have:

G•(v) = u

2 + n

[
−ϒb(v+v∞)−ϒb(v−v∞)+ϒb(−v+v∞)+ϒb(−v−v∞)

]
. (5.19)

Proof. The strategy is similar to [18]. In the functional equation of Proposition 4.7, we
can evaluate the contour integral using (5.3) and F•(x) ∼ u

x when x →∞. Thus:

∀x ∈ γ̊ , F•(x + i0) + F•(x − i0)− nς ′(x)F•(ς(x)) = nu

x − ς(∞)
. (5.20)

We can find a rational function of x which is a particular solution to (5.20), and subtract
it from F•(x) to obtain a solution of the linear equation with vanishing right-hand side.
This is the origin of the second term in (5.18). The construction reviewed in § 5.1 then
implies that G•(v) satisfies the functional relation:

G•(v + 2τ) + G•(v)− nG•(v + τ) = 0, G•(v) = G•(v + 1) = −G•(−v). (5.21)

G•(v) inherits the singularities of (5.18). If α �= 1, we have a simple pole in the
fundamental domain at:

Res
v=v∞

dvG•(v) = −2u
2 + n

, Res
v=(τ−v∞)

dvG•(v) = −nu
2 + n

. (5.22)

(5.19) provides the (unique by Lemma 5.2) solution to this problem. When α = 1, we
have ς(∞) = ∞, and v∞ = 1+τ

2 , therefore v∞ = τ − v∞ mod 1. Then, we have a
unique simple pole in the fundamental domain:

Res
v=v∞

dvG•(v) = −u.

In this case, we find:

G•(v) = u

1 + e−iπb
[−ϒb(v − v∞) + ϒb(−v − v∞)

]
.

Using the properties of ϒb under translation, this is still equal to the right-hand side of
(5.19). In other words, formula (5.19) is well behaved when v∞ → (τ − v∞). �
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Proposition 5.6 (Cylinders). Define G(2)(v1, v2) as the analytic continuation of:

x ′(v1)x ′(v2)F(2)(x(v1), x(v2))

+
∂

∂v1

∂

∂v2

(
2 ln

[
x(v1)− x(v2)

]
+ n ln

[
ς(x(v1))− x(v2)

]

4− n2

)
. (5.23)

We have:

G(2)(v1, v2) = 1

4− n2

[
ϒ ′b(v1 + v2)− ϒ ′b(v1 − v2)− ϒ ′b(−v1 + v2)

+ϒ ′b(−v1 − v2)
]
. (5.24)

Proof. This result is proved in [20, Section 3.4] for α = 1, but its proof actually holds
when ς is any rational involution. We include it for completeness. The fact that ς is an
involution implies that G(2)(v1, v2) is a symmetric function of v1 and v2, as:

dx1dx2
(x1 − x2)2

= dς(x1)dς(x2)

(ς(x1)− ς(x2))2
.

It must satisfy:

G(2)(v1, v2) + G(2)(v1 + 2τ, v2)− nG(2)(v1 + τ, v2) = 0,

G(2)(v1, v2) = G(2)(v1 + 1, v2) = −G(2)(−v1, v2).
(5.25)

It has a double pole at v1 = v2 so that G(2)(v1, v2) = 2
4−n2

1
(v1−v2)2 +O(1), double poles

at v1 = v2 + (Z⊕ τZ) ensuing from (5.25), and no other singularities. Equation (5.24)
provides the (unique by Lemma 5.2) solution to this problem. �

5.3. Refinement: separating loops. We have explained in § 4.4 that the functional
equation satisfied by refined generating series, with a weight s per separating loop,
only differs from the unrefined case by keeping the same cut γ , but replacing n → ns
in the linear functional equations. Thus defining:

b(s) = arccos(ns/2)

π
, (5.26)

we immediately find:

Corollary 5.7 (Refined pointed disks). Let G•s (v) be the analytic continuation of:

x ′(v)F•s (x(v)) +
∂

∂v

(
ns ln[ς ′(x(v))]

2(2 + ns)

)
. (5.27)

We have:

G•s (v) =
u

2 + ns

(
− ϒb(s)(v + v∞)−ϒb(s)(v − v∞) + ϒb(s)(−v + v∞)

+ ϒb(s)(−v − v∞)
)
. (5.28)

�
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Corollary 5.8 (Refined cylinders). Let G(2)
s (v1, v2) be the analytic continuation of:

x ′(v1)x ′(v2)F(2)s (x(v1), x(v2))

+
∂

∂v1

∂

∂v2

(
2 ln

[
x(v1)− x(v2)

]
+ ns ln

[
ς(x(v1))− x(v2)

]

4− n2s2

)
.

We have:

G(2)
s (v1, v2) = 1

4− n2s2

[
ϒ ′b(s)(v1 + v2)−ϒ ′b(s)(v1 − v2)− ϒ ′b(s)(−v1 + v2)

+ϒ ′b(s)(−v1 − v2)
]
. (5.29)

�

6. Depth of a Vertex in Disks

We now study the asymptotic behavior of the distribution of the depth P of the origin
of a pointed disk, in loop model with bending energy. While the algebraic results that
we have obtained in the previous sections are valid for nonpositive weights, we will in
the rest of the paper assume that

n ∈ (0, 2), b ∈ (0, 12
)
, g, α ≥ 0, h > 0

unless specified otherwise.

6.1. Phase diagram and the volume exponent. The phase diagram of the model with
bending energy is Theorem 6.1 below, and was established in [18]. We review its deriva-
tion, and push further the computations of [18] to derive (Corollary 6.6 below) the well
known exponent γstr appearing in the asymptotic number of pointed rooted disks of fixed,
large volume V , and justify delta-analyticity statements that are used for the asymptotic
analysis. We remind that the model depends on the weight g per empty triangle, h per
triangle crossed by a loop, and the bending energy α, and the weight u per vertex is set to
1 unless mentioned otherwise. A non generic critical point occurs when γ+ approaches
the fixed point of the involution:

γ ∗+ = ς(γ ∗+ ) =
1

h(α + 1)
. (6.1)

In this limit, the two cuts γ and ς(γ ) merge at γ ∗+ , and one can justify on the basis of
combinatorial arguments [18, Section 6] that γ− → γ ∗− with:

|γ ∗−| < |γ ∗+ | and ς(γ ∗−) �= γ ∗−.

In terms of the parametrisation x(v), it amounts to letting T → 0, and this is conveniently
measured in terms of the parameter:

q = e−
π
T → 0.

To analyse the non generic critical regime, we first need to derive the asymptotic
behavior of the parametrisation x(v) and the special function ϒb(v). This is performed
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respectively in Appendices B and D. The phase diagram and the volume exponent can
then be obtained after a tedious algebra, which is summarised in Appendix E. Theorems
6.1 and 6.2 and a large part of the calculations done in Appendix appeared in [18].
Here, we push these calculations further to present some consequences on generating
series of pointed disks/gaskets (Corollaries 6.7 and 6.8 below), and we add a detailed
description of the analytic properties with respect to u. It is then possible to apply transfer
theorems, i.e. extracting asymptotic behavior of coefficients of the generating series from
the analysis of their singularities.

Theorem 6.1. [18] Assume α = 1, and introduce the parameter:

ρ := 1− 2hγ ∗− = 1− γ ∗−
γ ∗+

.

There is a non generic critical line, parametrised by ρ ∈ (ρmin, ρmax]:

g

h
= 4(ρb

√
2 + n −√2− n)

−ρ2(1− b2)
√
2− n + 4ρb

√
2 + n − 2

√
2− n

h2 = ρ2b

24
√
4− n2

ρ2 b(1− b2)
√
2 + n − 4ρ

√
2− n + 6b

√
2 + n

−ρ2(1− b2)
√
2− n + 4ρb

√
2 + n − 2

√
2− n

.

It realises the dense phase of the model. The endpoint

ρmax = 1

b

√
2− n

2 + n

corresponds to the fully packed model g = 0, with the critical value h = 1
2
√
2
√
2+n

. The

endpoint

ρmin =
√
6 + n −√2− n

(1− b)
√
2 + n

is a non generic critical point realising the dilute phase, and it has coordinates:

g

h
= 1 +

√
2− n

6 + n
,

h2 = b(2− b)

3(1− b2)(2 + n)

(
1− 1

4
√
(2− n)(6 + n)

)
.

The fact that the non generic critical line ends at ρmax < 2 is in agreement with |γ ∗−| <|γ ∗−|.
Remark 6.2. In [18], it is proved that there exists αc(n) > 1 such that, in the model
with bending energy α < αc(n), the qualitative conclusions of the previous theorem
still hold, with a more complicated parametrisation of the critical line given in Appendix
E. For α = αc(n), only a non generic critical point in the dilute phase exists, and for
α > αc(n), non generic critical points do not exist.
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Theorem 6.3. Assume (g, h) are chosen such that the model has a non generic critical
point for vertex weight u = 1. When u < 1 tends to 1, we have:

q ∼
(1− u

�

)c
.

with the universal exponent:

c =
{

1
1−b dense
1 dilute

.

The non universal constant reads, for α = 1:

� =
⎧
⎨
⎩

6(n+2)
b

ρ2(1−b)2√2+n+2ρ(1−b)√2−n−2√2+n
ρ2b(1−b2)√2+n−4ρ(1−b2)√2−n+6b√2+n

dense

24
b(1−b)(2−b) dilute

.

For α �= 1, its expression is much more involved, but all the ingredients to obtain it are
in Appendix E.

We in fact obtain a stronger information in the Appendices.

Lemma 6.4. u �→ q is delta-analytic.

This statement has two parts: delta-analyticity locally around u = 1, which is justified
in Lemma E.3; and analytic continuation across the unit circle away from u = 1, which
is justified in Theorem I.3 for the rigid loop model, and more generally in Theorem J.1
for the bending energy model.

6.2. Singular behavior of refined generating series. We would like to study the asymp-
totic behavior of the weighted count of:

(i) pointed disks with fixed volume V and fixed depth P , in such a way that V, P →∞.
(ii) cylinders with fixed volume V , with two boundaries separated by P loops, in such a

way that V, P →∞.

This information can be extracted from the canonical ensemble where a map with a
boundary of perimeter Li is weighted by x−(Li+1), each separating loop is counted
with a weight s, and each vertex with a weight u. The generating series of interest are
respectively F•s (x) for (i), and F(2)s (x1, x2) for (i i). To retrieve the generating series
of maps with fixed, large V and P , we must first obtain scaling asymptotics for these
generating series when u → 1.

As for fixing boundary perimeters, two regimes can be addressed. Either we want Li
to diverge, in which case we should derive the previous asymptotics when x approached
the singularity γ+ → γ ∗+ , since the other endpoint |γ ∗−| < |γ ∗+ | is subdominant. Or,
we want to keep Li finite. In that case, we can work in the canonical ensemble by
choosing x away from [γ−, γ+]. We will actually consider the canonical ensemble with
a control parameter wi such that xi = x

( 1
2 + τwi

)
, and derive asymptotics for wi in

some compact region containing [0, 1). The asymptotic count of maps with fixed, finite
boundary perimeter Li can then be retrieved by a contour integration around wi = w∗∞.

In a nutshell, we will set x = x(vi ) with vi = εi + τwi and εi = 0 to study a i-th
boundary of large perimeter, and εi = 1

2 to study finite boundaries.
The scaling behavior of F•s (x) in the regime of large boundaries is established in

Appendix F.
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Theorem 6.5. Let (g, h) be a non generic critical point at u = 1. F•s (x) is an analytic
family of meromorphic functions of x, parametrised by u, s where u belongs to a delta-
domain centered at 1 and s to the strip |Re s| < 2

n . Besides, if Re b(s) ∈
(
0, 12

)
, when

u → 1, in the two regimes x → γ+ and x fixed away from the cut, we have respectively2

F•s (x)|sing =
q

b(s)−1
2

1− qb(s)
�b(s)

( x − γ+

q
1
2

)
+ O(q

b(s)
2 ),

F•s (x)|sing = �b(s)(x) +
qb(s)

1− qb(s)
�̃b(s)(x) + O(q).

(6.2)

The error in the first line of (6.2) is uniform for ξ = q− 1
2 (x − γ+) in any fixed compact,

and compatible3 with differentiation. For the expression of the scaling functions, we
refer to (F.5)–(F.6) and (F.7)–(F.8) in the Appendix.

Corollary 6.6. Assume (g, h) are chosen such that the model has a non generic critical
point for vertex weight u = 1. The number of pointed rooted planar maps of volume
V →∞ behaves like:

[uV · x−4] F•(x) ∼ A

�bc[−�(−bc)] V 1+bc .

for some positive constant A > 0 given inAppendix, (F.11)–(F.12). Therefore, the critical
exponent mentioned in (2.6) is

γstr = −bc.

Corollary 6.7. Assume (g, h) are chosen such that the model has a non generic critical
point for vertex weight u = 1. The number of rooted maps of volume V → ∞ with a
marked point in the gasket behaves as:

[uV · x−4] F• in gasket(x) ∼ Agasket

�
c
2 [−�(− c

2 )] V 1+ c
2
.

for a non universal constant Agasket > 0 given in Appendix, (F.14)–(F.15).

We can deduce the behavior when V →∞ of the probability that in a pointed rooted
disk of volume V , the origin belongs to the gasket:

Corollary 6.8. Assume (g, h) are chosen such that the model has a non generic critical
point for vertex weight u = 1. When V →∞:

P
[ • in gasket ∣∣ V, L = 3

] ∼ Agasket

A

�(−bc)
�(− c

2 )

1

�c( 12−b) V c( 12−b)
.

2 To be precise, we compute here the behavior of the singular part of F•s (x), i.e., we did not include the
shift in (5.27), as it will always give zero when performing a contour integral against xL around the cut.

3 i.e., it still yields a negligible term as compared to the previous ones.
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6.3. Central limit theorem for the depth. We are going to prove the following result.

Theorem 6.9. Let (g, h) be a non generic critical point at u = 1. Consider an ensemble
of refined pointed disks of volume V , boundary perimeter L. Let P the random variable
giving the depth, i.e. the number of loops separating the origin from the boundary. When
L is chosen independent of V , we have as V →∞ the convergence in law

P − cpopt
π

ln V√
ln V

→ N (0, σ 2), popt = n√
4− n2

, σ 2 = 4nc

π(4− n2)
3
2

.

which is uniform for L > 0 bounded. When L = 
�V c/2� and V → ∞ while � is
bounded and bounded away from 0, we have

P − cpopt
2π ln V√
ln V

→ N (0, σ 2), σ 2 = 2nc

π(4− n2)
3
2

.

Proof. We first treat the case of L being a fixed integer. By Lévy’s continuity, it is
sufficient to prove that for t ∈ R

lim
V→∞φV (t) = exp

(
σ 2t2

2

)
, φV (t) = E

[
exp

(
it

P − cpopt
2π√

ln V

) ∣∣∣∣ V, L
]
. (6.3)

The characteristic function can be computed by

φV (t) = exp
(− itcpopt

√
ln V

)
∮ x Ldx

2iπ

∮ du
2iπ uV+1 F•

exp(it/
√
ln V )

(x)
∮ x L dx

2iπ

∮ du
2iπ uV+1 F•(x)

,

where the contours in x surrounds∞ and the contours in u initially surrounds u = 0.We
first look at the numerator. For fixed x in a u-independent neighborhood of∞, we first
use Theorem 6.5, in particular the second line in (6.2), with a fixed s in a small enough
neighboorhood of 1. The term �b(s)(x) can be discarded as it does not contribute to the
integral in u. The second term in F•s (x)|sing is

qb(s)

1− qb(s)
�b(s)(x) ∼

(
1− u

�

)cb(s)

�b(s)(x) (6.4)

uniformly for s and x in their respective domains mentioned above. Computing the
contour integral in x therefore preserves the error, and by transfer theorem (here we rely
on Lemma E.3), the u → 1 asymptotics yields the V →∞ asymptotics

∮
dx x L

2iπ

∮
du

2iπ uV+1 F•s (x) ∼
∮ dx x L

2iπ �̃b(s)(x)

�cb(s) [−�(b(s)c)] V 1+cb(s)
,

again uniformly in s. We can therefore compute the integral over x and substitute s =
sV (t) := it√

ln V
. Doing the same for the denominator—this amounts to set s = 1—we

get

φV (t) ∼ exp
(− itcpopt

√
ln V

) ∮ dx x L
2iπ �̃b(sV (t))(x)∮ dx x L

2iπ �̃b(x)
�c(b−b(sV (t)))
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−�(−bc)
−�(−b(sV (t))c) V

c(b−b(sV (t))).

Since sV (t)→ 1, the prefactors disappear in the limit and expanding V c(b−b(sV (t))) up
to o(1) we find

φV (t) ∼ exp

{
it
√
ln V

( cn

π
√
4− n2

− cpopt
)
+

2cnt2

π(4− n2)
3
2

}
.

The value of popt = n√
4−n2 exactly cancels the divergent term, and we obtain (6.3) with

variance

σ 2 = 4cn

π(4− n2)
3
2

. (6.5)

When L = 
�V c/2�, we have L = �V c/2 +o(V c/2). We nowmove the contour in x to
surround [γ−, γ+] at distance q 1

2 , hence depending on u, so that it can be converted into

a u-independent contour L in the variable w such that q− 1
2 (x − γ+) = x∗0 (w) + O(q

1
2 ).

A difficulty is that now

x L =
(
γ+ + q

1
2 x∗1

2
(w) + O(q)

)L

with q → 0 and L → ∞. It is however possible to repeat the proof of the transfer
theorem [69, Theorem IV.3] and show that we only need the asymptotic of the integrand

when u → 1 at scale 1 − u = O(V−1). In this case we have q
1
2 V

c
2 = O(1) and thus

we can use

x L ∼ γ L
+ exp

(− �x∗1
2
(w)[(1− u)V/�] c2 + o(1)

)
.

The rest of the analysis is similar to the previous case, with factor qb(s) replaced by

q
b(s)−1

2 . Omitting the details, we arrive to

φV (t) ∼ exp

{
it
√
ln V

( cn

π
√
4− n2

− cpopt
)
+

2cnt2

π(4− n2)
3
2

}
,

and this gives the central limit theorem with mean and variance divided by 2 compared
to the previous case. ��

6.4. Large deviations for the depth: main result. The central limit theorem directly came
from the analysis of the singularity F•s . We now refine it to obtain large deviations for
the depth.

Theorem 6.10. Let (g, h) be a non generic critical point at u = 1. Consider the random
ensemble of refined disks of volume V , boundary perimeter L. When V → ∞ and �
remains fixed positive, the probability that the origin is separated from the boundary by
P loops behaves like:

P

[
P = ⌊ c ln V

π
p
⌋ ∣∣∣ V, L = �

]
.� 1√

ln V V
c
π
J (p)

, (6.6)
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P

[
P = ⌊ c ln V2π p

⌋ ∣∣∣ V, L = 
�V c
2 �
]

.� 1√
ln V V

c
2π J (p)

. (6.7)

These estimates are uniform for p bounded and bounded away from 0. The large devi-
ations function reads:

J (p) = sup
s∈[0,2/n]

{
p ln(s) + arccos(ns/2)− arccos(n/2)

}

= p ln

(
2

n

p√
1 + p2

)
+ arccot(p)− arccos(n/2).

(6.8)

From a macroscopic point of view, a pointed disk with a finite boundary looks like
a sphere with two marked points, while a pointed disk with large boundary looks like a
disk. We observe that in the regime where P

.� ln V

P
[
2P
∣∣ V, L = �

] .� P
[
P
∣∣ V, L = �V

c
2
]2

Intuitively, this means that the nesting of loops in a sphere can be described by cutting
the sphere in two independent halves (which are disks). In Sect. 9.4 and in particular
Corollary 9.9, we will find an analog property for CLE.

The remaining of this section is devoted to the proof of these results. The probability
that the origin of a pointed disk is separated from the boundary by P loops reads:

P[P | V, L] = P(V, L; P)
P̃(V, L)

and we need to analyse, when V →∞, and L and P in various regimes, the behavior
of the integrals:

P(V, L , P) =
∮ ∮ ∮

du

2iπ uV+1

x Ldx

2iπ

ds

2iπsP+1
F•s (x),

P̃(V, L) =
∮ ∮

du

2iπ uV+1

x Ldx

2iπ
F•(x).

(6.9)

The contours for u and s are initially small circles around 0, and the contour for x
surrounds the union of the cuts [γ−, γ+] for the corresponding u’s.

6.5. Proof of Theorem 6.10 for finite perimeters. When L is finite, we can keep the
contour integral over x away from the cut. So, we need to use (6.2). The first term
disappears when integrating over u, and remains:

F•s (x)|sing = −
qb(s) �̃b(s)(x)

1− qb(s)
+ O(q), (6.10)

where the error in (6.10) is uniform for x in any compact away from the cut for s in the
strip |Re s| < 2

n away from its boundaries. The first term does not depend on u, therefore
it does not contribute to the contour integral and can be discarded. Since q ∼ ( 1−u

�

)c
when u → 1 and is delta-analytic, we find directly by transfer theorems:

P̃(V, L) ∼
{∮

C([γ ∗−,γ ∗+ ])
x L dx

2iπ
�̃b(x)

}
1

[−�(−bc)]�bc

1

V 1+bc . (6.11)
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Due to the aforementioned uniformity of the estimates with respect to x and s, we also
have

P(V, L , P) ∼
∮

C([γ ∗−,γ ∗+ ])

∮
ds

2iπ sP+1
x L dx

2iπ

�̃b(s)(x)

[−�(−b(s)c)]�b(s)c

× 1

V 1+b(s)c
. (6.12)

where the contour in s initially surrounds 0 and must remain away from the boundaries
of the strip |Re s| < 2

n . Through the analysis the x-contour surrounding [γ ∗−, γ ∗+ ] will
be fixed independent of s. We are going to apply the saddle point method to analyse the
behavior of the s-contour integral when P →∞. The integral to compute is

P̂(V, L , P) :=
∮

C([γ ∗−,γ ∗+ ])
dx x L

2iπ

∮
ds

2iπs

�̃b(s)(x) eS (s)

�(−b(s)c)�b(s)cV 1+bc

where
S (s) = −s ln P − cb(s) ln V + cb (6.13)

This function has critical points at s = ± s
(
π P
c ln V

)
, where for p > 0 we have defined

s(p) := 2

n

p√
1 + p2

(6.14)

and for the record we introduce

b(p) := b(s(p)) = arccot(p)

π
(6.15)

We also compute

∂2sS (s(p)) = c ln V

π

n2(1 + p2)2

4p
> 0 (6.16)

and

S (s(p)) = −cJ (p)

π
ln V, J (p) := p ln

(
2

n

p√
1 + p2

)
+ arccot(p)− arccos(n/2)

The location of the critical point suggests to take a fixed value of p > 0 and set

P :=
⌊
cp ln V

π

⌋

We also define p̃V as the function of (p, V ) such that

P = c p̃ ln V

π
, (6.17)

It is such that

p̃ − p ∈ O

(
1

ln V

)
(6.18)

Step 1. Let ε > 0 small so that ρ(p) := n
2 |s(p) + iε| < 1. Then for V large enough,

|s( p̃)+iε| < 2
n .We deform the s-contour to a contourC defined as follows. It is the union
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of the vertical segmentC+
1 from s( p̃)− iε to s( p̃)+iε, followed by the counterclockwise

arc of circle C+
2 in the upper-half plane joining s( p̃) + iε to −s( p̃) + iε, followed by the

vertical segment C−1 from −s( p̃) + iε to −s( p̃)− iε, followed by the counterclockwise
arc of circle C−2 in the lower-half plane joining −s( p̃)− iε to s( p̃)− iε. We claim that
there exists a choice of ε and of constant η > 0 depending on p but independent of V ,
such that for any s ∈ C±2

R(s) := Re
(
S (s)−S (s( p̃))

)
< −η ln V (6.19)

Since s �→ R(s) is even and its first term is independent of s ∈ C±2 by definition of the
contour, it is sufficient to prove the existence of η > 0 such thatR(s( p̃)± iε) < −η ln V
and that

t �→ R
(
ρ( p̃)e±iπ t

)

is a decreasing function of t ∈ [0, 12 ]. The first point follows for ε small enough in-
dependently of V from the computation of the second derivative in (6.16), and we can
choose η depending on p and not on V because p̃− p ∈ O

( 1
ln V

)
. To justify the second

point, we compute

dR

dt
= ∓c ln V

π

2ρ( p̃)

n
Im

(
1√

e∓2iπ t − ρ2( p̃)

)

where we use the standard determination of the square root. This quantity is nonnegative
if and only if∓Im(e∓2iπ t − ρ2( p̃)

) = sin(2π t) ≥ 0, which indeed holds for t ∈ [0, 12 ].
We note that there exists a constant M(p) > 0 such that for x ∈ C([γ ∗−, γ ∗+ ]) and

s ∈ C , we have for V large enough
∣∣∣∣

�̃b(s)(x)

�(−b(s)c)�b(s)c

∣∣∣∣ ≤ M(p)

Together with (6.19) and (6.18) we deduce the existence of a constant M ′(L , p) > 0
such that for V large enough

∣∣∣∣
∮

C([γ ∗−,γ ∗+ ])
dx x L

2iπ

∫

C+
2∪C−2

ds

2iπs

�̃b(s)(x) eS (s)

�(−b(s)c)�b(s)cV

∣∣∣∣

≤ 1

V 1+bc+ cJ (p)
π

M ′(L , p)
V η

(6.20)

Step 2. By parity in s, the contributions of C±1 to the P̂(V, L , P) are equal. To study
the contribution of C+

1 , the order of magnitude ln V of the Hessian in (6.16) suggests to
perform the change of variables

s̃ = s( p̃) +
is̃√
ln V

Since s( p̃) corresponds to the critical point of S , we obtain by Taylor approximation
at order 2

S (s) = −cJ ( p̃)

π
− c

π

n2(1 + p2)2

8p
s̃2 + O

(
1√
ln V

)
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and the error is uniform when s ∈ C+
1 , that is |s̃| ≤ ε

√
ln V . Besides, there exists a

constant M(ε) > 0 such that for any x ∈ C([γ ∗−, γ ∗+ ]) and s ∈ C+
1 ,

�̃b(s)(x)

�(−b(s)c)�b(s)c
≤ M(ε)

and we have the convergence when V →∞, poinwise in s̃ ∈ R

�̃b(s)(x)

�(−b(s)c)�b(s)c
−→ �̃b(p)(x)

�(−b(p)c)�b(p)c

Dominated convergence then implies
∮

C([γ ∗−,γ ∗+ ])
dx x L

2iπ

∫

C+
1

ds

2iπs

�̃b(s)(x) eS (s)

�(−b(s)c)�b(s)cV 1+bc

∼̇
(∮

C([γ ∗−,γ ∗+ ])
dx x L

2iπ

�̃b(p)(x)

�(−b(p)c)�b(p)c

)
· 1
√
ln VV 1+bc+ cJ ( p̃)

π

∫

R

ds̃ e−
c
π

n2(1+p2)2

8p s̃2

The effect of replacing p̃ by p in the argument of J only results in changing the overall
constant by a quantity that may now depend on V (since p̃ depend on V ) but remains
bounded and bounded away from 0. The prefactors bounded and bounded away from
zero become irrelevant when we write

∮

C([γ ∗−,γ ∗+ ])
dx x L

2iπ

∫

C+
1∪C−1

ds

2iπs
.� 1√

ln V
V 1+bc+J (p)

where we recall that F
.� G means that ln F = lnG + O(1). In comparison to this, the

contribution of C+
2 ∪ C−2 is negligible due to (6.20), hence

P̂(V, L , P)
.� 1√

ln V
V 1+bc+ cJ (p)

π

Taking the ratio with (6.11) cancels V 1+bc and leads to the desired estimate

P

[
P = ⌊ cp ln V

π

⌋ ∣∣ L
]

.� (ln V )−
1
2 V−

cJ (p)
π

6.6. Proof of Theorem 6.10 for large perimeters. Now, we study (with less details) the

case where the (x∗, s∗)-coordinates of the critical point are such that ξ∗ = x∗−γ ∗+
(q∗)1/2 has a

limit, and s∗ has a limit away from 2/n. We can then use (6.2):

F•s (x)|sing ∼
q

b(s)
2 − 1

2

1− qb(s)
�b(s)

( x − γ +

q1/2

)
. (6.21)

We need to analyse the critical points of:

S2(u, x, s) = −V ln u − P ln s + L ln x +
c

2
(b(s)− 1) ln

(1− u

�

)

+ ln�b(s)

(
x − γ ∗+

[(1− u)/�] c2
)
.
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Compared to (6.21), we have replaced γ+ by γ ∗+ , as it only differ by O(q). The equation
∂uS2 = 0 gives:

V ∼ − c
2

1− u∗
(
b(s∗)− 1 + ξ∗ (ln�b(s∗))

′(ξ∗)
)
,

while the equation ∂xS2 = 0 gives:

L

γ ∗+
∼ −

( �

1− u∗
) c

2
(ln�b(s∗))

′(ξ∗).

It is then necessary that L
.� V

c
2 . The equation ∂sS2 = 0 gives:

P

s∗
∼ nc ln(1− u∗)

2π
√
4− n2(s∗)2

.

If we set P = c ln V
2π p̃, we obtain s∗ ∼ s( p̃) with the function introduced in (6.14).

Notice the factor of 1
2 compared to (6.17) in the previous section, due to the occurrence

of q
b(s)
2 here and qb(s) there in the scaling limits of F•s (x). We also evaluate:

∂2s S2(u
∗, x∗, s( p̃)) .� ln V .

Therefore, let us now assume:

L = � V
c
2 , P = c p̃ ln V

2π

for a fixed positive �. The previous discussion suggests the change of variable to compute
P̃(V, L):

u = 1− ũ

V
, x = γ ∗+ +

x̃

V
c
2
.

We then find:

du

uV+1 dx x
L F•s (x) ∼

dũ dx̃

V 1+ cb
2

�b

( x̃

(ũ/�)
c
2

)
eũ+�x̃/γ

∗
+

( u
�

) c
2 (b−1)

,

where the convergence to the limit function in the right-hand side is uniform for (ũ, x̃) in
any compact away fromR

2≤0. The contours can be deformed to steepest descent contours

C2 (see Figs. 9 and 10), and we can conclude as before by dominated convergence:

P̃(V, L) ∼
{∮

C

∮

C
dũ dx̃

(2iπ)2
eũ+�x̃/γ

∗
+

( ũ
�

) c
2 (b−1)

�b

( x̃

(ũ/�)
c
2

)}
V−1−

cb
2 . (6.22)

Likewise, in order to compute P(V, L , P), we make the change of variable:

u = 1− ũ

V
, s = s(p) +

s̃√
ln V

, x = γ ∗+ +
x̃

V
c
2
.
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10

Fig. 9. The contour of integration for u

We then find:
du

uV+1

ds

sP+1
dx x L F•s (x)

∼ dũ dx̃ ds̃ (γ ∗+ )L

s( p̃) V 1+ c
2b( p̃)+

c p̃
2π ln s(p)

√
ln V

�b(s)

( x̃

(ũ/�)
c
2

)
eũ+�x̃/γ

∗
+

( ũ
�

) c
2 (b(s)−1)

exp
{cn2( p̃2 + 1)2

16π p̃
s̃2
}
,

where the convergence to the limit function in the right-hand side is uniform for s̃, x̃, ũ
in any compact with ũ away from 0.We deform the contours to steepest descent contours
C2 in the variables (x, u), and iR in the variable |s̃| � √

ln V . By properties of steepest
descent contours, we can apply dominated convergence and find:

P(V, L , P) ∼
{∮

C

∮

C
dx̃ dũ

(2iπ)2
eũ+�x̃/γ

∗
+

( ũ
�

) c
2 (b(s)−1)

�b(s)

( x̃

(ũ/�)
c
2

)}

× (ln V )−1/2 V−1− c
2b(p)− c p̃

2π ln s(p)

√
c p̃( p̃2 + 1)

.

(6.23)

Taking the ratio of (6.23) and (6.22) and replacing p̃ and �̃ with p and � such that
P = ⌊ cp ln V2π

⌋
and L = 
�V c

2 � gives the desired distribution (6.7).

7. Separating Loops in Cylinders

Let us consider the probability that, in a random ensemble of planar maps of volume V ,
two boundaries of given perimeter L1 and L2 are separated by P loops:

P[P | V, L1, L2] =
∮ ∮ ∮ ∮ du

2iπ uV+1
x
L1
1 dx1
2iπ

x
L2
2 dx2
2iπ

ds
2iπ sP+1

F(2)s (x1, x2)

∮ ∮ ∮ du
2iπ uV+1

x
L1
1 dx1
2iπ

x
L2
2 dx2
2iπ F(2)(x1, x2)

.
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R− C0

Fig. 10. The contour C

The analog of Theorem 6.5 for the behavior of F(2)s is derived in Appendix G, and it
features singularities of the type,4 qb(s)/j with j = 1 for x1 and x2 both close to or both
away from γ ∗+ , and j = 2 for x1 close to γ ∗+ and x2 close to∞. In that regard, the origin
in pointed disks behaves as a boundary face whose perimeter is kept finite in a cylinder.
As the type of singularities encountered in the asymptotic analysis is identical, the result
can be directly derived from Sects. 6.5 and 6.6:

Theorem 7.1. Let (g, h) be a non generic critical point at u = 1. Let �1, �2, p > 0.
When V →∞, we have

P

[
P = ⌊ c ln V

π
p
⌋ ∣∣∣ V, L1 = �1, L2 = �2

]
.� 1√

ln V V
c
π
J (p)

,

P

[
P = ⌊ c ln V2π p

⌋ ∣∣∣ V, L1 = �1, L2 = 
�2V c
2 �
]

.� 1√
ln V V

c
2π J (p)

,

where the large deviations function J (p) is the same as in (6.8). �
In the regime where the two boundaries of the cylinder have perimeter of order V

c
2 , the

nesting distribution behaves differently and is not analysed here.

8. Weighting Loops by i.i.d. Random Variables

8.1. Definition andmain result. Following [120], we introduce amodel of randommaps
with weighted loop configurations; we describe it for pointed disks, but it will be clear
that our reasoning extends to the cylinder topology. Let ξ be a random variable, with
distribution μ, for which we assume that the cumulant function,

μ(λ) := lnE[eλξ ],
exists for λ in a neighborhood of 0. Given a map with a self-avoiding loop configuration,
let (ξl)l∈L be a sequence of i.i.d. random variables distributed like ξ , indexed by the set

4 The fact that critical exponents for cylinders taking into account the number of separating loops are
obtained by replacing b with b(s) can be observed indirectly in [101, Section 4.2] with the momentum p
playing the role of b(s).
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L of loops. Let Lsep ⊆ L be the set of loops separating the boundary from the marked
point. We would like the describe the joint distribution of the depth P = |Lsep| and of
the sum � =∑l∈Lsep

ξl .
Recall from the proof of Proposition 4.9 that F•[P](x) is the generating series of

pointed disks with exactly P separating loops. Our problem is solved by introducing
the generating series F•s,λ(x), as the μ-expectation value of the generating series of
pointed disks, whose usual weight in the loop model is multiplied by

∏
l∈Lsep

s eλξl . By
construction, we have:

F•s,λ(x) =
∑
P≥0

(seμ(λ))P F•[P](x) = F•s exp(μ(λ))
(x).

In the ensemble of pointed disks with volume V and perimeter L , the joint distribution
we look for reads:

P(P, �|V, L) = P(V, L; P, �)
P̃(V, L)

with a new numerator—compare with (6.9):

P(V, L; P, �) =
∮ ∮ ∮ ∮

du

2iπuV+1

dx x L

2iπ

ds

2iπ sP+1
dλ e−λ�

2iπ
F•s,λ(x).

Theorem 8.1. Let (g, h) be a non generic critical point at u = 1. Let5 �, p, q > 0.
When V →∞, we have

P

[
P = ⌊ c ln V

π
p
⌋
and � = c ln V

π
q
∣∣∣ V, L = �

]
.� 1

(ln V ) V
c
π
J (p,q)

, (8.1)

P

[
P = ⌊ c ln V2π p

⌋
and � = c ln V

2π q
∣∣∣ V, L = 
V c

2 ��
]

.� 1

(ln V ) V
c
2π J (p,q)

. (8.2)

The bivariate large deviations function reads:

J (p, q) = J (p) + qλ′ −μ(λ
′),

in terms of J (p) defined in (6.8), and λ′ is the function of (p, q) which is the unique
solution to

q

p
= ∂μ(λ

′)
∂λ′

.

It is remarkable that the bivariate large deviations function is a sum of two terms, one
being the usual n-dependent large deviations function for depth J (p), the other being
μ-dependent but n-independent.

5 Note that q here is a parameter with the same status as p, and does not refer to the elliptic nome controlling
e.g. in Theorem 6.3 the distance to criticality. As the context of their apparition is quite different, it should not
lead to confusion.
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8.1.1. Bernoulli weights For instance, if μ is the distribution of a signed Bernoulli
random variable,

μ[ξ = −1] = μ[ξ = 1] = 1
2 ,

we have

μ(λ) = ln cosh(λ), λ′ = arctanh(q/p) = 1

2
ln
( p + q

p − q

)
,

and

J (p, q) = J (p) +
p + q

2
ln(p + q) +

p − q

2
ln(p − q)− p ln p.

Note that, as ξ ≤ 1, we have � =∑l∈Lsep
ξl ≤ P , so we must have q ≤ p.

8.1.2. Gaussian weights If ξ is a centered Gaussian variable with variance σ 2, we have:

μ(λ) = σ 2λ2

2
, λ′ = q

pσ 2

and therefore:

J (p, q) = J (p) +
q2

2σ 2 p2
.

8.2. Proof of Theorem 8.1. We give some details of the proof in the case of finite
perimeters, as the modifications necessary in the case of large perimeters, L = 
V c

2 ��,
are parallel to the changes of Sect. 6.5 detailed in Sect. 6.6. As the strategy is similar to
Sect. 6.5, we leave the details of the analysis to the reader. To analyse P(V, L; P, �),
we should study the critical points of:

S1(x, u, s, λ)

= S1(x, u, se
μ(λ))− λ�

= −V ln u − P ln s + cb(seμ(λ)) + ln
(1− u

�

)
− ln

[
1−

(1− u

�

)cb(s exp(μ(λ)))
]

+ ln �̃b(s exp(μ(λ)))(x)− λ�

(8.3)
Let (s∗, λ∗) be the location of the critical point of S̃1, and assume that s∗ has a limit
away from 2

n , and λ
∗ has a finite limit when V →∞. Using the scalings6

P = c ln V

π
p̃, � = c ln V

π
q,

we find that the equation ∂s S̃1 = 0 yields in the limit V →∞:

neμ(λ
∗)

√
4− (ns∗eμ(λ∗))2

= p̃

s∗
, (8.4)

6 Again, q here is not the variable of Theorem 6.3 controlling the distance to criticality.
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and the equation ∂λS̃1 = 0 yields likewise:

neμ(λ
∗) ′μ(λ∗)√

4− (ns∗eμ(λ∗))2
= q

s∗
, (8.5)

while the equation ∂uS̃1 = 0 yields:

V ∼ −cb(s∗eμ(λ
∗))

1− u∗
.

Let us define λ′ as a function of (p, q) in such a way that:

∂μ

∂λ′
= q

p
. (8.6)

As ∂
∂λ′ (0) = E[ξ ] and ∂2μ

∂λ′2 (0) = Var[ξ ] > 0, λ′ is defined at least for q
p in the

neighborhood of the value E[ξ ], corresponding to λ′ in a neighborhood of 0. We assume
that q

p belongs to the (maximal) domain of definition of λ′. Combining (8.4) and (8.5),
we find that the saddle λ∗ is located at λ′, and:

s∗eμ(λ
′) = s(p), b(s∗e(λ′)) = b(p),

in terms of the functions s and b defined in (6.14)–(6.15).
We compute the Hessian matrix of S̃1 with respect to the variables (s, λ), and evalu-

ated at the saddle point (s∗, λ′). At leading order in V ,

S̃1 = c ln V

π
�(s, λ) + o(ln V ), with �(s, λ) = πb(seμ(λ))− p̃ ln s,

where the erroro(ln V ) is stable under differentiation.After a tedious, but straightforward
computation, we find:

H :=
(
∂2s� ∂λ∂s�

� ∂2λ�

) ∣∣∣∣s=s∗
λ=λ′

=
(

n2( p̃2+1)2

4 exp(2μ(λ
′)) n(1+ p̃2)3/2

2
∂μ

∂λ′ e
μ(λ

′)

� p̃
[ ∂2μ

∂λ′2 + ( p̃2 + 1)( ∂μ

∂λ′
)2]
)
,

(8.7)

where the lower corner of the matrix is deduced by symmetry. We also need to compute

det H = n2( p̃2 + 1)2

4

∂2μ

∂λ′2
e2μ(λ

′).

Now, if we introduce the change of variables:

u = 1− ũ

V
, s = e−μ(λ

′)s( p̃) +
s̃√
ln V

, λ = λ′ + λ̃√
ln V

,



Nesting Statistics in the O(n) Loop Model 1171

we obtain

du

uV+1

ds

sP+1
dλ e−λ� ∼ − dũ dλ̃

V ln V

�̃b(s exp(μ(λ′))(x)

s( p̃) exp(−μ(λ′))
eũ
( ũ

�V

)cb( p̃)

× V−
c
π
( p̃ ln s( p̃)− p̃μ(λ

′)+qλ′) exp
{ c
π
(s̃, λ̃) ·H · (s̃, λ̃)T

}
.

We can perform the Gaussian integration in s̃ and λ̃, while the remaining integration on
ũ and x result in a prefactor already appearing in Sect. 6.5. The result is:

P
[
V, L; P = c p̃ ln V

π
; � = cq ln V

π

]

∼ π

�(−cb( p̃))
n2

c p̃
√
( p̃2 + 1) ∂

2μ

∂λ′2

{∮

C
x Ldx

2iπ

�̃b( p̃)(x)

�cb( p̃)

}

× V−1−cb( p̃)+
c
π
(− ln s( p̃)+μ(λ

′)−qλ′) (ln V )−1.

We obtain the final result (8.1) by dividing by P̃(V, L) given in (6.11), and replacing p̃
with p such that P = ⌊ cp ln V

π
�, which only affect a O(1) term after taking logarithms.

The proof of (8.2) is similar. �

9. Comparison with Nesting in CLE via KPZ

In this section, we compare the large deviations of loop nesting at criticality in the O(n)
model on a random planar map, as derived in the first sections of this work, with the
large deviations of loop nesting in the so-called conformal loop ensemble in the plane.

9.1. Nesting in the conformal loop ensemble. The conformal loop ensemble CLEκ for
κ ∈ (8/3, 8) is the canonical conformally invariant measure on countably infinite col-
lections of non crossing loops in a simply connected domain D ⊂ C [136,139]. It is the
analogue for loops of the celebrated Schramm–Loewner evolution SLEκ , the canonical
conformally invariant measure on non crossing paths [132] in the plane, depending on
the real positive parameter κ , an invention which is on par with Wiener’s 1923 mathe-
matical construction of continuous Brownian motion. It gives the universal continuous
scaling limit of 2d critical curves; of particular physical interest are the loop-erased
random walk (κ = 2) [104], the self-avoiding walk (κ = 8

3 ), the Ising model interface
(κ = 3 or 16

3 ) [35,141], the GFF contour lines (κ = 4) [133], and the percolation in-
terface (κ = 6) [140]. Critical phenomena in the plane were earlier well known to be
related to conformal field theory [12], a discovery anticipated in the so-called Coulomb
gas approach to critical 2d statistical models (see, e.g., [42,122]), and now including
SLE [10,73,92].

In the same way as SLEκ is proven or expected to be the scaling limit of a single
interface in 2d critical discrete models, CLEκ should be the limiting process of the
collection of closed interfaces in such models. In particular, the critical O(n)-model on
a regular planar lattice is expected to converge in the continuum limit to the universality
class of the SLEκ /CLEκ , for

n = 2 cos
[
π
(
1− 4/κ

)]
, n ∈ [0, 2],

{
κ ∈ ( 83 , 4] in dilute phase
κ ∈ (4, 8) in dense phase.

(9.1)
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In [120] (see also [119]), Miller, Watson and Wilson were able to derive the almost
suremultifractal dimension spectrumof extreme nesting in the conformal loop ensemble.
Fix a simply connected proper domain D ⊂ C and let � be a configuration of CLEκ .
For each point z ∈ D, let Nz(ε) be the number of loops of � which surround the ball
B(z, ε) centered at z and of radius ε > 0. For ν > 0, define the random set

�ν = �ν(�) :=
{
z ∈ D : lim

ε→0

Nz(ε)

ln(1/ε)
= ν

}
. (9.2)

This Hausdorff dimension of this set is almost surely equal to a constant, which is
expressed in terms of the distribution of the conformal radius of the gasket of the origin
in a CLEκ in the unit disk D. More precisely, the conformal radius CR(z,U) of a simply
connected proper domain U ⊂ C is defined to be |ϕ′(0)|, where ϕ is the conformal map
D �→ U which sends 0 to z. For a configuration � of CLEκ in D, let then U� be the
connected component containing the origin in the complementD\L of the largest loopL
of � surrounding the origin in D, i.e. the interior of the outmost such loop. A formula for
the cumulant generating function of − log(CR(0,U�)) was proposed in [33,34,46,97]
and established in Ref. [134]

κ(λ) := lnE

[(
CR(0,U�)

)−λ] = ln

⎛
⎜⎝ cos

[
π(1− 4

κ
)
]

cos
[
π

√(
1− 4

κ

)2
+ 8λ

κ

]

⎞
⎟⎠ ,

λ ∈ (−∞, 1− 2
κ
− 3κ

32

)
. (9.3)

The Legendre–Fenchel symmetric transform, �
κ : R → R+ of κ is defined by

�
κ(x) := sup

λ∈R
(λx −κ(λ)) . (9.4)

It yields the continuous function on R+ [120],

γκ(ν) :=
{
ν�

κ(1/ν) if ν > 0,
1− 2

κ
− 3κ

32 if ν = 0.
(9.5)

For κ ∈ (8/3, 8), the Hausdorff dimension of the set�ν is almost surely given by [120,
Theorem 1.1],

dimH�ν = max(0, 2− γκ(ν)), (9.6)

with �ν being a.s. empty if γκ(ν) > 2. Note that the Legendre–Fenchel transform
equations above can be recast for γκ(ν), ν > 0, as,

γκ(ν)

ν
= λ

ν
−κ(λ),

1

ν
= ∂κ(λ)

∂λ
, (9.7)

from which we immediately get,

λ = ∂

∂(1/ν)

(
γκ(ν)

ν

)
= γκ(ν)− ν

∂

∂ν
γκ(ν). (9.8)
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9.2. Liouville quantum gravity. Polyakov [126] suggested in 1981 that the summation
over random Riemannian metrics involved in a continuum theory of random surfaces
could be represented canonically by the now celebrated Liouville theory of quantum
gravity (see [62,71,75,121] and references therein). It is widely believed or proven in
certain cases to provide, after a Riemann conformal map to a given planar domain, the
correct conformal structure for the continuum limit of random planar maps, possibly
weighted by the partition functions of various statistical models (see, e.g., the ICM
reviews [53,107,112]). In the case of usual random planar maps with faces of bounded
degrees, the universal metric structure is that of the Brownian map [106,111], which has
been recently identified with that directly constructed from Liouville quantum gravity
(LQG) [113–116]. Note also that different mathematical approaches to LQG exist [41,
57,62,117], whose equivalence has been recently established [4].

Asmentioned in the introduction, Sect. 1, several models of random planar maps with
critical statistical models have now been rigorously proven to converge to LQG surfaces,
as path-decorated metric spaces [82,83], as mated pairs of trees [79–81,86,87,96,109,
138] in the so-called peanosphere topology of Refs. [57,117], or as Tutte embedding of
mated-CRT maps [85].

Here, in order to compare the asymptotic findings of previous sections to a direct
LQG approach, we focus on the measure aspects associated with Liouville quantum
gravity.

9.2.1. Liouville quantum measure [62] Consider a simply connected domain D ⊂ C as
the parameter domain of the random surface, and h an instance of the masslessGaussian
free field (GFF), a random distribution on D, associated with the Dirichlet energy,

(h, h)∇ := 1

2π

∫

D
[∇h(z)]2d2z,

and whose two point correlations are given by the Green’s function on D with Dirichlet
zero boundary conditions [135]. (Critical) Liouville quantum gravity consists in chang-
ing the Lebesgue area measure d2z on D to the quantum area measure, formally written
as μγ (d2z) := eγ h(z)d2z, where γ is a real parameter. The GFF h is a random distribu-
tion, not a function, but the random measure μγ can be constructed, for γ ∈ [0, 2], as
the limit of regularised quantities, as follows.

Given an instance h of the GFF on D, for each z ∈ D, let hε(z) denote the mean
value of h on the circle of radius ε centered at z—where h(z) is defined to be zero for
z ∈ C\D [135]. One then has

E
[
eγ hε(z)

] = eγ
2Var[hε(z)]/2 = [CR(z, D)/ε]γ

2/2 ,

where CR(z, D) the conformal radius of D viewed from z.
This strongly suggests considering the limit,

μγ (d
2z) := lim

ε→0
εγ

2/2eγ hε(z)d2z, (9.9)

and one can indeed show that for γ ∈ [0, 2) this (weak) limit exists and is non degenerate,
and is singular with respect to Lebesgue measure [62]. This mathematically defines
Liouville quantum gravity, in a way reminiscent of so-called Wick normal ordering in
quantum field theory—see also [88] for earlier work on the so-called Høegh–Krohn
model, and Kahane’s general study of the so-called Gaussian multiplicative chaos [91].
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The critical case, γ = 2, requires additional care, and it is shown in [58,59] (see also
[5]) that the weak limit,

μγ=2(d2z) := lim
ε→0

√
ln(1/ε) ε2e2hε(z)d2z, (9.10)

exists and is almost surely non atomic. μγ (D) will be called the quantum area of D.

Remark 9.1. The Liouville quantum action is usually written as S(h) = 1
2 (h, h)∇ +

bμγ (D), where the “(bulk) cosmological constant", b ≥ 0, weights the partition func-
tion according to the quantum area of the random surface. The corresponding Boltzmann
statistical weight, exp[−S(h)], should be integrated over with a “flat” uniform functional
measure Dh on h—which makes sense a priori for finite-dimensional approximations
to h. The full Liouville quantum measure can then be constructed from the GFF one
(see, e.g., [41]), and for our purpose of studying the CLEκ nesting properties, which are
local ones, it will suffice to consider this measure for b = 0, i.e., in the GFF case.

9.2.2. Canonical coupling of LQG to SLE Various values of γ are expected to describe
weighting the randommap by the partition function of a critical statistical physicalmodel
defined on thatmap (e.g., an Isingmodel, an O(n) or a Pottsmodel). The correspondence
can be obtained by first considering conformal welding in Liouville quantum gravity
[57,63,137,138] (see also [6]). It turns out that pieces of Liouville quantum gravity
surfaces of parameter γ ∈ [0, 2) can be conformally welded together to produce as
random seams SLEκ curves, with the rigorous result,

γ =
{√

κ if κ < 4
4√
κ

if κ > 4. (9.11)

Together with (9.1), this provides us with the (γ, κ, n) correspondence that we sought
after for the O(n) model.

9.2.3. KPZ formula By the usual conformal invariance Ansatz in physics, it is natural
to expect that if one conditions on the random map to be infinite, maps it into the
plane, and then samples the loops or clusters in critical models, their law in the scaling
limit will be independent of the random measure. This independence in turn leads to the
Knizhnik, Polyakov, and Zamolodchikov (KPZ) formula [98]—see also Refs. [40,44]—
which is a relationship between (half) scaling dimensions (i.e., conformal weights x) of
fields defined using Euclidean geometry and analogous dimensions (�) defined via the
Liouville quantum gravity measure μγ ,

x = Uγ (�) := γ 2

4
�2 +

(
1− γ 2

4

)
�. (9.12)

The inverse of the relation (9.12) that is positive is given by

� = U−1γ (x) := 1

γ

(√
4x + a2γ − aγ

)
, aγ :=

( 2
γ
− γ

2

)
≥ 0. (9.13)

Amathematical proof of the KPZ relation, based on the stochastic properties of the GFF,
first appeared in [62]; it was then also proved for multiplicative cascades [13] and in
the framework of Gaussian multiplicative chaos [59,127]. The KPZ formula holds for
any fractal structure sampled independently of the GFF, and measured with the random
measure μγ , and for any 0 ≤ γ ≤ 2.
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9.2.4. Quantum and Lebesgue measures Define the (random) Liouville quantum mea-
sure of the Euclidean ball B(z, ε),

δ :=
∫

B(z,ε)
μγ (d

2z), (9.14)

and the logarithmic coordinates,

t := ln(1/ε), A := γ−1 ln(1/δ). (9.15)

For z fixed, a given quantum area δ, hence a given logarithmic coordinate A, corresponds
through (9.14) to a random Euclidean radius ε, and the corresponding random value TA
of t in (9.15) can be seen as a stopping time of some Brownian process [61,62]. The
probability density of TA, such that P(t | A)dt := P

(
TA ∈ [t, t + dt]), is obtained as a

by-product of the KPZ analysis in [61,62]:

P(t | A) = A√
2π t3

exp

(
− (A − aγ t)2

2t

)
; (9.16)

it characterises, in logarithmic coordinates, the distribution of the Euclidean radius ε of
a ball of given quantum area δ. For a GFF in a domain D with, say, Dirichlet boundary
conditions, this local form is valid for a ball B(z, ε) far away from ∂D, i.e., for ε much
smaller than the conformal radius C(z, D), or, equivalently, than the Euclidean distance
between z and the boundary ∂D, since 1

4C(z, D) ≤ dist(z, D) ≤ C(z, D) by Koebe 1
4

theorem.
Note that we can rewrite it as

P(t ′A | A) = A−1/2√
2π t ′3

exp

(
− A

2t ′
(1− aγ t

′)2
)
. (9.17)

In the regime δ→ 0, we have A→ +∞, so the distribution (9.17) becomes localised at
aγ t ′ = 1, thus t = A/aγ . This gives the typical scaling of the quantum area of balls in

γ -Liouville quantum gravity, δ � εγ aγ = ε2−γ 2/2 [89]. The large deviations from this
typical value, associated with (9.17), will be the key in comparing the extreme nesting of
CLEκ in the plane, as seen with the Euclidean (Lebesgue) measure, or with the Liouville
quantum measure μγ .

9.3. Nesting of CLEκ in Liouville quantum gravity.

9.3.1. Definition One ingredient in the proof of (9.6) in Ref. [120] is the following
one-point estimate [120, Lemma 3.2]. For z ∈ D, define

Ñz(ε) := Nz(ε)

ln(1/ε)
.

Then

lim
ε→0

lnP
(
Ñz(ε) ∈ [ν − ω−(ε), ν + ω+(ε)]

)

ln ε
= γκ(ν) for ν > 0, (9.18)
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for z ∈ D satisfying a ≤ CR(z, D) ≤ b, with 0 < a ≤ b, and for all ω±(ε) decreasing
to 0 sufficiently slowly. A similar result holds for ν = 0. We shall rewrite the above
result, for ε→ 0, in the more compact way,

P
(
Nz ≈ ν ln(1/ε)

∣∣ ε) � εγκ (ν), (9.19)

where the sign ≈ stands for a scaling of the form (ν + o(1)) ln(1/ε). We also recall that
the� sign means an asymptotic equivalence of logarithms, i.e., a form εγκ (ν)+o(1) on the
r.h.s. Recalling definition (9.15), this is also for t → +∞,

P
(
Nz ≈ νt

∣∣ t) � e−γκ (ν)t . (9.20)

To define an analog of this nesting probability in LQG, instead of conditioning on
the Euclidean radius ε—equivalently, on t—we condition on the quantum area δ (9.14)
of the ball B(z, ε)—equivalently, on A (9.15). The number of loopsNz surrounding the
ball B(z, ε) stays the same. This conditional probability is then given by the convolution,

PQ(Nz | A) :=
∫ ∞

0
dt P(Nz | t)P(t | A), (9.21)

where P(t | A) is as in (9.16)–(9.17). We call it the quantum nesting probability.

9.3.2. Saddle point computation For large A, if we let Nz scale as Nz ≈ γ pA, with
p ∈ R+, we may also set Nz ≈ νt , where ν is now defined as

ν = ν(t) = γ pA

t
, (9.22)

where p and A are considered as parameters. Note that expressions (9.20) and (9.17) for
the two probability distributions appearing in the integrand in (9.21) are large deviations
forms for t and A both large and in a finite ratio. Such is the case in (9.22), which yields

PQ(Nz ≈ γ pA | A) �
∫ ∞

0

dt A√
2π t3

exp

(
− (A − aγ t)2

2t
− γκ(ν)t

)
, (9.23)

where for A→ +∞ the integral over t is consistently evaluated by a saddle pointmethod.
We thus look for the extremum of

E(t) := 1

2t

(
A − aγ t

)2 + γκ(ν)t, (9.24)

along trajectories at constant value of νt = γ pA, and for fixed p and A. We then have

t
∂γκ

∂t
(ν) = −ν ∂γκ

∂ν
(ν),

and using (9.8),
∂

∂t

(
γκ(ν)t

) = γκ(ν)− ν
∂γκ

∂ν
(ν) = λ. (9.25)

This in turn gives
∂E
∂t
= λ− 1

2

[( A
t

)2 − a2γ
]
, (9.26)
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and a saddle point value t∗ of t at

A

t∗
:= u = u(λ) :=

√
2λ + a2γ . (9.27)

which is implicitly a function of p.
Note that from (9.8) again,

∂λ

∂t
= −ν ∂

∂ν

(
γκ(ν)− ν

∂γκ

∂ν

)
= ν2

∂2γκ

∂ν2
> 0

so that

∂2E
∂t2

= ∂λ

∂t
+

A2

t3
> 0.

And the saddle point lies, as expected, at the minimum E∗ of E(t),

E∗ := E(t∗) = A

(
(u − aγ )2

2u
+
γκ(ν)

u

)
, (9.28)

where, owing to definition (9.22) and to (9.27), ν is hereafter understood as the saddle
point value,

ν = ν(t∗) = γ p
A

t∗
= γ p u(λ). (9.29)

Owing to (9.7)–(9.27) and (9.29), we have

γκ(ν)

u
= λ− νκ(λ)

u
= u2 − a2γ

2u
− γ pκ(λ), (9.30)

so that we finally get the simple form,

E∗
A
= u(λ)− aγ − γ pκ(λ). (9.31)

Notice that (9.7), (9.27) and (9.29) also imply

1

γ p
= u

ν
= u(λ)

∂κ(λ)

∂λ
= ∂κ(λ)

∂u(λ)
. (9.32)

9.3.3. Role of the KPZ relation Let us define:

�(p) := E∗
γ A

.

We have just computed:
�(p) = U−1γ ( λ2 )− pκ(λ), (9.33)

where λ is the function of p determined by (9.32), and where the inverse KPZ relation
(9.13) precisely yields,

U−1γ

(
λ
2

) = u(λ)− aγ
γ

. (9.34)
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Note also that 1
p as in (9.32) is the derivative ofκ with respect to (9.34). Thus, setting

λ′ := U−1γ ( λ2 ), we get the Legendre–Fenchel transform equations:

�(p) = λ′ − p (κ ◦ 2Uγ )(λ
′), 1

p
= ∂(κ ◦ 2Uγ )(λ

′)
∂λ′

. (9.35)

Comparing this result to the Legendre–Fenchel Eqs. (9.7) in the Euclidean case, we get

Theorem 9.2. In presence of γ -Liouville quantum gravity, the generating function κ

(9.3) is transformed into
Q
κ := κ ◦ 2Uγ , (9.36)

where Uγ is the KPZ function (9.12), with γ given by (9.11). The nesting distribution
around a ball of given quantum area δ (9.23) is then given asymptotically for A =
γ−1 ln(1/δ)→ +∞, by

PQ
(
Nz ≈ γ pA

∣∣ A) � e−γ�(p)A = δ�(p)

with �(p) = λ− pQ
κ (λ) and λ is determined as a function of p by:

1

p
= ∂Q

κ (λ)

∂λ
.

Remark 9.3. The occurrence of a factor 2 in the composition law (9.36) is simply due to
a different choice of scale when measuring large deviations, i.e., that of a quantum area
δ in the quantum case, as opposed to that of a radius ε in the Euclidean one. This is seen
in particular in the κ → 0 limit, where Uγ simply becomes the identity function.

Remark 9.4. Theorem 9.2 shows that the KPZ relation, or its inverse as in (9.33), can
directly act on an arbitrary continuum variable, here the conjugate variable in the cu-
mulant generating function (9.3) for the CLEκ log-conformal radius. To our knowledge,
this is the first occurrence of such a role for the KPZ relation, which usually concerns
scaling dimensions.

Remark 9.5. The derivation above does not depend on the precise form of the large
deviations function. Moreover, as shown in Refs. [61,62], the KPZ relation holds in full
generality for any (fractal) random system in the plane and in Liouville quantum gravity,
provided that the sampling of the random system is independent of that of the Gaussian
free field defining LQG. Therefore, the map  �→ Q =  ◦ 2Uγ , from Euclidean
geometry to Liouville quantum gravity, holds for any large deviations problem, where
the large deviations function is the Legendre–Fenchel transform of a certain generating
function .

9.3.4. Comparison to Theorem 2.2 Let us finally compute explicitly the Liouville large
deviations function�, in order to comparewith themain results above regarding extreme
nesting in the O(n) model on a random planar map. The easiest way is to rewrite (9.3)
as

κ(λ) = ln

(
cos
[
π
(
1− 4

κ

)]

cos v

)
, v = v(λ) := 2π√

κ

√(√
κ

2
− 2√

κ

)2

+ 2λ (9.37)
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for λ ∈ (−∞, 1− 2
κ
− 3κ

32 ), and to notice that (9.27) and (9.11) give

u(λ) =
√
κ

2π
v(λ).

Equations (9.32) and (9.33) then take the compact form,

�(p) = � = c

2π
(v − a′ − p′κ),

1

p′
= ∂κ(v)

∂v
, (9.38)

where we used the notations

c :=
√
κ

γ
, p := c

2π
p′, aγ =

( 2
γ
− γ

2

)
:=
√
κ

2π
a′.

Because of (9.11), we find as parameters,

c = min
(
1, κ4

)
, a′ = πb = π

∣∣1− 4
κ

∣∣ = arccos
( n
2

)
, (9.39)

where b and c are the exponents defined in (2.4) and Sect. 2.3. The explicit form (9.37)
immediately yields the parametric solution to Legendre–Fenchel Eq. (9.38),

p′ = cot v, � = c

2π

[
v − (cot v) ln

( n

2 cos v

)
− arccos(n/2)

]
. (9.40)

One has p′ ∈ R+ for v ∈ [0, π2 ), so that

cos v = p′√
p′2 + 1

≥ 0,

which finally yields

�(p) = c

2π
J (p′), J (p′) := arccot(p′)+ p′ ln

(
2

n

p′√
1 + p′2

)
−arccos

(n
2

)
. (9.41)

Note that the p = c
2π p′ substitution above simply gives γ pA = c

2π p′ ln(1/δ). Theorem
9.2 then yields

Theorem 9.6. The quantum nesting probability for CLEκ loops, with κ ∈ (8/3, 8) in a
simply connected proper domain D ⊂ C, surrounding a ball centered at z with given
quantum area δ, behaves as

PQ
(
Nz ≈ c

2π p ln(1/δ)
∣∣ δ) � δ

c
2π J (p), δ→ 0,

where the large deviations function J is as in (9.41) and Theorem 2.2, and where c and
n are given in (9.39) as functions of κ .

Remark 9.7. We see that this result perfectly matches the second large deviations result
in Theorem 2.2 for nesting in the O(n) loop model on a random map with the topology
of a pointed disk: one simply replaces 1

δ
here with the large volume V of the map there.

Indeed, one may assign elementary area 1
V to each face in the dual map, so that the dual

map has in total unit area; then, the marked point corresponds in the dual to a face of
elementary area 1

V , and its depth P = c
2π p ln V is the number of loops separating this

face from the boundary of the disk.
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It is interesting to compare the classical and quantum cases for nesting in CLEκ . In
the classical case [120], the parametric equations of the Legendre–Fenchel transform
(9.7) are

ν = κ

(2π)2
v cot v

γκ(ν) = κ

(2π)2

[
v2

2
− (v cot v) ln

( n

2 cos v

)
− 1

2
(arccos(n/2))2

]

for v ∈ [0, π/2), and
ν = κ

(2π)2
w cothw

γκ(ν) = κ

(2π)2

[
− w2

2
− (w cothw) ln

( n

2 coshw

)
− 1

2
(arccos(n/2))2

]

for v = iw withw ∈ R>0. These parametric equations cannot be easily solved, whereas
the quantum parametric Eq. (9.40), though similar, are simpler and explicitly solvable.
Note also that in the classical case, the parameter λ is in the range λ ∈ (−∞, λmax],
with the values λmax = 1 − 2

κ
− 3κ

32 corresponding to ν → 0 or equivalently v → π
2 ,

while λ→ −∞ corresponds to ν → +∞ or v = iw with w → ∞. We observe more
precisely that

γκ(ν) ∼ (2π)2

κ

ν2

2
, ν → +∞. (9.42)

In the quantum case (9.40), v is restricted to v ∈ [0, π2 ), and λ spans a finite interval
only, λ ∈ [λmin, λmax], where λmin = 1− 2

κ
− κ

8 is the point at which the square root in
v(λ) vanishes, corresponding to p′ → +∞. And this results in λ′ = U−1γ

(
λ
2

)
spanning

[ 12 − 2
κ
, 34 − 2

κ
] if 8

3 < κ ≤ 4, and [ 12 − κ
8 ,

1
2 − κ

16 ] if 4 ≤ κ < 8.

9.4. Sphere topology. Conformal loop ensembles can also be defined on the Riemann
sphere Ĉ [95,119]. In particular, for any κ ∈ (8/3, 4], the law of the simple nested
CLEκ in the full plane has been shown to be invariant under the inversion z �→ 1

z (and
therefore under any Möbius transformation of the Riemann sphere) [95, Theorem 1]. In
this section, we connect the nesting statistics of CLEκ in Ĉ with the nesting statistics
in the O(n) loop model on large random planar maps with the topology of the doubly
punctured sphere.

We first discuss the properties of CLEκ(Ĉ). Let us pick two points (punctures), z1, z2,
on the sphere, which we may take to be (z1, z2) = (0,∞) using a suitable Möbius
transformation. Consider the two balls B(zi , εi ), i = 1, 2, centered at these points. In
stereographic projection, the connected domain Ĉ\(B(z1, ε1) ∪ B(z2, ε2)) corresponds
to the annulus A(ε−12 , ε1) := ε−12 D\B(z1, ε1).

Consider then in the whole CLEκ(Ĉ) on the Riemann sphere, the loops which can be
contracted to each one of the two punctures on Ĉ, i.e., those loops which in projection
belong to the above annulus. By scale invariance, their number can depend only the
product ε1ε2, and we write it as N (ε1ε2). The nesting probability on the Riemann
sphere is then defined as,

P
Ĉ
[
N (ε1ε2) ≈ ν ln(1/ε1ε2) | ε1, ε2

]
,
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ερ

ε

1

Fig. 11. The whole set of loops in the unit disk D is counted by N0(ερ), with ρ = ε1ε2. The set of loops
contained in the inner annulus, as counted by N̂ (ερ) (resp. the set of intersecting loops, as counted byN∩(ε))
appears in red (resp. blue)

where we recall that ≈ is a short-hand notation for the event

N (ε1ε2)

ln(1/ε1ε2)
∈ [ν − ω−, ν + ω+]

for ω± = ω±(ε1ε2) decreasing to 0 sufficiently slowly with the εi ’s (see Eq. (9.18)).

9.4.1. Approximation to full-plane CLE and nesting estimates Following Ref. [119,
Appendix A], about the rapid convergence of CLE on a large disk to full-plane CLE,
we can take as a large disk, (εε2)−1D, with 0 < ε < 1, which contains the annulus
A(ε−12 , ε1) above. Using scale invariance, we may simply consider events in D and in
the annulus A(ε, εε1ε2) (see Fig. 11), and by choosing ε small enough, approximate to
any desired precision the probability of any event concerning a ball of radius ε in the
ensemble CLEκ(Ĉ) (with probability law denoted by P

Ĉ) by the probability of the same
event in the ensemble CLEκ on the unit disk (with probability law simply denoted by
P). Ref. [119, Theorem A1] indeed states that with probability exponentially close to 1
in ln(1/ε) there exists a conformal map from whole-plane CLEκ(Ĉ), restricted to the
interior of its smallest loop containing B(0, ε), to CLEκ(D) similarly restricted to its
smallest loop containing B(0, ε), and whose distorsion is exponentially close to 1.

As before, let N0(ε) be the number of loops surrounding the ball B(0, ε) in D, and
let N∩(ε) be the number of loops surrounding the origin and intersecting ∂B(0, ε). We
seek for an estimation of the law of the number of loops in the annulus B(0, ε)\B(0, ερ),

N̂ (ερ) := N0(ερ)−N0(ε)−N∩(ε), ρ := ε1ε2, (9.43)

as illustrated in Fig. 11.
From Ref. [120, Corollary 3.5], we know thatN∩(ε) < c0 ln(1/ε) for some constant

c0 > 0, except with probability exponentially small in ln(1/ε), since it is stochastically
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dominated by twice a geometric random variable with parameter p(κ) > 0 which
depends only on κ .

From Ref. [120, Lemma 3.2], and the convexity of γκ(ν), we know that there exists
η(ε)→ 0, such that,

P
(
N0(ε) > ν ln(1/ε)

) ≤ εγκ (ν)−η(ε), (9.44)

uniformly in ν ≥ ν0, with ν0 fixed but strictly larger than the point at which γκ(ν)

reaches its minimum 0. We thus have in particular,

P
(
N0(ε) ≤ ν0 ln(1/ε)

) ≥ 1

2
, (9.45)

for ε small enough. Besides, we also know from [120, Lemma 3.2] that there existsω(ε),
with ω(ε)→ 0 as ε→ 0, such that,

(ερ)γκ (ν)+η(ερ) ≤ P

(∣∣N0(ερ)− ν ln(ερ)−1
∣∣ ≤ ω(ερ) ln(ερ)−1

)

≤ (ερ)γκ (ν)−η(ερ). (9.46)

Using these estimates will allow us shortly to show the existence of functions ω± and η
of ε and ρ, with ω±(ε, ρ), η(ε, ρ)→ 0 when ρ → 0, such that,

(ερ)γκ (ν)+η(ε,ρ) ≤ P

( N̂ (ερ)

ln(1/ερ)
∈ [ν − ω−, ν + ω+]

)
≤ (ερ)γκ (ν)−η(ε,ρ). (9.47)

Proof. Let us denote by Âν(ε, ρ) the event of interest in (9.47), by Aν(ε) the event
{N0(ε) ≤ ν ln(1/ε)}, and by Āν(ε) the latter’s complement. Define also the logarithmic
ratio,

r = r(ε, ρ) := ln(1/ε)

ln(1/ερ)
; r(ε, ρ)→ 0 as ρ → 0.

For a lower bound, we write

P
(
Âν(ε, ρ)

) ≥ P
(
Âν(ε, ρ) ∩ Aν0(ε)

) = P(Aν0(ε))P
(
Âν(ε, ρ)

∣∣ Aν0(ε)
)
.

Choosing ν0 as in (9.45), the first factor is bounded from below by 1
2 , and using the

lower bound (9.46) for the second factor, we get the desired lower bound in (9.47), up
to replacing ω(ερ) of (9.46) by ω±(ε, ρ) := ω(ερ)∓ (ν0 + c0) r(ε, ρ).

For the upper bound, we write

P
(
Âν(ε, ρ)

) ≤ P( Â ν(ε, ρ) ∩ A ν1(ε)
)
+ P( Āν1(ε)

)
, (9.48)

where, by using the estimate (9.44) for ν1 large enough, P( Āν1(ε)
) ≤ εγκ (ν1)−η(ε).

We will choose ν1 = ν1(ε, ρ), such that ν1(ε, ρ) → ∞ when ρ → 0, as allowed
by uniformity of (9.44). As γκ(ν) grows quadratically in ν (see Eq. (9.42)) the latter
estimate can be bounded, for large enough ν1, as

εγκ (ν1)−η(ε) ≤ εC ν21 = (ερ)C ν21 r(ε,ρ), (9.49)

for some constant C > 0. On the other hand, the first term in (9.48) can be estimated
via the upper bound in (9.46) to yield an upper bound as in (9.47), provided that

ν1(ε, ρ) r(ε, ρ)→ 0, ρ → 0, (9.50)
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as this is the error term to be subtracted, together with c0r(ε, ρ), fromω(ερ) as the result
of the restriction to event Aν1(ε). If we would like (9.49) to be negligible in front of the
first term in (9.48), we would have to choose ν1 in such a way that

ν21 (ε, ρ) r(ε, ρ)→∞, ρ → 0. (9.51)

To satisfy both (9.50) and (9.51), choose for instance, ν1(ε, ρ) = r(ε, ρ)−3/4. Then,
the second term in (9.48) is bounded by (ερ)Cr

− 1
2 , which, since r → 0 as ρ → 0, is

negligible as compared to the first term of order (ερ)γκ (ν). This completes the proof of
(9.47).

As explained above, the exponentially fast convergence in ln(1/ε) when ε→ 0 (see
[119, Theorem A.1]), of the approximation of CLEκ(Ĉ) by the restriction of CLEκ(D)
to the ball B(0, ε), allows us to translate result (9.47), valid for ρ = ε1ε2 → 0, into

Theorem 9.8. The nesting probability in CLEκ(Ĉ) between two balls of radius ε1 and
ε2 and centered at two distinct punctures, has the large deviations form,

P
Ĉ
(
N (ε1ε2) ≈ ν ln(1/ε1ε2)

) � (ε1ε2)
γκ (ν), ν ≥ 0, ε1, ε2 → 0,

where γκ(ν) is the same large deviations function (9.5) as in the case of the disk topology,
and where notations are as in (9.18)–(9.19).

Even though the sphere and disk large deviations involve the same function γκ , the
scalings involved actually differ by powers of 2. Indeed, if we take the two balls on the
Riemann sphere to have same radius ε, and measure nesting in ln

( 1
ε

)
units, we have

from Theorem 9.8,

Corollary 9.9. The nesting probability in CLEκ(Ĉ) between two balls of same radius ε
and centered at two distinct punctures, has the large deviations form,

P
Ĉ
(
N (ε) ≈ ν ln(1/ε)

) � εγ̂κ (ν), ν ≥ 0, ε→ 0,

where γ̂κ (ν) is related to the disk large deviations function (9.5) by

γ̂κ (2ν) = 2γκ(ν).

Using hereafter the variables ti := ln
( 1
εi

)
, i = 1, 2, we have,

P
Ĉ
(
N (ε1ε2) ≈ ν(t1 + t2)

) � e−γκ (ν)(t1+t2), t1, t2 → +∞. (9.52)

9.4.2. Nesting on the quantum sphere In Liouville quantum gravity, following the same
steps as inSect. 9.3, let us conditionon eachball having the samequantumarea δ = e−γ A.
The desired distribution should be given by the convolution

P
Ĉ

Q(N | A) :=
∫ ∞

0

∫ ∞

0
dt1dt2 P

Ĉ(N | t1, t2)P(t1 | A)P(t2 | A), (9.53)

where P(ti | A), i = 1, 2 are as in (9.16)–(9.17). Note that this definition readily asserts
a factorisation, hence independence, of these two distributions, because their two ball
centers (zi , i = 1, 2) have been taken as (0,∞) on the Riemann sphere.
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For large A, we letN scale asN ≈ γ pA, with p ∈ R+, and also setN ≈ ν(t1 + t2),
where ν is now defined such that,

ν = ν(t1, t2) := γ pA/(t1 + t2), (9.54)

where p and A are thought of as parameters. By the same argument as in Sect. 9.3.2,
the asymptotic result (9.52) then yields when A→ +∞

P
Ĉ

Q(Nz ≈ γ pA | A) �
∫ ∞

0

∫ ∞

0

A2 dt1dt2

2π
√
t31 t

3
2

exp [−E(t1)− E(t2)]

E(t1) + E(t2) = 1

2t1

(
A − aγ t1

)2 + 1

2t2

(
A − aγ t2

)2 + γκ(ν)(t1 + t2). (9.55)

The above integral is evaluated by a saddle point method, by looking for the minimum
of E(t1) + E(t2) at fixed ν(t1 + t2) = γ pA. We then have for each i = 1, 2,

(t1 + t2)∂ti γκ(ν) = −ν
∂γκ

∂ν
,

and using (9.8),

∂

∂ti

(
(t1 + t2)γκ(ν)

) = γκ(ν)− ν
∂γκ

∂ν
= λ.

This in turn gives for each i = 1, 2,

∂

∂ti

(
E(t1) + E(t2)

) = λ− 1

2

[( A
ti

)2 − a2γ
]
,

so that both saddle points t∗1 and t∗2 for t1 and t2 are located at the same point t∗ as in
(9.27) in the case of the disk topology. We thus have at this double saddle point

{
2νt∗ = γ pA
E(t∗1 ) + E(t∗2 ) = 2E(t∗).

Setting:

�̂(p) := 2E(t∗)
γ A

we deduce

Theorem 9.10. The large deviations function �̂(p) which governs the quantum nesting
probability of CLEκ on Ĉ,

P
Ĉ

Q(N ≈ p ln(1/δ) | δ) � δ�̂(p), δ→ 0,

is related to the large deviations function �(p) for the disk topology (Theorem 9.2) by

�̂(2p) = 2�(p).

Using alternatively the explicit formulation, as in Theorem 9.6, we get
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Corollary 9.11. In the same setting as in Theorem 9.10,

P
Ĉ

Q
(
N ≈ cp

π
ln(1/δ)

∣∣∣ δ
)
� δ

c
π
J (p), δ→ 0,

where J (p) is as in (9.41).

This is in complete agreement with:

• The first result in Theorem 2.2, which describes the large deviations of the number
of separating loops between a marked point and a microscopic boundary in a critical
O(n) model on a random map with a disk topology;
• The first result in Theorem 7.1, which describes the large deviations of the number
of separating loops between two microscopic boundaries in a critical O(n)model on
a random map with a cylinder topology.

These are indeed the sort of topologies considered in Sect. 9.4.1 above.

9.5. Weighted loops.

9.5.1. Weighting CLEκ Our argument can be refined to include a model where loops
receive independent random weights, in parallel to the results in Ref. [120, Section 5].
A motivation to introduce this model, beyond the fact it offers a natural generalisation
of the counting of loops, is that loops weighted with a Bernoulli random variable for
κ = 4 are related to the extremes of the GFF [89].

Conditionally on a configuration � of a CLEκ in a proper simply connected domain
D, let (ξl)l∈� be a collection of independent, identically distributed real randomvariables
indexed by �. We denote by μ the law of each ξl . For z ∈ D and ε > 0, let �z(ε) be the
set of loops which surround B(z, ε), and define

�z(ε) =
∑

l∈�z(ε)

ξl , �̃z(ε) = �z(ε)

ln(1/ε)
.

For a realisation of the CLEκ and of the (ξl)l , and any fixed (ν, α) ∈ R+ × R, let

�μ
ν,α =

{
z ∈ D : lim

ε→0
Ñz(ε) = ν and lim

ε→0
�̃z(ε) = α

}
.

The cumulant generating function associated with the moments of μ is

μ(λ) := lnE
[
eλξ
]
, (9.56)

where ξ is a random variable whose distribution is μ. Its symmetric Legendre–Fenchel
transform, �

μ : R → R+, is defined as

�
μ(x) := sup

λ∈R
(
λx −μ(λ)

)
. (9.57)

The Hausdorff dimension of the set�μ
ν,α is then almost surely constant, with value found

in [120, Theorem 5.1]

dimH�μ
ν,α = max{0, 2− γκ(ν, α)},
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as long as γκ(α, ν) ≤ 2, with �μ
α,ν = ∅ otherwise, and with the definition

γκ(ν, α) :=
⎧
⎨
⎩
ν�

μ(α/ν) + ν
�
κ(1/ν) if ν > 0

limν′→0+ γκ(ν
′, α) if ν = 0 and α �= 0

limν′→0+ γκ(ν
′) = 1− 2

κ
− 3κ

32 if (ν, α) = (0, 0),
(9.58)

where the limits exist by convexity of �
κ and 

�
μ. When ν �= 0, we thus have

γκ(ν, α) = γκ(ν) + γμ(ν, α),

γμ(ν, α) := ν�
μ (α/ν) = λ′α − νμ(λ

′),

where λ′ is a function of (ν, α) determined by:

α

ν
= ∂μ(λ

′)
∂λ′

.

By homogeneity, we find the useful identity

(
ν
∂

∂ν
+ α

∂

∂α

)
γμ(ν, α) = γμ(ν, α). (9.59)

Uniformly for a point z ∈ D, we have the following joint probability scaling [120]

P(Nz ≈ νt and �z ≈ αt | t) � e−γκ (ν,α)t . (9.60)

9.5.2. Weighted CLEκ in Liouville quantum gravity One follows exactly the same pro-
cedure as in Sect. 9.3. We study the nesting around small balls B(z, ε) conditionally to a
given quantum area δ (9.14), hence conditionally on A (9.15), while the counts Nz and
�z are unchanged,

PQ(Nz, �z | A) :=
∫ ∞

0
dt P(Nz, �z | t)P(t | A), (9.61)

where P(t | A) is as in (9.16)–(9.17).
For large A, we letNz ≈ γ pA and�z ≈ γ q A, with (p, q) ∈ R+×R, and also have

Nz ≈ νt, �z ≈ αt , where ν and α are defined by:

γ pA = νt, γ q A = αt, (9.62)

and p, q, A are considered as parameters. As in Sect. 9.3.2, the asymptotic result (9.60)
then yields, for A→ +∞,

PQ(Nz ≈ γ pA and �z ≈ γ q A | A) �
∫ ∞

0

Ae−Ew(t) dt√
2π t3

,

Ew(t) := 1

2t

(
A − aγ t

)2 + γκ(ν, α)t. (9.63)

The above integral is evaluated by the saddle point method, looking for the minimum
of Ew(t) along trajectories at constant values of νt and αt according to (9.62). We then
have

t
∂

∂t
γμ(ν, α) = −

(
ν
∂

∂ν
+ α

∂

∂α

)
γμ(ν, α),
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and using (9.59),

∂

∂t

(
t γμ(ν, α)

) = 0,

so that,

∂

∂t

(
t γκ(ν, α)

) = ∂

∂t

(
t γκ(ν)

) = λ,

as in (9.25). This shows that ∂Ew
∂t is the same as in (9.26),

∂Ew
∂t

= λ− 1

2

[( A
t

)2 − a2γ
]
,

with the same saddle point as in (9.27),

A

t∗
= u = u(λ) :=

√
2λ + a2γ .

The saddle point value resides at the minimum E∗w of Ew(t),

E∗w := Ew(t∗) = A
[ (u − aγ )2

2u
+
γκ(ν, α)

u

]
, (9.64)

where, because of condition (9.62), ν and α are now functions of (p, q) determined by

ν = γ p
A

t∗
= γ p u(λ), α = γ q

A

t∗
= γ q u(λ). (9.65)

It yields

γμ(ν, α)

u
= αλ′ − νμ(λ

′)
u

= γ qλ′ − γ pμ(λ
′), with

α

ν
= q

p
= ∂μ(λ

′)
∂λ′

.

Recalling (9.30) and (9.31), we get the simple form,

�(p, q) := E∗w
γ A

= u(λ)− aγ
γ

+ qλ′ − p
(
κ(λ) +μ(λ

′)
)
.

Comparing to (9.33)–(9.34), we get

Theorem 9.12. The joint distribution of the number of loops Nz surrounding a ball of
given quantum area δ centered at z in a simply connected domain D ⊂ C, and of the sum
of weights �z on these loops in the ensemble of μ-weighted loops in a CLEκ , satisfies
the large deviations estimate,

PQ(Nz ≈ p ln(1/δ) and �z ≈ q ln(1/δ) | δ) � δ�(p,q), δ→ 0,

with

�(p, q) = �(p) + qλ′ − pμ(λ
′),

where�(p) is as in Theorem 9.2, and where the conjugate variable λ′ is the function of
(p, q) uniquely determined by

q

p
= ∂μ(λ

′)
∂λ′

. (9.66)



1188 G. Borot, J. Bouttier, B. Duplantier

We can also switch to parameters (p′, q ′) such that

p = c

2π
p′, q = c

2π
q ′, (9.67)

where c is the exponent defined in (9.39). Then, after writing �(p, q) = c
2π J (p′, q ′),

we get

Corollary 9.13. In the same setting as in Theorem 9.12, we have

PQ
(
Nz ≈ c

2π p ln(1/δ) and �z ≈ c
2π q ln(1/δ)

∣∣∣ δ
)
� δ

c
2π J (p,q), δ→ 0,

with the bivariate large deviations function

J (p, q) = J (p) + qλ′ − pμ(λ
′),

where J (p) is given by (9.41) and where λ′ is uniquely determined as a function of
(p, q) by

q

p
= ∂μ(λ

′)
∂λ′

.

Corollary 9.13 in LQGmatches with the bivariate large deviations of nesting and sum of
loop weights for critical O(n) models on random maps with the topology of a pointed
disk (first result of Theorem 8.1). The case of the bivariate distribution on the Riemann
sphere can be analysed in exactly the same way as in Sect. 9.4, and we skip the details
here.

Theorem 9.14. On the Riemann sphere Ĉ, the joint distribution of the nesting between
two balls of given quantum area δ and the weight carried by the separating loops,
behaves as

P
Ĉ

Q(N ≈ p ln(1/δ) and � ≈ q ln(1/δ) | δ) � δ�̂(p,q), δ→ 0,

where the large deviations function �̂(p, q) is given in terms of the large deviations
function �(p, q) for the quantum disk, as obtained in Theorem 9.12, by

�̂(p, q) = 2�
( p
2 ,

q
2

)
.

Switching to variables (9.67), we get

Corollary 9.15. In the same setting as in Theorem 9.14, we have

P
Ĉ

Q
(
N ≈ cp

π
ln(1/δ) and � ≈ cq

π
ln(1/δ)

∣∣∣ δ
)
� δ

c
π
J (p,q), δ→ 0,

where J (p, q) is the function as defined in Corollary 9.13.

This last result is the exact analog, in Liouville quantum gravity, of the first large devia-
tions result of Theorem 8.1 in the critical O(n)model on random disks withμ-weighted
loops, for the topology of a pointed disk with a microscopic boundary.
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Appendix A: Theta Function

For properties of elliptic functions, we refer to [76]. Let τ be a complex number in the
upper-half plane. The Jacobi theta function is the entire function of v ∈ C defined by:

ϑ1(v|τ) = −
∑
m∈Z

eiπτ(m+ 1
2 )

2+iπ(v+ 1
2 )(2m+1). (A.1)

Its main properties are:

ϑ1(−v|τ) = ϑ1(v + 1|τ) = −ϑ1(v|τ), ϑ1(v + τ |τ) = −e−2iπ(v+ τ
2 ) ϑ1(v|τ),

and the effect of the modular transformation:

ϑ1(v|τ) = i
e− iπv2

τ√−iτ ϑ1
(
v
τ

∣∣ − 1
τ

)
. (A.2)

We will also meet two other Jacobi theta functions

ϑ2(v|τ) =
∑
m∈Z

eiπτ(m+ 1
2 )

2+iπv(2m+1),

ϑ3(v|τ) =
∑
m∈Z

eiπτm
2
e2iπvm . (A.3)

Appendix B: Analytic Properties of the Parametrisation x ↔ v

In this section, we consider α, h fixed and γ−, γ+ as varying complex parameters. The
purpose of this section is to introduce a real-analytic change of variable (Lemma B.3)
which will turn handy in the study the critical limit; and, to show that it can be promoted
to an analytic change of variables for complex parameters. Aswe are primarily interested
in the neighboorhood of γ+ = γ ∗+ , we do not attempt to describe the largest possible
domain of analyticity. The information gained will also serve in Appendix J.
We define

m := (ς(γ−)− γ−)(ς(γ+)− γ+)

(ς(γ−)− γ+)(ς(γ+)− γ−)
(B.1)

and introduce the domains

A := {(γ−, γ+) ∈ C
2
∣∣ |m| < 1

}

AR := {(γ−, γ+) ∈ R
2 | |γ−| < γ+ < ς(γ+) < ς(γ−)

} (B.2)

We clearly haveAR ⊂ A.We shall denote B(z; r) ⊂ C the open ball of radius r centered
at z.

http://creativecommons.org/licenses/by/4.0/
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B.1. Formulas in AR. We first assume that (γ−, γ+) ∈ AR, and set

v = iC
∫ x

ς(γ+)

dy√
(y − ς(γ−))(y − ς(γ+))(y − γ+)(y − γ−)

. (B.3)

The normalising constant is chosen such that, for x moving from the origin ς(γ+) to
ς(γ−) with a small negative imaginary part, v is moving from 0 to 1

2 . When x moves
on the real axis from ς(γ+) to γ+, v moves from 0 to a purely imaginary value denoted
τ = iT . Then, the function v �→ x(v) has the properties:

x(v + 2τ) = x(v + 1) = x(−v) = x(v), ς(x(v)) = x(v − τ),

and is depicted in Fig. 8. x ′(v) has zeroes when v ∈ 1
2Z + τZ, and double poles at

v = v∞ +Z + 2τZ. From (B.3), paying attention to the determination of the square root
at infinity obtained by analytic continuation, we can read in particular:

x ′(v) ∼ iC

(v − v∞)2
, v→ v∞. (B.4)

There is an alternative expression for (B.3) in terms of Jacobi functions:

v =
2iC arcsn

[√
ς(γ−)−γ+
ς(γ+)−γ+

x−ς(γ+)
x−ς(γ−) ; m

]
√
(ς(γ+)− γ−)(ς(γ−)− γ+)

, (B.5)

This formula can be easily checked by differentiating both sides with respect to x and
using

∂vsn[v;m] =
√
(1− sn2[v;m])(1−m sn2[v;m]).

Note thatm is for us the square of the elliptic modulus usually denoted k. For (γ−, γ+) ∈
AR, we have m ∈ (0, 1).
Recall the expression of the complete elliptic integral

K (m) =
∫ 1

0

dt√
(1− t2)(1−mt2)

= arcsn[1;m].

Matching x = γ+ with v = iT we obtain

T = 2CK (m)√
(ς(γ+)− γ−)(ς(γ−)− γ+)

. (B.6)

Matching x = ς(γ−) with v = 1
2 we obtain

C =
√
(ς(γ+)− γ−)(ς(γ−)− γ+)

4K (1−m)
. (B.7)

Together this implies

T = K (m)
2K (1−m)

. (B.8)

Later, we will need the following expansion.
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Lemma B.1. When v→ v∞, we have the expansion:

x(v) = −iC
v − v∞

+
E1

4
+

i

C

3E2
1 − 8E2

48
(v − v∞) + O(v − v∞)2 (B.9)

where we introduced the symmetric polynomials in the endpoints:

E1 = γ− + γ+ + ς(γ+) + ς(γ−),
E2 = γ−

(
γ+ + ς(γ+) + ς(γ−)

)
+ γ+

(
ς(γ+) + ς(γ−)

)
+ ς(γ+)ς(γ−),

(B.10)

Moregenerally, the coefficient of (v−v∞)k in this expansion is a homogeneous symmetric
polynomial of degree (k + 1) in the endpoints, with rational coefficients up to an overall
factor (iC)−k .

Proof. This can be easily derived from the integral representation (B.3). ��

B.2. Changes of parameters. It is often convenient to trade (γ−, γ+) for another set of
parameters. The first change of variables we will consider is χ : (γ−, γ+) �→ (m,p)
with

p = ς(γ−)− γ−
ς(γ+)− γ−

, (B.11)

and we assume here α �= 1. The case α = 1 will be treated in Sect. 9.5.2. χ is then
an analytic map in the domain A which has degree 2. It admits an inverse map χ−1 :
(m,p) �→ (γ−, γ+) given by the formula

γ− = α

(α2 − 1)h
−

√
1−m

(α2 − 1)(p− 1)h
,

γ+ = α

(α2 − 1)h
− p

√
1−m

(α2 − 1)(p−m)h
. (B.12)

This map χ−1 is analytic in the domain

A1 :=
{
(m,p) ∈ C

2 | |m| < 1 and p �= m
}
,

and in (B.12) we use the square root with its standard determination and branchcut on
the negative real axis. We have chosen the sign in front of the square root so that the
m = 0 specialisation of χ−1 gives (γ ∗−, γ ∗+ ) where

γ ∗+ =
1

h(α + 1)
(B.13)

is the fixed point of the involution ς . Note that γ ∗− is still a function of p—see later
(B.17) and (B.18).
When (γ−, γ+) ∈ AR, we know that m ∈ (0, 1) and p > 0. We can rewrite (B.5) using
(B.7) as

v =
i arcsn

[√ p
m

x−ς(γ+)
x−ς(γ−) ; m

]

2K (1−m)
. (B.14)
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Specialising to x = ∞, we obtain

v∞ =
i arcsn

[√ p
m ; m

]

2K (1−m)
. (B.15)

Decomposing v∞ = 1
2 + iTw∞ with (B.8), we can rewrite using the transformation law

of the Jacobi elliptic functions

√
p = √m sn

[− iK (1−m) + K (m)w∞ ; m
] = 1

sn
[
K (m)w∞ ; m] . (B.16)

With χ−1, we can see w∞ as a function of (m,p) and we denote w∗∞ the specialisation
of this function tom = 0. As K (m = 0) = π

2 and the Jacobi sn function degenerates to
the sine function, we deduce

p = 1

sin2
(πw∗∞

2

) . (B.17)

Using (B.11) and trigonometric identities, we find equivalently

cos(πw∗∞) =
1− α

1 + α

1− h(1 + α)γ ∗−
1 + h(1− α)γ ∗−

, (B.18)

where we recall that γ ∗− is the function of p coming from the specialisation of χ−1 at
m = 0. Equation (B.18) uniquely determines w∗∞ ∈ (0, 1). We can also see w∗∞ as a
function of (γ−, γ+) ∈ AR by first applying the map χ : (γ−, γ+) �→ (m,p).

Remark B.1. The condition |γ−| < γ+ < ς(γ+) in AR also implies that |γ−| < 1
h(α+1) .

Hence, (B.18) implies

cos(πw∗∞)
1− α2

> 0

when (γ−γ+) ∈ AR. That is, w∗∞ ∈ ( 12 , 1) (equivalently p < 2) for α > 1, and
w∗∞ ∈ (0, 12 ) (equivalently p > 2) for α < 1.

An important role in our analysis will be played by the elliptic nome

q
1
2 = e−

iπ
2τ = e−

π
2T = e−

πK (1−m)
K (m) . (B.19)

Lemma B.3. Let α �= 1. There exists domains U ,V ⊂ C
2 (specified in the proof) so that

the map (γ−, γ+) �→ (q
1
2 , w∗∞) is analytic in U , has image V and admits an analytic

inverse on the domain V . Besides, we have when q → 0

2h(γ ∗+ − γ+) = 16 cos(πw∗∞)
1− α2

q
1
2 − 64 cos(2πw∗∞)

(1− α2)
q + O(q

3
2 ),

2h(γ ∗− − γ−) = 16 tan
(πw∗∞

2

)

1− α2
(q

1
2 − 4q) + O(q

3
2 ), (B.20)
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Proof. Theelliptic nomeq
1
2 = e−

πK (1−m)
K (m) is an analytic functionofm ∈ B(0; 1)\(−1, 0].

For later use, we record that

q
1
2 ∼ m

16
. (B.21)

Since the analytic continuation of the elliptic integral has the property that for m ∈
(−1, 0), Im(K (1−m± i0)) = ∓K (m), there is in fact no discontinuity across (−1, 0).
Together with (B.21), this implies that q

1
2 is an analytic function of m ∈ B(0; 1), and

its image Q is a neighborhood of 0. In fact, it is not hard to show that Q ⊆ B(0; 1). A
converse identity is known

m = ϑ4
2

(
0
∣∣ − 1

2τ

)

ϑ4
3

(
0
∣∣ − 1

2τ

) = 16q
1
2

⎛
⎝1 +

∑
l>0 q

l(l+1)
2

1 + 2
∑

l>0 q
l2
2

⎞
⎠

4

, (B.22)

involving the Jacobi theta functions defined in (A.3), showing that m �→ q
1
2 admits an

analytic inverse map q
1
2 �→ m defined at least on the domain q

1
2 ∈ Q. From Eq. (B.17),

we see that cos(πw∗∞) = 1 − 2
p . As arccos is analytic in the open vertical strip of

width 2 centered on the imaginary axis, w∗∞ is an analytic function of p in the domain
Re( 1p ) ∈ (0, 1). So, if we define
T = {(m,p) ∈ B(0; 1)× C

∣∣ |m| < 1 and p �= m and Re( 1p ) ∈ (0, 1)
}
, (B.23)

the composed map

(γ−, γ+)
χ�−→(m,p) �−→ (q

1
2 , w∗∞) (B.24)

is analytic in the domain U = A ∩ χ−1(T ). Then, the composed map

(q
1
2 , w∗∞) �−→ (m,p)

χ−1�−→(γ−, γ+) (B.25)

using (B.12) is an analytic function in the domain

V := B(0; 1)×
{
w∗∞ ∈ C

∣∣∣ Rew∗∞ ∈ (0, 2) and
∣∣ sin (πw∗∞2

)∣∣ < 1
}
, (B.26)

where we imposed the last inequality to guarantee that m �= p in this domain. This

function is by construction an inverse to (γ−, γ+) �→ (q
1
2 , w∗∞).

Formula (B.20) comes from the expansion of (B.12) whenm→ 0, using (B.17), (B.21)
and trigonometric identities.

Remark B.3. From (B.22) we see that that the preimage of q ∈ (−1, 0] ∩Q via the map
m �→ q ism ∈ (−1, 0].

B.3. Allowing complex parameters in x(v). For (γ−, γ+) ∈ AR we recall thatm ∈ (0, 1)
and p > 0, and we can use the reciprocal of (B.14) to parametrise the complex x plane:

x(v) = ς(γ+)− ς(γ−) m
p sn2[2iK (1−m)v ; m]

1− m
p sn2[2iK (1−m)v ; m] . (B.27)

As sn[·;m] is an analytic family of meromorphic functions indexed bym ∈ B(0; 1), we
may continue (B.27) analytically to complex values of γ−, γ+. In view of LemmaB.3, we
can considering x(v) as an analytic family of meromorphic function of v, parametrised

by (q
1
2 , w∗∞) ∈ V .
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B.4. Properties of x(v) when q → 0. Let us insert (B.12) of γ± in terms of (m,p) in
the formula (B.7) for C to get

C2 =
(

p2 − 2p +m
4h(1− α2)K (1−m)

)2 1

p(p− 1)(1−m)(p−m)
.

In view of Lemma B.3, the right-hand side is an analytic function of (q
1
2 , w∗∞) ∈ V . We

notice indeed that by definition of the domains, (γ−, γ+) only take finite values, so C2

has no singularities in V . We now want to identify the sign of the square root to get C
itself. Up to restricting V to a domain

V ′(η) := {(q 1
2 , w∗∞) ∈ V

∣∣ Re( 1p ) ∈ (η, 1)
}

where η ∈ (0, 1) is fixed, and as we have |p| > 1 due to the last condition in (B.26), we
get

Re(p−m) ≥ Re( 1p )− η′ > 0.

for some η′ > 0 depending on η. When (γ−, γ+) ∈ AR, we know that C > 0 and taking
into account Remark B.1 it follows that p > 2 and therefore

C = p(p− 2) +m
4h(1− α2)K (1−m)

1√
p(p− 1)(1−m)(p−m)

(B.28)

is the analytic continuation of C to (q
1
2 , w∗∞) ∈ V ′(η).

Lemma B.5. Let η ∈ (0, 1). In view of Lemma B.3, w∞, πCT and E1, E2 can be consid-

ered as an analytic function of (q
1
2 , w∗∞) ∈ V ′(η), and when q → 0

w∞ = w∗∞ −
4 sin(πw∗∞)

π
q

1
2 +

6 sin(2πw∗∞)
π

q + O(q
3
2 ),

πC

T
= 2 cot(πw∗∞)

h(1− α2)
+
8 sin(πw∗∞)
h(1− α2)

q
1
2 +

8 cos(πw∗∞)
(
2 cos2(πw∗∞) + 1

)

h(1− α2) sin2(πw∗∞)
q + O(q

3
2 ),

E1 = 4
(
1− α sin2(πw∗∞)

)

h(1− α2) sin2(πw∗∞)
+

32 cos(πw∗∞)
h(1− α2) sin2(πw∗∞)

q
1
2

+
64
(− cos4(πw∗∞) + 2 cos2(πw∗∞) + 1

)

h(1− α2) sin2(πw∗∞)
q + O(q

3
2 ),

E2 = 2
(
3(1− α)2 + (1− 3α2) cos2(πw∗∞)

)

h2(1− α2)2 sin2(πw∗∞)
+

32(2− 3α) cos(πw∗∞)
h2(1− α2)2 sin2(πw∗∞)

+
64
(
(3α + 2) cos4(πw∗∞) + (2− 3α)(2 cos2(πw∗∞) + 1)

)

h2(1− α2)2 sin2(πw∗∞)
q + O(q

3
2 ),

(B.29)

Proof. Combining (B.16) and (B.17) we have

w∗∞ =
2

π
arcsin

(
sn
[
K (m)w∞ ; m

])
. (B.30)
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Using the three first terms of the Fourier expansion

sn[K (m)w ; m] = 2π√
m K (m)

∑
�≥0

q
�
2 +

1
4

1− q�+
1
2

sin
[
(� + 1

2 )πw
]

(B.31)

and solving for w∞ in terms of (q
1
2 , w∗∞) in the limit q → 0, we find the desired

expansion.
By combining (B.28) and (B.8), we have

πC

T
= π

2K (m)
p(p− 2) +m
h(1− α2)

1√
p(p− 1)(1−m)(p−m)

.

Using

K (m) = π

2

(
1 +

m
4

+
9m2

64
+ O(m3)

)
(B.32)

and (B.22), we obtain the desired expansion of πC
T . The expansion at q → 0 of the Ei

comes from (B.20), the expression of ς and elementary identities between trigonometric
functions.

We shall need the asymptotic behavior of x(v) near the vertical lines Im v = 0 and
Im v = 1

2 .

Lemma B.6. Let v = ε + τw for ε ∈ {0, 12 }, and η ∈ (0, 1). We have when q → 0 and
w∗∞ such that B(0; 1)× {w∗∞} ⊂ V ′(η)

x(v)− γ+ = q
1
2−ε (x∗ε (w) + O(q

1
2 )
)
. (B.33)

The limit functions are:

x∗0 (w) =
16 cos(πw∗∞)
h(1− α2)

cos2
(πw

2

)
,

x∗1
2
(w) = 2 cos(πw∗∞)

h(1− α2)

1

cos(πw)− cos(πw∗∞)
,

where cos(πw∗∞) was given in (B.18) and γ ∗+ in (B.13). For ε = 0, the error in (B.33)
is uniform for w in any compact. For ε = 1

2 , the error is uniform for w in any compact
of C\(w∗∞ +Z). In both cases, the error is stable under differentiation with respect to v.

Proof. Our starting point is the formula (B.27) for x(v). For x = τw = iTw, we need
to study

sn[2iK (1−m) · iTw; m] = −sn[K (m)w; m].
For this we can use the Fourier expansion (B.31)

sn[K (m)w ; m] = 4q
1
4 sin

(
πw
2

)(
1− 4q

1
2 + O(q)

)
, (B.34)

where the error term is uniform when w belongs to any fixed compact and we have
used (B.32) to obtain the second line. Together with the expansion of (γ−, γ+) from
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Lemma B.3 and the formula p = sin−2(πw
∗∞

2 ), we deduce from (B.27) after some
elementary algebra

x(τw) = 16 cos(πw∗∞)
h(1− α2)

cos2
(πw∗∞

2

)
q

1
2 + O(q).

For x = 1
2 + τw = 1

2 + iTw, we rather need

sn
[
2iK (1−m) · ( 12 + iTw

); m] = − 1√
m sn[K (m)w; m] ,

which comes from the identity already used in (B.16). Inserting this in (B.27) and using
again (B.34), we obtain

x
( 1
2 + τw

) = 2 cos(πw∗∞)
h(1− α2)

1

cos(πw)− cos(πw∗∞)
+ O(q

1
2 ).

��

B.5. The case α = 1. There are some simplifications in absence of bending energy, i.e.,
α = 1.We then have ς(x) = h−1− x and the parameters (p,m) defined in (B.1)–(B.11)
are not anymore independent as p(2 − p) = m. This phenomenon also shows up as a
singularity in the inverse change of variables (B.12), or equivalently, in the fact that since
ς(∞) = ∞ we must have w∞ = 1

2 independently of (γ−, γ+), hence w∗∞ = 1
2 . We are

therefore going to define a different change of variables χ1 : (γ−, γ+) �→ (m, ρ) with
m still defined by (B.1) and

ρ = 1− 2hγ−.

Lemma B.7. The map (γ−, γ+) �→ (q
1
2 , ρ) is analytic in the domain

U1 = A ∩ χ−11 (B(0; 1)× C)

On its image V1 ⊂ B(0; 1)×C, it admits an analytic inverse map (q
1
2 , ρ) �→ (γ−, γ+).

Besides, we have when q → 0

2h(γ ∗+ − γ+) = 4ρq
1
2 + O(q

3
2 ).

where the error is uniform when ρ is bounded.

Proof. The map χ1 admits an inverse χ−11 given by

γ− = 1− ρ

2h
, γ+ = ρ + 1

2h
− ρ

hm

(
1−√1−m

)
. (B.35)

The map χ1 is analytic in the domainA, while the inverse χ−11 is extends to an analytic
function on (m, ρ) ∈ B(0; 1) × C. We get the conclusion by further using the change

of variable m �→ q
1
2 already discussed in the proof of Lemma B.3. ��
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We then observe that p defined by (B.11) is equal to

p = m

1−√1−m
. (B.36)

The discussion of Appendix B.3 can be specialised using this expression: it shows
that x(v) becomes an analytic family of meromorphic functions of v, parametrised by

(q
1
2 , ρ) ∈ V1. We have the following analog of Lemma B.5.

Lemma B.8. In view of Lemma B.7, πCT and E1, E2 can be seen as analytic functions

of (q
1
2 , ρ) ∈ V1. The function E1 is constant

E1 = 2

h
,

We also have the expansion when q → 0

πC

T
= ρ

2h
− 2ρ

h
q + O(q2),

E2 = 6− ρ2

4h2
− 4ρ2

h2
q + O(q2),

(B.37)

Proof. Inserting (B.35) in (B.6) we find

πC

T
= πρ(1−√1−m)

2hmK (m)
.

Using (B.32) and (B.22) then implies the desired expansion when q → 0. Note that

E1 = γ− + γ+ +

(
1

h
− γ−

)
+

(
1

h
− γ+

)
= 2

h
.

The q → 0 expansions of E2 and E3 are obtained by inserting again (B.35)–(B.22) into
the definitions (B.10). ��
The analog of Lemma B.6 for the expansion of x(v) itself is

Lemma B.9. Let v = ε + τw for ε ∈ {0, 12 }. We have for (q
1
2 , ρ) ∈ V1, when q → 0

and uniformly for ρ bounded

x(v) = q
1
2−ε(x∗ε (w) + O(q

1
2 )
)
, (B.38)

where the limit functions are

x∗0 (w) =
4ρ

h
cos

(
πw

2

)
,

x∗1
2
(w) = ρ

2h cos(πw)
.

(B.39)

If ε = 0, the error in (B.38) is uniform for w in any compact. If ε = 1
2 , the error is

uniform for w in any compact of C\( 12 + Z). In both cases, the error is stable under
differentiation with respect to v.
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Proof. The starting point is the expression (B.27) for x(v) with p replaced by (B.36)
and using the change of variables (B.35). The proof then becomes similar to that of
Lemma B.6 and is omitted.

Some of these results can be retrieved from those with α �= 1 by taking the limit α→ 1
and w∗∞ in such a way that (

1

2
− w∗∞

)
∼ 1− α

2π
ρ. (B.40)

This asymptotic relation is compatiblewith identifyingρ with 1−2hγ ∗− and using (B.18).

However, as the change of variable (γ−, γ+) �→ (q
1
2 , w∗∞) was singular at α → 1, this

rule of thumb should not be used blindly. It gives correctly the constants in the above
Lemmata that have a finite limit under this limiting procedure. But, for instance, it is
meaningless for the second line of (B.20), due to the particular way we defined γ ∗− for
α �= 1.

Appendix C: Coefficients ( g̃k)k≥0

The coefficients g̃k have been defined in (5.16) and a priori depend on the parameters
of the model: g (resp. h) the weight per face not visited (resp. visited) by a loop, α
the bending energy, n the weight per loop, and the weight u per vertex (when not set
equal to 1). We again recall that the latter determine γ−, γ+ in a way analysed later in

Appendix E. For the moment, considering γ−, γ+—or equivalently (q
1
2 , w∗∞) if α �= 1

and (q
1
2 , ρ) if α = 1—as variables, we can compute the g̃k using Lemma B.1. Namely,

if we introduce

g̃k = (iC)k ĝk,

we find

ĝ3 = 2g

4− n2
, ĝ2 = 2− gE1

4− n2
, ĝ1 = g(3E2

1 − 4E2)− 6E1

12(4− n2)
, ĝ0 = − 2u

2 + n
.

(C.1)
We remark that ĝ3 and ĝ0 are constants (depending on the parameters of the model) with
respect to the variables (γ−, γ+). We can deduce the analyticity properties and q → 0
expansion of ĝ1, ĝ2 thanks to Lemma B.5 or B.8.

Corollary C.1. Assume α �= 1. For i = 0, 1, 2, 3, (q
1
2 , w∗∞) �→ ĝi is an analytic

function in the domain V ′(η) for η small enough. We have the following expansions
when q → 0:

ĝ2 = 2

4− n2

[
1 +

2g

h(1− α2)

(
α − 1

sin2(πw∗∞)

)]
− 32g

h(1− α2)(4− n2)

cos(πw∗∞)

sin2(πw∗∞)
q
1
2 + O(q),

ĝ1 = 2

h(4− n2)(1− α2)

[
g

h(1− α2)

(
(1 + 3α2)− 2(2 + 3α)

sin2(πw∗∞)
+

6

sin4(πw∗∞)

)
+ α − 1

sin2(πw∗∞)

]

+
16 cos(πw∗∞)

h(4− n2)(1− α2) sin2(πw∗∞)

(
2g

3h

(2 + 3α) cos2(πw∗∞) + 4− 3α

(1− α2) sin2(πw∗∞)
− 1

)
q
1
2 + O(q).

�
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We denote ĝ∗i the value of this function ĝi at q = 0.
There are some simplifications for α = 1. Owing to the exact relation E1 = 2

h , only ĝ1
has a non trivial dependence in q.

Corollary C.2. Assume α = 1. For i = 0, 1, 2, 3, (q
1
2 , ρ) �→ ĝi is an analytic function

in the domain V1(η) for η small enough, We have

ĝ2 = 2

4− n2

(
1− g

h

)
,

and when q → 0

ĝ1 = 1

h(4− n2)

(
− 1 +

g

12h
(ρ2 + 6)

)
+

4gρ2

3h2(4− n2)
q + O(q2).

�

Appendix D: The Special Function ϒb(v)

ϒb(v) is the unique meromorphic function with a simple pole at v = 0 with residue 1,
and the pseudo-periodicity properties:

ϒb(v + 1) = ϒb(v), ϒb(v + τ) = eiπbϒb(v).

We have several expressions:

ϒb(v) =
∑
m∈Z

e−iπbm π cot
[
π(v + mτ)

]

= ϑ ′1(0|τ)
ϑ1
(− b

2

∣∣τ)
ϑ1
(
v − b

2

∣∣τ)

ϑ1(v|τ)

= e
iπbv
τ

iT

ϑ ′1
(
0
∣∣− 1

τ

)

ϑ1
(− b

2τ

∣∣− 1
τ

) ϑ1
( v−b/2

τ

∣∣− 1
τ

)

ϑ1
(
v
τ
| − 1

τ

) .

(D.1)

Curiously, this function also appears in the dynamical R-matrix of the elliptic Calogero
system [7].

Remark D.1. Due to the presence of − 1
τ
in the argument of ϑ1, ϒb(v) is a family of

meromorphic functions of v ∈ C, only in the domain q
1
2 = e− iπ

2τ ∈ B(0; 1)\(−1, 0].
The values above and below the real negative axis in q are different. The poles of ϒb
are located at Z⊕ τZ.

The last expression in (D.1) is convenient to study the regime q
1
2 → 0 in B(0; 1)\

(−1, 0].
Lemma D.2. Let v = ε + τw with ε ∈ {0, 12 }. We have, for b ∈ (0, 1):

ϒb(v) = 2πqεb

T (1− qb)
·

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ϒ∗b,0(w)− qbϒ∗b+2,0(w) + O(q2−b) if ε = 0

ϒ∗
b, 12

(w)− (q1−b − q)ϒ∗
b−2, 12

(w)

+qϒ∗
b+2, 12

(w) + O(q1+b) if ε = 1
2

.
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The errors are uniform forw in any compact independent of τ → 0, and the expressions
for the limit functions are:

ϒ∗b,0(w) =
eiπ(b−1)w

2i sin(πw)
,

ϒ∗
b, 12

(w) = −eiπbw.
(D.2)

Proof. This is obtained by isolating carefully the terms dominating the q-series defining
the theta functions that appear in the last line of (D.1).

Appendix E: The Phase Diagram and Volume Exponent

The parameters of the model α, g, h, n, u determine γ−, γ+ through the equations

G(ε + τ) = 0 for ε ∈ {0, 12
}
.

With the previous notations v∞ = 1
2 + τw∞ and g̃k = (iC)k ĝk and according to

Theorem 5.3, these equations take the form:

∑
k≥0

ĝk
k!
(
πC

T

)k

∂kπw∞

[
ϒb(ε + τ(w∞ + 1)) + ϒb(ε + τ(1− w∞))

−ϒb(ε + τ(w∞ − 1))− ϒb(ε − τ(1 + w∞))
]
= 0.

(E.1)

where ε = 1
2 − ε.

Lemma E.1. Assume n ∈ (0, 2), that is b ∈ (0, 12 ). In light of Lemma B.3 for α �= 1,

for η small enough the Eq. (E.1) for ε = 0 determines a function (q
1
2 , w∗∞) �→ u (resp.

(q
1
2 , ρ) �→ u) which is analytic in the domain

V ′′(η) = (B(0; 1)\R<0
)× {w∗∞ ∈ C

∣∣ Rew∗∞ ∈ (η, 1) and
∣∣ sin (πw∗∞2

)∣∣ < 1
}
,

If α = 1 and in view of Lemma B.7, it determines likewise an analytic function

(q
1
2 , w∗∞) �→ u in the domain

V ′′1 := V1\
(
R≤0 × C

)
.

Proof. We first discuss α �= 1. From Lemmata B.3 and B.5, w∞, (ĝk)3k=1 and πC
T

are analytic functions of (q
1
2 , w∗∞) ∈ V ′(η) for η small enough. Taking into account

Remark D.1 and the fact that the argument ofϒb always avoids the poles of v �→ ϒb(v),
we deduce that the left-hand side of (E.1) with ε = 1

2 − ε = 1
2 is an analytic function

of (q
1
2 , w∗∞) ∈ V ′(η)\(R≤0 × C). u only occurs in Eq. (E.1) through ĝ0 = − 2u

2+n (cf.

Equation (C.1)). So, using Lemma D.2 and after dividing the equation by 2πq
b
2

T (1−qb) , the
prefactor of u in the left-hand side becomes in the q → 0 limit

−2
2 + n

(
ϒb
( 1
2 + τ(w∞ + 1)

)
+ϒb

( 1
2 + τ(w∞ − 1)

)−ϒb
( 1
2 + τ(w∞ − 1)

)−ϒb
( 1
2 − τ(1 + w∞)

))

= − 8i sin(πb)

2 + n
cos(πbw∗∞) + o(1).

(E.2)
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As we assumed b ∈ (0, 12 ) and in the definition of the domain, restricting to the range of

w∗∞ to Rew∗∞ ∈ (η, 1), i.e. restricting (q
1
2 , w∗∞) further to the domain V ′′(η) shows that

the leading term in Eq. (E.2) does not vanish in a neighborhood of q = 0 in this domain.

Therefore, Eq. (E.1) allows expressing u as an analytic function of (q
1
2 , w∗∞) ∈ V ′′(η).

��
Forα = 1, the argument is similar but it is not necessary to restrict further the range of the
extra variable ρ because (E.2) becomes − 8i sin(πb) cos(πb/2)

2+n �= 0 under the assumption
b ∈ (0, 12 ), so we can use the domain V ′′1 .

In the non generic critical regime, we have γ+ → γ ∗+ = 1
h(α+1) , thus q → 0 in terms of

the parametrisation of Lemma B.3 or Lemma B.7. Inserting the asymptotic expansions
from Corollary D.2 yields:

3∑
k=0

ĝk
k!
(
πC

T

)k [
Y (k)
b,0 (πw∞)− q1−bY (k)

b−2,0(πw∞)

+ q
(
Y (k)
b−2,0(πw∞) + Y (k)

b+2,0(πw∞)
)
+ O(q1+b)

]
= 0,

3∑
k=0

ĝk
k!
(
πC

T

)k[
Y (k)
b, 12

(πw∞)− qbY (k)
b+2, 12

(πw∞) + O(q2−b)
]
= 0.

(E.3)

with coefficients:

Yb,0(w) = cos(bw), Yb, 12
(w) = sin[(1− b)w]

sinw
.

E.1. The non generic critical line. At a non generic critical point, we must have u = 1
and q = 0, thus:

− 2

2 + n
+

3∑
k=1

ĝ∗k
k!
(
2 cot(πw∗∞)
(1− α2)h

)k Y (k)
b,ε (πw

∗∞)
Yb,ε(πw∗∞)

= 0 ε ∈ {0, 12 }.

where we have used the expression for πCT at q = 0 given in Lemma C.1 and we should
insert the expression for ĝ∗k given in Lemma C.2. We note that the critical values ĝ∗k
obtained in Sect. 9.5.2 are such that (E.3) give a linear system of equations for ( gh , h

2),
parametrised by w∗∞ for α �= 1, and by ρ if α = 1. These equations, as well as their
explicit solution for α = 1, already appeared in [18, Sections 4.1 and 4.2].
For α = 1, the solution is

g

h
= 4(ρb

√
2 + n −√2− n)

−ρ2(1− b2)
√
2− n + 4ρb

√
2 + n − 2

√
2− n

,

h2 = ρ2b

24
√
4− n2

ρ2 b(1− b2)
√
2 + n − 4(1− b2)ρ

√
2− n + 6b

√
2 + n

−ρ2(1− b2)
√
2− n + 4ρb

√
2 + n − 2

√
2− n

,

(E.4)
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as claimed in Theorem 6.1 and in agreement with [18, Equation 4.15]. Since g
h and h2

must be non negative, we must have ρ ∈ [ρ′min, ρmax], with:

ρ′min =
2
√
1− b2

√
2− n −√2

√
(10 + n)b2 − 4 + 2n

b
√
1− b2

√
2− n

,

ρmax = 1

b

√
2− n

2 + n
.

(E.5)

However, we will see later that the non generic critical line only exists until some value
ρmin > ρ′min, so (E.5) will become irrelevant.
In the general case α �= 1, the expression is more complicated.

g

h
= 6(1− α2) sin2(πw∗∞)

∑1
k=0 bk P̃k(πw∗∞)∑2
k=0 bk Pk(πw∗∞)

,

h2 = 2b cos2(πw∗∞)
(1− α2)2(2− n) sin4(πw∗∞)

∑3
k=0 bk Q̃k(πw

∗∞)∑2
k=0 bk Pk(πw∗∞)

,

(E.6)

with:

P̃1(w) = sin(2w)
(
3− 2 sin2(bw)− α sin2(w)

)
,

P̃0(w) = sin(2bw)
(− 3 + (2 + α) sin2(w)

)
,

P3(w) = − sin(2bw),

P2(w) = −3 sin(2w)2 sin(2bw),
P1(w) = 2 sin(2w)

(
(3α2 + 1) cos4(w) +

(
12(α + 1) cos2(bw)− 6α2 + 6α + 2

)
cos2(w)

+ 12(1− α) cos2(bw) + 3(1− α)2
)
,

P0(w) = 6 sin(2bw)
(− (α + 1)(α + 3) sin4(w) + 6(α + 2) sin2(w)− 10

)
,

and

Q̃4(w) = sin2(w) sin3(2w),

Q̃3(w) = − sin2(w) sin(2w) sin(2bw),

Q̃2(w) = 2 sin2(w) sin(2w)
(
(3α2 − 1) cos4(w)− 2

(
(α + 2) cos2(bw) + 3α2 − 5α + 3

)

cos2(w),+4(1− α) cos2(bw)− 3α2 + 10α − 7
)
,

Q̃1(w) = 2 sin2(w) sin(2bw)
(
(3α2 + 12α + 7) cos4(w)

+ 2(−3α2 − 3α + 7) cos2(w) + 3(1− α)2
)
,

Q̃0(w) = 2 sin(2w)
(
(1− 4α − 3α2) cos4(w) + 2(3α2 − 2α − 1) cos2(w)

− 3α2 + 8α − 5
)
,

Q3(w) = − sin2(2w),

Q2(w) = 3 sin2(2w) sin(2bw),
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Q1(w) = 2 sin(2w)
(
(3α2 + 1) cos4(w) + 2

(
6(α + 1) cos2(bw)− 3α2 + 3α + 1

)
cos2(w),

+ 12(1− α) cos2(bw) + 3(1− α)2
)
,

Q0(w) = −3 sin(2bw)
(
(α + 1)(α + 3) cos4(w) + 2(−α2 − α + 3) cos2(w) + (1− α)2

)
.

Wehave checked that, in the limitα→ 1 such that ( 12−w∗∞) ∼ 1−α
2 ρ, these expressions

retrieve (E.4). This completes the proof of Theorem 6.1.

E.2. Near criticality. Let us fix (g, h) on the non generic critical line for u = 1. We
now study the behavior when u �= 1 but u → 1 of the endpoints γ±. In view of the
change of variables in Lemma B.3 for α �= 1 (Lemma B.7 for α = 1), it amounts to
determining the dependence of u in the variable q while the second parameterw∗∞ (resp.
ρ) is specified by the position of (g, h) on the non generic critical line via Eq. E.6 (resp.
Equation E.4).

For this purpose, we look at (E.3), and note that u only appears in ĝ0. There could

be a term of order q
1
2 stemming from near-criticality corrections to w∞, ĝk and πC

T , but
the computation reveals that it is absent. Therefore, we obtain:

1− u = n + 2

2

( 3∑
k=0

ĝ∗k
k!
(2 cot(πw∗∞)
(1− α2)h

)k Y (k)
b−2,0(πw∗∞)
Yb,0(πw∗∞)

)
q1−b + O(q), (E.7)

where ĝ∗0 = − 2
2+n and (ĝ∗k )k≥1 should be replaced by their values in terms of (g, h, w∗∞)

from Corollary C.1 or Corollary C.2.

E.2.1. Case α = 1 Here, we rather use the parametrisation (E.4), and the resulting
formula is relatively simple:

1− u = � q1−b + O(q), (E.8)

with:

� = 12

b

ρ2(1− b)2
√
2 + n + 2ρ(1− b)

√
2− n − 2

√
2 + n

−ρ2b(1− b2)
√
2 + n + 4ρ(1− b2)

√
2− n − 6b

√
2 + n

.

When we restrict to real values of γ−, γ+—hence real values of ρ—we have � ≥ 0 iff
ρ ∈ [ρmin, ρmax] with

ρmin =
√
6 + n −√2− n

(1− b)
√
2 + n

. (E.9)

and we note by comparing with (E.5) that ρmin > ρ′min for n ∈ [0, 2].
At ρ = ρmin, we have � = 0, and we need to go further in the q → 0 expansion.

The next term is of order q. To compute it, we need to take into account in Eq. E.1 the
term of order q arising from πC

T and ĝk (Lemma B.8) and from the expansion of ϒb
(Lemma D.2). The result for a general value of ρ is

1− u = �q1−b +�1 q + O(q1+b),
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with

�1 = 24

b

−ρ2(3b2 + 1)
√
2 + n + 4ρb

√
2− n + 2

√
2 + n

−ρ2b(1− b2)
√
2 + n + 4ρ(1− b2)

√
2− n − 6b

√
2 + n

.

and for ρ = ρmin it specialises to

�1 = 24(1 + b)

b(1− b)(2− b)
.

If we are at a dense critical point, we must have � > 0, hence ρ ∈ (ρmin, ρmax]. If
we are at a dilute critical point, we must have � = 0 and �1 > 0, hence ρ = ρmin.
These necessary conditions were already obtained in [18]—where the lower bound arose
from the constraint of positivity of the spectral density associated with the generating
series of disks F(x). Modulo Remark 5.4 about the justification that this condition is
also sufficient, this establishes the phase diagram of the model for α = 1.
In particular, we see that at a dense critical point

q
.∼ (1− u)

1
1−b ,

while at a dilute critical point we rather have

q
.∼ (1− u).

E.2.2. General α The method is similar but the explicit results are cumbersome and we
will not reproduce them here. We start from (E.3) but now have to take into account that

w∞ now depends on (q
1
2 , w∗∞), that it contains a q

1
2 term in its q → 0, and that so do

πC
T , ĝ1 and ĝ2. We have nevertheless checked that the q

1
2 term is absent in the q → 0

expansion of (E.3), which gives an expansion of the form

1− u = � q1−b +�1q + O(q1+b)

for some � and �1 which are complicated functions of w∗∞. If � > 0 we have a dense
critical point, if � = 0 and �1 > 0 we have a dilute critical point. This reasoning is
still valid although describing explicitly the dense and dilute critical locus requires the
explicit expressions of � and �1.

E.3. Delta-analyticity. Let us recall an important notion of singularity analysis [69].

Definition E.2. A delta-domain at z0 ∈ C\{0} is an open subset of the complex plane
of the form

{
z ∈ C\{z0} | | zz0 − 1| < R, |arg( z

z0
− 1)| > φ

}

with R > 1 and φ ∈ (0, π2 ). A function is said delta-analytic if it is analytic in some
delta-domain.

Let us introduce a weaker notion: we say that a function is delta-analytic locally at z0
if it is analytic in the intersection of a delta-domain at z0 and of a neighborhood of z0. It
is not difficult to check that a function is analytic in a delta-domain at z0 if and only if:

• it is analytic in the open disk of radius |z0| centered at 0,
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• it is analytic at every point of modulus |z0| other than z0,
• it is delta-analytic locally at z0.

Lemma E.3. If (g, n, α, h) is a non generic critical point (dense or dilute) and n ∈
(0, 2), the maps described in Lemma E.1 have an inverse: specialising the inverse to the
value ofw∗∞ if α �= 1 (resp. ρ if α = 1), we obtain a map u �→ q which is delta-analytic
locally at 1, and behaves like

q ∼
(
1− u

�

)c

, c =
{

1
1−b dense phase
1 dilute phase

for some constant � > 0.

Proof. Let us assume first α = 1. We have justified in the previous paragraphs that the

maps (q
1
2 , ρ) �→ u from Lemma E.1 satisfy

1− u = � q1−b + O(q),

where� is a function of ρ. At a dense critical point, the value of ρ is such that� > 0. As
1−b ∈ ( 12 , 1). the image of C\R≤0 by the map q �→ q1−b is a delta-domain. Therefore,
for η > 0 small enough the image of B(0; η) via the map q �→ u of Lemma E.1 contains
a local delta-domain centered at 1 and on the latter we can find an inverse map u �→ q
which is analytic, hence delta-analytic locally at u = 1, by definition. This map behaves
like

q ∼
(
1− u

�

) 1
1−b

.

At a dilute critical point, we have � = 0 and pushing further the expansion we have

1− u = �1 q + O(q1+b).

The image of C\R≤0 by the identity map being a delta-domain, we can repeat the same
argument and conclude that we have a map u �→ q which is delta-analytic locally at
u = 1.

For positive α �= 1, we should distinguish (see Remark 5.1) between the case w∞ ∈[
τ, τ + 1

2

]
which can occur when α is small enough, and w∞ ∈

[ 1
2 ,

1
2 + τ

]
on which we

have focused since Appendix 9.5.2. We only discuss the second case, as the first case
can be obtained similarly, after an adaptation without further difficulty of the previous
appendices. The condition � > 0 (resp. � = 0 and �1 > 0) is necessary to be at a
dense (resp. dilute) critical point, so the discussion for α = 1 extends here using as
second parameter w∗∞ instead of ρ: the explicit expressions for�,�1 are not needed in
this argument. ��

Appendix F: Scaling Limits for Pointed Disks

Weare going to proveTheorem6.5 andCorollaries 6.6 and 6.7, i.e. analyse the generating
series of pointed disks

F•(x) = v′(x)G•(v(x))− ∂x

(
nu ln[ς ′(x)]
2(2 + n)

)
. (F.1)
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Here x is in the physical sheet, that is

v(x) ∈ R̂ = {v ∈ C, Re v ∈ (− 1
2 ,

1
2

]
, Im v ∈ [0, T ]}.

and we also assume that (g, h) are chosen at a non generic critical point when u = 1.
According to the previous sections, it amounts to fixing a value of w∗∞ (if α �= 1) or ρ
(if α = 1) and take (g, h) given by (E.6) or (E.4).
Let us first fix the value of b. As the second term in (F.1) is linear in u, it will not
contribute to the singularity analysis when u → 1. We therefore focus on the first term,
as given by Proposition 5.5

G•(v) = u

2 + n

(
−ϒb(v + v∞)−ϒb(v − v∞) + ϒb(−v + v∞) +ϒb(−v − v∞)

)
.

In view of Remark D.1 and Lemma E.3, G•(v) can be considered as an analytic family
of meromorphic functions of v, parametrised by u in a delta-domain centered at 1. On
the other hand x �→ v(x) given by (B.14) is an analytic family of analytic functions
of x in the physical sheet, parametrised by m in a small neighborhood of 0. Changing
the variable to q (see Lemma B.3 or Lemma B.7) and then to u (Lemma E.3), we
deduce that x �→ v′(x)G•(v(x)) is an analytic family of meromorphic functions of
x in the physical sheet, parametrised by u in a delta-domain centered at 1. The map
s �→ b(s) = 1

π
arccos

( ns
2

)
is an analytic function of s in the strip |Re s| < 2

n . So, if
we set b = b(s), one can extend the previous arguments to prove the analyticity of the
family of functions F•s (x) with respect to s in this strip.

We first analyse the regime x = x(v) with v = 1
2 + τw and w in a compact region of

the complex plane containing a u-independent neighborhood of w∗∞. This means that x
remains in a u-independent region away from [γ−, γ+]. We first need v′(x(v)) = 1

x ′(v) .

By Lemma B.6 we have x
( 1
2 + τw

) = x∗0 (w) + O(q
1
2 ) with

x∗0 (w) :=
2 cos(πw∗∞)
h(1− α2)

1

cos(πw)− cos(πw∗∞)
. (F.2)

Differentiating with respect to v we get

x ′
( 1
2 + τw

) = π

iT

2 cos(πw∗∞)
h(1− α2)

sin(πw)

(cos(πw)− cos(πw∗∞))2
+ O(q

1
2 ).

Owing to Lemma D.2, we have

G•
( 1
2 + τw

)

= 2π

T

u

2 + n

{[
− ϒ∗b,0(τ (w + w∞))−ϒ∗b,0(τ (w − w∞))

+ϒ∗b,0(τ (−w + w∞)) + ϒ∗b,0(τ (−w − w∞))
]

+
qb

1− qb

[
(ϒ∗b+2,0 −ϒ∗b,0)(w + w∞) + (ϒ∗b+2,0 −ϒ∗b,0)(w − w∞)

− (ϒ∗b+2,0 − ϒ∗b,0)(−w + w∞)− (ϒ∗b+2,0 −ϒ∗b,0)(−w − w∞)
]
+ O(q)

}
.

(F.3)
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where we have used 1
1−qb = 1 + qb

1−qb to write separately the leading term. The quantity
in brackets can be computed from (D.2). The prefactor u can be replaced by 1 up to

O(qc) = O(q
1
2 ) since c > 1

2 when b ∈ (0, 12
)
. All calculations done we obtain

v′(x(v))G•(v) = �b(x)− qb

1− qb
�̃b(x) + O(q

1
2 ), (F.4)

with

�b(x
∗
0 (w)) =

−1
2 + n

h(1− α2)
(
cos(πw)− cos(πw∗∞)

)2
cos(πw∗∞) sin(πw)

×
(
cos[π(1− b)(w + w∗∞)]

sin[π(w + w∗∞)]
+
cos[π(1− b)(w − w∗∞)]

sin[π(w − w∗∞)]
)

�̃b(x
∗
0 (w)) = �b+2(x

∗
0 (w))−�b(x

∗
0 (w))

= − 4

2 + n

h(1− α2) cos(πbw∗∞)
(
cos(πw)− cos(πw∗∞)

)2
cos(πw∗∞)

× sin(πbw)

sin(πw)
.

(F.5)

For α = 1, this simplifies to

x∗0 (w) =
ρ

2h cos(πw)
,

�b(x
∗
0 (w)) =

2h cot2(πw)

ρ
√
2 + n

sin
(
π(1− b)w),

�̃b(x
∗
0 (w)) = −

8h

ρ
√
2 + n

cos2(πw) sin(πbw)

sin(πw)
.

(F.6)

In the regime v = τw with w in a compact, we have according to Lemma B.6

q−
1
2 (x(v)− γ+) = x∗1

2
(w) + O(q

1
2 ),

meaning that q− 1
2 (x − γ+) remains in a u-independent compact. A similar analysis can

be carried out and we only give the result

v′(x(v))G•(v) = q
b−1
2

1− qb
�b

(
x − γ+

q
1
2

)
+ O(q

b
2 ),

with

x∗1
2
(w) = 16 cos(πw∗∞)

(1− α2)h
cos2

(
πw

2

)
,

�b
(
x∗1
2
(w)
) = h(1− α2)

2 + n

cos(πbw∗∞)
cos(πw∗∞)

sin(πbw)

sin(πw)
.

(F.7)
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For α = 1, it simplifies to

x∗1
2
(w) = 4ρ

h
cos2

(
πw

2

)
,

�b
(
x∗1
2
(w)
) = 4h

ρ
√
2 + n

sin(πbw)

sin(πw)
.

(F.8)

One can check that this analysis remains valid if b = b(s) and s is complex-valued but
such that Re b(s) ∈ (0, 12

)
—noting this inequality also implies Re

( 1
1−b(s)

)
> 1

2 . This
completes the proof of Theorem 6.5.
We move to the proof of Corollary 6.6. Planar pointed rooted maps are pointed disks
whose boundary face is a triangle. Therefore, their generating series with vertex weight
u is:

F• = − Res
x=∞ dx x3 F•(x)

= − Res
v=v∞

dv (x(v))3 G•(v)

= −iT Res
w=w∞

dw
(
x
( 1
2 + τw

))3
G•
( 1
2 + τw

)
.

(F.9)

After taking the residue and taking into account Remark D.1 and the analyticity prop-
erties established in Sect. 9.5.2, we find that [x−4]F• is an analytic function of q ∈
B(0; η)\R≤0. We will see in Theorem J.1 that q is a delta-analytic function of u, so this
implies that [x−4]F• is a delta-analytic function of u.

To compute (F.9), we use (F.2) and (F.4). We first treat α �= 1. The leading term u ·q0
does not contribute to the singularity as it is an entire function of u, so the relevant part
for the singularity analysis therefore comes from �̃b. We then use the Laurent expansion
of x(v) when v→ v∞ from Lemma B.1 to get

[x−4]F•|sing = 16uπ sin(πbw∗∞)
2 + n

· 3bπC
2E1

4T 2 qb + o(qb).

Taking the leading term when q → 0 of E1 and πC
T from Lemma B.5, and replacing u

by 1 up to negligible terms, we obtain

[x−4]F•|sing = A qb + o(qb), (F.10)

with

A = 96b sin(πbw∗∞) cos(πw∗∞)
(
1− α sin2(πw∗∞)

)

(2 + n)h2(1− α2)2 sin3(πw∗∞)
, (F.11)

where it remains to substitute the value of h2 in terms ofw∗∞ from (E.6). We can also do
the computation for α = 1 in terms of the parameter: the result is correctly reproduced
by taking the limit (B.40) and yields

A = 6bρ
√
2− n

h2(2 + n)
, (F.12)

where one substitute the value of h2 on the critical line given in (E.4). Then using
q ∼ ( 1−u

�

)c and transfer theorems, we deduce from (F.10) the large volume asymptotics
stated in Corollary 6.6.
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The parameter b appears in twoways in the previous computation: firstly via the value
of c (coming from the critical behavior of γ according to Theorem 6.3), and secondly
via the value n = 2 cos(πb) in the functional relation. If we substitute in this second
dependence b→ 1

2 but keep the first dependence unchanged, we obtain the generating
series of disks with a marked point in the gasket:

[x−4]F• in gasket|sing = Agasket q
b + o(qb), (F.13)

with

Agasket = 24 sin(πw
∗∞

2 ) cos(πw∗∞)
(
1− α sin2(πw∗∞)

)

h2(1− α2)2 sin3(πw∗∞)
, (F.14)

where one should still use (E.6) for h2. For α = 1 this is

Agasket = 3
√
2ρ

4h2
(F.15)

where one should still use (E.4) for h2. By transfer theorems, (F.13) implies the large
volume asymptotics stated in Corollary 6.7.

Appendix G: Scaling Limits for Cylinder Generating Series

We distinguish whether the variable xi coupled to the perimeter of the i-th boundary is
away from γ ∗+—in which case the perimeter remains typically finite—or close to γ ∗+ at

scale O(q
1
2 )—in which case the perimeter typically diverges.

G.1. Refined cylinders: finite/finite. This is governed by the regime xi = x
( 1
2 + τwi ),

and leads to:

F(2)s (x1, x2) = (1− α2)2h2

4π cos2(πw∗∞)

[ 2∏
i=1

(cos(πwi )− cos(πw∗∞))2

sin(πwi )

]

×
{
Rb(s)(w1, w2)− qb(s)Rb(s)+2(w1, w2)

(4− n2s2)(1− qb(s))
+ O(q)

}

= (1− α2)2h2

4π(4− n2s2) cos2(πw∗∞)

[ 2∏
i=1

(
cos(πwi )− cos(πw∗∞)

sin(πwi )
)2

]

×
{
Rb(s)(w1, w2) +

qb(s)

1− qb(s)
(Rb(s)(w1, w2)− Rb(s)+2(w1, w2)) + O(q)

}
,

where:

Rb(w1, w2) = 2i∂w1

[
ϒ∗b,0(w1 + w2)−ϒ∗b,0(w1 − w2) +ϒ

∗
b,0(−w1 + w2)

−ϒ∗b,0(−w1 − w2)
]
.

The first term Rb(s) does not feature a singularity when u → 1, and thus will not
contribute to large volume asymptotics. We compute using the expression of ϒ∗b,0 in
(D.2):

Rb(s)(w1, w2)− Rb(s)+2(w1, w2) = −8πb(s) sin(πb(s)w1) sin(πb(s)w2). (G.1)
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Therefore:

F(2)s (x1, x2)|sing = −b(s) qb(s)

1− qb(s)
�b(s),3(x

∗
1
2
(w1), x

∗
1
2
(w2)) + O(q),

with:

�b(s),3 = 2h2(1− α2)2

4− n2s2

[ 2∏
i=1

(cos(πwi )− cos(πw∗∞))2 sin(πb(s)wi )

cos(πw∗∞) sin(πwi )

]
.

For α = 1, it specialises to:

�b(s),3 = −32h2
ρ2(4− n2s2)

[ 2∏
i=1

cos2(πwi ) sin(πb(s)wi )

sin(πwi )

]
.

G.2. Refined cylinders: finite/large. This is governed by x1 = x
( 1
2 + τw1

)
and x2 =

x(τw2), and leads to:

F(2)s (x1, x2)|sing = q(b(s)−1)/2

1− qb(s)
(1− α2)2h2(cos(πw1)− cos(πw∗∞))2

16π(4− n2s2) cos2(πw∗∞) sin(πw1) sin(πw2)

× {R̃b(s)(w1, w2) + O(q(1−b(s))/2)
}
,

with:

R̃b(s)(w1, w2) = −2i
{
(ϒ∗

b(s), 12
)′(w1 + w2)− (ϒ∗

b(s), 12
)′(w1 − w2)

− (ϒ∗
b(s), 12

)′(w2 − w1) + (ϒ
∗
b(s), 12

)′(−w1 − w2)
}

= 8π b(s) sin(πb(s)w1) sin(πb(s)w2).

Therefore:

F(2)s (x1, x2)|sing = b(s) q(b(s)−1)/2

1− qb(s)
�b(s),4(x

∗
1
2
(w1), x

∗
0 (w2)) + O(q(1−b(s))/2),

with:

�b(s),4 = (1− α2)2h2[cos(πw1)− cos(πw∗∞)]2
2(4− n2s2) cos2(πw∗∞)

[ 2∏
i=1

sin(πb(s)wi )

sin(πwi )

]
.

In particular for α = 1, we find:

�b(s),4 = 8h2

ρ2(4− n2s2)
cos2(πw1)

[ 2∏
i=1

sin(πb(s)wi )

sin(πwi )

]
.
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Appendix H: Admissibility versus Finiteness in the Bending Energy Model

In this appendix, we consider the bending energy model, as defined in Sect. 2.1.2. It
depends on the parameters n, g, h and α, see again Fig. 2 (the vertex weight u is set
to 1). The corresponding generating series of annuli Ak,�(n, h, α) are given by (4.5),
(5.1) and (5.2). Recall also the definition of admissibility for a sequence of face weights
(gk)k≥1 given in Sect. 4.2. Then, we have the following analogue of [32, Theorem 1]:

Theorem H.1. For n ∈ (0, 2) and g, h, α ≥ 0, the bending energy model with parame-
ters (n, g, h, α) is well defined (i.e., the partition function F�(n, g, h, α) is finite for all
�) if and only if there exists an admissible weight sequence (Gk)k≥1 such that

Gk −
∑
k′≥0

Ak,k′(n, h, α)Fk′(G1,G2, . . .) = gk, gk :=
{
g if k = 3,
0 otherwise.

(H.1)

In that case, we have F�(n, g, h, α) = F�(G1,G2, . . .), and the expected number of
vertices in a disk of perimeter � is finite.

The case α = 1 is established in [99]. We now explain how to prove the general result by
adapting the strategy given in [32]. We will heavily use the notions of this paper, as well
as those of [29]. The reader is invited to consult these references for more details. The
proof does not depend on the specific form of gk , the only important assumption being
that it is nonnegative for all k. Therefore, Theorem H.1 remains valid for a more general
model in which we allow for unvisited faces of arbitrary degrees. Our proof however
depends on the specific form of Ak,k′ in the bending energy model, precisely within the
proof of Lemma H.3 below. We also assume that n < 2, but we believe the case n = 2
could be included as well by a slight adaptation.

The core idea is to use the peeling exploration of loop-decorated maps, as defined
in [32, Sections 2 and 3]. There are actually two types of peeling explorations: untargeted
peeling, which applies to disks, and targeted peeling, which applies to pointed disks.
Their definitions are adapted straightforwardly to the bending energy model, with the
following modifications:

• since the maps are no longer assumed bipartite, we should keep track of perimeters
rather than half-perimeters,
• since themodel is not rigid, annuli (rings)may have different outer and inner perime-
ters.

For these reasons, we now encounter the following possible events in untargeted peeling:

• Ck : discovering a new (unvisited) face of degree k ≥ 1 (when considering triangu-
lations, only C3 may occur, but the arguments allow for unvisited faces of arbitrary
degrees),
• Gk1,k2 : splitting a hole of degree k1 + k2 + 2 into two holes of degrees k1 and k2, by
identifying two active edges incident to it,
• Lk,k′ : discovering an annulus with outer perimeter k ≥ 1 and inner perimeter k′ ≥ 0.

The analogous events in targeted peeling are easy to deduce, but we do not enter into
details here since we only allude to targeted peeling in Remark H.5.
Assuming that the model is well-defined, the probabilities of these events when peeling
an active edge incident to a hole of degree � ≥ 1 are given by

P�(Ck) = gk F�+k−2
F�

,
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P�(Gk1,k2) =
Fk1Fk2
F�

, (� = k1 + k2 + 2)

P�(Lk,k′) = Ak,k′F�+k−2Fk′
F�

. (H.2)

If we instead assume that (H.1) is satisfied for an admissible weight sequence (Gk)k≥1,
then we follow the strategy of [32, Section 5] and define the probabilities of these events
by the putative expressions

P�(Ck) =
(
ν(k − 2)−

∑
k′≥0 Ak,k′γ k+k′

+ ν(−k′ − 2)

2

)
ν(−�− k)

ν(−�− 2)
,

P�(Gk1,k2) =
ν(−k1 − 2)ν(−k2 − 2)

2ν(−�− 2)
, (� = k1 + k2 + 2)

P�(Lk,k′) = Ak,k′γ k+k′
+ ν(−k′ − 2)

2
· ν(−�− k)

ν(−�− 2)
, (H.3)

where ν is the probability measure7 on Z corresponding to the admissible weight se-
quence (Gk)k≥1 via [29, Proposition 3], namely

ν(k) =
{
Gk+2γ

k
+ for k ≥ −1,

2F−k−2(G1,G2, . . .)γ
k
+ for k ≤ −2, (H.4)

andγ+ = limk→∞(Fk)
1
k (the limit exists for any admissibleweight sequence). Following

the same reasoning as in [32, p. 29], we see that the quantities appearing in (H.3) are
nonnegative and add up to one, which allows to interpret them as probabilities. Then,
we have the analogue of [32, Proposition 8 and Lemma 5]:

Proposition H.2. Consider an admissible weight sequence satisfying (H.1). If we con-
struct a random loop-decorated map via the untargeted peeling algorithm with the event
probabilities (H.3), then the algorithm terminates almost surely, and produces a sample
of the bending energy model with parameters (n, g, h, α).

The proof of this proposition again follows Budd’s steps. The most delicate point is
the termination of the algorithm, which comes from a martingale argument. To a map
Mwith holes of degrees k1, k2, . . . and with N vertices not incident to a hole, we assign
the quantity

V(M) = N + f ↓(k1) + f ↓(k2) + · · · , f ↓(k) := ν(−2)h↓(k)
ν(−k − 2)

(H.5)

where we sum over all holes, and where the function h↓ is yet unspecified. Mimicking
the proof of [32, Lemma 4], we see that V defines a martingale for the untargeted peeling
algorithm if h↓(0) = 1 and

h↓(p) =
∞∑
k=0

ν(k − p)h↓(k) +
∞∑
k=1

∞∑
k′=0

Ak,k′γ k+k′
+

2
ν(−k − p)h↓(k′), p ≥ 1. (H.6)

7 Note that
∑

k∈Z ν(k) = 1
γ+
(2F(γ+) +

∑
k≥1 Gkγ

k−1
+ ) is indeed equal to 1, by taking x → γ+ in (4.8).
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We claim that such a function h↓ exists and can be interpreted as the probability that
a certain generalisation of the ricocheted random walk of [32, Section 4] gets trapped
at 0. This generalisation is in fact rather straightforward: we consider a random walk
with step distribution ν which gets trapped when touching 0 and, when it would jump to
some position −k < 0, gets ricocheted to position k′ ≥ 0 with probability 1

2 Ak,k′γ k+k′
+ ,

and otherwise remains trapped at −k with probability 1− 1
2

∑
k′≥0 Ak,k′γ k+k′

+ . The fact
that these are indeed probabilities is ensured by the following lemma, whose proof is
postponed to the end of the section.

Lemma H.3. For any admissible weight sequence satisfying (H.1), we have

γ+ ≤ γ ∗+ (H.7)

where γ ∗ = 1
h(α+1) is as in (6.1), and we have

∑
k′≥0

Ak,k′(γ
∗
+ )

k+k′ = n, k ≥ 1. (H.8)

Note that, when γ+ = γ ∗+ , the probability to remain trapped when jumping to position
−k < 0 is equal to 1 − n

2 > 0 independently of k. It is higher and dependent on k for
γ+ < γ ∗+ . It follows that the ricocheted walk gets trapped almost surely, since the walk
cannot drift to +∞ by [29, Proposition 4], and therefore there indeed exists a nonnegative
function h↓ satisfying (H.6). Note that the case n = 2 and γ+ = γ ∗+ is slightly subtler
since the walk always ricochets when jumping to a negative position.We do not consider
this case here, even though we expect the same conclusion to hold.
Straightforward adaptations of the other arguments given in [32, Section 5] lead to
Proposition H.2, and furthermore imply that the expected number of vertices of a loop-
decorated map with perimeter p is equal to f ↓(p), hence is finite. This concludes the
proof of Theorem H.1.

Remark H.4. Here we are considering a martingale, whereas Budd considers a super-
martingale, since he only defines the ricocheted random walk corresponding to the non
generic critical case.

Remark H.5. Using targeted peeling and the uniqueness of the solution of (H.6) for given
boundary conditions, we may identify

f ↓(p) = F•p
Fp

, h↓(p) = F•p
γ
p
+
, (H.9)

and we may interpret h↓ as the harmonic function used to condition the ricocheted walk
to get trapped at 0 via a Doob h-transform. Changing the boundary condition of h↓ to
condition the walk to get trapped at −k < 0 should give a relation with the generating
series of cylinders.

Proof of Lemma H.3. Let us prove that γ+ ≤ γ ∗+ . We first establish a lower bound for
Gk , namely that Gk ≥ ς(β)−k for any β ∈ (0, γ+) and k large enough. Here, ς is the
rational involution defined by (5.2).
Fix some β ∈ (0, γ+) and consider m such that Fk′ ≥ βk′ for k′ > m. Then, we have

Gk ≥
∑
k′≥0

Ak,k′Fk′ ≥
∞∑

k′=0
Ak,k′β

k′ −
m∑

k′=0
Ak,k′β

k′ . (H.10)
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We may estimate both sums in the right-hand side using the explicit form (5.1) of the
generating A(x, z), or alternatively the combinatorial arguments of [18, Section 3.2].
We find

∞∑
k′=0

Ak,k′β
k′ =

{
nς(β)−k if β < 1

αh ,

∞ if β ≥ 1
αh ,

m∑
k′=0

Ak,k′β
k′ = O

(
ς(0)−kkm

)
(H.11)

where the second estimate follows from the expression

[zk′ ]A(x, z) =
{

αhn
1−αhx if k′ = 0,

− nς ′(x)
ς(x)k+1

if k′ ≥ 1,
(H.12)

which, by (5.2), shows that [zk′ ]A(x, z) is a rational series in x with a pole of order k′+1
at ς(0) = 1

hα . This establishes the wanted lower bound.
On the other hand, the fact that (H.4) defines a probability distribution entails that

limk→∞ Gkγ
k
+ = 0. We conclude that ς(γ+) ≥ γ+, hence γ+ is smaller than or equal

to the positive fixed point γ ∗+ = 1
h(α+1) of the decreasing involution ς . Finally, the

identity (H.8) is another consequence of (H.11), which was in fact valid for all β ≥ 0
hence for β = γ ∗+ .

Appendix I: On the Rigid O(n) Loop Model on Bipartite Maps

In this appendix, we consider the rigid O(n) loop model, introduced originally in [17]
in the case where the underlying map is a quadrangulation, and generalised in [32] by
allowing the unvisited faces to have arbitrary even degrees. In all cases, the faces visited
by loops are always quadrangles, and the rigidity constraint entails that, in each visited
quadrangle, the loop enters and exits through opposite edges. This greatly simplifies the
nested loop approach for the two following reasons.

• The annuli always have equal inner and outer perimeters hence the generating series
Ak,k′ vanishes unless k = k′. Therefore, the fixed point Eq. (3.2) is simpler, as well
as many related arguments.
• It is well-known that working with bipartite maps makes life easier.

The rigid loop model may actually be viewed as a limit of the bending energy model:
contemplating again Fig. 2, we see that for α = 0 the visited triangles always come
top to tail by pairs, and may therefore be merged in quadrangles satisfying the rigidity
constraint. Note however that, in our computations, we assume that the unvisited faces
are triangles, hence the underlying map is not necessarily bipartite. As pointed out in
Appendix H, we could generalise the model by allowing the unvisited faces to have
arbitrary degrees, which does not affect the validity of the nested loop approach, and
then we could constrain the degrees to be even to recover precisely the model of [32]
for α = 0. In this identification, the weight per visited quadrangle, denoted g in Budd’s
paper and h1 in [17], is equal to h2 in our present notations.

I.1. An explicit expression forF•s (x) at a non generic critical point. In this section we set
the vertex weight u to 1. Consider the generating series F(x) as defined in (4.1). Noting
that the sum is restricted to even �’s, we see that the cut of F is necessarily symmetric
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and we denote it by [−γ, γ ], dropping the ± subscripts. The condition for non generic
criticality reads

γ = γ ∗ := h−1 (I.1)

which is nothing but the case α = 0 of (6.1). It was shown in [17] that, at a non generic
point of the model on quadrangulations with a weight g4 per unvisited quadrangle and
for n ∈ (0, 2), we have the explicit expression

F(x) = Fpart(x) + Fhom(x) (I.2)

where

Fpart(x) :=
2(x − g4x3)− n

( γ 4

x3
− g4γ 8

x5
)

4− n2
+

n

(2 + n)x

Fhom(x) :=
(
f(x)− γ 2

x2
f
( γ 2

x

))( x − γ

x + γ

)b

−
(
f(−x)− γ 2

x2
f
(− γ 2

x

))( x + γ

x − γ

)b

f(x) := g4
4− n2

(
x3 + 2bγ x2 + 2b2γ 2x +

2(b + 2b3)γ 3

3

)
− x + 2bγ

4− n2
(I.3)

and we recall b = 1
π
arccos

( n
2

)
. A nice feature of this explicit expression is that it

bypasses the use of the elliptic parametrisation, which makes the singularity analysis
somewhat simpler. In particular, we immediately see why b appears in the singular
expansions for x →±γ . The method that was used to obtain the expressions (I.3) may
be generalised to the case where the unvisited faces have arbitrary even degrees.
It is natural to ask whether similar explicit expression exist for the other generating series
that we consider in this paper. We will not consider the case of cylinders here but, in the
case of pointed disks, the question admits an affirmative answer.

Proposition I.1 (See also [24, Section 3.4]). At a non generic critical point of the rigid
model with n ∈ (0, 2), possibly with unvisited faces of arbitrary even degrees, the refined
generating function F•s (x) of pointed disks, defined as in (4.3), admits the universal
expression

F•s (x) =
1

(2 + ns)x

(
ns +

(
x + γ

x − γ

)b(s)−1
+

(
x − γ

x + γ

)b(s)−1)
(I.4)

where b(s) = 1
π
arccos

( ns
2

)
> 0 is defined as in (5.26). Notice (again, considering γ

fixed) that this expression depends on n and s only via the combination ns.

Proof. We specialise the functional Eq. (5.20) with ς(x) = γ 2

x (since α = 0, h = γ−1,
γ denoting now the positive endpoint of the cut) and u = 1. This yields

∀x ∈ (−γ, γ ), F•(x + i0) + F•(x − i0) +
nγ 2

x2
F•
(γ 2

x

)
= n

x
. (I.5)

Wemay solve this equation using the method described in [17, Section 6.2], the function
f(x) being here proportional to (x − γ )−1. This yields (I.4) for s = 1. Then, we recall
from § 4.4 that adding the refinement parameter s amounts to changing n into ns.
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Interestingly, the universal form (I.4) also appears implicitly in [32]. To make the
connection precise, we combine Equations (23), (25) and (42) of that paper, which yield
the relation ∞∑

�=0
h↓n/2(�)x

2� = γ

x
F•
(γ
x

)
(I.6)

for s = 1. Here, h↓p(�) denotes the probability that Budd’s p-ricocheted random walk
gets trapped at 0.

It is very easy to analyse the singular behaviour of (I.4). We find

F•s (x) ∼
x→±γ ±

21−b(s)

(2 + ns)γ
· (1∓ γ /x)b(s)−1, (I.7)

which implies for the refined generating series of pointed disks of perimeter 2�

F•2�[s] ∼
�→∞ 2�(b(s))

4−b(s)

π

√
2− ns

2 + ns
· γ

2�

�b(s)
, (I.8)

consistently with [32, Equation (24)]. This yields the asymptotic behaviour

E

(
sP
∣∣∣L = 2�

)
= F•2�[s]

F•2�[1]
∼

�→∞C(s)�b−b(s). (I.9)

for the probability generating function of the number P of separating loops in a pointed
disk of prescribed perimeter 2� and fluctuating volume. The varying exponent in (I.9) is
a smoking gun evidence that P grows logarithmically with �. In fact, a straightforward
adaptation of the method of the proof—which crucially on Hwang’s quasi-powers theo-
rems [69, Theorems IX.8 and IX.15]—of Proposition 6.9 and Theorem 6.10 in the main
text, we obtain the following variant of Theorem 2.2 and Proposition 2.3.

Theorem I.2 (See also [32, Theorem 5] and [24, Theorem 3.3]). At a non generic critical
point of the rigid model with n ∈ (0, 2), possibly with unvisited faces of arbitrary even
degrees, the distribution of the number P of separating loops in the ensemble of random
pointed disks with prescribed perimeter L = 2� and fluctuating volume behaves when
�→∞ as

P

[
P = ⌊ ln �

π
p
⌋∣∣∣L = 2�

]
.� (ln �)−

1
2 �−

1
π
J (p) (I.10)

where J is the same rate function as in Theorem 2.2, and p bounded, bounded away
from 0 and chosen so that P is an integer. We have the convergence in law

P − popt
π

ln �√
ln �

−→ N (0, σ 2) (I.11)

with the same popt = n√
4−n2 as in Proposition 2.3 and with σ 2 = 4n

π(4−n2) 32
.

Two remarks are now in order. First, we note that Budd’s theorem [32, Theorem 5] also
treats the case n = 2. Nothing would prevent from rederiving his result by taking n → 2
in Proposition I.1.

Second, we observe that Theorem I.2 makes no distinction between dilute or dense
critical points. In contrast, Theorem2.2 andProposition 2.3 involved the critical exponent
c, which depends on the nature of the non generic critical point (c = 1 in the dilute phase
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and c = 1
1−b in the dense phase). In fact, the large perimeter versions of Theorem 2.2

and Proposition 2.3 are totally consistent with Theorem I.2, when we replace ln V with
c
2 ln �. This means that, if we fix a large perimeter L , then further conditioning on a large

volume V ∼̇L
2
c does not affect the asymptotics of P under consideration.

I.2. Delta-analyticity with respect to the vertex weight u. Recall Definition E.2 of delta-
domain and delta-analyticity. In this section,we consider the rigid loopmodel on bipartite
maps, with the parameters n (weight per loop), h2 (weight per visited square) and g2k
(weight per unvisited face of degree 2k ≥ 2) fixed to nonnegative real values.We assume
that n, h > 0 (to have a nontrivial loop model), that g2 < 1 (to avoid the proliferation
of digons) and that g2k = 0 for k large enough (i.e., the face degrees are bounded). We
will vary the vertex weight u, hence we will keep the dependence on u explicit.

The partition function F2�(u) is a series in u with nonnegative coefficients and, for �
positive, has a finite radius of convergence uc which does not depend on �. Recall from
Proposition 4.1 the definition of r(u) = 1

2γ
2
+ (u) (in the bipartite case, we have s(u) = 0

since the cut is symmetric). By Remark 4.2, it is essentially the same as the series
F•2 (u) = 2ur(u) of rooted maps with a marked point in the gasket, thus has positive
coefficients and radius of convergence uc. The purpose of this section is to establish the
following:

Theorem I.3. If there exists an integer k such that g4k > 0, then r(u) and F2�(u) are
analytic functions of u in a delta-domain at uc, for all � > 0. When g4k vanishes
for all integer k, they are analytic in the intersection of a delta-domain at uc and a
delta-domain at −uc, since we have the parity relations r(u) = −r(−u) and F2�(u) =
(−1)�+1F2�(−u). q, seen as a function of u, has the same properties.

The delta-analyticity of q is a direct corollary of the delta-analyticity of r(u) and
the fact that q is an analytic function of r(u), which we observe in two steps: m is an
analytic function of r(u) as we see later in (I.15) and q is an analytic function of m by
the definition (B.19).

The reason why the case g4k = 0 is special is the following. In a bipartite map,
an elementary counting argument based on Euler’s formula shows that the number of
vertices and the number of faces with degree divisible by 4 have the same parity. When
the map carries a rigid loop configuration, the number of visited squares is necessarily
even, since the loops form annuli whose contoursmust have even length. Therefore, if we
consider a map contributing to F2�(u)with no unvisited inner face of degree divisible by
4, then the parity of the number of vertices is opposite to that of �. For a map contributing
to r(u)with the same constraint, the number of vertices is even, but we assign no weight
to the marked vertex.

We will make use of the Eq. (4.6) determining r(u) which, in the rigid bipartite case,
may be rewritten in the form

r(u) = u +
∑
k≥1

(
2k − 1

k

)(
g2k + nh4k F2k(u)

)
r(u)k (I.12)

making sense whenever the series r(u) is absolutely convergent. We have the following
elementary lemma, relying on the nonnegativity of the coefficients of r(u).
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Lemma I.4. We have r(uc) ≤ 1
4h2

so that r(u) converges normally on its closed disk of
convergence. For every u in this disk, different from uc, and different from −uc if g4k
vanishes for all integer k, we have

|r(u)| < r(uc). (I.13)

Proof. By monotone convergence, we have r(uc) = limu→u−c r(u), so we need to prove

that r(u) ≤ 1
4h2

for every u ∈ (0, uc). For such u, we know by Proposition 4.1 that

lim
k→∞ F2k(u)

1
k → 4r(u).

Since the sum appearing in (I.12) must converge, we conclude that 16h4r(u)2 ≤ 1 as
wanted. To obtain (I.13), we apply the Daffodil Lemma [69, Lemma VI], which requires
checking that r(u) is aperiodic if one g4k is nonzero, and has period 2 otherwise. For this,
we observe that (I.12) implies that [u2k+1]r(u) > 0 for all k. Indeed, [uk+1]F2k(u) > 0
as trees with k + 1 vertices contribute, and when g4k > 0 we also have [u2k]r(u) > 0. ��

We will also make use of the exact solution of the model, discussed in Sect. 5 and in
the appendices, via the following:

Proposition I.5. There exists functions ϕ and ψ� (� ≥ 0) which are meromorphic in the
domain C\((−∞,− 1

4h2
] ∪ [ 1

4h2
,∞)) and such that

u = ϕ(r(u)), F2�(u) = ψ�(r(u)). (I.14)

The set of poles of ψ� is included in that of ϕ.

Proof. For u ∈ (0, uc) and given the values of γ±(u) = ±2√r(u), Theorem 5.3 (spe-
cialised to the rigid bipartite case) gives an explicit expression of G(v), which is related
to F(x) via (5.15). Notice that the expression of G(v) depends linearly on u via the g̃k
defined in (5.16). Thus, the conditions (5.17) determining γ±(u), which turn out to be
equivalent to each other in the rigid case, yield a linear condition on u, which is nontrivial
by the discussion of Appendix E. Solving this linear condition, we express u as a rational
function of derivatives of the functionϒb(v) at v = τ ± 1

4 (we have v∞ = 1
4 in the rigid

case). By (D.1), ϒb is itself a rational function of the Jacobi theta functions, which are
analytic in the elliptic parameterm except at the singularities 0, 1,∞. Specialising (B.1)
to the rigid bipartite case, the elliptic parameter is given by

m =
(
1− 4h2r(u)

1 + 4h2r(u)

)2

. (I.15)

Grouping all the steps together, we get a meromorphic function ϕ inC
∗\((−∞,− 1

4h2
]∪

[ 1
4h2

,∞)) such that u = ϕ(r(u)). Since r(u) is analytic at u = 0with r(u) = u
1−g2 +o(u),

ϕ has no singularity at 0.
Now, the F2� are given by the expansion of F(x) around x = ∞, or equivalently of

G(v) around v = 1
4 . This expansion involves those ofϒb(v) around v = 0, 12 and of x(v)

around v = 1
4 . The functions ϒb(v) and x(v) are precisely constructed to have simple

poles at respectively v = 0 and v = 1
4 for allm, and the coefficients in their expansions

are analytic inm. Finally, we substitute u = ϕ(r(u)), to find that F2�(u) = ψ�(r(u)) for
some meromorphic function ψ� whose set of poles in included in that of ϕ.
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By the discussion at the beginning of Appendix E.3, the proof of Theorem I.3 requires
to check two things: local delta-analyticity at uc, and analyticity at every other point of
modulus uc (except −uc when g4k = 0, which we can be treated by symmetry).

In the case of a non generic critical point (r(uc) = 1
4h2

), local delta-analyticity at uc
is found in Lemma E.3, whose proof was detailed for the loop model triangulations with
bending energy α not too small, but can be adapted to all nonnegative α including the
rigid loop model at α = 0. Thus, what we still have to prove is local delta-analyticity at
uc for generic critical points (r(uc) < 1

4h2
), and analyticity at other points of modulus

uc. In view of Lemma I.4 and Proposition I.5, it is sufficient to establish these for r(u).
We start with the analyticity statement.

Proposition I.6. Let u∗ be such that |u∗| = uc and |r(u∗)| < r(uc). Then, r(u) admits
an analytic continuation in a neighborhood of u∗.
Proof. Let r∗ = r(u∗), which lies in the domain of analyticity of ϕ. We want to show
that ϕ′(r∗) �= 0, since we may then apply the analytic inverse function theorem to show
that ϕ admits an inverse in a neighborhood of u∗, providing the analytic continuation we
are looking for. Instead of trying to compute ϕ′(r∗) directly, we will rather use (I.12),
which amounts to the relation

ϕ(r) = r −
∑
k≥1

(
2k − 1

k

)(
g2k + nh4kψk(r)

)
rk (I.16)

valid for r in the closure of the domain

D = {r(u) | |u| < uc}. (I.17)

The convergence of the sum in the right-hand side of (I.16) is normal, and therefore (by
Cauchy’s integral formula) we may differentiate the relation at every point insideD. We
may rearrange the result in the form

1− A(r) = B(r)ϕ′(r),
{
A(r) :=∑k≥1 k

(2k−1
k

) (
g2k + nh4kψk(r)

)
rk−1,

B(r) := 1 + n
∑

k≥1
(2k−1

k

)
h4k

ψ ′k (r)
ϕ′(r) r

k .
(I.18)

We will show that, for r → r∗, the quantity 1− A(r) tends to a nonzero limit and B(r)
to a finite limit, which implies that ϕ′(r∗) �= 0 since ϕ′ is continuous at r∗.
For this, we observe that

A(r(u)) =
∑
k≥1

k

(
2k − 1

k

)(
g2k + nh4k F2k(u)

)
r(u)k−1,

B(r(u)) = 1 + n
∑
k≥1

(
2k − 1

k

)
h4k F ′2k(u)r(u)k

(I.19)

are both series in u with nonnegative coefficients.
Let rc = r(uc). Since ϕ, A, B are all strictly increasing functions on the real interval

(0, rc), we see that 1 − A cannot vanish, and therefore A(rc) ≤ 1. Thus, for r → r∗,
A(r) tends to a limit A(r∗) of modulus strictly smaller than 1, and 1− A(r∗) is nonzero.

On the other hand, by Proposition 4.7—or directly (I.8) in the non generic critical
case—we know that F ′2k(uc) is finite and grows as (4rc)k for k →∞. Thus, as r tends
to r∗ in D, B(r) tends to a finite limit B(r∗) since 16h4(rcr∗)2 < 1. Thus, ϕ′(r∗) �= 0
as wanted. ��
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We finish with the analysis of generic singularities.

Proposition I.7. If r(uc) < 1
4h2

, then r(u) is delta-analytic locally at uc. More precisely,
there exists δ > 0 such that r(u) admits in the slit disk {|u − uc| < δ, arg(u − uc) �= 0}
an analytic continuation of the form r(uc)− r̃(

√
uc − u), with r̃ analytic.

In other words, r(u) has a square root type singularity, and the volume exponent is that
of pure gravity, as expected.

Proof. We will reuse ideas and notations from the proof of Proposition I.6. Since ϕ is
analytic at rc, wemust haveϕ′(rc) = 0, as otherwise r(u) could be analytically continued
at uc, contradicting Pringsheim’s theorem [69, Theorem IV.6]. By differentiating (I.18),
we get

ϕ′′(r) = − A′(r) + B ′(r)ϕ′(r)
B(r)

. (I.20)

By the same arguments as before, since 16h4r4c < 1, B(r) tends for r → rc to a finite
limit, which is nowmanifestly positive.We also have A′(rc) and B ′(rc) positive (the latter
possibly infinite), thus ϕ′′(rc) < 0 (this quantity being necessarily finite by analyticity
of ϕ at rc).

Let us define ϕ̃(x) = ϕ(rc)−ϕ(rc−x)
(rc−x)2 . It is analytic at x = 0 and ϕ̃(0) = −ϕ′′(rc)

2 is

positive. Thus,
√
ϕ̃(x) is analytic and nonzero at x = 0 (we pick the principal branch

of the square root). By the inverse function theorem, x �→ x
√
ϕ̃(x) admits an inverse r̃

locally around zero. The function u �→ rc− r̃
(√

uc − u
)
is the analytic continuation we

are looking for, since it coincides with r(u) on an interval (uc − δ, uc). ��

Appendix J: Delta-Analyticity in the Bending Energy Model

The purpose of this appendix is to establish an analogue of Proposition I.6 in the more
general case of the bending energy model. Our proof works in the even more general
setting where we allow for unvisited faces of arbitrary degrees. The parameters are then
the weight per loop n, the weight per visited triangle h, the bending energy factor α, the
weight gk per unvisited face of degree k ≥ 1, and the weight u per vertex. We fix n, h,
α and (gk)k≥2 to nonnegative real values, with α, h > 0, n ∈ (0, 2), g2 < 1 and gk = 0
for k large enough. We will however let u and g1 vary in the complex plane, thus we
will keep the dependence on them explicit (we may think of u as being g0). We aim at
establishing the following result.

Theorem J.1. Assumeuc(0) is a nongeneric critical point, i.e. s(uc(0), 0)+2r(uc(0), 0) =
γ ∗+ . Then r(u, g1 = 0), s(u, g1 = 0), q(u, g1 = 0), F�(u, g1 = 0) (� > 0) are delta-
analytic functions of u.

In this theorem, the delta-analyticity of q is directly implied by the delta-analyticity of r
and s, as it is an analytic function of γ± = s± 2

√
r (consider together (B.1), (B.8), and

(B.19)). As the delta-analyticity statement locally around u = uc(0) is a consequence

of Lemma E.3 and the preceding discussion on analyticity in q
1
2 of all the quantities

of concern near q
1
2 → 0, we focus on the justification of the existence of an analytic

continuation at the other points on the closure of the disk of convergence in the u-plane.
Our proof will in fact give a similar property when g1 is set to small enough (perhaps
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non-zero) value. Treating g1 as a parameter is the trick making possible to adapt the
strategy of Appendix I.2 to this bivariate situation.

Consider the partition functions F�(u, g1) (� > 0) and the series r(u, g1) and s(u, g1)
of Proposition 4.1 and Remark 4.2. All these are series in u and g1 with nonnegative
coefficients, which are absolutely converging in an (�-independent) open subsetB ⊂ C

2

which is a neighborhood of (0, 0). This domain of convergence is such that for any g1
there exists some uc(g1) ≥ 0 such that B ∩ (C × {g1}) = B(0; uc(g1)) × {g1}, and
uc(g1) > 0 for g1 small enough.
Following the notations from [18, Section 6], let us define

Pk(r, s) :=

 k2 �∑
i=0

k!
(i !)2(k − 2i)! r

i sk−2i , (J.1)

and define similarly

Qk(r, s) :=

 k−12 �∑
i=0

k!
i !(i + 1)!(k − 2i − 1)! r

i+1sk−2i−1. (J.2)

These are polynomials with nonnegative coefficients, counting certain lattice paths. For
r, s > 0, we have

lim
k→∞ Pk(r, s)

1
k = lim

k→∞ Qk(r, s)
1
k = s + 2

√
r .

Then, the relations (4.6) determining (r, s) may be rewritten

r(u, g1) = u +
∑
k≥2

Gk(u, g1) Qk−1(r(u, g1), s(u, g1)),

s(u, g1) =
∑
k≥1

Gk(u, g1) Pk−1(r(u, g1), s(u, g1)),
(J.3)

where Gk(u, g1) are the renormalised face weights given of (3.2). To connect with [18,
Equation (6.7)], note that Qk−1(r, s) = 1

2 (Pk(r, s)−sPk−1(r, s)).We give the following
analog of Proposition I.6, which due to the previous remarks proves Theorem J.1.

Proposition J.2. Let (u∗, g∗1) be a point on the boundary of B such that |r(u∗, g∗1)| <
r(|u∗|, |g∗1 |). Then, r, s and F� (� > 0) all admit an analytic continuation in a neighbor-
hood of (u∗, g∗1).

The only way for the condition |r(u∗, g∗1)| < r(|u∗|, |g∗1 |) not to be satisfied is to have
u∗ and g∗1 both real and positive, or some periodicity phenomenon to occur: it may be
seen that this only happens for the situation already discussed in Appendix I.2, namely
u∗ negative, α = 0, g∗1 = 0 and gk = 0 for k �= 2 mod 4. As here α > 0, there are no
non-vanishing conditions on gk in Theorem J.1. Before proving Proposition J.2, we first
state the analog of Proposition I.5—recall that γ ∗+ = 1

h(α+1) .

Proposition J.3. There exists functions ϕ(r, s) and ψ�(r, s) (� > 0) which are mero-
morphic in a domain containing Y = {(r, s) ∈ C

2 | |s|+ 2√|r | < γ ∗+
}
and such that,

for (u, g1) ∈ B,
(u, g1) = ϕ(r(u, g1), s(u, g1)), F�(u, g1) = ψ�(r(u, g1), s(u, g1)). (J.4)

The set of poles of ψ� is included in that of ϕ.
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Proof of Proposition J.3. We shall use the exact solution of the model, in particular
Theorem 5.3. The vanishing conditions G(τ ) = G(τ + 1

2 ) = 0 form a 2 × 2 linear
system for u and g1, namely

∀ε ∈ {0, 12 }, i
√
4− n2

(
− u

2 + n
f (v∞+ε)+

2iCg1
4− n2

f ′(v∞+ε)+· · ·
)
= 0, (J.5)

where we set f (v) := ϒb(v) + ϒb(−v), we have used Lemma B.1, and · · · are func-
tions of the fixed parameters (gk)k≥2, n, h, α and γ−, γ+. More precisely, according to
Lemma E.1 the coefficients in these equations are analytic functions of γ−, γ+ (hence

of r, s) such that (q
1
2 , w∞) belongs to V ′′(0). We explain in the next paragraph that they

can in fact analytically continue to a larger domain containing Y . The matrix of this
2× 2 system reads, up to multiplication of each column by a non-vanishing prefactor:

D =
(

f (v∞) f
(
v∞ + 1

2

)
f ′(v∞) f ′

(
v∞ + 1

2

)
)
,

Due to the previous discussion, det(D) is an analytic function of (r, s) ∈ Y . We will
justify at the end of the proof that it is not identically zero. Therefore, the system for
u, g1 has a solution which is a meromorphic function of γ−, γ+ (zeroes of det(D) may
create poles on a divisor). The rest of the proof is then similar to that of Proposition I.5
and thus omitted.
To show analytic continuation to Y , we first discuss the case α �= 1. It is not hard
to check that there exists analytic continuations for ϒ(l)

b (v∞ + ε) for ε ∈ {0, 12 } and
l ∈ N, as functions of (q

1
2 , w∞) across the q

1
2 -negative real axis. Therefore, it is enough

to discuss the analyticity and analytic continuation of (q
1
2 , w∞) seen as a function of

(γ−, γ+). For the latter, can perform analytic continuation across the branch cuts on the
loci m ∈ (1,+∞) and p ∈ (−∞, 0), hence the only possible singularities occur on
the locus m ∈ {1,∞} or p ∈ {0,∞}. When (r, s) ∈ Y , the points γ± = s ± 2

√
r are

contained B(0; 1
h(α+1) )

2. Recall that γ ∗+ is a fixed point of ς , and the other fixed point is
1

h(α−1) which is outside B(0; 1
h(α−1) ). We then observe that the image of B(0; 1

h(α+1) )

via the involution ς is disjoint from B(0; 1
h(α+1) ). By comparing with the definition of

m,p in (B.1)–(B.11), it means that m and p as functions on Y avoid the values 0 and

∞. As a result, the only problem that could be met in continuing analytically (q
1
2 , w∞)

occurs on the intersection of the locusm = 1 with Y . In fact, substituting γ± = s +2
√
r

into the definition (B.1) of m, we have

m = 1− 16h2r(
1− 2hαs + h2(4r − s2)(1− α2)

)2 .

Therefore, m = 1 corresponds to r = 0 and the complement of this locus in Y is not
simply-connected (its fundamental group is Z). We are going to show, using modular
transformations for the theta functions and Jacobi elliptic functions, that there are in
fact no singularities at m = 1. Since Y is simply-connected, this will justify that the
coefficients of the system (J.5) can be continued (uniquely) to analytic functions on the
whole Y . The important variable after modular transformation is

q̃ = e2iπτ = e−
πK (m)
K (1−m) ∼

m→1

1−m
16

.
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This is an analytic function ofm in a neighborhood of 1. The expression (A.1) of ϑ1(v|τ)
is a series of terms involving q̃

1
8 +

m(m+1)
2 . Up to the q̃

1
8 prefactor this contains only integer

powers of q̃ . So, the ratio ϒb(v) in (D.1) involves only integer powers of q̃ , hence is an
analytic family (over q̃ in a neighborhood of 0) of meromorphic functions of v. With
Jacobi imaginary transformations we also convert (B.15) into

v∞ =
arcsc

[
i
√

p
m ; 1−m

]

2K (1−m)
∼

m→1

arctan
(
i
√
p)

π
,

where arcsc is (an analytic continuation of) the reciprocal function of sc = sn
cn . The

singularity atm = 1 is now absent as these quantities are analytic near the locusm = 1,
and ϒ(l)

b (v∞ + ε) for ε ∈ {0, 12 } and l ∈ N are analytic functions near the locus m = 1,
as desired. The case α = 1 is in fact simpler since w∞ = 1

2 is independent of γ± and

the previous discussion of analytic continuation for q
1
2 was sufficient to conclude.

It remains to justify that det(D) is not identically zero. For this, we evaluate it when γ+
approaches γ ∗+ . Using the variables (m,p) of Sect. 9.5.2, this corresponds to m → 0,
i.e. q → 0. According to (B.30), we have v = 1

2 + τw∞ with

w∞ ∼ w∗∞ = 2
π
arcsin

(
1√
p

)
.

Using Lemma D.2, we obtain

f (v∞) ∼ −4π

T
cos(πbw∗∞),

f ′(v∞) ∼ 4π

T

πb

iT
sin(πbw∗∞),

f
(
v∞ + 1

2

) ∼ 2π

T

sin
(
π(b − 1)w∗∞)
sin(πbw∗∞)

,

f ′
(
v∞ + 1

2

) ∼ 2π

T

π

iT

(
(b − 1) cos

(
π(b − 1)w∗∞)

sin(πw∗∞)
− cos(πw∗∞) sin

(
π(b − 1)w∗∞)

sin2(πw∗∞)

)
.

(J.6)

After trigonometric simplifications, this yields

det(D) ∼ 8π3

iT 3

(
− b cot(πw∗∞) +

1

2

sin(2πbw∗∞)
sin2(πw∗∞)

)
,

which does not vanish identically. ��
Proof of Proposition J.2. We will again invoke the analytic implicit function theorem,
now in its bivariate form. Note that, by Lemma H.3, for any u > 0 and g1 ≥ 0 such
that (u, g1) ∈ B, we have γ+(u, g1) ≤ γ ∗+ , and by monotone convergence the same
property holds for (u, g1) ∈ ∂B. Thus, for any (u∗, g∗1) satisfying the hypotheses of
Proposition J.2, (r∗, s∗) := (r(u∗, g∗1), s(u∗, g∗1)) belongs to the domain of analyticity
of ϕ. What remains to check is that the differential of ϕ is nondegenerate at (r∗, s∗).
We now substitute (u, g1) = ϕ(r, s) in (J.3), and differentiate, which is possible when-
ever (r, s) is inside D = ϕ−1(B). The result may be written compactly in matrix form

Id −M = (Id + N)Jϕ, (J.7)
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where Jϕ is the Jacobian matrix of ϕ:

Jϕ =
(
∂r u ∂su
∂r g1 ∂sg1

)
, (J.8)

and

M =
∑
k≥1

(k − 1)Gk

(
Pk−2 Qk−2

1
r Qk−2 Pk−2

)
,

N =
∑
k≥1

∑
�≥0

Ak,�

(
Qk−1 ∂u F� Qk−1 ∂g1F�
Pk−1 ∂u F� Pk−1 ∂g1F�

)
. (J.9)

Here, we are using the relation ∂r Qk−1 = (k−1)Pk−1 and its variants. Note that 1r Qk−2
is still a polynomial in r, s.

Notice that, when expressingM andN as power series in u and g1, all their coefficients
are nonnegative, andM has no constant coefficient. The eigenvalues ofM are of the form
X ± Y

√
r , with X,Y also power series with nonnegative coefficients and no constant

term. When restricting to u and g1 real nonnegative in B, the nonvanishing of det Jϕ
(since ϕ is a local diffeomorphism at (r, s) ∈ ϕ−1(B)) implies that X +Y

√
r must remain

strictly smaller than 1. Thus, going back to complex values, the eigenvalues of M have
modulus strictly smaller than 1 in all B, and the same holds for their limits at (r∗, s∗),
since it is assumed that |r∗| < r(|u∗|, |g∗1 |). We conclude that det(Id −M) tends to a
nonzero limit at (r∗, s∗).

On the other hand, in N we may bound the derivatives ∂u F� and ∂g1F� by their values
at (|u∗|, |g∗1 |) which, by Propositions 4.6 and 4.7, are finite and grow as O

(
(γ ∗+ )�

)
for

�→∞. By (H.8),we deduce that
∑

�≥0 Ak,� ∂u F� and
∑

�≥0 Ak,� ∂g1F� areO
(
(γ ∗+ )−k

)
.

As Qk−1 and Pk−1 are O(γ k), with γ = |s∗|+ 2√|r∗| < γ ∗+ , we find that N has a finite
limit at (r∗, s∗), and we conclude by continuity that det Jϕ(r∗, s∗) �= 0, as wanted. ��

We expect that Proposition I.7 can be extended to treat generic critical points of the
bending energy model, but we shall not attempt to do so here.
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